graph-lock: TSA annotations for lock/unlock functions
[qemu.git] / hw / nvram / fw_cfg.c
bloba00881bc645d5205287b418fdd369121bc72f51c
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
44 #include "hw/loader.h"
46 #define FW_CFG_FILE_SLOTS_DFLT 0x20
48 /* FW_CFG_VERSION bits */
49 #define FW_CFG_VERSION 0x01
50 #define FW_CFG_VERSION_DMA 0x02
52 /* FW_CFG_DMA_CONTROL bits */
53 #define FW_CFG_DMA_CTL_ERROR 0x01
54 #define FW_CFG_DMA_CTL_READ 0x02
55 #define FW_CFG_DMA_CTL_SKIP 0x04
56 #define FW_CFG_DMA_CTL_SELECT 0x08
57 #define FW_CFG_DMA_CTL_WRITE 0x10
59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
61 struct FWCfgEntry {
62 uint32_t len;
63 bool allow_write;
64 uint8_t *data;
65 void *callback_opaque;
66 FWCfgCallback select_cb;
67 FWCfgWriteCallback write_cb;
70 /**
71 * key_name:
73 * @key: The uint16 selector key.
75 * Returns: The stringified name if the selector refers to a well-known
76 * numerically defined item, or NULL on key lookup failure.
78 static const char *key_name(uint16_t key)
80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
81 [FW_CFG_SIGNATURE] = "signature",
82 [FW_CFG_ID] = "id",
83 [FW_CFG_UUID] = "uuid",
84 [FW_CFG_RAM_SIZE] = "ram_size",
85 [FW_CFG_NOGRAPHIC] = "nographic",
86 [FW_CFG_NB_CPUS] = "nb_cpus",
87 [FW_CFG_MACHINE_ID] = "machine_id",
88 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
89 [FW_CFG_KERNEL_SIZE] = "kernel_size",
90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
91 [FW_CFG_INITRD_ADDR] = "initrd_addr",
92 [FW_CFG_INITRD_SIZE] = "initdr_size",
93 [FW_CFG_BOOT_DEVICE] = "boot_device",
94 [FW_CFG_NUMA] = "numa",
95 [FW_CFG_BOOT_MENU] = "boot_menu",
96 [FW_CFG_MAX_CPUS] = "max_cpus",
97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
98 [FW_CFG_KERNEL_DATA] = "kernel_data",
99 [FW_CFG_INITRD_DATA] = "initrd_data",
100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
102 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
103 [FW_CFG_SETUP_ADDR] = "setup_addr",
104 [FW_CFG_SETUP_SIZE] = "setup_size",
105 [FW_CFG_SETUP_DATA] = "setup_data",
106 [FW_CFG_FILE_DIR] = "file_dir",
109 if (key & FW_CFG_ARCH_LOCAL) {
110 return fw_cfg_arch_key_name(key);
112 if (key < FW_CFG_FILE_FIRST) {
113 return fw_cfg_wellknown_keys[key];
116 return NULL;
119 static inline const char *trace_key_name(uint16_t key)
121 const char *name = key_name(key);
123 return name ? name : "unknown";
126 #define JPG_FILE 0
127 #define BMP_FILE 1
129 static char *read_splashfile(char *filename, gsize *file_sizep,
130 int *file_typep)
132 GError *err = NULL;
133 gchar *content;
134 int file_type;
135 unsigned int filehead;
136 int bmp_bpp;
138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
139 error_report("failed to read splash file '%s': %s",
140 filename, err->message);
141 g_error_free(err);
142 return NULL;
145 /* check file size */
146 if (*file_sizep < 30) {
147 goto error;
150 /* check magic ID */
151 filehead = lduw_le_p(content);
152 if (filehead == 0xd8ff) {
153 file_type = JPG_FILE;
154 } else if (filehead == 0x4d42) {
155 file_type = BMP_FILE;
156 } else {
157 goto error;
160 /* check BMP bpp */
161 if (file_type == BMP_FILE) {
162 bmp_bpp = lduw_le_p(&content[28]);
163 if (bmp_bpp != 24) {
164 goto error;
168 /* return values */
169 *file_typep = file_type;
171 return content;
173 error:
174 error_report("splash file '%s' format not recognized; must be JPEG "
175 "or 24 bit BMP", filename);
176 g_free(content);
177 return NULL;
180 static void fw_cfg_bootsplash(FWCfgState *s)
182 char *filename, *file_data;
183 gsize file_size;
184 int file_type;
186 /* insert splash time if user configurated */
187 if (current_machine->boot_config.has_splash_time) {
