2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 /* Number of external interrupt lines to configure the GIC with */
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params
;
69 typedef struct VirtBoardInfo
{
70 struct arm_boot_info bootinfo
;
71 const char *cpu_model
;
72 const MemMapEntry
*memmap
;
77 uint32_t clock_phandle
;
85 VirtBoardInfo
*daughterboard
;
86 bool disallow_affinity_adjustment
;
96 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
97 #define VIRT_MACHINE(obj) \
98 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_GET_CLASS(obj) \
100 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
101 #define VIRT_MACHINE_CLASS(klass) \
102 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
105 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
106 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
109 MachineClass *mc = MACHINE_CLASS(oc); \
110 virt_machine_##major##_##minor##_options(mc); \
111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
113 mc->alias = "virt"; \
116 static const TypeInfo machvirt_##major##_##minor##_info = { \
117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118 .parent = TYPE_VIRT_MACHINE, \
119 .instance_init = virt_##major##_##minor##_instance_init, \
120 .class_init = virt_##major##_##minor##_class_init, \
122 static void machvirt_machine_##major##_##minor##_init(void) \
124 type_register_static(&machvirt_##major##_##minor##_info); \
126 type_init(machvirt_machine_##major##_##minor##_init);
128 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
129 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
130 #define DEFINE_VIRT_MACHINE(major, minor) \
131 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
134 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
135 * RAM can go up to the 256GB mark, leaving 256GB of the physical
136 * address space unallocated and free for future use between 256G and 512G.
137 * If we need to provide more RAM to VMs in the future then we need to:
138 * * allocate a second bank of RAM starting at 2TB and working up
139 * * fix the DT and ACPI table generation code in QEMU to correctly
140 * report two split lumps of RAM to the guest
141 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
142 * (We don't want to fill all the way up to 512GB with RAM because
143 * we might want it for non-RAM purposes later. Conversely it seems
144 * reasonable to assume that anybody configuring a VM with a quarter
145 * of a terabyte of RAM will be doing it on a host with more than a
146 * terabyte of physical address space.)
148 #define RAMLIMIT_GB 255
149 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
151 /* Addresses and sizes of our components.
152 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
153 * 128MB..256MB is used for miscellaneous device I/O.
154 * 256MB..1GB is reserved for possible future PCI support (ie where the
155 * PCI memory window will go if we add a PCI host controller).
156 * 1GB and up is RAM (which may happily spill over into the
157 * high memory region beyond 4GB).
158 * This represents a compromise between how much RAM can be given to
159 * a 32 bit VM and leaving space for expansion and in particular for PCI.
160 * Note that devices should generally be placed at multiples of 0x10000,
161 * to accommodate guests using 64K pages.
163 static const MemMapEntry a15memmap
[] = {
164 /* Space up to 0x8000000 is reserved for a boot ROM */
165 [VIRT_FLASH
] = { 0, 0x08000000 },
166 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
167 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
168 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
169 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
170 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
172 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
173 /* This redistributor space allows up to 2*64kB*123 CPUs */
174 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
175 [VIRT_UART
] = { 0x09000000, 0x00001000 },
176 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
177 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
178 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
179 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
180 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
181 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
182 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
183 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
184 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
185 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
186 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
187 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
188 /* Second PCIe window, 512GB wide at the 512GB boundary */
189 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
192 static const int a15irqmap
[] = {
195 [VIRT_PCIE
] = 3, /* ... to 6 */
197 [VIRT_SECURE_UART
] = 8,
198 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
199 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
200 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
203 static VirtBoardInfo machines
[] = {
205 .cpu_model
= "cortex-a15",
210 .cpu_model
= "cortex-a53",
215 .cpu_model
= "cortex-a57",
226 static VirtBoardInfo
*find_machine_info(const char *cpu
)
230 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
231 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
238 static void create_fdt(VirtBoardInfo
*vbi
)
240 void *fdt
= create_device_tree(&vbi
->fdt_size
);
243 error_report("create_device_tree() failed");
250 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
251 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
252 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
255 * /chosen and /memory nodes must exist for load_dtb
256 * to fill in necessary properties later
258 qemu_fdt_add_subnode(fdt
, "/chosen");
259 qemu_fdt_add_subnode(fdt
, "/memory");
260 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
262 /* Clock node, for the benefit of the UART. The kernel device tree
263 * binding documentation claims the PL011 node clock properties are
264 * optional but in practice if you omit them the kernel refuses to
265 * probe for the device.
