4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/reqlist.h"
21 #include "sysemu/block-backend.h"
22 #include "qemu/units.h"
23 #include "qemu/coroutine.h"
24 #include "block/aio_task.h"
25 #include "qemu/error-report.h"
26 #include "qemu/memalign.h"
28 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
29 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
30 #define BLOCK_COPY_MAX_MEM (128 * MiB)
31 #define BLOCK_COPY_MAX_WORKERS 64
32 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
33 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
36 COPY_READ_WRITE_CLUSTER
,
43 static coroutine_fn
int block_copy_task_entry(AioTask
*task
);
45 typedef struct BlockCopyCallState
{
46 /* Fields initialized in block_copy_async() and never changed. */
52 bool ignore_ratelimit
;
53 BlockCopyAsyncCallbackFunc cb
;
55 /* Coroutine where async block-copy is running */
58 /* Fields whose state changes throughout the execution */
59 bool finished
; /* atomic */
60 QemuCoSleep sleep
; /* TODO: protect API with a lock */
61 bool cancelled
; /* atomic */
62 /* To reference all call states from BlockCopyState */
63 QLIST_ENTRY(BlockCopyCallState
) list
;
66 * Fields that report information about return values and erros.
67 * Protected by lock in BlockCopyState.
71 * @ret is set concurrently by tasks under mutex. Only set once by first
72 * failed task (and untouched if no task failed).
73 * After finishing (call_state->finished is true), it is not modified
74 * anymore and may be safely read without mutex.
79 typedef struct BlockCopyTask
{
83 * Fields initialized in block_copy_task_create()
87 BlockCopyCallState
*call_state
;
89 * @method can also be set again in the while loop of
90 * block_copy_dirty_clusters(), but it is never accessed concurrently
91 * because the only other function that reads it is
92 * block_copy_task_entry() and it is invoked afterwards in the same
95 BlockCopyMethod method
;
98 * Generally, req is protected by lock in BlockCopyState, Still req.offset
99 * is only set on task creation, so may be read concurrently after creation.
100 * req.bytes is changed at most once, and need only protecting the case of
101 * parallel read while updating @bytes value in block_copy_task_shrink().
106 static int64_t task_end(BlockCopyTask
*task
)
108 return task
->req
.offset
+ task
->req
.bytes
;
111 typedef struct BlockCopyState
{
113 * BdrvChild objects are not owned or managed by block-copy. They are
114 * provided by block-copy user and user is responsible for appropriate
115 * permissions on these children.
121 * Fields initialized in block_copy_state_new()
124 int64_t cluster_size
;
125 int64_t max_transfer
;
127 BdrvRequestFlags write_flags
;
130 * Fields whose state changes throughout the execution
134 int64_t in_flight_bytes
;
135 BlockCopyMethod method
;
137 QLIST_HEAD(, BlockCopyCallState
) calls
;
141 * Used by sync=top jobs, which first scan the source node for unallocated
142 * areas and clear them in the copy_bitmap. During this process, the bitmap
143 * is thus not fully initialized: It may still have bits set for areas that
144 * are unallocated and should actually not be copied.
146 * This is indicated by skip_unallocated.
148 * In this case, block_copy() will query the source’s allocation status,
149 * skip unallocated regions, clear them in the copy_bitmap, and invoke
150 * block_copy_reset_unallocated() every time it does.
152 bool skip_unallocated
; /* atomic */
153 /* State fields that use a thread-safe API */
154 BdrvDirtyBitmap
*copy_bitmap
;
155 ProgressMeter
*progress
;
157 RateLimit rate_limit
;
160 /* Called with lock held */
161 static int64_t block_copy_chunk_size(BlockCopyState
*s
)
164 case COPY_READ_WRITE_CLUSTER
:
165 return s
->cluster_size
;
166 case COPY_READ_WRITE
:
167 case COPY_RANGE_SMALL
:
168 return MIN(MAX(s
->cluster_size
, BLOCK_COPY_MAX_BUFFER
),
170 case COPY_RANGE_FULL
:
171 return MIN(MAX(s
->cluster_size
, BLOCK_COPY_MAX_COPY_RANGE
),
174 /* Cannot have COPY_WRITE_ZEROES here. */
180 * Search for the first dirty area in offset/bytes range and create task at
181 * the beginning of it.
