2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/gdbstub.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
36 #include "fpu/softfloat.h"
37 #include <zlib.h> /* For crc32 */
39 /* C2.4.7 Multiply and divide */
40 /* special cases for 0 and LLONG_MIN are mandated by the standard */
41 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
49 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
54 if (num
== LLONG_MIN
&& den
== -1) {
60 uint64_t HELPER(rbit64
)(uint64_t x
)
65 void HELPER(msr_i_spsel
)(CPUARMState
*env
, uint32_t imm
)
67 update_spsel(env
, imm
);
70 static void daif_check(CPUARMState
*env
, uint32_t op
,
71 uint32_t imm
, uintptr_t ra
)
73 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
74 if (arm_current_el(env
) == 0 && !(arm_sctlr(env
, 0) & SCTLR_UMA
)) {
75 raise_exception_ra(env
, EXCP_UDEF
,
76 syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
77 extract32(op
, 3, 3), 4,
79 exception_target_el(env
), ra
);
83 void HELPER(msr_i_daifset
)(CPUARMState
*env
, uint32_t imm
)
85 daif_check(env
, 0x1e, imm
, GETPC());
86 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
89 void HELPER(msr_i_daifclear
)(CPUARMState
*env
, uint32_t imm
)
91 daif_check(env
, 0x1f, imm
, GETPC());
92 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
95 /* Convert a softfloat float_relation_ (as returned by
96 * the float*_compare functions) to the correct ARM
99 static inline uint32_t float_rel_to_flags(int res
)
103 case float_relation_equal
:
104 flags
= PSTATE_Z
| PSTATE_C
;
106 case float_relation_less
:
109 case float_relation_greater
:
112 case float_relation_unordered
:
114 flags
= PSTATE_C
| PSTATE_V
;
120 uint64_t HELPER(vfp_cmph_a64
)(uint32_t x
, uint32_t y
, void *fp_status
)
122 return float_rel_to_flags(float16_compare_quiet(x
, y
, fp_status
));
125 uint64_t HELPER(vfp_cmpeh_a64
)(uint32_t x
, uint32_t y
, void *fp_status
)
127 return float_rel_to_flags(float16_compare(x
, y
, fp_status
));
130 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
132 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
135 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
137 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
140 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
142 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
145 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
147 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
150 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
152 float_status
*fpst
= fpstp
;
154 a
= float32_squash_input_denormal(a
, fpst
);
155 b
= float32_squash_input_denormal(b
, fpst
);
157 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
158 (float32_is_infinity(a
) && float32_is_zero(b
))) {
159 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
160 return make_float32((1U << 30) |
161 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
163 return float32_mul(a
, b
, fpst
);
166 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
168 float_status
*fpst
= fpstp
;
170 a
= float64_squash_input_denormal(a
, fpst
);
171 b
= float64_squash_input_denormal(b
, fpst
);
173 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
174 (float64_is_infinity(a
) && float64_is_zero(b
))) {
175 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
176 return make_float64((1ULL << 62) |
177 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
179 return float64_mul(a
, b
, fpst
);
182 uint64_t HELPER(simd_tbl
)(CPUARMState
*env
, uint64_t result
, uint64_t indices
,
183 uint32_t rn
, uint32_t numregs
)
185 /* Helper function for SIMD TBL and TBX. We have to do the table
186 * lookup part for the 64 bits worth of indices we're passed in.
187 * result is the initial results vector (either zeroes for TBL
188 * or some guest values for TBX), rn the register number where
189 * the table starts, and numregs the number of registers in the table.
190 * We return the results of the lookups.
194 for (shift
= 0; shift
< 64; shift
+= 8) {
195 int index
= extract64(indices
, shift
, 8);
196 if (index
< 16 * numregs
) {
197 /* Convert index (a byte offset into the virtual table
198 * which is a series of 128-bit vectors concatenated)
199 * into the correct register element plus a bit offset
200 * into that element, bearing in mind that the table
201 * can wrap around from V31 to V0.
