graph-lock: TSA annotations for lock/unlock functions
[qemu.git] / hw / riscv / microchip_pfsoc.c
bloba821263d4f511e2ff32d7359e20c8f267b8c0d48
1 /*
2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
4 * Copyright (c) 2020 Wind River Systems, Inc.
6 * Author:
7 * Bin Meng <bin.meng@windriver.com>
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
14 * 3) MMUARTs (Multi-Mode UART)
15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
17 * 6) GEM (Gigabit Ethernet MAC Controller)
18 * 7) DMC (DDR Memory Controller)
19 * 8) IOSCB modules
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
31 * more details.
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
61 #define BIOS_FILENAME "hss.bin"
62 #define RESET_VECTOR 0x20220000
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
67 /* GEM version */
68 #define GEM_REVISION 0x0107010c
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
103 [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
104 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
105 [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
106 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
107 [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
108 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
109 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
110 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
111 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
112 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
113 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
114 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
115 [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
116 [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
117 [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
118 [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
119 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
120 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
121 [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
122 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
123 [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
124 [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
125 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
126 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
127 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
128 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
129 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
130 [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
131 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
132 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
133 [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
134 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
135 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
136 [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
137 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
138 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
139 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
140 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
143 static void microchip_pfsoc_soc_instance_init(Object *obj)
145 MachineState *ms = MACHINE(qdev_get_machine());
146 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
148 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
149 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
151 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
152 TYPE_RISCV_HART_ARRAY);
153 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
154 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
155 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
156 TYPE_RISCV_CPU_SIFIVE_E51);
157 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
159 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
160 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
162 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
163 TYPE_RISCV_HART_ARRAY);
164 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
165 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
166 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
167 TYPE_RISCV_CPU_SIFIVE_U54);
168 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
170 object_initialize_child(obj, "dma-controller", &s->dma,
171 TYPE_SIFIVE_PDMA);
173 object_initialize_child(obj, "sysreg", &s->sysreg,
174 TYPE_MCHP_PFSOC_SYSREG);
176 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
177 TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
178 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
179 TYPE_MCHP_PFSOC_DDR_CFG);
181 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
182 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
184 object_initialize_child(obj, "sd-controller", &s->sdhci,
185 TYPE_CADENCE_SDHCI);
187 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
190 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
192 MachineState *ms = MACHINE(qdev_get_machine());
193 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
194 const MemMapEntry *memmap = microchip_pfsoc_memmap;
195 MemoryRegion *system_memory = get_system_memory();
196 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
197 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
198 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
199 MemoryRegion *envm_data = g_new(MemoryRegion, 1);
200 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
201 char *plic_hart_config;
202 NICInfo *nd;
203 int i;
205 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
206 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
208 * The cluster must be realized after the RISC-V hart array container,
209 * as the container's CPU object is only created on realize, and the
210 * CPU must exist and have been parented into the cluster before the
211 * cluster is realized.
213 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
214 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
216 /* Reserved Memory at address 0 */
217 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
218 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
219 memory_region_add_subregion(system_memory,
220 memmap[MICROCHIP_PFSOC_RSVD0].base,
221 rsvd0_mem);
223 /* E51 DTIM */
224 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
225 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
226 memory_region_add_subregion(system_memory,
227 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
228 e51_dtim_mem);
230 /* Bus Error Units */
231 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
232 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
233 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
234 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
235 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
236 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
237 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
238 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
239 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
240 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
241 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
242 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
243 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
244 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
245 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
247 /* CLINT */
248 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
249 0, ms->smp.cpus, false);
250 riscv_aclint_mtimer_create(
251 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
252 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
253 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
254 CLINT_TIMEBASE_FREQ, false);
256 /* L2 cache controller */
257 create_unimplemented_device("microchip.pfsoc.l2cc",
258 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
261 * Add L2-LIM at reset size.
262 * This should be reduced in size as the L2 Cache Controller WayEnable
263 * register is incremented. Unfortunately I don't see a nice (or any) way
264 * to handle reducing or blocking out the L2 LIM while still allowing it
265 * be re returned to all enabled after a reset. For the time being, just
266 * leave it enabled all the time. This won't break anything, but will be
267 * too generous to misbehaving guests.
