graph-lock: TSA annotations for lock/unlock functions
[qemu.git] / hw / remote / vfio-user-obj.c
blob6d0310cec9789ec583e88489957b8cb7aba91757
1 /**
2 * QEMU vfio-user-server server object
4 * Copyright © 2022 Oracle and/or its affiliates.
6 * This work is licensed under the terms of the GNU GPL-v2, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 /**
13 * Usage: add options:
14 * -machine x-remote,vfio-user=on,auto-shutdown=on
15 * -device <PCI-device>,id=<pci-dev-id>
16 * -object x-vfio-user-server,id=<id>,type=unix,path=<socket-path>,
17 * device=<pci-dev-id>
19 * Note that x-vfio-user-server object must be used with x-remote machine only.
20 * This server could only support PCI devices for now.
22 * type - SocketAddress type - presently "unix" alone is supported. Required
23 * option
25 * path - named unix socket, it will be created by the server. It is
26 * a required option
28 * device - id of a device on the server, a required option. PCI devices
29 * alone are supported presently.
31 * notes - x-vfio-user-server could block IO and monitor during the
32 * initialization phase.
35 #include "qemu/osdep.h"
37 #include "qom/object.h"
38 #include "qom/object_interfaces.h"
39 #include "qemu/error-report.h"
40 #include "trace.h"
41 #include "sysemu/runstate.h"
42 #include "hw/boards.h"
43 #include "hw/remote/machine.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-visit-sockets.h"
46 #include "qapi/qapi-events-misc.h"
47 #include "qemu/notify.h"
48 #include "qemu/thread.h"
49 #include "qemu/main-loop.h"
50 #include "sysemu/sysemu.h"
51 #include "libvfio-user.h"
52 #include "hw/qdev-core.h"
53 #include "hw/pci/pci.h"
54 #include "qemu/timer.h"
55 #include "exec/memory.h"
56 #include "hw/pci/msi.h"
57 #include "hw/pci/msix.h"
58 #include "hw/remote/vfio-user-obj.h"
60 #define TYPE_VFU_OBJECT "x-vfio-user-server"
61 OBJECT_DECLARE_TYPE(VfuObject, VfuObjectClass, VFU_OBJECT)
63 /**
64 * VFU_OBJECT_ERROR - reports an error message. If auto_shutdown
65 * is set, it aborts the machine on error. Otherwise, it logs an
66 * error message without aborting.
68 #define VFU_OBJECT_ERROR(o, fmt, ...) \
69 { \
70 if (vfu_object_auto_shutdown()) { \
71 error_setg(&error_abort, (fmt), ## __VA_ARGS__); \
72 } else { \
73 error_report((fmt), ## __VA_ARGS__); \
74 } \
75 } \
77 struct VfuObjectClass {
78 ObjectClass parent_class;
80 unsigned int nr_devs;
83 struct VfuObject {
84 /* private */
85 Object parent;
87 SocketAddress *socket;
89 char *device;
91 Error *err;
93 Notifier machine_done;
95 vfu_ctx_t *vfu_ctx;
97 PCIDevice *pci_dev;
99 Error *unplug_blocker;
101 int vfu_poll_fd;
103 MSITriggerFunc *default_msi_trigger;
104 MSIPrepareMessageFunc *default_msi_prepare_message;
105 MSIxPrepareMessageFunc *default_msix_prepare_message;
108 static void vfu_object_init_ctx(VfuObject *o, Error **errp);
110 static bool vfu_object_auto_shutdown(void)
112 bool auto_shutdown = true;
113 Error *local_err = NULL;
115 if (!current_machine) {
116 return auto_shutdown;
119 auto_shutdown = object_property_get_bool(OBJECT(current_machine),
120 "auto-shutdown",
121 &local_err);
124 * local_err would be set if no such property exists - safe to ignore.