188 int64_t bst_val = current_machine->boot_config.splash_time;
189 uint16_t bst_le16;
191 /* validate the input */
192 if (bst_val < 0 || bst_val > 0xffff) {
193 error_report("splash-time is invalid,"
194 "it should be a value between 0 and 65535");
195 exit(1);
197 /* use little endian format */
198 bst_le16 = cpu_to_le16(bst_val);
199 fw_cfg_add_file(s, "etc/boot-menu-wait",
200 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
203 /* insert splash file if user configurated */
204 if (current_machine->boot_config.splash) {
205 const char *boot_splash_filename = current_machine->boot_config.splash;
206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
207 if (filename == NULL) {
208 error_report("failed to find file '%s'", boot_splash_filename);
209 return;
212 /* loading file data */
213 file_data = read_splashfile(filename, &file_size, &file_type);
214 if (file_data == NULL) {
215 g_free(filename);
216 return;
218 g_free(boot_splash_filedata);
219 boot_splash_filedata = (uint8_t *)file_data;
221 /* insert data */
222 if (file_type == JPG_FILE) {
223 fw_cfg_add_file(s, "bootsplash.jpg",
224 boot_splash_filedata, file_size);
225 } else {
226 fw_cfg_add_file(s, "bootsplash.bmp",
227 boot_splash_filedata, file_size);
229 g_free(filename);
233 static void fw_cfg_reboot(FWCfgState *s)
235 uint64_t rt_val = -1;
236 uint32_t rt_le32;
238 if (current_machine->boot_config.has_reboot_timeout) {
239 rt_val = current_machine->boot_config.reboot_timeout;
241 /* validate the input */
242 if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
243 error_report("reboot timeout is invalid,"
244 "it should be a value between -1 and 65535");
245 exit(1);
249 rt_le32 = cpu_to_le32(rt_val);
250 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
253 static void fw_cfg_write(FWCfgState *s, uint8_t value)
255 /* nothing, write support removed in QEMU v2.4+ */
258 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
260 return s->file_slots;
263 /* Note: this function returns an exclusive limit. */
264 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
266 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
269 static int fw_cfg_select(FWCfgState *s, uint16_t key)
271 int arch, ret;
272 FWCfgEntry *e;
274 s->cur_offset = 0;
275 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
276 s->cur_entry = FW_CFG_INVALID;
277 ret = 0;
278 } else {
279 s->cur_entry = key;
280 ret = 1;
281 /* entry successfully selected, now run callback if present */
282 arch = !!(key & FW_CFG_ARCH_LOCAL);
283 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
284 if (e->select_cb) {
285 e->select_cb(e->callback_opaque);
289 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
290 return ret;
293 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
295 FWCfgState *s = opaque;
296 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
297 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
298 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
299 uint64_t value = 0;
301 assert(size > 0 && size <= sizeof(value));
302 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
303 /* The least significant 'size' bytes of the return value are
304 * expected to contain a string preserving portion of the item
305 * data, padded with zeros on the right in case we run out early.
306 * In technical terms, we're composing the host-endian representation
307 * of the big endian interpretation of the fw_cfg string.
309 do {
310 value = (value << 8) | e->data[s->cur_offset++];
311 } while (--size && s->cur_offset < e->len);
312 /* If size is still not zero, we *did* run out early, so continue
313 * left-shifting, to add the appropriate number of padding zeros
314 * on the right.