267 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
268 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
269 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
270 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
271 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
272 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
274 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
278 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
280 uint32_t cpu_suspend_fn
;
284 void *fdt
= vbi
->fdt
;
285 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
287 if (!vbi
->using_psci
) {
291 qemu_fdt_add_subnode(fdt
, "/psci");
292 if (armcpu
->psci_version
== 2) {
293 const char comp
[] = "arm,psci-0.2\0arm,psci";
294 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
296 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
297 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
298 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
299 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
300 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
302 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
303 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
304 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
307 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
309 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
310 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
311 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
312 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
315 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
316 * to the instruction that should be used to invoke PSCI functions.
317 * However, the device tree binding uses 'method' instead, so that is
318 * what we should use here.
320 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
322 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
323 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
324 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
325 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
328 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
330 /* Note that on A15 h/w these interrupts are level-triggered,
331 * but for the GIC implementation provided by both QEMU and KVM
332 * they are edge-triggered.
335 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
338 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
339 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
340 (1 << vbi
->smp_cpus
) - 1);
343 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
345 armcpu
= ARM_CPU(qemu_get_cpu(0));
346 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
347 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
348 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
349 compat
, sizeof(compat
));
351 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
354 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
355 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
356 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
357 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
358 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
359 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
362 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
369 * From Documentation/devicetree/bindings/arm/cpus.txt
370 * On ARM v8 64-bit systems value should be set to 2,
371 * that corresponds to the MPIDR_EL1 register size.
372 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
373 * in the system, #address-cells can be set to 1, since
374 * MPIDR_EL1[63:32] bits are not used for CPUs
377 * Here we actually don't know whether our system is 32- or 64-bit one.
378 * The simplest way to go is to examine affinity IDs of all our CPUs. If
379 * at least one of them has Aff3 populated, we set #address-cells to 2.
381 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
382 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
384 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
390 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
391 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
392 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
394 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
395 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
396 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
398 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
399 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
400 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
401 armcpu
->dtb_compatible
);
403 if (vbi
->using_psci
&& vbi
->smp_cpus
> 1) {
404 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
405 "enable-method", "psci");
408 if (addr_cells
== 2) {
409 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
410 armcpu
->mp_affinity
);
412 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
413 armcpu
->mp_affinity
);
416 for (i
= 0; i
< nb_numa_nodes
; i
++) {
417 if (test_bit(cpu
, numa_info
[i
].node_cpu
)) {
418 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "numa-node-id", i
);
426 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
428 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
429 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
430 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
431 "arm,gic-v2m-frame");
432 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
433 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
434 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
435 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
436 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
439 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
441 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
442 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
444 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
445 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
446 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
447 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
448 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
449 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
451 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
453 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
454 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
455 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
456 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
457 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
459 /* 'cortex-a15-gic' means 'GIC v2' */
460 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
461 "arm,cortex-a15-gic");
462 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
463 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
464 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
465 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
466 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
469 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
472 static void fdt_add_pmu_nodes(const VirtBoardInfo
*vbi
, int gictype
)
476 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
479 armcpu
= ARM_CPU(cpu
);
480 if (!armcpu
->has_pmu
||
481 !kvm_arm_pmu_create(cpu
, PPI(VIRTUAL_PMU_IRQ
))) {
487 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
488 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
489 (1 << vbi
->smp_cpus
) - 1);
492 armcpu
= ARM_CPU(qemu_get_cpu(0));
493 qemu_fdt_add_subnode(vbi
->fdt
, "/pmu");
494 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
495 const char compat
[] = "arm,armv8-pmuv3";
496 qemu_fdt_setprop(vbi
->fdt
, "/pmu", "compatible",
497 compat
, sizeof(compat
));
498 qemu_fdt_setprop_cells(vbi
->fdt
, "/pmu", "interrupts",
499 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
503 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
506 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
509 dev
= qdev_create(NULL
, "arm-gicv2m");
510 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
511 qdev_prop_set_uint32(dev
, "base-spi", irq
);
512 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
513 qdev_init_nofail(dev
);
515 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
516 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
519 fdt_add_v2m_gic_node(vbi
);
522 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
524 /* We create a standalone GIC */
526 SysBusDevice
*gicbusdev
;
530 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
532 gicdev
= qdev_create(NULL
, gictype
);
533 qdev_prop_set_uint32(gicdev
, "revision", type
);
534 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
535 /* Note that the num-irq property counts both internal and external
536 * interrupts; there are always 32 of the former (mandated by GIC spec).