125 * Unlikely scenario as auto-shutdown is always defined for
126 * TYPE_REMOTE_MACHINE, and TYPE_VFU_OBJECT only works with
127 * TYPE_REMOTE_MACHINE
129 if (local_err) {
130 auto_shutdown = true;
131 error_free(local_err);
134 return auto_shutdown;
137 static void vfu_object_set_socket(Object *obj, Visitor *v, const char *name,
138 void *opaque, Error **errp)
140 VfuObject *o = VFU_OBJECT(obj);
142 if (o->vfu_ctx) {
143 error_setg(errp, "vfu: Unable to set socket property - server busy");
144 return;
147 qapi_free_SocketAddress(o->socket);
149 o->socket = NULL;
151 visit_type_SocketAddress(v, name, &o->socket, errp);
153 if (o->socket->type != SOCKET_ADDRESS_TYPE_UNIX) {
154 error_setg(errp, "vfu: Unsupported socket type - %s",
155 SocketAddressType_str(o->socket->type));
156 qapi_free_SocketAddress(o->socket);
157 o->socket = NULL;
158 return;
161 trace_vfu_prop("socket", o->socket->u.q_unix.path);
163 vfu_object_init_ctx(o, errp);
166 static void vfu_object_set_device(Object *obj, const char *str, Error **errp)
168 VfuObject *o = VFU_OBJECT(obj);
170 if (o->vfu_ctx) {
171 error_setg(errp, "vfu: Unable to set device property - server busy");
172 return;
175 g_free(o->device);
177 o->device = g_strdup(str);
179 trace_vfu_prop("device", str);
181 vfu_object_init_ctx(o, errp);
184 static void vfu_object_ctx_run(void *opaque)
186 VfuObject *o = opaque;
187 const char *vfu_id;
188 char *vfu_path, *pci_dev_path;
189 int ret = -1;
191 while (ret != 0) {
192 ret = vfu_run_ctx(o->vfu_ctx);
193 if (ret < 0) {
194 if (errno == EINTR) {
195 continue;
196 } else if (errno == ENOTCONN) {
197 vfu_id = object_get_canonical_path_component(OBJECT(o));
198 vfu_path = object_get_canonical_path(OBJECT(o));
199 g_assert(o->pci_dev);
200 pci_dev_path = object_get_canonical_path(OBJECT(o->pci_dev));
201 /* o->device is a required property and is non-NULL here */
202 g_assert(o->device);
203 qapi_event_send_vfu_client_hangup(vfu_id, vfu_path,
204 o->device, pci_dev_path);
205 qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
206 o->vfu_poll_fd = -1;
207 object_unparent(OBJECT(o));
208 g_free(vfu_path);
209 g_free(pci_dev_path);
210 break;
211 } else {
212 VFU_OBJECT_ERROR(o, "vfu: Failed to run device %s - %s",
213 o->device, strerror(errno));
214 break;
220 static void vfu_object_attach_ctx(void *opaque)
222 VfuObject *o = opaque;
223 GPollFD pfds[1];
224 int ret;
226 qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
228 pfds[0].fd = o->vfu_poll_fd;
229 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
231 retry_attach:
232 ret = vfu_attach_ctx(o->vfu_ctx);
233 if (ret < 0 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
235 * vfu_object_attach_ctx can block QEMU's main loop
236 * during attach - the monitor and other IO
237 * could be unresponsive during this time.