183 static coroutine_fn BlockCopyTask
*
184 block_copy_task_create(BlockCopyState
*s
, BlockCopyCallState
*call_state
,
185 int64_t offset
, int64_t bytes
)
190 QEMU_LOCK_GUARD(&s
->lock
);
191 max_chunk
= MIN_NON_ZERO(block_copy_chunk_size(s
), call_state
->max_chunk
);
192 if (!bdrv_dirty_bitmap_next_dirty_area(s
->copy_bitmap
,
193 offset
, offset
+ bytes
,
194 max_chunk
, &offset
, &bytes
))
199 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
200 bytes
= QEMU_ALIGN_UP(bytes
, s
->cluster_size
);
202 /* region is dirty, so no existent tasks possible in it */
203 assert(!reqlist_find_conflict(&s
->reqs
, offset
, bytes
));
205 bdrv_reset_dirty_bitmap(s
->copy_bitmap
, offset
, bytes
);
206 s
->in_flight_bytes
+= bytes
;
208 task
= g_new(BlockCopyTask
, 1);
209 *task
= (BlockCopyTask
) {
210 .task
.func
= block_copy_task_entry
,
212 .call_state
= call_state
,
215 reqlist_init_req(&s
->reqs
, &task
->req
, offset
, bytes
);
221 * block_copy_task_shrink
223 * Drop the tail of the task to be handled later. Set dirty bits back and
224 * wake up all tasks waiting for us (may be some of them are not intersecting
227 static void coroutine_fn
block_copy_task_shrink(BlockCopyTask
*task
,
230 QEMU_LOCK_GUARD(&task
->s
->lock
);
231 if (new_bytes
== task
->req
.bytes
) {
235 assert(new_bytes
> 0 && new_bytes
< task
->req
.bytes
);
237 task
->s
->in_flight_bytes
-= task
->req
.bytes
- new_bytes
;
238 bdrv_set_dirty_bitmap(task
->s
->copy_bitmap
,
239 task
->req
.offset
+ new_bytes
,
240 task
->req
.bytes
- new_bytes
);
242 reqlist_shrink_req(&task
->req
, new_bytes
);
245 static void coroutine_fn
block_copy_task_end(BlockCopyTask
*task
, int ret
)
247 QEMU_LOCK_GUARD(&task
->s
->lock
);
248 task
->s
->in_flight_bytes
-= task
->req
.bytes
;
250 bdrv_set_dirty_bitmap(task
->s
->copy_bitmap
, task
->req
.offset
,
253 if (task
->s
->progress
) {
254 progress_set_remaining(task
->s
->progress
,
255 bdrv_get_dirty_count(task
->s
->copy_bitmap
) +
256 task
->s
->in_flight_bytes
);
258 reqlist_remove_req(&task
->req
);
261 void block_copy_state_free(BlockCopyState
*s
)
267 ratelimit_destroy(&s
->rate_limit
);
268 bdrv_release_dirty_bitmap(s
->copy_bitmap
);
269 shres_destroy(s
->mem
);
273 static uint32_t block_copy_max_transfer(BdrvChild
*source
, BdrvChild
*target
)
275 return MIN_NON_ZERO(INT_MAX
,
276 MIN_NON_ZERO(source
->bs
->bl
.max_transfer
,
277 target
->bs
->bl
.max_transfer
));
280 void block_copy_set_copy_opts(BlockCopyState
*s
, bool use_copy_range
,
283 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
284 s
->write_flags
= (s
->write_flags
& BDRV_REQ_SERIALISING
) |
285 (compress
? BDRV_REQ_WRITE_COMPRESSED
: 0);
287 if (s
->max_transfer
< s
->cluster_size
) {
289 * copy_range does not respect max_transfer. We don't want to bother
290 * with requests smaller than block-copy cluster size, so fallback to
291 * buffered copying (read and write respect max_transfer on their
294 s
->method
= COPY_READ_WRITE_CLUSTER
;
295 } else if (compress
) {
296 /* Compression supports only cluster-size writes and no copy-range. */
297 s
->method
= COPY_READ_WRITE_CLUSTER
;
300 * If copy range enabled, start with COPY_RANGE_SMALL, until first
301 * successful copy_range (look at block_copy_do_copy).