203 int elt
= (rn
* 2 + (index
>> 3)) % 64;
204 int bitidx
= (index
& 7) * 8;
205 uint64_t *q
= aa64_vfp_qreg(env
, elt
>> 1);
206 uint64_t val
= extract64(q
[elt
& 1], bitidx
, 8);
208 result
= deposit64(result
, shift
, 8, val
);
214 /* 64bit/double versions of the neon float compare functions */
215 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
217 float_status
*fpst
= fpstp
;
218 return -float64_eq_quiet(a
, b
, fpst
);
221 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
223 float_status
*fpst
= fpstp
;
224 return -float64_le(b
, a
, fpst
);
227 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
229 float_status
*fpst
= fpstp
;
230 return -float64_lt(b
, a
, fpst
);
233 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
234 * versions, these do a fully fused multiply-add or
235 * multiply-add-and-halve.
237 #define float16_two make_float16(0x4000)
238 #define float16_three make_float16(0x4200)
239 #define float16_one_point_five make_float16(0x3e00)
241 #define float32_two make_float32(0x40000000)
242 #define float32_three make_float32(0x40400000)
243 #define float32_one_point_five make_float32(0x3fc00000)
245 #define float64_two make_float64(0x4000000000000000ULL)
246 #define float64_three make_float64(0x4008000000000000ULL)
247 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
249 uint32_t HELPER(recpsf_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
251 float_status
*fpst
= fpstp
;
253 a
= float16_squash_input_denormal(a
, fpst
);
254 b
= float16_squash_input_denormal(b
, fpst
);
257 if ((float16_is_infinity(a
) && float16_is_zero(b
)) ||
258 (float16_is_infinity(b
) && float16_is_zero(a
))) {
261 return float16_muladd(a
, b
, float16_two
, 0, fpst
);
264 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
266 float_status
*fpst
= fpstp
;
268 a
= float32_squash_input_denormal(a
, fpst
);
269 b
= float32_squash_input_denormal(b
, fpst
);
272 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
273 (float32_is_infinity(b
) && float32_is_zero(a
))) {
276 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
279 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
281 float_status
*fpst
= fpstp
;
283 a
= float64_squash_input_denormal(a
, fpst
);
284 b
= float64_squash_input_denormal(b
, fpst
);
287 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
288 (float64_is_infinity(b
) && float64_is_zero(a
))) {
291 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
294 uint32_t HELPER(rsqrtsf_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
296 float_status
*fpst
= fpstp
;
298 a
= float16_squash_input_denormal(a
, fpst
);
299 b
= float16_squash_input_denormal(b
, fpst
);
302 if ((float16_is_infinity(a
) && float16_is_zero(b
)) ||
303 (float16_is_infinity(b
) && float16_is_zero(a
))) {
304 return float16_one_point_five
;
306 return float16_muladd(a
, b
, float16_three
, float_muladd_halve_result
, fpst
);
309 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
311 float_status
*fpst
= fpstp
;
313 a
= float32_squash_input_denormal(a
, fpst
);
314 b
= float32_squash_input_denormal(b
, fpst
);
317 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
318 (float32_is_infinity(b
) && float32_is_zero(a
))) {
319 return float32_one_point_five
;
321 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
324 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
326 float_status
*fpst
= fpstp
;
328 a
= float64_squash_input_denormal(a
, fpst
);
329 b
= float64_squash_input_denormal(b
, fpst
);
332 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
333 (float64_is_infinity(b
) && float64_is_zero(a
))) {
334 return float64_one_point_five
;
336 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);
339 /* Pairwise long add: add pairs of adjacent elements into
340 * double-width elements in the result (eg _s8 is an 8x8->16 op)
342 uint64_t HELPER(neon_addlp_s8
)(uint64_t a
)
344 uint64_t nsignmask
= 0x0080008000800080ULL
;
345 uint64_t wsignmask
= 0x8000800080008000ULL
;
346 uint64_t elementmask
= 0x00ff00ff00ff00ffULL
;
348 uint64_t res
, signres
;
350 /* Extract odd elements, sign extend each to a 16 bit field */
351 tmp1
= a
& elementmask
;
354 tmp1
= (tmp1
- nsignmask
) ^ wsignmask
;
355 /* Ditto for the even elements */
356 tmp2
= (a
>> 8) & elementmask
;
359 tmp2
= (tmp2
- nsignmask
) ^ wsignmask
;
361 /* calculate the result by summing bits 0..14, 16..22, etc,
362 * and then adjusting the sign bits 15, 23, etc manually.
363 * This ensures the addition can't overflow the 16 bit field.