239 (void)qemu_poll_ns(pfds, 1, 500 * (int64_t)SCALE_MS);
240 goto retry_attach;
241 } else if (ret < 0) {
242 VFU_OBJECT_ERROR(o, "vfu: Failed to attach device %s to context - %s",
243 o->device, strerror(errno));
244 return;
247 o->vfu_poll_fd = vfu_get_poll_fd(o->vfu_ctx);
248 if (o->vfu_poll_fd < 0) {
249 VFU_OBJECT_ERROR(o, "vfu: Failed to get poll fd %s", o->device);
250 return;
253 qemu_set_fd_handler(o->vfu_poll_fd, vfu_object_ctx_run, NULL, o);
256 static ssize_t vfu_object_cfg_access(vfu_ctx_t *vfu_ctx, char * const buf,
257 size_t count, loff_t offset,
258 const bool is_write)
260 VfuObject *o = vfu_get_private(vfu_ctx);
261 uint32_t pci_access_width = sizeof(uint32_t);
262 size_t bytes = count;
263 uint32_t val = 0;
264 char *ptr = buf;
265 int len;
268 * Writes to the BAR registers would trigger an update to the
269 * global Memory and IO AddressSpaces. But the remote device
270 * never uses the global AddressSpaces, therefore overlapping
271 * memory regions are not a problem
273 while (bytes > 0) {
274 len = (bytes > pci_access_width) ? pci_access_width : bytes;
275 if (is_write) {
276 memcpy(&val, ptr, len);
277 pci_host_config_write_common(o->pci_dev, offset,
278 pci_config_size(o->pci_dev),
279 val, len);
280 trace_vfu_cfg_write(offset, val);
281 } else {
282 val = pci_host_config_read_common(o->pci_dev, offset,
283 pci_config_size(o->pci_dev), len);
284 memcpy(ptr, &val, len);
285 trace_vfu_cfg_read(offset, val);
287 offset += len;
288 ptr += len;
289 bytes -= len;
292 return count;
295 static void dma_register(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
297 VfuObject *o = vfu_get_private(vfu_ctx);
298 AddressSpace *dma_as = NULL;
299 MemoryRegion *subregion = NULL;
300 g_autofree char *name = NULL;
301 struct iovec *iov = &info->iova;
303 if (!info->vaddr) {
304 return;
307 name = g_strdup_printf("mem-%s-%"PRIx64"", o->device,
308 (uint64_t)info->vaddr);
310 subregion = g_new0(MemoryRegion, 1);
312 memory_region_init_ram_ptr(subregion, NULL, name,
313 iov->iov_len, info->vaddr);
315 dma_as = pci_device_iommu_address_space(o->pci_dev);
317 memory_region_add_subregion(dma_as->root, (hwaddr)iov->iov_base, subregion);
319 trace_vfu_dma_register((uint64_t)iov->iov_base, iov->iov_len);
322 static void dma_unregister(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
324 VfuObject *o = vfu_get_private(vfu_ctx);
325 AddressSpace *dma_as = NULL;
326 MemoryRegion *mr = NULL;
327 ram_addr_t offset;
329 mr = memory_region_from_host(info->vaddr, &offset);
330 if (!mr) {
331 return;
334 dma_as = pci_device_iommu_address_space(o->pci_dev);
336 memory_region_del_subregion(dma_as->root, mr);
338 object_unparent((OBJECT(mr)));
340 trace_vfu_dma_unregister((uint64_t)info->iova.iov_base);
343 static int vfu_object_mr_rw(MemoryRegion *mr, uint8_t *buf, hwaddr offset,
344 hwaddr size, const bool is_write)
346 uint8_t *ptr = buf;
347 bool release_lock = false;
348 uint8_t *ram_ptr = NULL;
349 MemTxResult result;
350 int access_size;
351 uint64_t val;
353 if (memory_access_is_direct(mr, is_write)) {
355 * Some devices expose a PCI expansion ROM, which could be buffer
356 * based as compared to other regions which are primarily based on
357 * MemoryRegionOps. memory_region_find() would already check
358 * for buffer overflow, we don't need to repeat it here.
