util: Introduce vfio helpers
[qemu.git] / hw / ssi / imx_spi.c
blobb66505ca4954d054a0a90f32e5823db3dddf47f4
1 /*
2 * IMX SPI Controller
4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/ssi/imx_spi.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/log.h"
16 #ifndef DEBUG_IMX_SPI
17 #define DEBUG_IMX_SPI 0
18 #endif
20 #define DPRINTF(fmt, args...) \
21 do { \
22 if (DEBUG_IMX_SPI) { \
23 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
24 __func__, ##args); \
25 } \
26 } while (0)
28 static const char *imx_spi_reg_name(uint32_t reg)
30 static char unknown[20];
32 switch (reg) {
33 case ECSPI_RXDATA:
34 return "ECSPI_RXDATA";
35 case ECSPI_TXDATA:
36 return "ECSPI_TXDATA";
37 case ECSPI_CONREG:
38 return "ECSPI_CONREG";
39 case ECSPI_CONFIGREG:
40 return "ECSPI_CONFIGREG";
41 case ECSPI_INTREG:
42 return "ECSPI_INTREG";
43 case ECSPI_DMAREG:
44 return "ECSPI_DMAREG";
45 case ECSPI_STATREG:
46 return "ECSPI_STATREG";
47 case ECSPI_PERIODREG:
48 return "ECSPI_PERIODREG";
49 case ECSPI_TESTREG:
50 return "ECSPI_TESTREG";
51 case ECSPI_MSGDATA:
52 return "ECSPI_MSGDATA";
53 default:
54 sprintf(unknown, "%d ?", reg);
55 return unknown;
59 static const VMStateDescription vmstate_imx_spi = {
60 .name = TYPE_IMX_SPI,
61 .version_id = 1,
62 .minimum_version_id = 1,
63 .fields = (VMStateField[]) {
64 VMSTATE_FIFO32(tx_fifo, IMXSPIState),
65 VMSTATE_FIFO32(rx_fifo, IMXSPIState),
66 VMSTATE_INT16(burst_length, IMXSPIState),
67 VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
68 VMSTATE_END_OF_LIST()
72 static void imx_spi_txfifo_reset(IMXSPIState *s)
74 fifo32_reset(&s->tx_fifo);
75 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
76 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
79 static void imx_spi_rxfifo_reset(IMXSPIState *s)
81 fifo32_reset(&s->rx_fifo);
82 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
83 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
84 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
87 static void imx_spi_update_irq(IMXSPIState *s)
89 int level;
91 if (fifo32_is_empty(&s->rx_fifo)) {
92 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
93 } else {
94 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
97 if (fifo32_is_full(&s->rx_fifo)) {
98 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
99 } else {
100 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
103 if (fifo32_is_empty(&s->tx_fifo)) {
104 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
105 } else {
106 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
109 if (fifo32_is_full(&s->tx_fifo)) {
110 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
111 } else {
112 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
115 level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
117 qemu_set_irq(s->irq, level);
119 DPRINTF("IRQ level is %d\n", level);
122 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
124 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
127 static uint32_t imx_spi_burst_length(IMXSPIState *s)
129 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
132 static bool imx_spi_is_enabled(IMXSPIState *s)
134 return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
137 static bool imx_spi_channel_is_master(IMXSPIState *s)
139 uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
141 return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
144 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
146 uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
148 return imx_spi_channel_is_master(s) &&
149 !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
150 ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
153 static void imx_spi_flush_txfifo(IMXSPIState *s)
155 uint32_t tx;
156 uint32_t rx;
158 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
159 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
161 while (!fifo32_is_empty(&s->tx_fifo)) {
162 int tx_burst = 0;
163 int index = 0;
165 if (s->burst_length <= 0) {
166 s->burst_length = imx_spi_burst_length(s);
168 DPRINTF("Burst length = %d\n", s->burst_length);
170 if (imx_spi_is_multiple_master_burst(s)) {
171 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
175 tx = fifo32_pop(&s->tx_fifo);
177 DPRINTF("data tx:0x%08x\n", tx);
179 tx_burst = MIN(s->burst_length, 32);
181 rx = 0;
183 while (tx_burst) {
184 uint8_t byte = tx & 0xff;
186 DPRINTF("writing 0x%02x\n", (uint32_t)byte);
188 /* We need to write one byte at a time */
189 byte = ssi_transfer(s->bus, byte);
191 DPRINTF("0x%02x read\n", (uint32_t)byte);
193 tx = tx >> 8;
194 rx |= (byte << (index * 8));
196 /* Remove 8 bits from the actual burst */
197 tx_burst -= 8;
198 s->burst_length -= 8;
199 index++;
202 DPRINTF("data rx:0x%08x\n", rx);
204 if (fifo32_is_full(&s->rx_fifo)) {
205 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
206 } else {
207 fifo32_push(&s->rx_fifo, (uint8_t)rx);
210 if (s->burst_length <= 0) {
211 s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
213 if (!imx_spi_is_multiple_master_burst(s)) {
214 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215 break;
220 if (fifo32_is_empty(&s->tx_fifo)) {
221 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
224 /* TODO: We should also use TDR and RDR bits */
226 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
227 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