538 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
539 if (!kvm_irqchip_in_kernel()) {
540 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
542 qdev_init_nofail(gicdev
);
543 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
544 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
546 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
548 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
551 /* Wire the outputs from each CPU's generic timer to the
552 * appropriate GIC PPI inputs, and the GIC's IRQ output to
553 * the CPU's IRQ input.
555 for (i
= 0; i
< smp_cpus
; i
++) {
556 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
557 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
559 /* Mapping from the output timer irq lines from the CPU to the
560 * GIC PPI inputs we use for the virt board.
562 const int timer_irq
[] = {
563 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
564 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
565 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
566 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
569 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
570 qdev_connect_gpio_out(cpudev
, irq
,
571 qdev_get_gpio_in(gicdev
,
572 ppibase
+ timer_irq
[irq
]));
575 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
576 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
577 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
580 for (i
= 0; i
< NUM_IRQS
; i
++) {
581 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
584 fdt_add_gic_node(vbi
, type
);
587 create_v2m(vbi
, pic
);
591 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
592 MemoryRegion
*mem
, CharDriverState
*chr
)
595 hwaddr base
= vbi
->memmap
[uart
].base
;
596 hwaddr size
= vbi
->memmap
[uart
].size
;
597 int irq
= vbi
->irqmap
[uart
];
598 const char compat
[] = "arm,pl011\0arm,primecell";
599 const char clocknames
[] = "uartclk\0apb_pclk";
600 DeviceState
*dev
= qdev_create(NULL
, "pl011");
601 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
603 qdev_prop_set_chr(dev
, "chardev", chr
);
604 qdev_init_nofail(dev
);
605 memory_region_add_subregion(mem
, base
,
606 sysbus_mmio_get_region(s
, 0));
607 sysbus_connect_irq(s
, 0, pic
[irq
]);
609 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
610 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
611 /* Note that we can't use setprop_string because of the embedded NUL */
612 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
613 compat
, sizeof(compat
));
614 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
616 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
617 GIC_FDT_IRQ_TYPE_SPI
, irq
,
618 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
619 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
620 vbi
->clock_phandle
, vbi
->clock_phandle
);
621 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
622 clocknames
, sizeof(clocknames
));
624 if (uart
== VIRT_UART
) {
625 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
627 /* Mark as not usable by the normal world */
628 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
629 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
635 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
638 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
639 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
640 int irq
= vbi
->irqmap
[VIRT_RTC
];
641 const char compat
[] = "arm,pl031\0arm,primecell";
643 sysbus_create_simple("pl031", base
, pic
[irq
]);
645 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
646 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
647 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
648 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
650 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
651 GIC_FDT_IRQ_TYPE_SPI
, irq
,
652 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
653 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
654 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
658 static DeviceState
*gpio_key_dev
;
659 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
661 /* use gpio Pin 3 for power button event */
662 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
665 static Notifier virt_system_powerdown_notifier
= {
666 .notify
= virt_powerdown_req
669 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
672 DeviceState
*pl061_dev
;
673 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
674 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
675 int irq
= vbi
->irqmap
[VIRT_GPIO
];
676 const char compat
[] = "arm,pl061\0arm,primecell";
678 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
680 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
681 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
682 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
683 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
685 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
686 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
687 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
688 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
689 GIC_FDT_IRQ_TYPE_SPI
, irq
,
690 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
691 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
692 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
693 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
695 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
696 qdev_get_gpio_in(pl061_dev
, 3));
697 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
698 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
699 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
700 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
702 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
703 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
704 "label", "GPIO Key Poweroff");
705 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
707 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
708 "gpios", phandle
, 3, 0);
710 /* connect powerdown request */
711 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
716 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
719 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
721 /* We create the transports in forwards order. Since qbus_realize()
722 * prepends (not appends) new child buses, the incrementing loop below will
723 * create a list of virtio-mmio buses with decreasing base addresses.