360 ram_ptr = memory_region_get_ram_ptr(mr);
362 if (is_write) {
363 memcpy((ram_ptr + offset), buf, size);
364 } else {
365 memcpy(buf, (ram_ptr + offset), size);
368 return 0;
371 while (size) {
373 * The read/write logic used below is similar to the ones in
374 * flatview_read/write_continue()
376 release_lock = prepare_mmio_access(mr);
378 access_size = memory_access_size(mr, size, offset);
380 if (is_write) {
381 val = ldn_he_p(ptr, access_size);
383 result = memory_region_dispatch_write(mr, offset, val,
384 size_memop(access_size),
385 MEMTXATTRS_UNSPECIFIED);
386 } else {
387 result = memory_region_dispatch_read(mr, offset, &val,
388 size_memop(access_size),
389 MEMTXATTRS_UNSPECIFIED);
391 stn_he_p(ptr, access_size, val);
394 if (release_lock) {
395 qemu_mutex_unlock_iothread();
396 release_lock = false;
399 if (result != MEMTX_OK) {
400 return -1;
403 size -= access_size;
404 ptr += access_size;
405 offset += access_size;
408 return 0;
411 static size_t vfu_object_bar_rw(PCIDevice *pci_dev, int pci_bar,
412 hwaddr bar_offset, char * const buf,
413 hwaddr len, const bool is_write)
415 MemoryRegionSection section = { 0 };
416 uint8_t *ptr = (uint8_t *)buf;
417 MemoryRegion *section_mr = NULL;
418 uint64_t section_size;
419 hwaddr section_offset;
420 hwaddr size = 0;
422 while (len) {
423 section = memory_region_find(pci_dev->io_regions[pci_bar].memory,
424 bar_offset, len);
426 if (!section.mr) {
427 warn_report("vfu: invalid address 0x%"PRIx64"", bar_offset);
428 return size;
431 section_mr = section.mr;
432 section_offset = section.offset_within_region;
433 section_size = int128_get64(section.size);
435 if (is_write && section_mr->readonly) {
436 warn_report("vfu: attempting to write to readonly region in "
437 "bar %d - [0x%"PRIx64" - 0x%"PRIx64"]",
438 pci_bar, bar_offset,
439 (bar_offset + section_size));
440 memory_region_unref(section_mr);
441 return size;
444 if (vfu_object_mr_rw(section_mr, ptr, section_offset,
445 section_size, is_write)) {
446 warn_report("vfu: failed to %s "
447 "[0x%"PRIx64" - 0x%"PRIx64"] in bar %d",
448 is_write ? "write to" : "read from", bar_offset,
449 (bar_offset + section_size), pci_bar);
450 memory_region_unref(section_mr);
451 return size;
454 size += section_size;
455 bar_offset += section_size;
456 ptr += section_size;
457 len -= section_size;
459 memory_region_unref(section_mr);
462 return size;
466 * VFU_OBJECT_BAR_HANDLER - macro for defining handlers for PCI BARs.
468 * To create handler for BAR number 2, VFU_OBJECT_BAR_HANDLER(2) would
469 * define vfu_object_bar2_handler
471 #define VFU_OBJECT_BAR_HANDLER(BAR_NO) \
472 static ssize_t vfu_object_bar##BAR_NO##_handler(vfu_ctx_t *vfu_ctx, \
473 char * const buf, size_t count, \
474 loff_t offset, const bool is_write) \
476 VfuObject *o = vfu_get_private(vfu_ctx); \
477 PCIDevice *pci_dev = o->pci_dev; \
479 return vfu_object_bar_rw(pci_dev, BAR_NO, offset, \
480 buf, count, is_write); \
483 VFU_OBJECT_BAR_HANDLER(0)
484 VFU_OBJECT_BAR_HANDLER(1)
485 VFU_OBJECT_BAR_HANDLER(2)
486 VFU_OBJECT_BAR_HANDLER(3)
487 VFU_OBJECT_BAR_HANDLER(4)
488 VFU_OBJECT_BAR_HANDLER(5)
489 VFU_OBJECT_BAR_HANDLER(6)