365 signres
= (tmp1
^ tmp2
) & wsignmask
;
366 res
= (tmp1
& ~wsignmask
) + (tmp2
& ~wsignmask
);
372 uint64_t HELPER(neon_addlp_u8
)(uint64_t a
)
376 tmp
= a
& 0x00ff00ff00ff00ffULL
;
377 tmp
+= (a
>> 8) & 0x00ff00ff00ff00ffULL
;
381 uint64_t HELPER(neon_addlp_s16
)(uint64_t a
)
383 int32_t reslo
, reshi
;
385 reslo
= (int32_t)(int16_t)a
+ (int32_t)(int16_t)(a
>> 16);
386 reshi
= (int32_t)(int16_t)(a
>> 32) + (int32_t)(int16_t)(a
>> 48);
388 return (uint32_t)reslo
| (((uint64_t)reshi
) << 32);
391 uint64_t HELPER(neon_addlp_u16
)(uint64_t a
)
395 tmp
= a
& 0x0000ffff0000ffffULL
;
396 tmp
+= (a
>> 16) & 0x0000ffff0000ffffULL
;
400 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
401 uint32_t HELPER(frecpx_f16
)(uint32_t a
, void *fpstp
)
403 float_status
*fpst
= fpstp
;
404 uint16_t val16
, sbit
;
407 if (float16_is_any_nan(a
)) {
409 if (float16_is_signaling_nan(a
, fpst
)) {
410 float_raise(float_flag_invalid
, fpst
);
411 nan
= float16_silence_nan(a
, fpst
);
413 if (fpst
->default_nan_mode
) {
414 nan
= float16_default_nan(fpst
);
419 a
= float16_squash_input_denormal(a
, fpst
);
421 val16
= float16_val(a
);
422 sbit
= 0x8000 & val16
;
423 exp
= extract32(val16
, 10, 5);
426 return make_float16(deposit32(sbit
, 10, 5, 0x1e));
428 return make_float16(deposit32(sbit
, 10, 5, ~exp
));
432 float32
HELPER(frecpx_f32
)(float32 a
, void *fpstp
)
434 float_status
*fpst
= fpstp
;
435 uint32_t val32
, sbit
;
438 if (float32_is_any_nan(a
)) {
440 if (float32_is_signaling_nan(a
, fpst
)) {
441 float_raise(float_flag_invalid
, fpst
);
442 nan
= float32_silence_nan(a
, fpst
);
444 if (fpst
->default_nan_mode
) {
445 nan
= float32_default_nan(fpst
);
450 a
= float32_squash_input_denormal(a
, fpst
);
452 val32
= float32_val(a
);
453 sbit
= 0x80000000ULL
& val32
;
454 exp
= extract32(val32
, 23, 8);
457 return make_float32(sbit
| (0xfe << 23));
459 return make_float32(sbit
| (~exp
& 0xff) << 23);
463 float64
HELPER(frecpx_f64
)(float64 a
, void *fpstp
)
465 float_status
*fpst
= fpstp
;
466 uint64_t val64
, sbit
;
469 if (float64_is_any_nan(a
)) {
471 if (float64_is_signaling_nan(a
, fpst
)) {
472 float_raise(float_flag_invalid
, fpst
);
473 nan
= float64_silence_nan(a
, fpst
);
475 if (fpst
->default_nan_mode
) {
476 nan
= float64_default_nan(fpst
);
481 a
= float64_squash_input_denormal(a
, fpst
);
483 val64
= float64_val(a
);
484 sbit
= 0x8000000000000000ULL
& val64
;
485 exp
= extract64(float64_val(a
), 52, 11);
488 return make_float64(sbit
| (0x7feULL
<< 52));
490 return make_float64(sbit
| (~exp
& 0x7ffULL
) << 52);
494 float32
HELPER(fcvtx_f64_to_f32
)(float64 a
, CPUARMState
*env
)
496 /* Von Neumann rounding is implemented by using round-to-zero
497 * and then setting the LSB of the result if Inexact was raised.
500 float_status
*fpst
= &env
->vfp
.fp_status
;
501 float_status tstat
= *fpst
;
504 set_float_rounding_mode(float_round_to_zero
, &tstat
);
505 set_float_exception_flags(0, &tstat
);
506 r
= float64_to_float32(a
, &tstat
);
507 exflags
= get_float_exception_flags(&tstat
);
508 if (exflags
& float_flag_inexact
) {
509 r
= make_float32(float32_val(r
) | 1);
511 exflags
|= get_float_exception_flags(fpst
);
512 set_float_exception_flags(exflags
, fpst
);
516 /* 64-bit versions of the CRC helpers. Note that although the operation
517 * (and the prototypes of crc32c() and crc32() mean that only the bottom
518 * 32 bits of the accumulator and result are used, we pass and return
519 * uint64_t for convenience of the generated code. Unlike the 32-bit
520 * instruction set versions, val may genuinely have 64 bits of data in it.