269 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
270 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
271 memory_region_add_subregion(system_memory,
272 memmap[MICROCHIP_PFSOC_L2LIM].base,
273 l2lim_mem);
275 /* create PLIC hart topology configuration string */
276 plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
278 /* PLIC */
279 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
280 plic_hart_config, ms->smp.cpus, 0,
281 MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
282 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
283 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
284 MICROCHIP_PFSOC_PLIC_PENDING_BASE,
285 MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
286 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
287 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
288 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
289 memmap[MICROCHIP_PFSOC_PLIC].size);
290 g_free(plic_hart_config);
292 /* DMA */
293 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
294 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
295 memmap[MICROCHIP_PFSOC_DMA].base);
296 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
297 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
298 qdev_get_gpio_in(DEVICE(s->plic),
299 MICROCHIP_PFSOC_DMA_IRQ0 + i));
302 /* SYSREG */
303 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
304 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
305 memmap[MICROCHIP_PFSOC_SYSREG].base);
307 /* AXISW */
308 create_unimplemented_device("microchip.pfsoc.axisw",
309 memmap[MICROCHIP_PFSOC_AXISW].base,
310 memmap[MICROCHIP_PFSOC_AXISW].size);
312 /* MPUCFG */
313 create_unimplemented_device("microchip.pfsoc.mpucfg",
314 memmap[MICROCHIP_PFSOC_MPUCFG].base,
315 memmap[MICROCHIP_PFSOC_MPUCFG].size);
317 /* FMETER */
318 create_unimplemented_device("microchip.pfsoc.fmeter",
319 memmap[MICROCHIP_PFSOC_FMETER].base,
320 memmap[MICROCHIP_PFSOC_FMETER].size);
322 /* DDR SGMII PHY */
323 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
324 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
325 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
327 /* DDR CFG */
328 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
329 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
330 memmap[MICROCHIP_PFSOC_DDR_CFG].base);
332 /* SDHCI */
333 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
334 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
335 memmap[MICROCHIP_PFSOC_EMMC_SD].base);
336 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
337 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
339 /* MMUARTs */
340 s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
341 memmap[MICROCHIP_PFSOC_MMUART0].base,
342 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
343 serial_hd(0));
344 s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
345 memmap[MICROCHIP_PFSOC_MMUART1].base,
346 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
347 serial_hd(1));
348 s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
349 memmap[MICROCHIP_PFSOC_MMUART2].base,
350 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
351 serial_hd(2));
352 s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
353 memmap[MICROCHIP_PFSOC_MMUART3].base,
354 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
355 serial_hd(3));
356 s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
357 memmap[MICROCHIP_PFSOC_MMUART4].base,
358 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
359 serial_hd(4));
361 /* Watchdogs */
362 create_unimplemented_device("microchip.pfsoc.watchdog0",
363 memmap[MICROCHIP_PFSOC_WDOG0].base,
364 memmap[MICROCHIP_PFSOC_WDOG0].size);
365 create_unimplemented_device("microchip.pfsoc.watchdog1",
366 memmap[MICROCHIP_PFSOC_WDOG1].base,
367 memmap[MICROCHIP_PFSOC_WDOG1].size);
368 create_unimplemented_device("microchip.pfsoc.watchdog2",
369 memmap[MICROCHIP_PFSOC_WDOG2].base,
370 memmap[MICROCHIP_PFSOC_WDOG2].size);
371 create_unimplemented_device("microchip.pfsoc.watchdog3",
372 memmap[MICROCHIP_PFSOC_WDOG3].base,
373 memmap[MICROCHIP_PFSOC_WDOG3].size);
374 create_unimplemented_device("microchip.pfsoc.watchdog4",
375 memmap[MICROCHIP_PFSOC_WDOG4].base,
376 memmap[MICROCHIP_PFSOC_WDOG4].size);
378 /* SPI */
379 create_unimplemented_device("microchip.pfsoc.spi0",
380 memmap[MICROCHIP_PFSOC_SPI0].base,
381 memmap[MICROCHIP_PFSOC_SPI0].size);
382 create_unimplemented_device("microchip.pfsoc.spi1",
383 memmap[MICROCHIP_PFSOC_SPI1].base,
384 memmap[MICROCHIP_PFSOC_SPI1].size);
386 /* I2C */
387 create_unimplemented_device("microchip.pfsoc.i2c0",
388 memmap[MICROCHIP_PFSOC_I2C0].base,
389 memmap[MICROCHIP_PFSOC_I2C0].size);
390 create_unimplemented_device("microchip.pfsoc.i2c1",
391 memmap[MICROCHIP_PFSOC_I2C1].base,
392 memmap[MICROCHIP_PFSOC_I2C1].size);
394 /* CAN */