491 static vfu_region_access_cb_t *vfu_object_bar_handlers[PCI_NUM_REGIONS] = {
492 &vfu_object_bar0_handler,
493 &vfu_object_bar1_handler,
494 &vfu_object_bar2_handler,
495 &vfu_object_bar3_handler,
496 &vfu_object_bar4_handler,
497 &vfu_object_bar5_handler,
498 &vfu_object_bar6_handler,
502 * vfu_object_register_bars - Identify active BAR regions of pdev and setup
503 * callbacks to handle read/write accesses
505 static void vfu_object_register_bars(vfu_ctx_t *vfu_ctx, PCIDevice *pdev)
507 int flags = VFU_REGION_FLAG_RW;
508 int i;
510 for (i = 0; i < PCI_NUM_REGIONS; i++) {
511 if (!pdev->io_regions[i].size) {
512 continue;
515 if ((i == VFU_PCI_DEV_ROM_REGION_IDX) ||
516 pdev->io_regions[i].memory->readonly) {
517 flags &= ~VFU_REGION_FLAG_WRITE;
520 vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX + i,
521 (size_t)pdev->io_regions[i].size,
522 vfu_object_bar_handlers[i],
523 flags, NULL, 0, -1, 0);
525 trace_vfu_bar_register(i, pdev->io_regions[i].addr,
526 pdev->io_regions[i].size);
530 static int vfu_object_map_irq(PCIDevice *pci_dev, int intx)
532 int pci_bdf = PCI_BUILD_BDF(pci_bus_num(pci_get_bus(pci_dev)),
533 pci_dev->devfn);
535 return pci_bdf;
538 static void vfu_object_set_irq(void *opaque, int pirq, int level)
540 PCIBus *pci_bus = opaque;
541 PCIDevice *pci_dev = NULL;
542 vfu_ctx_t *vfu_ctx = NULL;
543 int pci_bus_num, devfn;
545 if (level) {
546 pci_bus_num = PCI_BUS_NUM(pirq);
547 devfn = PCI_BDF_TO_DEVFN(pirq);
550 * pci_find_device() performs at O(1) if the device is attached
551 * to the root PCI bus. Whereas, if the device is attached to a
552 * secondary PCI bus (such as when a root port is involved),
553 * finding the parent PCI bus could take O(n)
555 pci_dev = pci_find_device(pci_bus, pci_bus_num, devfn);
557 vfu_ctx = pci_dev->irq_opaque;
559 g_assert(vfu_ctx);
561 vfu_irq_trigger(vfu_ctx, 0);
565 static MSIMessage vfu_object_msi_prepare_msg(PCIDevice *pci_dev,
566 unsigned int vector)
568 MSIMessage msg;
570 msg.address = 0;
571 msg.data = vector;
573 return msg;
576 static void vfu_object_msi_trigger(PCIDevice *pci_dev, MSIMessage msg)
578 vfu_ctx_t *vfu_ctx = pci_dev->irq_opaque;
580 vfu_irq_trigger(vfu_ctx, msg.data);
583 static void vfu_object_setup_msi_cbs(VfuObject *o)
585 o->default_msi_trigger = o->pci_dev->msi_trigger;
586 o->default_msi_prepare_message = o->pci_dev->msi_prepare_message;
587 o->default_msix_prepare_message = o->pci_dev->msix_prepare_message;
589 o->pci_dev->msi_trigger = vfu_object_msi_trigger;
590 o->pci_dev->msi_prepare_message = vfu_object_msi_prepare_msg;
591 o->pci_dev->msix_prepare_message = vfu_object_msi_prepare_msg;
594 static void vfu_object_restore_msi_cbs(VfuObject *o)
596 o->pci_dev->msi_trigger = o->default_msi_trigger;
597 o->pci_dev->msi_prepare_message = o->default_msi_prepare_message;
598 o->pci_dev->msix_prepare_message = o->default_msix_prepare_message;
601 static void vfu_msix_irq_state(vfu_ctx_t *vfu_ctx, uint32_t start,
602 uint32_t count, bool mask)
604 VfuObject *o = vfu_get_private(vfu_ctx);
605 uint32_t vector;
607 for (vector = start; vector < count; vector++) {
608 msix_set_mask(o->pci_dev, vector, mask);
612 static void vfu_msi_irq_state(vfu_ctx_t *vfu_ctx, uint32_t start,