521 * The upper bytes of val (above the number specified by 'bytes') must have
522 * been zeroed out by the caller.
524 uint64_t HELPER(crc32_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
530 /* zlib crc32 converts the accumulator and output to one's complement. */
531 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
534 uint64_t HELPER(crc32c_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
540 /* Linux crc32c converts the output to one's complement. */
541 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
544 uint64_t HELPER(paired_cmpxchg64_le
)(CPUARMState
*env
, uint64_t addr
,
545 uint64_t new_lo
, uint64_t new_hi
)
547 Int128 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
548 Int128 newv
= int128_make128(new_lo
, new_hi
);
550 uintptr_t ra
= GETPC();
554 #ifdef CONFIG_USER_ONLY
555 /* ??? Enforce alignment. */
556 uint64_t *haddr
= g2h(addr
);
558 set_helper_retaddr(ra
);
559 o0
= ldq_le_p(haddr
+ 0);
560 o1
= ldq_le_p(haddr
+ 1);
561 oldv
= int128_make128(o0
, o1
);
563 success
= int128_eq(oldv
, cmpv
);
565 stq_le_p(haddr
+ 0, int128_getlo(newv
));
566 stq_le_p(haddr
+ 1, int128_gethi(newv
));
568 clear_helper_retaddr();
570 int mem_idx
= cpu_mmu_index(env
, false);
571 TCGMemOpIdx oi0
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
572 TCGMemOpIdx oi1
= make_memop_idx(MO_LEQ
, mem_idx
);
574 o0
= helper_le_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
575 o1
= helper_le_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
576 oldv
= int128_make128(o0
, o1
);
578 success
= int128_eq(oldv
, cmpv
);
580 helper_le_stq_mmu(env
, addr
+ 0, int128_getlo(newv
), oi1
, ra
);
581 helper_le_stq_mmu(env
, addr
+ 8, int128_gethi(newv
), oi1
, ra
);
588 uint64_t HELPER(paired_cmpxchg64_le_parallel
)(CPUARMState
*env
, uint64_t addr
,
589 uint64_t new_lo
, uint64_t new_hi
)
591 Int128 oldv
, cmpv
, newv
;
592 uintptr_t ra
= GETPC();
597 assert(HAVE_CMPXCHG128
);
599 mem_idx
= cpu_mmu_index(env
, false);
600 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
602 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
603 newv
= int128_make128(new_lo
, new_hi
);
604 oldv
= helper_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
606 success
= int128_eq(oldv
, cmpv
);
610 uint64_t HELPER(paired_cmpxchg64_be
)(CPUARMState
*env
, uint64_t addr
,
611 uint64_t new_lo
, uint64_t new_hi
)
614 * High and low need to be switched here because this is not actually a
615 * 128bit store but two doublewords stored consecutively
617 Int128 cmpv
= int128_make128(env
->exclusive_high
, env
->exclusive_val
);
618 Int128 newv
= int128_make128(new_hi
, new_lo
);
620 uintptr_t ra
= GETPC();
624 #ifdef CONFIG_USER_ONLY
625 /* ??? Enforce alignment. */
626 uint64_t *haddr
= g2h(addr
);
628 set_helper_retaddr(ra
);
629 o1
= ldq_be_p(haddr
+ 0);
630 o0
= ldq_be_p(haddr
+ 1);
631 oldv
= int128_make128(o0
, o1
);
633 success
= int128_eq(oldv
, cmpv
);
635 stq_be_p(haddr
+ 0, int128_gethi(newv
));
636 stq_be_p(haddr
+ 1, int128_getlo(newv
));
638 clear_helper_retaddr();
640 int mem_idx
= cpu_mmu_index(env
, false);
641 TCGMemOpIdx oi0
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
642 TCGMemOpIdx oi1
= make_memop_idx(MO_BEQ
, mem_idx
);
644 o1
= helper_be_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
645 o0
= helper_be_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
646 oldv
= int128_make128(o0
, o1