395 create_unimplemented_device("microchip.pfsoc.can0",
396 memmap[MICROCHIP_PFSOC_CAN0].base,
397 memmap[MICROCHIP_PFSOC_CAN0].size);
398 create_unimplemented_device("microchip.pfsoc.can1",
399 memmap[MICROCHIP_PFSOC_CAN1].base,
400 memmap[MICROCHIP_PFSOC_CAN1].size);
402 /* USB */
403 create_unimplemented_device("microchip.pfsoc.usb",
404 memmap[MICROCHIP_PFSOC_USB].base,
405 memmap[MICROCHIP_PFSOC_USB].size);
407 /* GEMs */
409 nd = &nd_table[0];
410 if (nd->used) {
411 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
412 qdev_set_nic_properties(DEVICE(&s->gem0), nd);
414 nd = &nd_table[1];
415 if (nd->used) {
416 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
417 qdev_set_nic_properties(DEVICE(&s->gem1), nd);
420 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
421 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
422 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
423 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
424 memmap[MICROCHIP_PFSOC_GEM0].base);
425 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
426 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
428 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
429 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
430 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
431 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
432 memmap[MICROCHIP_PFSOC_GEM1].base);
433 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
434 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
436 /* GPIOs */
437 create_unimplemented_device("microchip.pfsoc.gpio0",
438 memmap[MICROCHIP_PFSOC_GPIO0].base,
439 memmap[MICROCHIP_PFSOC_GPIO0].size);
440 create_unimplemented_device("microchip.pfsoc.gpio1",
441 memmap[MICROCHIP_PFSOC_GPIO1].base,
442 memmap[MICROCHIP_PFSOC_GPIO1].size);
443 create_unimplemented_device("microchip.pfsoc.gpio2",
444 memmap[MICROCHIP_PFSOC_GPIO2].base,
445 memmap[MICROCHIP_PFSOC_GPIO2].size);
447 /* eNVM */
448 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
449 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
450 &error_fatal);
451 memory_region_add_subregion(system_memory,
452 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
453 envm_data);
455 /* IOSCB */
456 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
457 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
458 memmap[MICROCHIP_PFSOC_IOSCB].base);
460 /* FPGA Fabric */
461 create_unimplemented_device("microchip.pfsoc.fabricfic3",
462 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
463 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
465 /* QSPI Flash */
466 memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
467 "microchip.pfsoc.qspi_xip",
468 memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
469 &error_fatal);
470 memory_region_add_subregion(system_memory,
471 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
472 qspi_xip_mem);
475 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
477 DeviceClass *dc = DEVICE_CLASS(oc);
479 dc->realize = microchip_pfsoc_soc_realize;
480 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
481 dc->user_creatable = false;
484 static const TypeInfo microchip_pfsoc_soc_type_info = {
485 .name = TYPE_MICROCHIP_PFSOC,
486 .parent = TYPE_DEVICE,
487 .instance_size = sizeof(MicrochipPFSoCState),
488 .instance_init = microchip_pfsoc_soc_instance_init,
489 .class_init = microchip_pfsoc_soc_class_init,
492 static void microchip_pfsoc_soc_register_types(void)
494 type_register_static(&microchip_pfsoc_soc_type_info);
497 type_init(microchip_pfsoc_soc_register_types)
499 static void microchip_icicle_kit_machine_init(MachineState *machine)
501 MachineClass *mc = MACHINE_GET_CLASS(machine);
502 const MemMapEntry *memmap = microchip_pfsoc_memmap;
503 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
504 MemoryRegion *system_memory = get_system_memory();
505 MemoryRegion *mem_low = g_new(MemoryRegion, 1);
506 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
507 MemoryRegion *mem_high = g_new(MemoryRegion, 1);
508 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
509 uint64_t mem_low_size, mem_high_size;
510 hwaddr firmware_load_addr;
511 const char *firmware_name;
512 bool kernel_as_payload = false;
513 target_ulong firmware_end_addr, kernel_start_addr;
514 uint64_t kernel_entry;
515 uint32_t fdt_load_addr;
516 DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
518 /* Sanity check on RAM size */
519 if (machine->ram_size < mc->default_ram_size) {
520 char *sz = size_to_str(mc->default_ram_size);
521 error_report("Invalid RAM size, should be bigger than %s", sz);
522 g_free(sz);
523 exit(EXIT_FAILURE);
526 /* Initialize SoC */
527 object_initialize_child(OBJECT(machine), "soc", &s->soc,
528 TYPE_MICROCHIP_PFSOC);
529 qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
531 /* Split RAM into low and high regions using aliases to machine->ram */