613 uint32_t count, bool mask)
615 VfuObject *o = vfu_get_private(vfu_ctx);
616 Error *err = NULL;
617 uint32_t vector;
619 for (vector = start; vector < count; vector++) {
620 msi_set_mask(o->pci_dev, vector, mask, &err);
621 if (err) {
622 VFU_OBJECT_ERROR(o, "vfu: %s: %s", o->device,
623 error_get_pretty(err));
624 error_free(err);
625 err = NULL;
630 static int vfu_object_setup_irqs(VfuObject *o, PCIDevice *pci_dev)
632 vfu_ctx_t *vfu_ctx = o->vfu_ctx;
633 int ret;
635 ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
636 if (ret < 0) {
637 return ret;
640 if (msix_nr_vectors_allocated(pci_dev)) {
641 ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ,
642 msix_nr_vectors_allocated(pci_dev));
643 vfu_setup_irq_state_callback(vfu_ctx, VFU_DEV_MSIX_IRQ,
644 &vfu_msix_irq_state);
645 } else if (msi_nr_vectors_allocated(pci_dev)) {
646 ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSI_IRQ,
647 msi_nr_vectors_allocated(pci_dev));
648 vfu_setup_irq_state_callback(vfu_ctx, VFU_DEV_MSI_IRQ,
649 &vfu_msi_irq_state);
652 if (ret < 0) {
653 return ret;
656 vfu_object_setup_msi_cbs(o);
658 pci_dev->irq_opaque = vfu_ctx;
660 return 0;
663 void vfu_object_set_bus_irq(PCIBus *pci_bus)
665 int bus_num = pci_bus_num(pci_bus);
666 int max_bdf = PCI_BUILD_BDF(bus_num, PCI_DEVFN_MAX - 1);
668 pci_bus_irqs(pci_bus, vfu_object_set_irq, vfu_object_map_irq, pci_bus,
669 max_bdf);
672 static int vfu_object_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
674 VfuObject *o = vfu_get_private(vfu_ctx);
676 /* vfu_object_ctx_run() handles lost connection */
677 if (type == VFU_RESET_LOST_CONN) {
678 return 0;
681 qdev_reset_all(DEVICE(o->pci_dev));
683 return 0;
687 * TYPE_VFU_OBJECT depends on the availability of the 'socket' and 'device'
688 * properties. It also depends on devices instantiated in QEMU. These
689 * dependencies are not available during the instance_init phase of this
690 * object's life-cycle. As such, the server is initialized after the
691 * machine is setup. machine_init_done_notifier notifies TYPE_VFU_OBJECT
692 * when the machine is setup, and the dependencies are available.
694 static void vfu_object_machine_done(Notifier *notifier, void *data)
696 VfuObject *o = container_of(notifier, VfuObject, machine_done);
697 Error *err = NULL;
699 vfu_object_init_ctx(o, &err);
701 if (err) {
702 error_propagate(&error_abort, err);
707 * vfu_object_init_ctx: Create and initialize libvfio-user context. Add
708 * an unplug blocker for the associated PCI device. Setup a FD handler
709 * to process incoming messages in the context's socket.
711 * The socket and device properties are mandatory, and this function
712 * will not create the context without them - the setters for these
713 * properties should call this function when the property is set. The
714 * machine should also be ready when this function is invoked - it is
715 * because QEMU objects are initialized before devices, and the
716 * associated PCI device wouldn't be available at the object
717 * initialization time. Until these conditions are satisfied, this
718 * function would return early without performing any task.