316 value <<= 8 * size;
319 trace_fw_cfg_read(s, value);
320 return value;
323 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
324 uint64_t value, unsigned size)
326 FWCfgState *s = opaque;
327 unsigned i = size;
329 do {
330 fw_cfg_write(s, value >> (8 * --i));
331 } while (i);
334 static void fw_cfg_dma_transfer(FWCfgState *s)
336 dma_addr_t len;
337 FWCfgDmaAccess dma;
338 int arch;
339 FWCfgEntry *e;
340 int read = 0, write = 0;
341 dma_addr_t dma_addr;
343 /* Reset the address before the next access */
344 dma_addr = s->dma_addr;
345 s->dma_addr = 0;
347 if (dma_memory_read(s->dma_as, dma_addr,
348 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
349 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
350 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
351 return;
354 dma.address = be64_to_cpu(dma.address);
355 dma.length = be32_to_cpu(dma.length);
356 dma.control = be32_to_cpu(dma.control);
358 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
359 fw_cfg_select(s, dma.control >> 16);
362 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
363 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
364 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
366 if (dma.control & FW_CFG_DMA_CTL_READ) {
367 read = 1;
368 write = 0;
369 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
370 read = 0;
371 write = 1;
372 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
373 read = 0;
374 write = 0;
375 } else {
376 dma.length = 0;
379 dma.control = 0;
381 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
382 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
383 s->cur_offset >= e->len) {
384 len = dma.length;
386 /* If the access is not a read access, it will be a skip access,
387 * tested before.
389 if (read) {
390 if (dma_memory_set(s->dma_as, dma.address, 0, len,
391 MEMTXATTRS_UNSPECIFIED)) {
392 dma.control |= FW_CFG_DMA_CTL_ERROR;
395 if (write) {
396 dma.control |= FW_CFG_DMA_CTL_ERROR;
398 } else {
399 if (dma.length <= (e->len - s->cur_offset)) {
400 len = dma.length;
401 } else {
402 len = (e->len - s->cur_offset);
405 /* If the access is not a read access, it will be a skip access,
406 * tested before.
408 if (read) {
409 if (dma_memory_write(s->dma_as, dma.address,
410 &e->data[s->cur_offset], len,
411 MEMTXATTRS_UNSPECIFIED)) {
412 dma.control |= FW_CFG_DMA_CTL_ERROR;
415 if (write) {
416 if (!e->allow_write ||
417 len != dma.length ||
418 dma_memory_read(s->dma_as, dma.address,
419 &e->data[s->cur_offset], len,
420 MEMTXATTRS_UNSPECIFIED)) {
421 dma.control |= FW_CFG_DMA_CTL_ERROR;
422 } else if (e->write_cb) {
423 e->write_cb(e->callback_opaque, s->cur_offset, len);
427 s->cur_offset += len;
430 dma.address += len;
431 dma.length -= len;
435 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
436 dma.control, MEMTXATTRS_UNSPECIFIED);
438 trace_fw_cfg_read(s, 0);
441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
442 unsigned size)
444 /* Return a signature value (and handle various read sizes) */
445 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
449 uint64_t value, unsigned size)
451 FWCfgState *s = opaque;
453 if (size == 4) {
454 if (addr == 0) {
455 /* FWCfgDmaAccess high address */
456 s->dma_addr = value << 32;
457 } else if (addr == 4) {
458 /* FWCfgDmaAccess low address */
459 s->dma_addr |= value;
460 fw_cfg_dma_transfer(s);
462 } else if (size == 8 && addr == 0) {
463 s->dma_addr = value;
464 fw_cfg_dma_transfer(s);
468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
469 unsigned size, bool is_write,
470 MemTxAttrs attrs)
472 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
473 (size == 8 && addr == 0));
476 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
477 unsigned size, bool is_write,
478 MemTxAttrs attrs)
480 return addr == 0;
483 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
485 return 0;
488 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
489 uint64_t value, unsigned size)
491 fw_cfg_select(opaque, (uint16_t)value);
494 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
495 unsigned size, bool is_write,
496 MemTxAttrs attrs)
498 return is_write && size == 2;
501 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
502 uint64_t value, unsigned size)
504 switch (size) {
505 case 1:
506 fw_cfg_write(opaque, (uint8_t)value);
507 break;
508 case 2:
509 fw_cfg_select(opaque, (uint16_t)value);
510 break;
514 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
515 unsigned size, bool is_write,
516 MemTxAttrs attrs)
518 return (size == 1) || (is_write && size == 2);
521 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
522 .read = fw_cfg_ctl_mem_read,
523 .write = fw_cfg_ctl_mem_write,
524 .endianness = DEVICE_BIG_ENDIAN,
525 .valid.accepts = fw_cfg_ctl_mem_valid,
528 static const MemoryRegionOps fw_cfg_data_mem_ops = {
529 .read = fw_cfg_data_read,
530 .write = fw_cfg_data_mem_write,
531 .endianness = DEVICE_BIG_ENDIAN,
532 .valid = {
533 .min_access_size = 1,
534 .max_access_size = 1,
535 .accepts = fw_cfg_data_mem_valid,
539 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
540 .read = fw_cfg_data_read,
541 .write = fw_cfg_comb_write,
542 .endianness = DEVICE_LITTLE_ENDIAN,
543 .valid.accepts = fw_cfg_comb_valid,
546 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
547 .read = fw_cfg_dma_mem_read,
548 .write = fw_cfg_dma_mem_write,
549 .endianness = DEVICE_BIG_ENDIAN,
550 .valid.accepts = fw_cfg_dma_mem_valid,
551 .valid.max_access_size = 8,
552 .impl.max_access_size = 8,
555 static void fw_cfg_reset(DeviceState *d)
557 FWCfgState *s = FW_CFG(d);
559 /* we never register a read callback for FW_CFG_SIGNATURE */
560 fw_cfg_select(s, FW_CFG_SIGNATURE);