532 mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
533 mem_high_size = machine->ram_size - mem_low_size;
534 memory_region_init_alias(mem_low, NULL,
535 "microchip.icicle.kit.ram_low", machine->ram,
536 0, mem_low_size);
537 memory_region_init_alias(mem_high, NULL,
538 "microchip.icicle.kit.ram_high", machine->ram,
539 mem_low_size, mem_high_size);
541 /* Register RAM */
542 memory_region_add_subregion(system_memory,
543 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
544 mem_low);
545 memory_region_add_subregion(system_memory,
546 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
547 mem_high);
549 /* Create aliases for the low and high RAM regions */
550 memory_region_init_alias(mem_low_alias, NULL,
551 "microchip.icicle.kit.ram_low.alias",
552 mem_low, 0, mem_low_size);
553 memory_region_add_subregion(system_memory,
554 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
555 mem_low_alias);
556 memory_region_init_alias(mem_high_alias, NULL,
557 "microchip.icicle.kit.ram_high.alias",
558 mem_high, 0, mem_high_size);
559 memory_region_add_subregion(system_memory,
560 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
561 mem_high_alias);
563 /* Attach an SD card */
564 if (dinfo) {
565 CadenceSDHCIState *sdhci = &(s->soc.sdhci);
566 DeviceState *card = qdev_new(TYPE_SD_CARD);
568 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
569 &error_fatal);
570 qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
574 * We follow the following table to select which payload we execute.
576 * -bios | -kernel | payload
577 * -------+------------+--------
578 * N | N | HSS
579 * Y | don't care | HSS
580 * N | Y | kernel
582 * This ensures backwards compatibility with how we used to expose -bios
583 * to users but allows them to run through direct kernel booting as well.
585 * When -kernel is used for direct boot, -dtb must be present to provide
586 * a valid device tree for the board, as we don't generate device tree.
589 if (machine->kernel_filename && machine->dtb) {
590 int fdt_size;
591 machine->fdt = load_device_tree(machine->dtb, &fdt_size);
592 if (!machine->fdt) {
593 error_report("load_device_tree() failed");
594 exit(1);
597 firmware_name = RISCV64_BIOS_BIN;
598 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
599 kernel_as_payload = true;
602 if (!kernel_as_payload) {
603 firmware_name = BIOS_FILENAME;
604 firmware_load_addr = RESET_VECTOR;
607 /* Load the firmware */
608 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
609 firmware_load_addr, NULL);
611 if (kernel_as_payload) {
612 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
613 firmware_end_addr);
615 kernel_entry = riscv_load_kernel(machine->kernel_filename,
616 kernel_start_addr, NULL);
618 if (machine->initrd_filename) {
619 hwaddr start;
620 hwaddr end = riscv_load_initrd(machine->initrd_filename,
621 machine->ram_size, kernel_entry,
622 &start);
623 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
624 "linux,initrd-start", start);
625 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
626 "linux,initrd-end", end);
629 if (machine->kernel_cmdline && *machine->kernel_cmdline) {
630 qemu_fdt_setprop_string(machine->fdt, "/chosen",
631 "bootargs", machine->kernel_cmdline);
634 /* Compute the fdt load address in dram */
635 fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
636 machine->ram_size, machine->fdt);
637 /* Load the reset vector */
638 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
639 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
640 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
641 kernel_entry, fdt_load_addr);
645 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
647 MachineClass *mc = MACHINE_CLASS(oc);
649 mc->desc = "Microchip PolarFire SoC Icicle Kit";
650 mc->init = microchip_icicle_kit_machine_init;
651 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
652 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
653 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
654 mc->default_cpus = mc->min_cpus;
655 mc->default_ram_id = "microchip.icicle.kit.ram";
658 * Map 513 MiB high memory, the mimimum required high memory size, because
659 * HSS will do memory test against the high memory address range regardless
660 * of physical memory installed.
662 * See memory_tests() in mss_ddr.c in the HSS source code.
664 mc->default_ram_size = 1537 * MiB;
667 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
668 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
669 .parent = TYPE_MACHINE,
670 .class_init = microchip_icicle_kit_machine_class_init,
671 .instance_size = sizeof(MicrochipIcicleKitState),
674 static void microchip_icicle_kit_machine_init_register_types(void)
676 type_register_static(&microchip_icicle_kit_machine_typeinfo);
679 type_init(microchip_icicle_kit_machine_init_register_types)