725 * When a -device option is processed from the command line,
726 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
727 * order. The upshot is that -device options in increasing command line
728 * order are mapped to virtio-mmio buses with decreasing base addresses.
730 * When this code was originally written, that arrangement ensured that the
731 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
732 * the first -device on the command line. (The end-to-end order is a
733 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
734 * guest kernel's name-to-address assignment strategy.)
736 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
737 * the message, if not necessarily the code, of commit 70161ff336.
738 * Therefore the loop now establishes the inverse of the original intent.
740 * Unfortunately, we can't counteract the kernel change by reversing the
741 * loop; it would break existing command lines.
743 * In any case, the kernel makes no guarantee about the stability of
744 * enumeration order of virtio devices (as demonstrated by it changing
745 * between kernel versions). For reliable and stable identification
746 * of disks users must use UUIDs or similar mechanisms.
748 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
749 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
750 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
752 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
755 /* We add dtb nodes in reverse order so that they appear in the finished
756 * device tree lowest address first.
758 * Note that this mapping is independent of the loop above. The previous
759 * loop influences virtio device to virtio transport assignment, whereas
760 * this loop controls how virtio transports are laid out in the dtb.
762 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
764 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
765 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
767 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
768 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
769 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
770 "compatible", "virtio,mmio");
771 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
773 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
774 GIC_FDT_IRQ_TYPE_SPI
, irq
,
775 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
780 static void create_one_flash(const char *name
, hwaddr flashbase
,
781 hwaddr flashsize
, const char *file
,
782 MemoryRegion
*sysmem
)
784 /* Create and map a single flash device. We use the same
785 * parameters as the flash devices on the Versatile Express board.
787 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
788 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
789 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
790 const uint64_t sectorlength
= 256 * 1024;
793 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
797 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
798 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
799 qdev_prop_set_uint8(dev
, "width", 4);
800 qdev_prop_set_uint8(dev
, "device-width", 2);
801 qdev_prop_set_bit(dev
, "big-endian", false);
802 qdev_prop_set_uint16(dev
, "id0", 0x89);
803 qdev_prop_set_uint16(dev
, "id1", 0x18);
804 qdev_prop_set_uint16(dev
, "id2", 0x00);
805 qdev_prop_set_uint16(dev
, "id3", 0x00);
806 qdev_prop_set_string(dev
, "name", name
);
807 qdev_init_nofail(dev
);
809 memory_region_add_subregion(sysmem
, flashbase
,
810 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
816 if (drive_get(IF_PFLASH
, 0, 0)) {
817 error_report("The contents of the first flash device may be "
818 "specified with -bios or with -drive if=pflash... "
819 "but you cannot use both options at once");
822 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
824 error_report("Could not find ROM image '%s'", file
);
827 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
829 if (image_size
< 0) {
830 error_report("Could not load ROM image '%s'", file
);
836 static void create_flash(const VirtBoardInfo
*vbi
,
837 MemoryRegion
*sysmem
,
838 MemoryRegion
*secure_sysmem
)
840 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
841 * Any file passed via -bios goes in the first of these.