);
648 success
= int128_eq(oldv
, cmpv
);
650 helper_be_stq_mmu(env
, addr
+ 0, int128_gethi(newv
), oi1
, ra
);
651 helper_be_stq_mmu(env
, addr
+ 8, int128_getlo(newv
), oi1
, ra
);
658 uint64_t HELPER(paired_cmpxchg64_be_parallel
)(CPUARMState
*env
, uint64_t addr
,
659 uint64_t new_lo
, uint64_t new_hi
)
661 Int128 oldv
, cmpv
, newv
;
662 uintptr_t ra
= GETPC();
667 assert(HAVE_CMPXCHG128
);
669 mem_idx
= cpu_mmu_index(env
, false);
670 oi
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
673 * High and low need to be switched here because this is not actually a
674 * 128bit store but two doublewords stored consecutively
676 cmpv
= int128_make128(env
->exclusive_high
, env
->exclusive_val
);
677 newv
= int128_make128(new_hi
, new_lo
);
678 oldv
= helper_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
680 success
= int128_eq(oldv
, cmpv
);
684 /* Writes back the old data into Rs. */
685 void HELPER(casp_le_parallel
)(CPUARMState
*env
, uint32_t rs
, uint64_t addr
,
686 uint64_t new_lo
, uint64_t new_hi
)
688 Int128 oldv
, cmpv
, newv
;
689 uintptr_t ra
= GETPC();
693 assert(HAVE_CMPXCHG128
);
695 mem_idx
= cpu_mmu_index(env
, false);
696 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
698 cmpv
= int128_make128(env
->xregs
[rs
], env
->xregs
[rs
+ 1]);
699 newv
= int128_make128(new_lo
, new_hi
);
700 oldv
= helper_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
702 env
->xregs
[rs
] = int128_getlo(oldv
);
703 env
->xregs
[rs
+ 1] = int128_gethi(oldv
);
706 void HELPER(casp_be_parallel
)(CPUARMState
*env
, uint32_t rs
, uint64_t addr
,
707 uint64_t new_hi
, uint64_t new_lo
)
709 Int128 oldv
, cmpv
, newv
;
710 uintptr_t ra
= GETPC();
714 assert(HAVE_CMPXCHG128
);
716 mem_idx
= cpu_mmu_index(env
, false);
717 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
719 cmpv
= int128_make128(env
->xregs
[rs
+ 1], env
->xregs
[rs
]);
720 newv
= int128_make128(new_lo
, new_hi
);
721 oldv
= helper_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
723 env
->xregs
[rs
+ 1] = int128_getlo(oldv
);
724 env
->xregs
[rs
] = int128_gethi(oldv
);
728 * AdvSIMD half-precision
731 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
733 #define ADVSIMD_HALFOP(name) \
734 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
736 float_status *fpst = fpstp; \
737 return float16_ ## name(a, b, fpst); \
746 ADVSIMD_HALFOP(minnum
)
747 ADVSIMD_HALFOP(maxnum
)
749 #define ADVSIMD_TWOHALFOP(name) \
750 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
752 float16 a1, a2, b1, b2; \
754 float_status *fpst = fpstp; \
755 a1 = extract32(two_a, 0, 16); \
756 a2 = extract32(two_a, 16, 16); \
757 b1 = extract32(two_b, 0, 16); \
758 b2 = extract32(two_b, 16, 16); \
759 r1 = float16_ ## name(a1, b1, fpst); \
760 r2 = float16_ ## name(a2, b2, fpst); \
761 return deposit32(r1, 16, 16, r2); \
764 ADVSIMD_TWOHALFOP(add
)
765 ADVSIMD_TWOHALFOP(sub
)
766 ADVSIMD_TWOHALFOP(mul
)
767 ADVSIMD_TWOHALFOP(div
)
768 ADVSIMD_TWOHALFOP(min
)
769 ADVSIMD_TWOHALFOP(max
)
770 ADVSIMD_TWOHALFOP(minnum
)
771 ADVSIMD_TWOHALFOP(maxnum
)
773 /* Data processing - scalar floating-point and advanced SIMD */
774 static float16
float16_mulx(float16 a
, float16 b
, void *fpstp
)
776 float_status
*fpst
= fpstp
;
778 a
= float16_squash_input_denormal(a
, fpst
);
779 b
= float16_squash_input_denormal(b
, fpst
);
781 if ((float16_is_zero(a
) && float16_is_infinity(b
)) ||