563 /* Save restore 32 bit int as uint16_t
564 This is a Big hack, but it is how the old state did it.
565 Or we broke compatibility in the state, or we can't use struct tm
568 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
569 const VMStateField *field)
571 uint32_t *v = pv;
572 *v = qemu_get_be16(f);
573 return 0;
576 static int put_unused(QEMUFile *f, void *pv, size_t size,
577 const VMStateField *field, JSONWriter *vmdesc)
579 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
580 fprintf(stderr, "This functions shouldn't be called.\n");
582 return 0;
585 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
586 .name = "int32_as_uint16",
587 .get = get_uint32_as_uint16,
588 .put = put_unused,
591 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
592 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
595 static bool is_version_1(void *opaque, int version_id)
597 return version_id == 1;
600 bool fw_cfg_dma_enabled(void *opaque)
602 FWCfgState *s = opaque;
604 return s->dma_enabled;
607 static bool fw_cfg_acpi_mr_restore(void *opaque)
609 FWCfgState *s = opaque;
610 bool mr_aligned;
612 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
613 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
614 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
615 return s->acpi_mr_restore && !mr_aligned;
618 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
620 MemoryRegion *mr;
621 ram_addr_t offset;
622 int arch = !!(key & FW_CFG_ARCH_LOCAL);
623 void *ptr;
625 key &= FW_CFG_ENTRY_MASK;
626 assert(key < fw_cfg_max_entry(s));
628 ptr = s->entries[arch][key].data;
629 mr = memory_region_from_host(ptr, &offset);
631 memory_region_ram_resize(mr, size, &error_abort);
634 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
636 FWCfgState *s = opaque;
637 int i, index;
639 assert(s->files);
641 index = be32_to_cpu(s->files->count);
643 for (i = 0; i < index; i++) {
644 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
645 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
646 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
647 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
648 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
649 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
653 return 0;
656 static const VMStateDescription vmstate_fw_cfg_dma = {
657 .name = "fw_cfg/dma",
658 .needed = fw_cfg_dma_enabled,
659 .fields = (VMStateField[]) {
660 VMSTATE_UINT64(dma_addr, FWCfgState),
661 VMSTATE_END_OF_LIST()
665 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
666 .name = "fw_cfg/acpi_mr",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .needed = fw_cfg_acpi_mr_restore,
670 .post_load = fw_cfg_acpi_mr_restore_post_load,
671 .fields = (VMStateField[]) {
672 VMSTATE_UINT64(table_mr_size, FWCfgState),
673 VMSTATE_UINT64(linker_mr_size, FWCfgState),
674 VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
675 VMSTATE_END_OF_LIST()
679 static const VMStateDescription vmstate_fw_cfg = {
680 .name = "fw_cfg",
681 .version_id = 2,
682 .minimum_version_id = 1,
683 .fields = (VMStateField[]) {
684 VMSTATE_UINT16(cur_entry, FWCfgState),
685 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
686 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
687 VMSTATE_END_OF_LIST()
689 .subsections = (const VMStateDescription*[]) {
690 &vmstate_fw_cfg_dma,
691 &vmstate_fw_cfg_acpi_mr,
692 NULL,
696 void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
697 FWCfgCallback select_cb,
698 FWCfgWriteCallback write_cb,
699 void *callback_opaque,
700 void *data, size_t len,
701 bool read_only)
703 int arch = !!(key & FW_CFG_ARCH_LOCAL);
705 key &= FW_CFG_ENTRY_MASK;
707 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
708 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
710 s->entries[arch][key].data = data;
711 s->entries[arch][key].len = (uint32_t)len;
712 s->entries[arch][key].select_cb = select_cb;
713 s->entries[arch][key].write_cb = write_cb;
714 s->entries[arch][key].callback_opaque = callback_opaque;
715 s->entries[arch][key].allow_write = !read_only;
718 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
719 void *data, size_t len)
721 void *ptr;
722 int arch = !!(key & FW_CFG_ARCH_LOCAL);
724 key &= FW_CFG_ENTRY_MASK;
726 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
728 /* return the old data to the function caller, avoid memory leak */
