2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "sysemu/kvm.h"
22 #include "internals.h"
25 static inline void set_feature(uint64_t *features
, int feature
)
27 *features
|= 1ULL << feature
;
30 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
32 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
34 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
);
35 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
38 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
40 /* Identify the feature bits corresponding to the host CPU, and
41 * fill out the ARMHostCPUClass fields accordingly. To do this
42 * we have to create a scratch VM, create a single CPU inside it,
43 * and then query that CPU for the relevant ID registers.
45 int err
= 0, fdarray
[3];
46 uint32_t midr
, id_pfr0
;
47 uint64_t features
= 0;
49 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
50 * we know these will only support creating one kind of guest CPU,
51 * which is its preferred CPU type.
53 static const uint32_t cpus_to_try
[] = {
54 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
55 QEMU_KVM_ARM_TARGET_NONE
58 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
59 * to use the preferred target
61 struct kvm_vcpu_init init
= { .target
= -1, };
63 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
67 ahcf
->target
= init
.target
;
69 /* This is not strictly blessed by the device tree binding docs yet,
70 * but in practice the kernel does not care about this string so
71 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
73 ahcf
->dtb_compatible
= "arm,arm-v7";
75 err
|= read_sys_reg32(fdarray
[2], &midr
, ARM_CP15_REG32(0, 0, 0, 0));
76 err
|= read_sys_reg32(fdarray
[2], &id_pfr0
, ARM_CP15_REG32(0, 0, 1, 0));
78 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
79 ARM_CP15_REG32(0, 0, 2, 0));
80 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
81 ARM_CP15_REG32(0, 0, 2, 1));
82 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
83 ARM_CP15_REG32(0, 0, 2, 2));
84 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
85 ARM_CP15_REG32(0, 0, 2, 3));
86 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
87 ARM_CP15_REG32(0, 0, 2, 4));
88 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
89 ARM_CP15_REG32(0, 0, 2, 5));
90 if (read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
91 ARM_CP15_REG32(0, 0, 2, 7))) {
93 * Older kernels don't support reading ID_ISAR6. This register was
94 * only introduced in ARMv8, so we can assume that it is zero on a
95 * CPU that a kernel this old is running on.
97 ahcf
->isar
.id_isar6
= 0;
100 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
101 ARM_CP15_REG32(0, 0, 1, 2));
103 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
104 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
105 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR0
);
106 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
107 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
108 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
);
110 * FIXME: There is not yet a way to read MVFR2.
111 * Fortunately there is not yet anything in there that affects migration.
114 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
115 ARM_CP15_REG32(0, 0, 1, 4));
116 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
117 ARM_CP15_REG32(0, 0, 1, 5));
118 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
119 ARM_CP15_REG32(0, 0, 1, 6));
120 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
121 ARM_CP15_REG32(0, 0, 1, 7));
122 if (read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
123 ARM_CP15_REG32(0, 0, 2, 6))) {
125 * Older kernels don't support reading ID_MMFR4 (a new in v8
126 * register); assume it's zero.
128 ahcf
->isar
.id_mmfr4
= 0;
132 * There is no way to read DBGDIDR, because currently 32-bit KVM
133 * doesn't implement debug at all. Leave it at zero.
136 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
142 /* Now we've retrieved all the register information we can
143 * set the feature bits based on the ID register fields.
144 * We can assume any KVM supporting CPU is at least a v7
145 * with VFPv3, virtualization extensions, and the generic
146 * timers; this in turn implies most of the other feature
147 * bits, but a few must be tested.