782 (float16_is_infinity(a
) && float16_is_zero(b
))) {
783 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
784 return make_float16((1U << 14) |
785 ((float16_val(a
) ^ float16_val(b
)) & (1U << 15)));
787 return float16_mul(a
, b
, fpst
);
791 ADVSIMD_TWOHALFOP(mulx
)
793 /* fused multiply-accumulate */
794 uint32_t HELPER(advsimd_muladdh
)(uint32_t a
, uint32_t b
, uint32_t c
,
797 float_status
*fpst
= fpstp
;
798 return float16_muladd(a
, b
, c
, 0, fpst
);
801 uint32_t HELPER(advsimd_muladd2h
)(uint32_t two_a
, uint32_t two_b
,
802 uint32_t two_c
, void *fpstp
)
804 float_status
*fpst
= fpstp
;
805 float16 a1
, a2
, b1
, b2
, c1
, c2
;
807 a1
= extract32(two_a
, 0, 16);
808 a2
= extract32(two_a
, 16, 16);
809 b1
= extract32(two_b
, 0, 16);
810 b2
= extract32(two_b
, 16, 16);
811 c1
= extract32(two_c
, 0, 16);
812 c2
= extract32(two_c
, 16, 16);
813 r1
= float16_muladd(a1
, b1
, c1
, 0, fpst
);
814 r2
= float16_muladd(a2
, b2
, c2
, 0, fpst
);
815 return deposit32(r1
, 16, 16, r2
);
819 * Floating point comparisons produce an integer result. Softfloat
820 * routines return float_relation types which we convert to the 0/-1
824 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
826 uint32_t HELPER(advsimd_ceq_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
828 float_status
*fpst
= fpstp
;
829 int compare
= float16_compare_quiet(a
, b
, fpst
);
830 return ADVSIMD_CMPRES(compare
== float_relation_equal
);
833 uint32_t HELPER(advsimd_cge_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
835 float_status
*fpst
= fpstp
;
836 int compare
= float16_compare(a
, b
, fpst
);
837 return ADVSIMD_CMPRES(compare
== float_relation_greater
||
838 compare
== float_relation_equal
);
841 uint32_t HELPER(advsimd_cgt_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
843 float_status
*fpst
= fpstp
;
844 int compare
= float16_compare(a
, b
, fpst
);
845 return ADVSIMD_CMPRES(compare
== float_relation_greater
);
848 uint32_t HELPER(advsimd_acge_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
850 float_status
*fpst
= fpstp
;
851 float16 f0
= float16_abs(a
);
852 float16 f1
= float16_abs(b
);
853 int compare
= float16_compare(f0
, f1
, fpst
);
854 return ADVSIMD_CMPRES(compare
== float_relation_greater
||
855 compare
== float_relation_equal
);
858 uint32_t HELPER(advsimd_acgt_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
860 float_status
*fpst
= fpstp
;
861 float16 f0
= float16_abs(a
);
862 float16 f1
= float16_abs(b
);
863 int compare
= float16_compare(f0
, f1
, fpst
);
864 return ADVSIMD_CMPRES(compare
== float_relation_greater
);
867 /* round to integral */
868 uint32_t HELPER(advsimd_rinth_exact
)(uint32_t x
, void *fp_status
)
870 return float16_round_to_int(x
, fp_status
);
873 uint32_t HELPER(advsimd_rinth
)(uint32_t x
, void *fp_status
)
875 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
878 ret
= float16_round_to_int(x
, fp_status
);
880 /* Suppress any inexact exceptions the conversion produced */
881 if (!(old_flags
& float_flag_inexact
)) {
882 new_flags
= get_float_exception_flags(fp_status
);
883 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
890 * Half-precision floating point conversion functions
892 * There are a multitude of conversion functions with various
893 * different rounding modes. This is dealt with by the calling code
894 * setting the mode appropriately before calling the helper.