303 s
->method
= use_copy_range
? COPY_RANGE_SMALL
: COPY_READ_WRITE
;
307 static int64_t block_copy_calculate_cluster_size(BlockDriverState
*target
,
312 bool target_does_cow
= bdrv_backing_chain_next(target
);
315 * If there is no backing file on the target, we cannot rely on COW if our
316 * backup cluster size is smaller than the target cluster size. Even for
317 * targets with a backing file, try to avoid COW if possible.
319 ret
= bdrv_get_info(target
, &bdi
);
320 if (ret
== -ENOTSUP
&& !target_does_cow
) {
321 /* Cluster size is not defined */
322 warn_report("The target block device doesn't provide "
323 "information about the block size and it doesn't have a "
324 "backing file. The default block size of %u bytes is "
325 "used. If the actual block size of the target exceeds "
326 "this default, the backup may be unusable",
327 BLOCK_COPY_CLUSTER_SIZE_DEFAULT
);
328 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT
;
329 } else if (ret
< 0 && !target_does_cow
) {
330 error_setg_errno(errp
, -ret
,
331 "Couldn't determine the cluster size of the target image, "
332 "which has no backing file");
333 error_append_hint(errp
,
334 "Aborting, since this may create an unusable destination image\n");
336 } else if (ret
< 0 && target_does_cow
) {
337 /* Not fatal; just trudge on ahead. */
338 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT
;
341 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT
, bdi
.cluster_size
);
344 BlockCopyState
*block_copy_state_new(BdrvChild
*source
, BdrvChild
*target
,
345 const BdrvDirtyBitmap
*bitmap
,
350 int64_t cluster_size
;
351 BdrvDirtyBitmap
*copy_bitmap
;
354 cluster_size
= block_copy_calculate_cluster_size(target
->bs
, errp
);
355 if (cluster_size
< 0) {
359 copy_bitmap
= bdrv_create_dirty_bitmap(source
->bs
, cluster_size
, NULL
,
364 bdrv_disable_dirty_bitmap(copy_bitmap
);
366 if (!bdrv_merge_dirty_bitmap(copy_bitmap
, bitmap
, NULL
, errp
)) {
367 error_prepend(errp
, "Failed to merge bitmap '%s' to internal "
368 "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap
));
369 bdrv_release_dirty_bitmap(copy_bitmap
);
373 bdrv_set_dirty_bitmap(copy_bitmap
, 0,
374 bdrv_dirty_bitmap_size(copy_bitmap
));
378 * If source is in backing chain of target assume that target is going to be
379 * used for "image fleecing", i.e. it should represent a kind of snapshot of
380 * source at backup-start point in time. And target is going to be read by
381 * somebody (for example, used as NBD export) during backup job.
383 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
384 * intersection of backup writes and third party reads from target,
385 * otherwise reading from target we may occasionally read already updated by
388 * For more information see commit f8d59dfb40bb and test
389 * tests/qemu-iotests/222
391 is_fleecing
= bdrv_chain_contains(target
->bs
, source
->bs
);
393 s
= g_new(BlockCopyState
, 1);
394 *s
= (BlockCopyState
) {
397 .copy_bitmap
= copy_bitmap
,
398 .cluster_size
= cluster_size
,
399 .len
= bdrv_dirty_bitmap_size(copy_bitmap
),
400 .write_flags
= (is_fleecing
? BDRV_REQ_SERIALISING
: 0),
401 .mem
= shres_create(BLOCK_COPY_MAX_MEM
),
402 .max_transfer
= QEMU_ALIGN_DOWN(
403 block_copy_max_transfer(source
, target
),
407 block_copy_set_copy_opts(s
, false, false);
409 ratelimit_init(&s
->rate_limit
);
410 qemu_co_mutex_init(&s
->lock
);
411 QLIST_INIT(&s
->reqs
);
412 QLIST_INIT(&s
->calls
);
417 /* Only set before running the job, no need for locking. */
418 void block_copy_set_progress_meter(BlockCopyState
*s
, ProgressMeter
*pm
)
424 * Takes ownership of @task
426 * If pool is NULL directly run the task, otherwise schedule it into the pool.