729 ptr = s->entries[arch][key].data;
730 s->entries[arch][key].data = data;
731 s->entries[arch][key].len = len;
732 s->entries[arch][key].callback_opaque = NULL;
733 s->entries[arch][key].allow_write = false;
735 return ptr;
738 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
740 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
741 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
744 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
746 size_t sz = strlen(value) + 1;
748 trace_fw_cfg_add_string(key, trace_key_name(key), value);
749 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
752 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
754 size_t sz = strlen(value) + 1;
755 char *old;
757 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
758 g_free(old);
761 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
763 uint16_t *copy;
765 copy = g_malloc(sizeof(value));
766 *copy = cpu_to_le16(value);
767 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
768 fw_cfg_add_bytes(s, key, copy, sizeof(value));
771 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
773 uint16_t *copy, *old;
775 copy = g_malloc(sizeof(value));
776 *copy = cpu_to_le16(value);
777 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
778 g_free(old);
781 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
783 uint32_t *copy;
785 copy = g_malloc(sizeof(value));
786 *copy = cpu_to_le32(value);
787 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
788 fw_cfg_add_bytes(s, key, copy, sizeof(value));
791 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
793 uint32_t *copy, *old;
795 copy = g_malloc(sizeof(value));
796 *copy = cpu_to_le32(value);
797 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
798 g_free(old);
801 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
803 uint64_t *copy;
805 copy = g_malloc(sizeof(value));
806 *copy = cpu_to_le64(value);
807 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
808 fw_cfg_add_bytes(s, key, copy, sizeof(value));
811 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
813 uint64_t *copy, *old;
815 copy = g_malloc(sizeof(value));
816 *copy = cpu_to_le64(value);
817 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
818 g_free(old);
821 void fw_cfg_set_order_override(FWCfgState *s, int order)
823 assert(s->fw_cfg_order_override == 0);
824 s->fw_cfg_order_override = order;
827 void fw_cfg_reset_order_override(FWCfgState *s)
829 assert(s->fw_cfg_order_override != 0);
830 s->fw_cfg_order_override = 0;
834 * This is the legacy order list. For legacy systems, files are in
835 * the fw_cfg in the order defined below, by the "order" value. Note
836 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
837 * specific area, but there may be more than one and they occur in the
838 * order that the user specifies them on the command line. Those are
839 * handled in a special manner, using the order override above.
841 * For non-legacy, the files are sorted by filename to avoid this kind
842 * of complexity in the future.
844 * This is only for x86, other arches don't implement versioning so
845 * they won't set legacy mode.
847 static struct {
848 const char *name;
849 int order;
850 } fw_cfg_order[] = {
851 { "etc/boot-menu-wait", 10 },
852 { "bootsplash.jpg", 11 },
853 { "bootsplash.bmp", 12 },
854 { "etc/boot-fail-wait", 15 },
855 { "etc/smbios/smbios-tables", 20 },
856 { "etc/smbios/smbios-anchor", 30 },
857 { "etc/e820", 40 },
858 { "etc/reserved-memory-end", 50 },
859 { "genroms/kvmvapic.bin", 55 },
860 { "genroms/linuxboot.bin", 60 },
861 { }, /* VGA ROMs from pc_vga_init come here, 70. */
862 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
863 { "etc/system-states", 90 },
864 { }, /* User ROMs come here, 100. */
865 { }, /* Device FW comes here, 110. */
866 { "etc/extra-pci-roots", 120 },
867 { "etc/acpi/tables", 130 },
868 { "etc/table-loader", 140 },
869 { "etc/tpm/log", 150 },
870 { "etc/acpi/rsdp", 160 },
871 { "bootorder", 170 },
872 { "etc/msr_feature_control", 180 },
874 #define FW_CFG_ORDER_OVERRIDE_LAST 200
878 * Any sub-page size update to these table MRs will be lost during migration,
879 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
880 * In order to avoid the inconsistency in sizes save them seperately and
881 * migrate over in vmstate post_load().
