2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
32 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
36 static bool cap_has_mp_state
;
38 static ARMHostCPUFeatures arm_host_cpu_features
;
40 int kvm_arm_vcpu_init(CPUState
*cs
)
42 ARMCPU
*cpu
= ARM_CPU(cs
);
43 struct kvm_vcpu_init init
;
45 init
.target
= cpu
->kvm_target
;
46 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
48 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
51 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
53 struct kvm_vcpu_init
*init
)
55 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
57 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
61 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
65 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
71 /* Caller doesn't want the VCPU to be initialized, so skip it */
75 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
77 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
81 } else if (cpus_to_try
) {
82 /* Old kernel which doesn't know about the
83 * PREFERRED_TARGET ioctl: we know it will only support
84 * creating one kind of guest CPU which is its preferred
87 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
88 init
->target
= *cpus_to_try
++;
89 memset(init
->features
, 0, sizeof(init
->features
));
90 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
99 /* Treat a NULL cpus_to_try argument the same as an empty
100 * list, which means we will fail the call since this must
101 * be an old kernel which doesn't support PREFERRED_TARGET.
127 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
131 for (i
= 2; i
>= 0; i
--) {
136 void kvm_arm_set_cpu_features_from_host(ARMCPU
*cpu
)
138 CPUARMState
*env
= &cpu
->env
;
140 if (!arm_host_cpu_features
.dtb_compatible
) {
141 if (!kvm_enabled() ||
142 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features
)) {
143 /* We can't report this error yet, so flag that we need to
144 * in arm_cpu_realizefn().
146 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
147 cpu
->host_cpu_probe_failed
= true;
152 cpu
->kvm_target
= arm_host_cpu_features
.target
;
153 cpu
->dtb_compatible
= arm_host_cpu_features
.dtb_compatible
;
154 env
->features
= arm_host_cpu_features
.features
;
157 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
159 /* For ARM interrupt delivery is always asynchronous,
160 * whether we are using an in-kernel VGIC or not.
162 kvm_async_interrupts_allowed
= true;
165 * PSCI wakes up secondary cores, so we always need to
166 * have vCPUs waiting in kernel space
168 kvm_halt_in_kernel_allowed
= true;
170 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
175 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
177 return cpu
->cpu_index
;
180 /* We track all the KVM devices which need their memory addresses
181 * passing to the kernel in a list of these structures.
182 * When board init is complete we run through the list and
183 * tell the kernel the base addresses of the memory regions.
184 * We use a MemoryListener to track mapping and unmapping of
185 * the regions during board creation, so the board models don't
186 * need to do anything special for the KVM case.
188 typedef struct KVMDevice
{
189 struct kvm_arm_device_addr kda
;
190 struct kvm_device_attr kdattr
;
192 QSLIST_ENTRY(KVMDevice
) entries
;
196 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
198 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
199 MemoryRegionSection
*section
)
203 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
204 if (section
->mr
== kd
->mr
) {
205 kd
->kda
.addr
= section
->offset_within_address_space
;
210 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
211 MemoryRegionSection
*section
)
215 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
216 if (section
->mr
== kd
->mr
) {
222 static MemoryListener devlistener
= {
223 .region_add
= kvm_arm_devlistener_add
,
224 .region_del
= kvm_arm_devlistener_del
,
227 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
229 struct kvm_device_attr
*attr
= &kd
->kdattr
;
232 /* If the device control API is available and we have a device fd on the
233 * KVMDevice struct, let's use the newer API
235 if (kd
->dev_fd
>= 0) {
236 uint64_t addr
= kd
->kda
.addr
;
237 attr
->addr
= (uintptr_t)&addr
;
238 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
240 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
244 fprintf(stderr
, "Failed to set device address: %s\n",
250 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
254 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
255 if (kd
->kda
.addr
!= -1) {
256 kvm_arm_set_device_addr(kd
);
258 memory_region_unref(kd
->mr
);
261 memory_listener_unregister(&devlistener
);
264 static Notifier notify
= {
265 .notify
= kvm_arm_machine_init_done
,
268 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
269 uint64_t attr
, int dev_fd
)
273 if (!kvm_irqchip_in_kernel()) {
277 if (QSLIST_EMPTY(&kvm_devices_head
)) {
278 memory_listener_register(&devlistener
, &address_space_memory
);
279 qemu_add_machine_init_done_notifier(¬ify
);
281 kd
= g_new0(KVMDevice
, 1);
285 kd
->kdattr
.flags
= 0;
286 kd
->kdattr
.group
= group
;
287 kd
->kdattr
.attr
= attr
;
289 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
290 memory_region_ref(kd
->mr
);
293 static int compare_u64(const void *a
, const void *b
)
295 if (*(uint64_t *)a
> *(uint64_t *)b
) {
298 if (*(uint64_t *)a
< *(uint64_t *)b
) {
304 /* Initialize the CPUState's cpreg list according to the kernel's
305 * definition of what CPU registers it knows about (and throw away
306 * the previous TCG-created cpreg list).