149 set_feature(&features
, ARM_FEATURE_V7VE
);
150 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
152 if (extract32(id_pfr0
, 12, 4) == 1) {
153 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
155 if (extract32(ahcf
->isar
.mvfr1
, 12, 4) == 1) {
156 set_feature(&features
, ARM_FEATURE_NEON
);
159 ahcf
->features
= features
;
164 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
166 /* Return true if the regidx is a register we should synchronize
167 * via the cpreg_tuples array (ie is not a core reg we sync by
168 * hand in kvm_arch_get/put_registers())
170 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
171 case KVM_REG_ARM_CORE
:
172 case KVM_REG_ARM_VFP
:
179 typedef struct CPRegStateLevel
{
184 /* All coprocessor registers not listed in the following table are assumed to
185 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
186 * often, you must add it to this table with a state of either
187 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
189 static const CPRegStateLevel non_runtime_cpregs
[] = {
190 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
193 int kvm_arm_cpreg_level(uint64_t regidx
)
197 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
198 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
199 if (l
->regidx
== regidx
) {
204 return KVM_PUT_RUNTIME_STATE
;
207 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
209 int kvm_arch_init_vcpu(CPUState
*cs
)
214 struct kvm_one_reg r
;
215 ARMCPU
*cpu
= ARM_CPU(cs
);
217 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
218 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
222 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
224 /* Determine init features for this CPU */
225 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
226 if (cpu
->start_powered_off
) {
227 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
229 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
230 cpu
->psci_version
= 2;
231 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
234 /* Do KVM_ARM_VCPU_INIT ioctl */
235 ret
= kvm_arm_vcpu_init(cs
);
240 /* Query the kernel to make sure it supports 32 VFP
241 * registers: QEMU's "cortex-a15" CPU is always a
242 * VFP-D32 core. The simplest way to do this is just
243 * to attempt to read register d31.
245 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
246 r
.addr
= (uintptr_t)(&v
);
247 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
248 if (ret
== -ENOENT
) {
253 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
254 * Currently KVM has its own idea about MPIDR assignment, so we
255 * override our defaults with what we get from KVM.
257 ret
= kvm_get_one_reg(cs
, ARM_CP15_REG32(ARM_CPU_ID_MPIDR
), &mpidr
);
261 cpu
->mp_affinity
= mpidr
& ARM32_AFFINITY_MASK
;
263 /* Check whether userspace can specify guest syndrome value */
264 kvm_arm_init_serror_injection(cs
);
266 return kvm_arm_init_cpreg_list(cpu
);
269 int kvm_arch_destroy_vcpu(CPUState
*cs
)
279 #define COREREG(KERNELNAME, QEMUFIELD) \
281 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
282 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
283 offsetof(CPUARMState, QEMUFIELD) \
286 #define VFPSYSREG(R) \
288 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
289 KVM_REG_ARM_VFP_##R, \
290 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
293 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
294 #define COREREG64(KERNELNAME, QEMUFIELD) \
296 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
297 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
298 offsetoflow32(CPUARMState, QEMUFIELD) \
301 static const Reg regs
[] = {
302 /* R0_usr .. R14_usr */
303 COREREG(usr_regs
.uregs
[0], regs
[0]),
304 COREREG(usr_regs
.uregs
[1], regs
[1]),
305 COREREG(usr_regs
.uregs
[2], regs
[2]),
306 COREREG(usr_regs
.uregs
[3], regs
[3]),
307 COREREG(usr_regs
.uregs
[4], regs
[4]),
308 COREREG(usr_regs
.uregs
[5], regs
[5]),
309 COREREG(usr_regs
.uregs
[6], regs
[6]),
310 COREREG(usr_regs
.uregs
[7], regs
[7]),
311 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
312 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
313 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
314 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
315 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
316 COREREG(usr_regs
.uregs
[13], banked_r13
[BANK_USRSYS
]),
317 COREREG(usr_regs
.uregs
[14], banked_r14
[BANK_USRSYS
]),
318 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
319 COREREG(svc_regs
[0], banked_r13
[BANK_SVC
]),
320 COREREG(svc_regs
[1], banked_r14
[BANK_SVC
]),
321 COREREG64(svc_regs
[2], banked_spsr
[BANK_SVC
]),
322 COREREG(abt_regs
[0], banked_r13
[BANK_ABT
]),
323 COREREG(abt_regs
[1], banked_r14
[BANK_ABT
]),
324 COREREG64(abt_regs
[2], banked_spsr
[BANK_ABT
]),
325 COREREG(und_regs
[0], banked_r13
[BANK_UND
]),
326 COREREG(und_regs
[1], banked_r14
[BANK_UND
]),
327 COREREG64(und_regs
[2], banked_spsr
[BANK_UND
]),
328 COREREG(irq_regs
[0], banked_r13
[BANK_IRQ
]),
329 COREREG(irq_regs
[1], banked_r14
[BANK_IRQ
]),
330 COREREG64(irq_regs
[2], banked_spsr
[BANK_IRQ
]),
331 /* R8_fiq .. R14_fiq and SPSR_fiq */
332 COREREG(fiq_regs
[0], fiq_regs
[0]),
333 COREREG(fiq_regs