883 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
885 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
886 s->table_mr_size = len;
887 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
888 s->linker_mr_size = len;
889 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
890 s->rsdp_mr_size = len;
894 static int get_fw_cfg_order(FWCfgState *s, const char *name)
896 int i;
898 if (s->fw_cfg_order_override > 0) {
899 return s->fw_cfg_order_override;
902 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
903 if (fw_cfg_order[i].name == NULL) {
904 continue;
907 if (strcmp(name, fw_cfg_order[i].name) == 0) {
908 return fw_cfg_order[i].order;
912 /* Stick unknown stuff at the end. */
913 warn_report("Unknown firmware file in legacy mode: %s", name);
914 return FW_CFG_ORDER_OVERRIDE_LAST;
917 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
918 FWCfgCallback select_cb,
919 FWCfgWriteCallback write_cb,
920 void *callback_opaque,
921 void *data, size_t len, bool read_only)
923 int i, index, count;
924 size_t dsize;
925 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
926 int order = 0;
928 if (!s->files) {
929 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
930 s->files = g_malloc0(dsize);
931 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
934 count = be32_to_cpu(s->files->count);
935 assert(count < fw_cfg_file_slots(s));
937 /* Find the insertion point. */
938 if (mc->legacy_fw_cfg_order) {
940 * Sort by order. For files with the same order, we keep them
941 * in the sequence in which they were added.
943 order = get_fw_cfg_order(s, filename);
944 for (index = count;
945 index > 0 && order < s->entry_order[index - 1];
946 index--);
947 } else {
948 /* Sort by file name. */
949 for (index = count;
950 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
951 index--);
955 * Move all the entries from the index point and after down one
956 * to create a slot for the new entry. Because calculations are
957 * being done with the index, make it so that "i" is the current
958 * index and "i - 1" is the one being copied from, thus the
959 * unusual start and end in the for statement.
961 for (i = count; i > index; i--) {
962 s->files->f[i] = s->files->f[i - 1];
963 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
964 s->entries[0][FW_CFG_FILE_FIRST + i] =
965 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
966 s->entry_order[i] = s->entry_order[i - 1];
969 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
970 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
972 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
973 for (i = 0; i <= count; i++) {
974 if (i != index &&
975 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
976 error_report("duplicate fw_cfg file name: %s",
977 s->files->f[index].name);
978 exit(1);
982 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
983 select_cb, write_cb,
984 callback_opaque, data, len,
985 read_only);
987 s->files->f[index].size = cpu_to_be32(len);
988 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
989 s->entry_order[index] = order;
990 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
992 s->files->count = cpu_to_be32(count+1);
993 fw_cfg_acpi_mr_save(s, filename, len);
996 void fw_cfg_add_file(FWCfgState *s, const char *filename,
997 void *data, size_t len)
999 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1002 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1003 void *data, size_t len)
1005 int i, index;
1006 void *ptr = NULL;
1008 assert(s->files);
1010 index = be32_to_cpu(s->files->count);
1012 for (i = 0; i < index; i++) {
1013 if (strcmp(filename, s->files->f[i].name) == 0) {
1014 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1015 data, len);
1016 s->files->f[i].size = cpu_to_be32(len);
1017 fw_cfg_acpi_mr_save(s, filename, len);
1018 return ptr;
1022 assert(index < fw_cfg_file_slots(s));
1024 /* add new one */
1025 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1026 return NULL;
1029 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1030 const char *gen_id, Error **errp)
1032 FWCfgDataGeneratorClass *klass;
1033 GByteArray *array;
1034 Object *obj;
1035 gsize size;
1037 obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1038 if (!obj) {
1039 error_setg(errp, "Cannot find object ID '%s'", gen_id);
1040 return false;
1042 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1043 error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1044 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1045 return false;
1047 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1048 array = klass->get_data(obj, errp);
1049 if (!array) {
1050 return false;
1052 size = array->len;