897 uint32_t HELPER(advsimd_f16tosinth
)(uint32_t a
, void *fpstp
)
899 float_status
*fpst
= fpstp
;
901 /* Invalid if we are passed a NaN */
902 if (float16_is_any_nan(a
)) {
903 float_raise(float_flag_invalid
, fpst
);
906 return float16_to_int16(a
, fpst
);
909 uint32_t HELPER(advsimd_f16touinth
)(uint32_t a
, void *fpstp
)
911 float_status
*fpst
= fpstp
;
913 /* Invalid if we are passed a NaN */
914 if (float16_is_any_nan(a
)) {
915 float_raise(float_flag_invalid
, fpst
);
918 return float16_to_uint16(a
, fpst
);
921 static int el_from_spsr(uint32_t spsr
)
923 /* Return the exception level that this SPSR is requesting a return to,
924 * or -1 if it is invalid (an illegal return)
926 if (spsr
& PSTATE_nRW
) {
927 switch (spsr
& CPSR_M
) {
928 case ARM_CPU_MODE_USR
:
930 case ARM_CPU_MODE_HYP
:
932 case ARM_CPU_MODE_FIQ
:
933 case ARM_CPU_MODE_IRQ
:
934 case ARM_CPU_MODE_SVC
:
935 case ARM_CPU_MODE_ABT
:
936 case ARM_CPU_MODE_UND
:
937 case ARM_CPU_MODE_SYS
:
939 case ARM_CPU_MODE_MON
:
940 /* Returning to Mon from AArch64 is never possible,
941 * so this is an illegal return.
947 if (extract32(spsr
, 1, 1)) {
948 /* Return with reserved M[1] bit set */
951 if (extract32(spsr
, 0, 4) == 1) {
952 /* return to EL0 with M[0] bit set */
955 return extract32(spsr
, 2, 2);
959 void HELPER(exception_return
)(CPUARMState
*env
, uint64_t new_pc
)
961 int cur_el
= arm_current_el(env
);
962 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
963 uint32_t mask
, spsr
= env
->banked_spsr
[spsr_idx
];
965 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
967 aarch64_save_sp(env
, cur_el
);
969 arm_clear_exclusive(env
);
971 /* We must squash the PSTATE.SS bit to zero unless both of the
973 * 1. debug exceptions are currently disabled
974 * 2. singlestep will be active in the EL we return to
975 * We check 1 here and 2 after we've done the pstate/cpsr write() to
976 * transition to the EL we're going to.
978 if (arm_generate_debug_exceptions(env
)) {
982 new_el
= el_from_spsr(spsr
);
987 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
988 /* Disallow return to an EL which is unimplemented or higher
989 * than the current one.
994 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
995 /* Return to an EL which is configured for a different register width */
999 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
1000 /* Return to the non-existent secure-EL2 */
1001 goto illegal_return
;
1004 if (new_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
1005 goto illegal_return
;
1008 qemu_mutex_lock_iothread();
1009 arm_call_pre_el_change_hook(env_archcpu(env
));
1010 qemu_mutex_unlock_iothread();
1012 if (!return_to_aa64
) {
1014 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1015 * will sort the register banks out for us, and we've already
1016 * caught all the bad-mode cases in el_from_spsr().
1018 mask
= aarch32_cpsr_valid_mask(env
->features
, &env_archcpu(env
)->isar
);
1019 cpsr_write(env
, spsr
, mask
, CPSRWriteRaw
);
1020 if (!arm_singlestep_active(env
)) {
1021 env
->uncached_cpsr
&= ~PSTATE_SS
;
1023 aarch64_sync_64_to_32(env
);
1025 if (spsr
& CPSR_T
) {
1026 env
->regs
[15] = new_pc
& ~0x1;
1028 env
->regs
[15] = new_pc
& ~0x3;
1030 helper_rebuild_hflags_a32(env
, new_el
);
1031 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1032 "AArch32 EL%d PC 0x%" PRIx32
"\n",
1033 cur_el
, new_el
, env
->regs
[15]);
1038 spsr
&= aarch64_pstate_valid_mask(&env_archcpu(env
)->isar
);
1039 pstate_write(env
, spsr
);
1040 if (!arm_singlestep_active(env
)) {
1041 env
->pstate
&= ~PSTATE_SS
;
1043 aarch64_restore_sp(env
, new_el
);
1044 helper_rebuild_hflags_a64(env
, new_el
);
1047 * Apply TBI to the exception return address. We had to delay this
1048 * until after we selected the new EL, so that we could select the
1049 * correct TBI+TBID bits. This is made easier by waiting until after
1050 * the hflags rebuild, since we can pull the composite TBII field
1053 tbii
= FIELD_EX32(env
->hflags
, TBFLAG_A64
, TBII
);
1054 if ((tbii
>> extract64(new_pc
, 55, 1)) & 1) {
1055 /* TBI is enabled. */
1056 int core_mmu_idx
= cpu_mmu_index(env
, false);
1057 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx
))) {
1058 new_pc
= sextract64(new_pc
, 0, 56);
1060 new_pc
= extract64(new_pc
, 0, 56);
1065 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1066 "AArch64 EL%d PC 0x%" PRIx64