428 * Returns: task.func return code if pool is NULL
429 * otherwise -ECANCELED if pool status is bad
430 * otherwise 0 (successfully scheduled)
432 static coroutine_fn
int block_copy_task_run(AioTaskPool
*pool
,
436 int ret
= task
->task
.func(&task
->task
);
442 aio_task_pool_wait_slot(pool
);
443 if (aio_task_pool_status(pool
) < 0) {
444 co_put_to_shres(task
->s
->mem
, task
->req
.bytes
);
445 block_copy_task_end(task
, -ECANCELED
);
450 aio_task_pool_start_task(pool
, &task
->task
);
458 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
459 * s->len only to cover last cluster when s->len is not aligned to clusters.
461 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
463 * @method is an in-out argument, so that copy_range can be either extended to
464 * a full-size buffer or disabled if the copy_range attempt fails. The output
465 * value of @method should be used for subsequent tasks.
466 * Returns 0 on success.
468 static int coroutine_fn
block_copy_do_copy(BlockCopyState
*s
,
469 int64_t offset
, int64_t bytes
,
470 BlockCopyMethod
*method
,
474 int64_t nbytes
= MIN(offset
+ bytes
, s
->len
) - offset
;
475 void *bounce_buffer
= NULL
;
477 assert(offset
>= 0 && bytes
> 0 && INT64_MAX
- offset
>= bytes
);
478 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
479 assert(QEMU_IS_ALIGNED(bytes
, s
->cluster_size
));
480 assert(offset
< s
->len
);
481 assert(offset
+ bytes
<= s
->len
||
482 offset
+ bytes
== QEMU_ALIGN_UP(s
->len
, s
->cluster_size
));
483 assert(nbytes
< INT_MAX
);
486 case COPY_WRITE_ZEROES
:
487 ret
= bdrv_co_pwrite_zeroes(s
->target
, offset
, nbytes
, s
->write_flags
&
488 ~BDRV_REQ_WRITE_COMPRESSED
);
490 trace_block_copy_write_zeroes_fail(s
, offset
, ret
);
491 *error_is_read
= false;
495 case COPY_RANGE_SMALL
:
496 case COPY_RANGE_FULL
:
497 ret
= bdrv_co_copy_range(s
->source
, offset
, s
->target
, offset
, nbytes
,
500 /* Successful copy-range, increase chunk size. */
501 *method
= COPY_RANGE_FULL
;
505 trace_block_copy_copy_range_fail(s
, offset
, ret
);
506 *method
= COPY_READ_WRITE
;
507 /* Fall through to read+write with allocated buffer */
509 case COPY_READ_WRITE_CLUSTER
:
510 case COPY_READ_WRITE
:
512 * In case of failed copy_range request above, we may proceed with
513 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
514 * Still, further requests will be properly limited, so don't care too
515 * much. Moreover the most likely case (copy_range is unsupported for
516 * the configuration, so the very first copy_range request fails)
517 * is handled by setting large copy_size only after first successful
521 bounce_buffer
= qemu_blockalign(s
->source
->bs
, nbytes
);
523 ret
= bdrv_co_pread(s
->source
, offset
, nbytes
, bounce_buffer
, 0);
525 trace_block_copy_read_fail(s
, offset
, ret
);
526 *error_is_read
= true;
530 ret
= bdrv_co_pwrite(s
->target
, offset
, nbytes
, bounce_buffer
,
533 trace_block_copy_write_fail(s
, offset
, ret
);
534 *error_is_read
= false;
539 qemu_vfree(bounce_buffer
);
549 static coroutine_fn
int block_copy_task_entry(AioTask
*task
)
551 BlockCopyTask
*t
= container_of(task
, BlockCopyTask
, task
);
552 BlockCopyState
*s
= t
->s
;
553 bool error_is_read
= false;
554 BlockCopyMethod method
= t
->method
;
557 ret
= block_copy_do_copy(s
, t
->req
.offset
, t
->req
.bytes
, &method
,
560 WITH_QEMU_LOCK_GUARD(&s
->lock
) {
561 if (s
->method
== t
->method
) {
566 if (!t
->call_state
->ret
) {
567 t
->call_state
->ret
= ret
;
568 t
->call_state
->error_is_read
= error_is_read
;
570 } else if (s
->progress
) {
571 progress_work_done(s
->progress
, t
->req
.bytes
);
574 co_put_to_shres(s
->mem
, t
->req
.bytes
);
575 block_copy_task_end(t
, ret
);
580 static int block_copy_block_status(BlockCopyState
*s
, int64_t offset
,
581 int64_t bytes
, int64_t *pnum
)
584 BlockDriverState
*base
;
587 if (qatomic_read(&s
->skip_unallocated
)) {
588 base
= bdrv_backing_chain_next(s
->source
->bs
);
593 ret
= bdrv_block_status_above(s
->source
->bs
, base
, offset
, bytes
, &num
,
595 if (ret
< 0 || num
< s
->cluster_size
) {
597 * On error or if failed to obtain large enough chunk just fallback to
600 num
= s
->cluster_size
;
601 ret
= BDRV_BLOCK_ALLOCATED
| BDRV_BLOCK_DATA
;
602 } else if (offset
+ num
== s
->len
) {
603 num
= QEMU_ALIGN_UP(num
, s
->cluster_size
);
605 num
= QEMU_ALIGN_DOWN(num
, s
->cluster_size
);
613 * Check if the cluster starting at offset is allocated or not.