1053 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1055 return true;
1058 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1060 int extra_hosts = 0;
1062 if (!bus) {
1063 return;
1066 QLIST_FOREACH(bus, &bus->child, sibling) {
1067 /* look for expander root buses */
1068 if (pci_bus_is_root(bus)) {
1069 extra_hosts++;
1073 if (extra_hosts && s) {
1074 uint64_t *val = g_malloc(sizeof(*val));
1075 *val = cpu_to_le64(extra_hosts);
1076 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1080 static void fw_cfg_machine_reset(void *opaque)
1082 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1083 FWCfgState *s = opaque;
1084 void *ptr;
1085 size_t len;
1086 char *buf;
1088 buf = get_boot_devices_list(&len);
1089 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1090 g_free(ptr);
1092 if (!mc->legacy_fw_cfg_order) {
1093 buf = get_boot_devices_lchs_list(&len);
1094 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1095 g_free(ptr);
1099 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1101 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1102 qemu_register_reset(fw_cfg_machine_reset, s);
1105 static Property fw_cfg_properties[] = {
1106 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1107 DEFINE_PROP_END_OF_LIST(),
1110 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1112 FWCfgState *s = FW_CFG(dev);
1113 MachineState *machine = MACHINE(qdev_get_machine());
1114 uint32_t version = FW_CFG_VERSION;
1116 if (!fw_cfg_find()) {
1117 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1118 return;
1121 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1122 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1123 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1124 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1125 fw_cfg_bootsplash(s);
1126 fw_cfg_reboot(s);
1128 if (s->dma_enabled) {
1129 version |= FW_CFG_VERSION_DMA;
1132 fw_cfg_add_i32(s, FW_CFG_ID, version);
1134 s->machine_ready.notify = fw_cfg_machine_ready;
1135 qemu_add_machine_init_done_notifier(&s->machine_ready);
1138 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1139 AddressSpace *dma_as)
1141 DeviceState *dev;
1142 SysBusDevice *sbd;
1143 FWCfgIoState *ios;
1144 FWCfgState *s;
1145 bool dma_requested = dma_iobase && dma_as;
1147 dev = qdev_new(TYPE_FW_CFG_IO);
1148 if (!dma_requested) {
1149 qdev_prop_set_bit(dev, "dma_enabled", false);
1152 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1153 OBJECT(dev));
1155 sbd = SYS_BUS_DEVICE(dev);
1156 sysbus_realize_and_unref(sbd, &error_fatal);
1157 ios = FW_CFG_IO(dev);
1158 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1160 s = FW_CFG(dev);
1162 if (s->dma_enabled) {
1163 /* 64 bits for the address field */
1164 s->dma_as = dma_as;
1165 s->dma_addr = 0;
1166 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1169 return s;
1172 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1174 return fw_cfg_init_io_dma(iobase, 0, NULL);
1177 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1178 hwaddr data_addr, uint32_t data_width,
1179 hwaddr dma_addr, AddressSpace *dma_as)
1181 DeviceState *dev;
1182 SysBusDevice *sbd;
1183 FWCfgState *s;
1184 bool dma_requested = dma_addr && dma_as;
1186 dev = qdev_new(TYPE_FW_CFG_MEM);
1187 qdev_prop_set_uint32(dev, "data_width", data_width);
1188 if (!dma_requested) {
1189 qdev_prop_set_bit(dev, "dma_enabled", false);
1192 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1193 OBJECT(dev));
1195 sbd = SYS_BUS_DEVICE(dev);
1196 sysbus_realize_and_unref(sbd, &error_fatal);
1197 sysbus_mmio_map(sbd, 0, ctl_addr);
1198 sysbus_mmio_map(sbd, 1, data_addr);
1200 s = FW_CFG(dev);
1202 if (s->dma_enabled) {
1203 s->dma_as = dma_as;
1204 s->dma_addr = 0;
1205 sysbus_mmio_map(sbd, 2, dma_addr);
1208 return s;
1211 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1213 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1214 fw_cfg_data_mem_ops.valid.max_access_size,
1215 0, NULL);
1219 FWCfgState *fw_cfg_find(void)
1221 /* Returns NULL unless there is exactly one fw_cfg device */
1222 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1225 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
1226 uint16_t data_key, const char *image_name,
1227 bool try_decompress)
1229 size_t size = -1;
1230 uint8_t *data;
1232 if (image_name == NULL) {
1233 return;
1236 if (try_decompress) {
1237 size = load_image_gzipped_buffer(image_name,
1238 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
1241 if (size == (size_t)-1) {
1242 gchar *contents;
1243 gsize length;
1245 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
1246 error_report("failed to load \"%s\"", image_name);
1247 exit(1);
1249 size = length;
1250 data = (uint8_t *)contents;