230 static void imx_spi_reset(DeviceState *dev)
232 IMXSPIState *s = IMX_SPI(dev);
234 DPRINTF("\n");
236 memset(s->regs, 0, sizeof(s->regs));
238 s->regs[ECSPI_STATREG] = 0x00000003;
240 imx_spi_rxfifo_reset(s);
241 imx_spi_txfifo_reset(s);
243 imx_spi_update_irq(s);
245 s->burst_length = 0;
248 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
250 uint32_t value = 0;
251 IMXSPIState *s = opaque;
252 uint32_t index = offset >> 2;
254 if (index >= ECSPI_MAX) {
255 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
256 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
257 return 0;
260 switch (index) {
261 case ECSPI_RXDATA:
262 if (!imx_spi_is_enabled(s)) {
263 value = 0;
264 } else if (fifo32_is_empty(&s->rx_fifo)) {
265 /* value is undefined */
266 value = 0xdeadbeef;
267 } else {
268 /* read from the RX FIFO */
269 value = fifo32_pop(&s->rx_fifo);
272 break;
273 case ECSPI_TXDATA:
274 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
275 TYPE_IMX_SPI, __func__);
277 /* Reading from TXDATA gives 0 */
279 break;
280 case ECSPI_MSGDATA:
281 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
282 TYPE_IMX_SPI, __func__);
284 /* Reading from MSGDATA gives 0 */
286 break;
287 default:
288 value = s->regs[index];
289 break;
292 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
294 imx_spi_update_irq(s);
296 return (uint64_t)value;
299 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
300 unsigned size)
302 IMXSPIState *s = opaque;
303 uint32_t index = offset >> 2;
304 uint32_t change_mask;
306 if (index >= ECSPI_MAX) {
307 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
308 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
309 return;
312 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
313 (uint32_t)value);
315 change_mask = s->regs[index] ^ value;
317 switch (index) {
318 case ECSPI_RXDATA:
319 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
320 TYPE_IMX_SPI, __func__);
321 break;
322 case ECSPI_TXDATA:
323 if (!imx_spi_is_enabled(s)) {
324 /* Ignore writes if device is disabled */
325 break;
326 } else if (fifo32_is_full(&s->tx_fifo)) {
327 /* Ignore writes if queue is full */
328 break;
331 fifo32_push(&s->tx_fifo, (uint32_t)value);
333 if (imx_spi_channel_is_master(s) &&
334 (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
336 * Start emitting if current channel is master and SMC bit is
337 * set.
339 imx_spi_flush_txfifo(s);
342 break;
343 case ECSPI_STATREG:
344 /* the RO and TC bits are write-one-to-clear */
345 value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
346 s->regs[ECSPI_STATREG] &= ~value;
348 break;
349 case ECSPI_CONREG:
350 s->regs[ECSPI_CONREG] = value;
352 if (!imx_spi_is_enabled(s)) {
353 /* device is disabled, so this is a reset */
354 imx_spi_reset(DEVICE(s));
355 return;
358 if (imx_spi_channel_is_master(s)) {
359 int i;
361 /* We are in master mode */
363 for (i = 0; i < 4; i++) {
364 qemu_set_irq(s->cs_lines[i],
365 i == imx_spi_selected_channel(s) ? 0 : 1);
368 if ((value & change_mask & ECSPI_CONREG_SMC) &&
369 !fifo32_is_empty(&s->tx_fifo)) {
370 /* SMC bit is set and TX FIFO has some slots filled in */
371 imx_spi_flush_txfifo(s);
372 } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
373 !(value & ECSPI_CONREG_SMC)) {
374 /* This is a request to start emitting */
375 imx_spi_flush_txfifo(s);
379 break;
380 case ECSPI_MSGDATA:
381 /* it is not clear from the spec what MSGDATA is for */
382 /* Anyway it is not used by Linux driver */
383 /* So for now we just ignore it */
384 qemu_log_mask(LOG_UNIMP,
385 "[%s]%s: Trying to write to MSGDATA, ignoring\n",
386 TYPE_IMX_SPI, __func__);
387 break;
388 default:
389 s->regs[index] = value;
391 break;
394 imx_spi_update_irq(s);
397 static const struct MemoryRegionOps imx_spi_ops = {
398 .read = imx_spi_read,
399 .write = imx_spi_write,
400 .endianness = DEVICE_NATIVE_ENDIAN,
401 .valid = {
403 * Our device would not work correctly if the guest was doing
404 * unaligned access. This might not be a limitation on the real
405 * device but in practice there is no reason for a guest to access
406 * this device unaligned.
408 .min_access_size = 4,
409 .max_access_size = 4,
410 .unaligned = false,
414 static void imx_spi_realize(DeviceState *dev, Error **errp)
416 IMXSPIState *s = IMX_SPI(dev);
417 int i;
419 s->bus = ssi_create_bus(dev, "spi");
421 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
422 TYPE_IMX_SPI, 0x1000);
423 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
424 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
426 ssi_auto_connect_slaves(dev, s->cs_lines, s->bus);
428 for (i = 0; i < 4; ++i) {
429 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
432 s->burst_length = 0;
434 fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
435 fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
438 static void imx_spi_class_init(ObjectClass *klass, void *data)
440 DeviceClass *dc = DEVICE_CLASS(klass);
442 dc->realize = imx_spi_realize;
443 dc->vmsd = &vmstate_imx_spi;
444 dc->reset = imx_spi_reset;
445 dc->desc = "i.MX SPI Controller";
448 static const TypeInfo imx_spi_info = {
449 .name = TYPE_IMX_SPI,
450 .parent = TYPE_SYS_BUS_DEVICE,
451 .instance_size = sizeof(IMXSPIState),
452 .class_init = imx_spi_class_init,
455 static void imx_spi_register_types(void)
457 type_register_static(&imx_spi_info);
460 type_init(imx_spi_register_types)