614 * return via pnum the number of contiguous clusters sharing this allocation.
616 static int block_copy_is_cluster_allocated(BlockCopyState
*s
, int64_t offset
,
619 BlockDriverState
*bs
= s
->source
->bs
;
620 int64_t count
, total_count
= 0;
621 int64_t bytes
= s
->len
- offset
;
624 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
627 ret
= bdrv_is_allocated(bs
, offset
, bytes
, &count
);
632 total_count
+= count
;
634 if (ret
|| count
== 0) {
636 * ret: partial segment(s) are considered allocated.
637 * otherwise: unallocated tail is treated as an entire segment.
639 *pnum
= DIV_ROUND_UP(total_count
, s
->cluster_size
);
643 /* Unallocated segment(s) with uncertain following segment(s) */
644 if (total_count
>= s
->cluster_size
) {
645 *pnum
= total_count
/ s
->cluster_size
;
654 void block_copy_reset(BlockCopyState
*s
, int64_t offset
, int64_t bytes
)
656 QEMU_LOCK_GUARD(&s
->lock
);
658 bdrv_reset_dirty_bitmap(s
->copy_bitmap
, offset
, bytes
);
660 progress_set_remaining(s
->progress
,
661 bdrv_get_dirty_count(s
->copy_bitmap
) +
667 * Reset bits in copy_bitmap starting at offset if they represent unallocated
668 * data in the image. May reset subsequent contiguous bits.
669 * @return 0 when the cluster at @offset was unallocated,
670 * 1 otherwise, and -ret on error.
672 int64_t block_copy_reset_unallocated(BlockCopyState
*s
,
673 int64_t offset
, int64_t *count
)
676 int64_t clusters
, bytes
;
678 ret
= block_copy_is_cluster_allocated(s
, offset
, &clusters
);
683 bytes
= clusters
* s
->cluster_size
;
686 block_copy_reset(s
, offset
, bytes
);
694 * block_copy_dirty_clusters
696 * Copy dirty clusters in @offset/@bytes range.
697 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
698 * clusters found and -errno on failure.