308 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
310 struct kvm_reg_list rl
;
311 struct kvm_reg_list
*rlp
;
312 int i
, ret
, arraylen
;
313 CPUState
*cs
= CPU(cpu
);
316 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
320 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
322 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
326 /* Sort the list we get back from the kernel, since cpreg_tuples
327 * must be in strictly ascending order.
329 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
331 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
332 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
335 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
336 case KVM_REG_SIZE_U32
:
337 case KVM_REG_SIZE_U64
:
340 fprintf(stderr
, "Can't handle size of register in kernel list\n");
348 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
349 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
350 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
352 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
354 cpu
->cpreg_array_len
= arraylen
;
355 cpu
->cpreg_vmstate_array_len
= arraylen
;
357 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
358 uint64_t regidx
= rlp
->reg
[i
];
359 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
362 cpu
->cpreg_indexes
[arraylen
] = regidx
;
365 assert(cpu
->cpreg_array_len
== arraylen
);
367 if (!write_kvmstate_to_list(cpu
)) {
368 /* Shouldn't happen unless kernel is inconsistent about
369 * what registers exist.
371 fprintf(stderr
, "Initial read of kernel register state failed\n");
381 bool write_kvmstate_to_list(ARMCPU
*cpu
)
383 CPUState
*cs
= CPU(cpu
);
387 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
388 struct kvm_one_reg r
;
389 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
395 switch (regidx
& KVM_REG_SIZE_MASK
) {
396 case KVM_REG_SIZE_U32
:
397 r
.addr
= (uintptr_t)&v32
;
398 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
400 cpu
->cpreg_values
[i
] = v32
;
403 case KVM_REG_SIZE_U64
:
404 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
405 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
417 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
419 CPUState
*cs
= CPU(cpu
);
423 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
424 struct kvm_one_reg r
;
425 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
429 if (kvm_arm_cpreg_level(regidx
) > level
) {
434 switch (regidx
& KVM_REG_SIZE_MASK
) {
435 case KVM_REG_SIZE_U32
:
436 v32
= cpu
->cpreg_values
[i
];
437 r
.addr
= (uintptr_t)&v32
;
439 case KVM_REG_SIZE_U64
:
440 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
445 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
447 /* We might fail for "unknown register" and also for
448 * "you tried to set a register which is constant with
449 * a different value from what it actually contains".
457 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
461 /* Re-init VCPU so that all registers are set to
462 * their respective reset values.
464 ret
= kvm_arm_vcpu_init(CPU(cpu
));
466 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
469 if (!write_kvmstate_to_list(cpu
)) {
470 fprintf(stderr
, "write_kvmstate_to_list failed\n");
476 * Update KVM's MP_STATE based on what QEMU thinks it is
478 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
480 if (cap_has_mp_state
) {
481 struct kvm_mp_state mp_state
= {
482 .mp_state
= (cpu
->power_state
== PSCI_OFF
) ?
483 KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
485 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
487 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
488 __func__
, ret
, strerror(-ret
));
497 * Sync the KVM MP_STATE into QEMU
499 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
501 if (cap_has_mp_state
) {
502 struct kvm_mp_state mp_state
;
503 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
505 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
506 __func__
, ret
, strerror(-ret
));
509 cpu
->power_state
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
) ?
516 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
520 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
523 uint32_t switched_level
;
525 if (kvm_irqchip_in_kernel()) {
527 * We only need to sync timer states with user-space interrupt
528 * controllers, so return early and save cycles if we don't.