842 * sysmem is the system memory space. secure_sysmem is the secure view
843 * of the system, and the first flash device should be made visible only
844 * there. The second flash device is visible to both secure and nonsecure.
845 * If sysmem == secure_sysmem this means there is no separate Secure
846 * address space and both flash devices are generally visible.
848 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
849 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
852 create_one_flash("virt.flash0", flashbase
, flashsize
,
853 bios_name
, secure_sysmem
);
854 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
857 if (sysmem
== secure_sysmem
) {
858 /* Report both flash devices as a single node in the DT */
859 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
860 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
861 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
862 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
863 2, flashbase
, 2, flashsize
,
864 2, flashbase
+ flashsize
, 2, flashsize
);
865 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
868 /* Report the devices as separate nodes so we can mark one as
869 * only visible to the secure world.
871 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
872 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
873 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
874 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
875 2, flashbase
, 2, flashsize
);
876 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
877 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
878 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
881 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
882 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
883 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
884 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
885 2, flashbase
+ flashsize
, 2, flashsize
);
886 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
891 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
893 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
894 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
897 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
899 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
900 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
901 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
902 "compatible", "qemu,fw-cfg-mmio");
903 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
908 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
909 int first_irq
, const char *nodename
)
912 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
913 uint32_t *irq_map
= full_irq_map
;
915 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
916 for (pin
= 0; pin
< 4; pin
++) {
917 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
918 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
919 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
923 devfn
<< 8, 0, 0, /* devfn */
924 pin
+ 1, /* PCI pin */
925 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
927 /* Convert map to big endian */
928 for (i
= 0; i
< 10; i
++) {
929 irq_map
[i
] = cpu_to_be32(map
[i
]);
935 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
936 full_irq_map
, sizeof(full_irq_map
));
938 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
939 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
943 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
946 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
947 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
948 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
949 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
950 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
951 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
952 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
953 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
954 hwaddr base
= base_mmio
;
955 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
956 int irq
= vbi
->irqmap
[VIRT_PCIE
];
957 MemoryRegion
*mmio_alias
;
958 MemoryRegion
*mmio_reg
;
959 MemoryRegion
*ecam_alias
;
960 MemoryRegion
*ecam_reg
;
966 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
967 qdev_init_nofail(dev
);
969 /* Map only the first size_ecam bytes of ECAM space */
970 ecam_alias
= g_new0(MemoryRegion
, 1);
971 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
972 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
973 ecam_reg
, 0, size_ecam
);
974 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
976 /* Map the MMIO window into system address space so as to expose
977 * the section of PCI MMIO space which starts at the same base address
978 * (ie 1:1 mapping for that part of PCI MMIO space visible through
981 mmio_alias
= g_new0(MemoryRegion
, 1);
982 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
983 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
984 mmio_reg
, base_mmio
, size_mmio
);
985 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
988 /* Map high MMIO space */
989 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
991 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
992 mmio_reg
, base_mmio_high
, size_mmio_high
);
993 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
997 /* Map IO port space */
998 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1000 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1001 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1004 pci
= PCI_HOST_BRIDGE(dev
);
1006 for (i
= 0; i
< nb_nics
; i
++) {
1007 NICInfo
*nd
= &nd_table
[i
];
1010 nd
->model
= g_strdup("virtio");
1013 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1017 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1018 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1019 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
1020 "compatible", "pci-host-ecam-generic");
1021 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