700 static int coroutine_fn
701 block_copy_dirty_clusters(BlockCopyCallState
*call_state
)
703 BlockCopyState
*s
= call_state
->s
;
704 int64_t offset
= call_state
->offset
;
705 int64_t bytes
= call_state
->bytes
;
708 bool found_dirty
= false;
709 int64_t end
= offset
+ bytes
;
710 AioTaskPool
*aio
= NULL
;
713 * block_copy() user is responsible for keeping source and target in same
716 assert(bdrv_get_aio_context(s
->source
->bs
) ==
717 bdrv_get_aio_context(s
->target
->bs
));
719 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
720 assert(QEMU_IS_ALIGNED(bytes
, s
->cluster_size
));
722 while (bytes
&& aio_task_pool_status(aio
) == 0 &&
723 !qatomic_read(&call_state
->cancelled
)) {
725 int64_t status_bytes
;
727 task
= block_copy_task_create(s
, call_state
, offset
, bytes
);
729 /* No more dirty bits in the bitmap */
730 trace_block_copy_skip_range(s
, offset
, bytes
);
733 if (task
->req
.offset
> offset
) {
734 trace_block_copy_skip_range(s
, offset
, task
->req
.offset
- offset
);
739 ret
= block_copy_block_status(s
, task
->req
.offset
, task
->req
.bytes
,
741 assert(ret
>= 0); /* never fail */
742 if (status_bytes
< task
->req
.bytes
) {
743 block_copy_task_shrink(task
, status_bytes
);
745 if (qatomic_read(&s
->skip_unallocated
) &&
746 !(ret
& BDRV_BLOCK_ALLOCATED
)) {
747 block_copy_task_end(task
, 0);
748 trace_block_copy_skip_range(s
, task
->req
.offset
, task
->req
.bytes
);
749 offset
= task_end(task
);
750 bytes
= end
- offset
;
754 if (ret
& BDRV_BLOCK_ZERO
) {
755 task
->method
= COPY_WRITE_ZEROES
;
758 if (!call_state
->ignore_ratelimit
) {
759 uint64_t ns
= ratelimit_calculate_delay(&s
->rate_limit
, 0);
761 block_copy_task_end(task
, -EAGAIN
);
763 qemu_co_sleep_ns_wakeable(&call_state
->sleep
,
764 QEMU_CLOCK_REALTIME
, ns
);
769 ratelimit_calculate_delay(&s
->rate_limit
, task
->req
.bytes
);
771 trace_block_copy_process(s
, task
->req
.offset
);
773 co_get_from_shres(s
->mem
, task
->req
.bytes
);
775 offset
= task_end(task
);
776 bytes
= end
- offset
;
779 aio
= aio_task_pool_new(call_state
->max_workers
);
782 ret
= block_copy_task_run(aio
, task
);
790 aio_task_pool_wait_all(aio
);
793 * We are not really interested in -ECANCELED returned from
794 * block_copy_task_run. If it fails, it means some task already failed
795 * for real reason, let's return first failure.
796 * Still, assert that we don't rewrite failure by success.
798 * Note: ret may be positive here because of block-status result.
800 assert(ret
>= 0 || aio_task_pool_status(aio
) < 0);
801 ret
= aio_task_pool_status(aio
);
803 aio_task_pool_free(aio
);
806 return ret
< 0 ? ret
: found_dirty
;
809 void block_copy_kick(BlockCopyCallState
*call_state
)
811 qemu_co_sleep_wake(&call_state
->sleep
);
817 * Copy requested region, accordingly to dirty bitmap.
818 * Collaborate with parallel block_copy requests: if they succeed it will help
819 * us. If they fail, we will retry not-copied regions. So, if we return error,
820 * it means that some I/O operation failed in context of _this_ block_copy call,
821 * not some parallel operation.
823 static int coroutine_fn
block_copy_common(BlockCopyCallState
*call_state
)
826 BlockCopyState
*s
= call_state
->s
;
828 qemu_co_mutex_lock(&s
->lock
);
829 QLIST_INSERT_HEAD(&s
->calls
, call_state
, list
);
830 qemu_co_mutex_unlock(&s
->lock
);
833 ret
= block_copy_dirty_clusters(call_state
);
835 if (ret
== 0 && !qatomic_read(&call_state
->cancelled
)) {
836 WITH_QEMU_LOCK_GUARD(&s
->lock
) {
838 * Check that there is no task we still need to
841 ret
= reqlist_wait_one(&s
->reqs
, call_state
->offset
,
842 call_state
->bytes
, &s
->lock
);
845 * No pending tasks, but check again the bitmap in this
846 * same critical section, since a task might have failed
847 * between this and the critical section in
848 * block_copy_dirty_clusters().
850 * reqlist_wait_one return value 0 also means that it
851 * didn't release the lock. So, we are still in the same
852 * critical section, not interrupted by any concurrent
855 ret
= bdrv_dirty_bitmap_next_dirty(s
->copy_bitmap
,
857 call_state
->bytes
) >= 0;
863 * We retry in two cases:
864 * 1. Some progress done
865 * Something was copied, which means that there were yield points
866 * and some new dirty bits may have appeared (due to failed parallel
867 * block-copy requests).
868 * 2. We have waited for some intersecting block-copy request
869 * It may have failed and produced new dirty bits.