"\n",
1067 cur_el
, new_el
, env
->pc
);
1071 * Note that cur_el can never be 0. If new_el is 0, then
1072 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1074 aarch64_sve_change_el(env
, cur_el
, new_el
, return_to_aa64
);
1076 qemu_mutex_lock_iothread();
1077 arm_call_el_change_hook(env_archcpu(env
));
1078 qemu_mutex_unlock_iothread();
1083 /* Illegal return events of various kinds have architecturally
1084 * mandated behaviour:
1085 * restore NZCV and DAIF from SPSR_ELx
1087 * restore PC from ELR_ELx
1088 * no change to exception level, execution state or stack pointer
1090 env
->pstate
|= PSTATE_IL
;
1092 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
1093 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
1094 pstate_write(env
, spsr
);
1095 if (!arm_singlestep_active(env
)) {
1096 env
->pstate
&= ~PSTATE_SS
;
1098 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal exception return at EL%d: "
1099 "resuming execution at 0x%" PRIx64
"\n", cur_el
, env
->pc
);
1103 * Square Root and Reciprocal square root
1106 uint32_t HELPER(sqrt_f16
)(uint32_t a
, void *fpstp
)
1108 float_status
*s
= fpstp
;
1110 return float16_sqrt(a
, s
);
1113 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
1116 * Implement DC ZVA, which zeroes a fixed-length block of memory.
1117 * Note that we do not implement the (architecturally mandated)
1118 * alignment fault for attempts to use this on Device memory
1119 * (which matches the usual QEMU behaviour of not implementing either
1120 * alignment faults or any memory attribute handling).
1123 ARMCPU
*cpu
= env_archcpu(env
);
1124 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
1125 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
1127 #ifndef CONFIG_USER_ONLY
1130 * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
1131 * the block size so we might have to do more than one TLB lookup.
1132 * We know that in fact for any v8 CPU the page size is at least 4K
1133 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
1134 * 1K as an artefact of legacy v5 subpage support being present in the
1135 * same QEMU executable. So in practice the hostaddr[] array has
1136 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
1138 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
1139 void *hostaddr
[DIV_ROUND_UP(2 * KiB
, 1 << TARGET_PAGE_BITS_MIN
)];
1141 unsigned mmu_idx
= cpu_mmu_index(env
, false);
1142 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
1144 assert(maxidx
<= ARRAY_SIZE(hostaddr
));
1146 for (try = 0; try < 2; try++) {
1148 for (i
= 0; i
< maxidx
; i
++) {
1149 hostaddr
[i
] = tlb_vaddr_to_host(env
,
1150 vaddr
+ TARGET_PAGE_SIZE
* i
,
1158 * If it's all in the TLB it's fair game for just writing to;
1159 * we know we don't need to update dirty status, etc.
1161 for (i
= 0; i
< maxidx
- 1; i
++) {
1162 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
1164 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
1168 * OK, try a store and see if we can populate the tlb. This
1169 * might cause an exception if the memory isn't writable,
1170 * in which case we will longjmp out of here. We must for
1171 * this purpose use the actual register value passed to us
1172 * so that we get the fault address right.
1174 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETPC());
1175 /* Now we can populate the other TLB entries, if any */
1176 for (i
= 0; i
< maxidx
; i
++) {
1177 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
1178 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
1179 helper_ret_stb_mmu(env
, va
, 0, oi
, GETPC());
1185 * Slow path (probably attempt to do this to an I/O device or
1186 * similar, or clearing of a block of code we have translations
1187 * cached for). Just do a series of byte writes as the architecture
1188 * demands. It's not worth trying to use a cpu_physical_memory_map(),
1189 * memset(), unmap() sequence here because:
1190 * + we'd need to account for the blocksize being larger than a page
1191 * + the direct-RAM access case is almost always going to be dealt
1192 * with in the fastpath code above, so there's no speed benefit
1193 * + we would have to deal with the map returning NULL because the
1194 * bounce buffer was in use
1196 for (i
= 0; i
< blocklen
; i
++) {
1197 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETPC());
1201 memset(g2h(vaddr
), 0, blocklen
);