1022 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
1023 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
1024 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
1026 qemu_fdt_setprop(vbi
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1028 if (vbi
->v2m_phandle
) {
1029 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
1033 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
1034 2, base_ecam
, 2, size_ecam
);
1037 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1038 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1039 2, base_pio
, 2, size_pio
,
1040 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1041 2, base_mmio
, 2, size_mmio
,
1042 1, FDT_PCI_RANGE_MMIO_64BIT
,
1044 2, base_mmio_high
, 2, size_mmio_high
);
1046 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1047 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1048 2, base_pio
, 2, size_pio
,
1049 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1050 2, base_mmio
, 2, size_mmio
);
1053 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
1054 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
1059 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
1064 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1065 MemoryRegion
*sysmem
= get_system_memory();
1067 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
1068 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
1069 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
1070 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1072 fdt_params
->system_params
= &platform_bus_params
;
1073 fdt_params
->binfo
= &vbi
->bootinfo
;
1074 fdt_params
->intc
= "/intc";
1076 * register a machine init done notifier that creates the device tree
1077 * nodes of the platform bus and its children dynamic sysbus devices
1079 arm_register_platform_bus_fdt_creator(fdt_params
);
1081 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1082 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1083 qdev_prop_set_uint32(dev
, "num_irqs",
1084 platform_bus_params
.platform_bus_num_irqs
);
1085 qdev_prop_set_uint32(dev
, "mmio_size",
1086 platform_bus_params
.platform_bus_size
);
1087 qdev_init_nofail(dev
);
1088 s
= SYS_BUS_DEVICE(dev
);
1090 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1091 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1092 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1095 memory_region_add_subregion(sysmem
,
1096 platform_bus_params
.platform_bus_base
,
1097 sysbus_mmio_get_region(s
, 0));
1100 static void create_secure_ram(VirtBoardInfo
*vbi
, MemoryRegion
*secure_sysmem
)
1102 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1104 hwaddr base
= vbi
->memmap
[VIRT_SECURE_MEM
].base
;
1105 hwaddr size
= vbi
->memmap
[VIRT_SECURE_MEM
].size
;
1107 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1108 vmstate_register_ram_global(secram
);
1109 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1111 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1112 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1113 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "memory");
1114 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1115 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
1116 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
1121 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1123 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
1125 *fdt_size
= board
->fdt_size
;
1129 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
1131 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
1132 uint8_t *smbios_tables
, *smbios_anchor
;
1133 size_t smbios_tables_len
, smbios_anchor_len
;
1134 const char *product
= "QEMU Virtual Machine";
1140 if (kvm_enabled()) {
1141 product
= "KVM Virtual Machine";
1144 smbios_set_defaults("QEMU", product
,
1145 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1147 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1148 &smbios_anchor
, &smbios_anchor_len
);
1150 if (smbios_anchor
) {
1151 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
1152 smbios_tables
, smbios_tables_len
);
1153 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
1154 smbios_anchor
, smbios_anchor_len
);
1159 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1161 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1162 VirtGuestInfoState
, machine_done
);
1163 virt_acpi_setup(&guest_info_state
->info
);
1164 virt_build_smbios(&guest_info_state
->info
);
1167 static void machvirt_init(MachineState
*machine
)
1169 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1170 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1171 qemu_irq pic
[NUM_IRQS
];
1172 MemoryRegion
*sysmem
= get_system_memory();
1173 MemoryRegion
*secure_sysmem
= NULL
;
1174 int gic_version
= vms
->gic_version
;
1175 int n
, virt_max_cpus
;
1176 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1177 const char *cpu_model
= machine
->cpu_model
;
1179 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1180 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1183 const char *typename
;
1186 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1190 cpu_model
= "cortex-a15";
1193 /* We can probe only here because during property set
1194 * KVM is not available yet
1197 if (!kvm_enabled()) {
1198 error_report("gic-version=host requires KVM");
1202 gic_version
= kvm_arm_vgic_probe();
1204 error_report("Unable to determine GIC version supported by host");
1209 /* Separate the actual CPU model name from any appended features */
1210 cpustr
= g_strsplit(cpu_model
, ",", 2);
1212 vbi
= find_machine_info(cpustr
[0]);
1215 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1219 /* If we have an EL3 boot ROM then the assumption is that it will
1220 * implement PSCI itself, so disable QEMU's internal implementation
1221 * so it doesn't get in the way. Instead of starting secondary
1222 * CPUs in PSCI powerdown state we will start them all running and
1223 * let the boot ROM sort them out.