720 static void vfu_object_init_ctx(VfuObject *o, Error **errp)
722 DeviceState *dev = NULL;
723 vfu_pci_type_t pci_type = VFU_PCI_TYPE_CONVENTIONAL;
724 int ret;
726 if (o->vfu_ctx || !o->socket || !o->device ||
727 !phase_check(PHASE_MACHINE_READY)) {
728 return;
731 if (o->err) {
732 error_propagate(errp, o->err);
733 o->err = NULL;
734 return;
737 o->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, o->socket->u.q_unix.path,
738 LIBVFIO_USER_FLAG_ATTACH_NB,
739 o, VFU_DEV_TYPE_PCI);
740 if (o->vfu_ctx == NULL) {
741 error_setg(errp, "vfu: Failed to create context - %s", strerror(errno));
742 return;
745 dev = qdev_find_recursive(sysbus_get_default(), o->device);
746 if (dev == NULL) {
747 error_setg(errp, "vfu: Device %s not found", o->device);
748 goto fail;
751 if (!object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
752 error_setg(errp, "vfu: %s not a PCI device", o->device);
753 goto fail;
756 o->pci_dev = PCI_DEVICE(dev);
758 object_ref(OBJECT(o->pci_dev));
760 if (pci_is_express(o->pci_dev)) {
761 pci_type = VFU_PCI_TYPE_EXPRESS;
764 ret = vfu_pci_init(o->vfu_ctx, pci_type, PCI_HEADER_TYPE_NORMAL, 0);
765 if (ret < 0) {
766 error_setg(errp,
767 "vfu: Failed to attach PCI device %s to context - %s",
768 o->device, strerror(errno));
769 goto fail;
772 error_setg(&o->unplug_blocker,
773 "vfu: %s for %s must be deleted before unplugging",
774 TYPE_VFU_OBJECT, o->device);
775 qdev_add_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
777 ret = vfu_setup_region(o->vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX,
778 pci_config_size(o->pci_dev), &vfu_object_cfg_access,
779 VFU_REGION_FLAG_RW | VFU_REGION_FLAG_ALWAYS_CB,
780 NULL, 0, -1, 0);
781 if (ret < 0) {
782 error_setg(errp,
783 "vfu: Failed to setup config space handlers for %s- %s",
784 o->device, strerror(errno));
785 goto fail;
788 ret = vfu_setup_device_dma(o->vfu_ctx, &dma_register, &dma_unregister);
789 if (ret < 0) {
790 error_setg(errp, "vfu: Failed to setup DMA handlers for %s",
791 o->device);
792 goto fail;
795 vfu_object_register_bars(o->vfu_ctx, o->pci_dev);
797 ret = vfu_object_setup_irqs(o, o->pci_dev);
798 if (ret < 0) {
799 error_setg(errp, "vfu: Failed to setup interrupts for %s",
800 o->device);
801 goto fail;
804 ret = vfu_setup_device_reset_cb(o->vfu_ctx, &vfu_object_device_reset);
805 if (ret < 0) {
806 error_setg(errp, "vfu: Failed to setup reset callback");
807 goto fail;
810 ret = vfu_realize_ctx(o->vfu_ctx);
811 if (ret < 0) {
812 error_setg(errp, "vfu: Failed to realize device %s- %s",
813 o->device, strerror(errno));
814 goto fail;
817 o->vfu_poll_fd = vfu_get_poll_fd(o->vfu_ctx);
818 if (o->vfu_poll_fd < 0) {
819 error_setg(errp, "vfu: Failed to get poll fd %s", o->device);
820 goto fail;
823 qemu_set_fd_handler(o->vfu_poll_fd, vfu_object_attach_ctx, NULL, o);
825 return;
827 fail:
828 vfu_destroy_ctx(o->vfu_ctx);
829 if (o->unplug_blocker && o->pci_dev) {