871 } while (ret
> 0 && !qatomic_read(&call_state
->cancelled
));
873 qatomic_store_release(&call_state
->finished
, true);
875 if (call_state
->cb
) {
876 call_state
->cb(call_state
->cb_opaque
);
879 qemu_co_mutex_lock(&s
->lock
);
880 QLIST_REMOVE(call_state
, list
);
881 qemu_co_mutex_unlock(&s
->lock
);
886 static void coroutine_fn
block_copy_async_co_entry(void *opaque
)
888 block_copy_common(opaque
);
891 int coroutine_fn
block_copy(BlockCopyState
*s
, int64_t start
, int64_t bytes
,
892 bool ignore_ratelimit
, uint64_t timeout_ns
,
893 BlockCopyAsyncCallbackFunc cb
,
897 BlockCopyCallState
*call_state
= g_new(BlockCopyCallState
, 1);
899 *call_state
= (BlockCopyCallState
) {
903 .ignore_ratelimit
= ignore_ratelimit
,
904 .max_workers
= BLOCK_COPY_MAX_WORKERS
,
906 .cb_opaque
= cb_opaque
,
909 ret
= qemu_co_timeout(block_copy_async_co_entry
, call_state
, timeout_ns
,
912 assert(ret
== -ETIMEDOUT
);
913 block_copy_call_cancel(call_state
);
914 /* call_state will be freed by running coroutine. */
918 ret
= call_state
->ret
;
924 BlockCopyCallState
*block_copy_async(BlockCopyState
*s
,
925 int64_t offset
, int64_t bytes
,
926 int max_workers
, int64_t max_chunk
,
927 BlockCopyAsyncCallbackFunc cb
,
930 BlockCopyCallState
*call_state
= g_new(BlockCopyCallState
, 1);
932 *call_state
= (BlockCopyCallState
) {
936 .max_workers
= max_workers
,
937 .max_chunk
= max_chunk
,
939 .cb_opaque
= cb_opaque
,
941 .co
= qemu_coroutine_create(block_copy_async_co_entry
, call_state
),
944 qemu_coroutine_enter(call_state
->co
);
949 void block_copy_call_free(BlockCopyCallState
*call_state
)
955 assert(qatomic_read(&call_state
->finished
));
959 bool block_copy_call_finished(BlockCopyCallState
*call_state
)
961 return qatomic_read(&call_state
->finished
);
964 bool block_copy_call_succeeded(BlockCopyCallState
*call_state
)
966 return qatomic_load_acquire(&call_state
->finished
) &&
967 !qatomic_read(&call_state
->cancelled
) &&
968 call_state
->ret
== 0;
971 bool block_copy_call_failed(BlockCopyCallState
*call_state
)
973 return qatomic_load_acquire(&call_state
->finished
) &&
974 !qatomic_read(&call_state
->cancelled
) &&
978 bool block_copy_call_cancelled(BlockCopyCallState
*call_state
)
980 return qatomic_read(&call_state
->cancelled
);
983 int block_copy_call_status(BlockCopyCallState
*call_state
, bool *error_is_read
)
985 assert(qatomic_load_acquire(&call_state
->finished
));
987 *error_is_read
= call_state
->error_is_read
;
989 return call_state
->ret
;
993 * Note that cancelling and finishing are racy.
994 * User can cancel a block-copy that is already finished.
996 void block_copy_call_cancel(BlockCopyCallState
*call_state
)
998 qatomic_set(&call_state
->cancelled
, true);
999 block_copy_kick(call_state
);
1002 BdrvDirtyBitmap
*block_copy_dirty_bitmap(BlockCopyState
*s
)
1004 return s
->copy_bitmap
;
1007 int64_t block_copy_cluster_size(BlockCopyState
*s
)
1009 return s
->cluster_size
;
1012 void block_copy_set_skip_unallocated(BlockCopyState
*s
, bool skip
)
1014 qatomic_set(&s
->skip_unallocated
, skip
);
1017 void block_copy_set_speed(BlockCopyState
*s
, uint64_t speed
)
1019 ratelimit_set_speed(&s
->rate_limit
, speed
, BLOCK_COPY_SLICE_TIME
);
1022 * Note: it's good to kick all call states from here, but it should be done
1023 * only from a coroutine, to not crash if s->calls list changed while
1024 * entering one call. So for now, the only user of this function kicks its
1025 * only one call_state by hand.