1224 * The usual case is that we do use QEMU's PSCI implementation.
1226 vbi
->using_psci
= !(vms
->secure
&& firmware_loaded
);
1228 /* The maximum number of CPUs depends on the GIC version, or on how
1229 * many redistributors we can fit into the memory map.
1231 if (gic_version
== 3) {
1232 virt_max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1233 clustersz
= GICV3_TARGETLIST_BITS
;
1235 virt_max_cpus
= GIC_NCPU
;
1236 clustersz
= GIC_TARGETLIST_BITS
;
1239 if (max_cpus
> virt_max_cpus
) {
1240 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1241 "supported by machine 'mach-virt' (%d)",
1242 max_cpus
, virt_max_cpus
);
1246 vbi
->smp_cpus
= smp_cpus
;
1248 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1249 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1254 if (kvm_enabled()) {
1255 error_report("mach-virt: KVM does not support Security extensions");
1259 /* The Secure view of the world is the same as the NonSecure,
1260 * but with a few extra devices. Create it as a container region
1261 * containing the system memory at low priority; any secure-only
1262 * devices go in at higher priority and take precedence.
1264 secure_sysmem
= g_new(MemoryRegion
, 1);
1265 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1267 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1272 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1274 error_report("Unable to find CPU definition");
1277 typename
= object_class_get_name(oc
);
1279 /* convert -smp CPU options specified by the user into global props */
1281 cc
->parse_features(typename
, cpustr
[1], &err
);
1284 error_report_err(err
);
1288 for (n
= 0; n
< smp_cpus
; n
++) {
1289 Object
*cpuobj
= object_new(typename
);
1290 if (!vmc
->disallow_affinity_adjustment
) {
1291 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1292 * GIC's target-list limitations. 32-bit KVM hosts currently
1293 * always create clusters of 4 CPUs, but that is expected to
1294 * change when they gain support for gicv3. When KVM is enabled
1295 * it will override the changes we make here, therefore our
1296 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1297 * and to improve SGI efficiency.
1299 uint8_t aff1
= n
/ clustersz
;
1300 uint8_t aff0
= n
% clustersz
;
1301 object_property_set_int(cpuobj
, (aff1
<< ARM_AFF1_SHIFT
) | aff0
,
1302 "mp-affinity", NULL
);
1306 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1309 if (vbi
->using_psci
) {
1310 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
,
1311 "psci-conduit", NULL
);
1313 /* Secondary CPUs start in PSCI powered-down state */
1315 object_property_set_bool(cpuobj
, true,
1316 "start-powered-off", NULL
);
1320 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1321 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1322 "reset-cbar", &error_abort
);
1325 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1328 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1329 "secure-memory", &error_abort
);
1332 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1334 fdt_add_timer_nodes(vbi
, gic_version
);
1335 fdt_add_cpu_nodes(vbi
);
1336 fdt_add_psci_node(vbi
);
1338 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1340 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1342 create_flash(vbi
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1344 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1346 fdt_add_pmu_nodes(vbi
, gic_version
);
1348 create_uart(vbi
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1351 create_secure_ram(vbi
, secure_sysmem
);
1352 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1355 create_rtc(vbi
, pic
);
1357 create_pcie(vbi
, pic
, vms
->highmem
);
1359 create_gpio(vbi
, pic
);
1361 /* Create mmio transports, so the user can create virtio backends
1362 * (which will be automatically plugged in to the transports). If
1363 * no backend is created the transport will just sit harmlessly idle.