830 qdev_del_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
831 error_free(o->unplug_blocker);
832 o->unplug_blocker = NULL;
834 if (o->pci_dev) {
835 vfu_object_restore_msi_cbs(o);
836 o->pci_dev->irq_opaque = NULL;
837 object_unref(OBJECT(o->pci_dev));
838 o->pci_dev = NULL;
840 o->vfu_ctx = NULL;
843 static void vfu_object_init(Object *obj)
845 VfuObjectClass *k = VFU_OBJECT_GET_CLASS(obj);
846 VfuObject *o = VFU_OBJECT(obj);
848 k->nr_devs++;
850 if (!object_dynamic_cast(OBJECT(current_machine), TYPE_REMOTE_MACHINE)) {
851 error_setg(&o->err, "vfu: %s only compatible with %s machine",
852 TYPE_VFU_OBJECT, TYPE_REMOTE_MACHINE);
853 return;
856 if (!phase_check(PHASE_MACHINE_READY)) {
857 o->machine_done.notify = vfu_object_machine_done;
858 qemu_add_machine_init_done_notifier(&o->machine_done);
861 o->vfu_poll_fd = -1;
864 static void vfu_object_finalize(Object *obj)
866 VfuObjectClass *k = VFU_OBJECT_GET_CLASS(obj);
867 VfuObject *o = VFU_OBJECT(obj);
869 k->nr_devs--;
871 qapi_free_SocketAddress(o->socket);
873 o->socket = NULL;
875 if (o->vfu_poll_fd != -1) {
876 qemu_set_fd_handler(o->vfu_poll_fd, NULL, NULL, NULL);
877 o->vfu_poll_fd = -1;
880 if (o->vfu_ctx) {
881 vfu_destroy_ctx(o->vfu_ctx);
882 o->vfu_ctx = NULL;
885 g_free(o->device);
887 o->device = NULL;
889 if (o->unplug_blocker && o->pci_dev) {
890 qdev_del_unplug_blocker(DEVICE(o->pci_dev), o->unplug_blocker);
891 error_free(o->unplug_blocker);
892 o->unplug_blocker = NULL;
895 if (o->pci_dev) {
896 vfu_object_restore_msi_cbs(o);
897 o->pci_dev->irq_opaque = NULL;
898 object_unref(OBJECT(o->pci_dev));
899 o->pci_dev = NULL;
902 if (!k->nr_devs && vfu_object_auto_shutdown()) {
903 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
906 if (o->machine_done.notify) {
907 qemu_remove_machine_init_done_notifier(&o->machine_done);
908 o->machine_done.notify = NULL;
912 static void vfu_object_class_init(ObjectClass *klass, void *data)
914 VfuObjectClass *k = VFU_OBJECT_CLASS(klass);
916 k->nr_devs = 0;
918 object_class_property_add(klass, "socket", "SocketAddress", NULL,
919 vfu_object_set_socket, NULL, NULL);
920 object_class_property_set_description(klass, "socket",
921 "SocketAddress "
922 "(ex: type=unix,path=/tmp/sock). "
923 "Only UNIX is presently supported");
924 object_class_property_add_str(klass, "device", NULL,
925 vfu_object_set_device);
926 object_class_property_set_description(klass, "device",
927 "device ID - only PCI devices "
928 "are presently supported");
931 static const TypeInfo vfu_object_info = {
932 .name = TYPE_VFU_OBJECT,
933 .parent = TYPE_OBJECT,
934 .instance_size = sizeof(VfuObject),
935 .instance_init = vfu_object_init,
936 .instance_finalize = vfu_object_finalize,
937 .class_size = sizeof(VfuObjectClass),
938 .class_init = vfu_object_class_init,
939 .interfaces = (InterfaceInfo[]) {
940 { TYPE_USER_CREATABLE },
945 static void vfu_register_types(void)
947 type_register_static(&vfu_object_info);
950 type_init(vfu_register_types);