530 return MEMTXATTRS_UNSPECIFIED
;
535 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
536 if (run
->s
.regs
.device_irq_level
!= cpu
->device_irq_level
) {
537 switched_level
= cpu
->device_irq_level
^ run
->s
.regs
.device_irq_level
;
539 qemu_mutex_lock_iothread();
541 if (switched_level
& KVM_ARM_DEV_EL1_VTIMER
) {
542 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_VIRT
],
543 !!(run
->s
.regs
.device_irq_level
&
544 KVM_ARM_DEV_EL1_VTIMER
));
545 switched_level
&= ~KVM_ARM_DEV_EL1_VTIMER
;
548 if (switched_level
& KVM_ARM_DEV_EL1_PTIMER
) {
549 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_PHYS
],
550 !!(run
->s
.regs
.device_irq_level
&
551 KVM_ARM_DEV_EL1_PTIMER
));
552 switched_level
&= ~KVM_ARM_DEV_EL1_PTIMER
;
555 if (switched_level
& KVM_ARM_DEV_PMU
) {
556 qemu_set_irq(cpu
->pmu_interrupt
,
557 !!(run
->s
.regs
.device_irq_level
& KVM_ARM_DEV_PMU
));
558 switched_level
&= ~KVM_ARM_DEV_PMU
;
561 if (switched_level
) {
562 qemu_log_mask(LOG_UNIMP
, "%s: unhandled in-kernel device IRQ %x\n",
563 __func__
, switched_level
);
566 /* We also mark unknown levels as processed to not waste cycles */
567 cpu
->device_irq_level
= run
->s
.regs
.device_irq_level
;
568 qemu_mutex_unlock_iothread();
571 return MEMTXATTRS_UNSPECIFIED
;
575 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
579 switch (run
->exit_reason
) {
581 if (kvm_arm_handle_debug(cs
, &run
->debug
.arch
)) {
583 } /* otherwise return to guest */
586 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
587 __func__
, run
->exit_reason
);
593 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
598 int kvm_arch_process_async_events(CPUState
*cs
)
603 /* The #ifdef protections are until 32bit headers are imported and can
604 * be removed once both 32 and 64 bit reach feature parity.
606 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
608 #ifdef KVM_GUESTDBG_USE_SW_BP
609 if (kvm_sw_breakpoints_active(cs
)) {
610 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
613 #ifdef KVM_GUESTDBG_USE_HW
614 if (kvm_arm_hw_debug_active(cs
)) {
615 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
616 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
621 void kvm_arch_init_irq_routing(KVMState
*s
)
625 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
627 if (machine_kernel_irqchip_split(ms
)) {
628 perror("-machine kernel_irqchip=split is not supported on ARM.");
632 /* If we can create the VGIC using the newer device control API, we
633 * let the device do this when it initializes itself, otherwise we
634 * fall back to the old API */
635 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
638 int kvm_arm_vgic_probe(void)
640 if (kvm_create_device(kvm_state
,
641 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
643 } else if (kvm_create_device(kvm_state
,
644 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
651 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
652 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
654 AddressSpace
*as
= pci_device_iommu_address_space(dev
);
655 hwaddr xlat
, len
, doorbell_gpa
;
656 MemoryRegionSection mrs
;
660 if (as
== &address_space_memory
) {
664 /* MSI doorbell address is translated by an IOMMU */
667 mr
= address_space_translate(as
, address
, &xlat
, &len
, true,
668 MEMTXATTRS_UNSPECIFIED
);
672 mrs
= memory_region_find(mr
, xlat
, 1);
677 doorbell_gpa
= mrs
.offset_within_address_space
;
678 memory_region_unref(mrs
.mr
);
680 route
->u
.msi
.address_lo
= doorbell_gpa
;
681 route
->u
.msi
.address_hi
= doorbell_gpa
>> 32;
683 trace_kvm_arm_fixup_msi_route(address
, doorbell_gpa
);
692 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
693 int vector
, PCIDevice
*dev
)
698 int kvm_arch_release_virq_post(int virq
)
703 int kvm_arch_msi_data_to_gsi(uint32_t data
)
705 return (data
- 32) & 0xffff;