[1], fiq_regs
[1]),
334 COREREG(fiq_regs
[2], fiq_regs
[2]),
335 COREREG(fiq_regs
[3], fiq_regs
[3]),
336 COREREG(fiq_regs
[4], fiq_regs
[4]),
337 COREREG(fiq_regs
[5], banked_r13
[BANK_FIQ
]),
338 COREREG(fiq_regs
[6], banked_r14
[BANK_FIQ
]),
339 COREREG64(fiq_regs
[7], banked_spsr
[BANK_FIQ
]),
341 COREREG(usr_regs
.uregs
[15], regs
[15]),
342 /* VFP system registers */
351 int kvm_arch_put_registers(CPUState
*cs
, int level
)
353 ARMCPU
*cpu
= ARM_CPU(cs
);
354 CPUARMState
*env
= &cpu
->env
;
355 struct kvm_one_reg r
;
358 uint32_t cpsr
, fpscr
;
360 /* Make sure the banked regs are properly set */
361 mode
= env
->uncached_cpsr
& CPSR_M
;
362 bn
= bank_number(mode
);
363 if (mode
== ARM_CPU_MODE_FIQ
) {
364 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
366 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
368 env
->banked_r13
[bn
] = env
->regs
[13];
369 env
->banked_spsr
[bn
] = env
->spsr
;
370 env
->banked_r14
[r14_bank_number(mode
)] = env
->regs
[14];
372 /* Now we can safely copy stuff down to the kernel */
373 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
375 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
376 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
382 /* Special cases which aren't a single CPUARMState field */
383 cpsr
= cpsr_read(env
);
384 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
385 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
386 r
.addr
= (uintptr_t)(&cpsr
);
387 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
393 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
394 for (i
= 0; i
< 32; i
++) {
395 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
396 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
403 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
404 KVM_REG_ARM_VFP_FPSCR
;
405 fpscr
= vfp_get_fpscr(env
);
406 r
.addr
= (uintptr_t)&fpscr
;
407 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
412 write_cpustate_to_list(cpu
, true);
414 if (!write_list_to_kvmstate(cpu
, level
)) {
419 * Setting VCPU events should be triggered after syncing the registers
420 * to avoid overwriting potential changes made by KVM upon calling
421 * KVM_SET_VCPU_EVENTS ioctl
423 ret
= kvm_put_vcpu_events(cpu
);
428 kvm_arm_sync_mpstate_to_kvm(cpu
);
433 int kvm_arch_get_registers(CPUState
*cs
)
435 ARMCPU
*cpu
= ARM_CPU(cs
);
436 CPUARMState
*env
= &cpu
->env
;
437 struct kvm_one_reg r
;
440 uint32_t cpsr
, fpscr
;
442 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
444 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
445 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
451 /* Special cases which aren't a single CPUARMState field */
452 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
453 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
454 r
.addr
= (uintptr_t)(&cpsr
);
455 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
459 cpsr_write(env
, cpsr
, 0xffffffff, CPSRWriteRaw
);
461 /* Make sure the current mode regs are properly set */
462 mode
= env
->uncached_cpsr
& CPSR_M
;
463 bn
= bank_number(mode
);
464 if (mode
== ARM_CPU_MODE_FIQ
) {
465 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
467 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
469 env
->regs
[13] = env
->banked_r13
[bn
];
470 env
->spsr
= env
->banked_spsr
[bn
];
471 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
474 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
475 for (i
= 0; i
< 32; i
++) {
476 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
477 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
484 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
485 KVM_REG_ARM_VFP_FPSCR
;
486 r
.addr
= (uintptr_t)&fpscr
;
487 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
491 vfp_set_fpscr(env
, fpscr
);
493 ret
= kvm_get_vcpu_events(cpu
);
498 if (!write_kvmstate_to_list(cpu
)) {
501 /* Note that it's OK to have registers which aren't in CPUState,
502 * so we can ignore a failure return here.
504 write_list_to_cpustate(cpu
);
506 kvm_arm_sync_mpstate_to_qemu(cpu
);
511 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
513 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
517 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
519 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
523 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
525 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
529 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
530 target_ulong len
, int type
)
532 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
536 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
537 target_ulong len
, int type
)
539 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
543 void kvm_arch_remove_all_hw_breakpoints(void)
545 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
548 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
550 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
553 bool kvm_arm_hw_debug_active(CPUState
*cs
)
558 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
560 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
563 void kvm_arm_pmu_init(CPUState
*cs
)
565 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);