1365 create_virtio_devices(vbi
, pic
);
1367 create_fw_cfg(vbi
, &address_space_memory
);
1368 rom_set_fw(fw_cfg_find());
1370 guest_info
->smp_cpus
= smp_cpus
;
1371 guest_info
->fw_cfg
= fw_cfg_find();
1372 guest_info
->memmap
= vbi
->memmap
;
1373 guest_info
->irqmap
= vbi
->irqmap
;
1374 guest_info
->use_highmem
= vms
->highmem
;
1375 guest_info
->gic_version
= gic_version
;
1376 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1377 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1379 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1380 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1381 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1382 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1383 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1384 vbi
->bootinfo
.board_id
= -1;
1385 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1386 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1387 vbi
->bootinfo
.firmware_loaded
= firmware_loaded
;
1388 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1391 * arm_load_kernel machine init done notifier registration must
1392 * happen before the platform_bus_create call. In this latter,
1393 * another notifier is registered which adds platform bus nodes.
1394 * Notifiers are executed in registration reverse order.
1396 create_platform_bus(vbi
, pic
);
1399 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1401 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1406 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1408 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1410 vms
->secure
= value
;
1413 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1415 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1417 return vms
->highmem
;
1420 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1422 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1424 vms
->highmem
= value
;
1427 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1429 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1430 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1432 return g_strdup(val
);
1435 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1437 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1439 if (!strcmp(value
, "3")) {
1440 vms
->gic_version
= 3;
1441 } else if (!strcmp(value
, "2")) {
1442 vms
->gic_version
= 2;
1443 } else if (!strcmp(value
, "host")) {
1444 vms
->gic_version
= 0; /* Will probe later */
1446 error_setg(errp
, "Invalid gic-version value");
1447 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1451 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1453 MachineClass
*mc
= MACHINE_CLASS(oc
);
1455 mc
->init
= machvirt_init
;
1456 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1457 * it later in machvirt_init, where we have more information about the
1458 * configuration of the particular instance.
1460 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1461 mc
->has_dynamic_sysbus
= true;
1462 mc
->block_default_type
= IF_VIRTIO
;
1464 mc
->pci_allow_0_address
= true;
1467 static const TypeInfo virt_machine_info
= {
1468 .name
= TYPE_VIRT_MACHINE
,
1469 .parent
= TYPE_MACHINE
,
1471 .instance_size
= sizeof(VirtMachineState
),
1472 .class_size
= sizeof(VirtMachineClass
),
1473 .class_init
= virt_machine_class_init
,
1476 static void machvirt_machine_init(void)
1478 type_register_static(&virt_machine_info
);
1480 type_init(machvirt_machine_init
);
1482 static void virt_2_7_instance_init(Object
*obj
)
1484 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1486 /* EL3 is disabled by default on virt: this makes us consistent
1487 * between KVM and TCG for this board, and it also allows us to
1488 * boot UEFI blobs which assume no TrustZone support.
1490 vms
->secure
= false;
1491 object_property_add_bool(obj
, "secure", virt_get_secure
,
1492 virt_set_secure
, NULL
);
1493 object_property_set_description(obj
, "secure",
1494 "Set on/off to enable/disable the ARM "
1495 "Security Extensions (TrustZone)",
1498 /* High memory is enabled by default */
1499 vms
->highmem
= true;
1500 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1501 virt_set_highmem
, NULL
);
1502 object_property_set_description(obj
, "highmem",
1503 "Set on/off to enable/disable using "
1504 "physical address space above 32 bits",
1506 /* Default GIC type is v2 */
1507 vms
->gic_version
= 2;
1508 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1509 virt_set_gic_version
, NULL
);
1510 object_property_set_description(obj
, "gic-version",
1512 "Valid values are 2, 3 and host", NULL
);
1515 static void virt_machine_2_7_options(MachineClass
*mc
)
1518 DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1520 #define VIRT_COMPAT_2_6 \
1523 static void virt_2_6_instance_init(Object
*obj
)
1525 virt_2_7_instance_init(obj
);
1528 static void virt_machine_2_6_options(MachineClass
*mc
)
1530 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1532 virt_machine_2_7_options(mc
);
1533 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1534 vmc
->disallow_affinity_adjustment
= true;
1536 DEFINE_VIRT_MACHINE(2, 6)