1253 fw_cfg_add_i32(fw_cfg, size_key, size);
1254 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
1257 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1259 DeviceClass *dc = DEVICE_CLASS(klass);
1261 dc->reset = fw_cfg_reset;
1262 dc->vmsd = &vmstate_fw_cfg;
1264 device_class_set_props(dc, fw_cfg_properties);
1267 static const TypeInfo fw_cfg_info = {
1268 .name = TYPE_FW_CFG,
1269 .parent = TYPE_SYS_BUS_DEVICE,
1270 .abstract = true,
1271 .instance_size = sizeof(FWCfgState),
1272 .class_init = fw_cfg_class_init,
1275 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1277 uint16_t file_slots_max;
1279 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1280 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1281 FW_CFG_FILE_SLOTS_MIN);
1282 return;
1285 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1286 * that we permit. The actual (exclusive) value coming from the
1287 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1288 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1289 if (fw_cfg_file_slots(s) > file_slots_max) {
1290 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1291 file_slots_max);
1292 return;
1295 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1296 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1297 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1300 static Property fw_cfg_io_properties[] = {
1301 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1302 true),
1303 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1304 FW_CFG_FILE_SLOTS_DFLT),
1305 DEFINE_PROP_END_OF_LIST(),
1308 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1310 ERRP_GUARD();
1311 FWCfgIoState *s = FW_CFG_IO(dev);
1313 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1314 if (*errp) {
1315 return;
1318 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1319 * with half of the 16-bit control register. Hence, the total size
1320 * of the i/o region used is FW_CFG_CTL_SIZE */
1321 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1322 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1324 if (FW_CFG(s)->dma_enabled) {
1325 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1326 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1327 sizeof(dma_addr_t));
1330 fw_cfg_common_realize(dev, errp);
1333 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1335 DeviceClass *dc = DEVICE_CLASS(klass);
1337 dc->realize = fw_cfg_io_realize;
1338 device_class_set_props(dc, fw_cfg_io_properties);
1341 static const TypeInfo fw_cfg_io_info = {
1342 .name = TYPE_FW_CFG_IO,
1343 .parent = TYPE_FW_CFG,
1344 .instance_size = sizeof(FWCfgIoState),
1345 .class_init = fw_cfg_io_class_init,
1349 static Property fw_cfg_mem_properties[] = {
1350 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1351 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1352 true),
1353 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1354 FW_CFG_FILE_SLOTS_DFLT),
1355 DEFINE_PROP_END_OF_LIST(),
1358 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1360 ERRP_GUARD();
1361 FWCfgMemState *s = FW_CFG_MEM(dev);
1362 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1363 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1365 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1366 if (*errp) {
1367 return;
1370 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1371 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1372 sysbus_init_mmio(sbd, &s->ctl_iomem);
1374 if (s->data_width > data_ops->valid.max_access_size) {
1375 s->wide_data_ops = *data_ops;
1377 s->wide_data_ops.valid.max_access_size = s->data_width;
1378 s->wide_data_ops.impl.max_access_size = s->data_width;
1379 data_ops = &s->wide_data_ops;
1381 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1382 "fwcfg.data", data_ops->valid.max_access_size);
1383 sysbus_init_mmio(sbd, &s->data_iomem);
1385 if (FW_CFG(s)->dma_enabled) {
1386 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1387 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1388 sizeof(dma_addr_t));
1389 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1392 fw_cfg_common_realize(dev, errp);
1395 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1397 DeviceClass *dc = DEVICE_CLASS(klass);
1399 dc->realize = fw_cfg_mem_realize;
1400 device_class_set_props(dc, fw_cfg_mem_properties);
1403 static const TypeInfo fw_cfg_mem_info = {
1404 .name = TYPE_FW_CFG_MEM,
1405 .parent = TYPE_FW_CFG,
1406 .instance_size = sizeof(FWCfgMemState),
1407 .class_init = fw_cfg_mem_class_init,
1410 static void fw_cfg_register_types(void)
1412 type_register_static(&fw_cfg_info);
1413 type_register_static(&fw_cfg_io_info);
1414 type_register_static(&fw_cfg_mem_info);
1417 type_init(fw_cfg_register_types)