graph-lock: TSA annotations for lock/unlock functions
[qemu.git] / hw / core / loader.c
blob0548830733e675ab2d2947d55ac4390db3076413
1 /*
2 * QEMU Executable loader
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * Gunzip functionality in this file is derived from u-boot:
26 * (C) Copyright 2008 Semihalf
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
65 #include <zlib.h>
67 static int roms_loaded;
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
72 int fd;
73 int64_t size;
74 fd = open(filename, O_RDONLY | O_BINARY);
75 if (fd < 0)
76 return -1;
77 size = lseek(fd, 0, SEEK_END);
78 close(fd);
79 return size;
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 int fd;
86 ssize_t actsize, l = 0;
88 fd = open(filename, O_RDONLY | O_BINARY);
89 if (fd < 0) {
90 return -1;
93 while ((actsize = read(fd, addr + l, size - l)) > 0) {
94 l += actsize;
97 close(fd);
99 return actsize < 0 ? -1 : l;
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104 int fd, hwaddr dst_addr, size_t nbytes)
106 uint8_t *buf;
107 ssize_t did;
109 buf = g_malloc(nbytes);
110 did = read(fd, buf, nbytes);
111 if (did > 0)
112 rom_add_blob_fixed("read", buf, did, dst_addr);
113 g_free(buf);
114 return did;
117 ssize_t load_image_targphys(const char *filename,
118 hwaddr addr, uint64_t max_sz)
120 return load_image_targphys_as(filename, addr, max_sz, NULL);
123 /* return the size or -1 if error */
124 ssize_t load_image_targphys_as(const char *filename,
125 hwaddr addr, uint64_t max_sz, AddressSpace *as)
127 ssize_t size;
129 size = get_image_size(filename);
130 if (size < 0 || size > max_sz) {
131 return -1;
133 if (size > 0) {
134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135 return -1;
138 return size;
141 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
143 ssize_t size;
145 if (!memory_access_is_direct(mr, false)) {
146 /* Can only load an image into RAM or ROM */
147 return -1;
150 size = get_image_size(filename);
152 if (size < 0 || size > memory_region_size(mr)) {
153 return -1;
155 if (size > 0) {
156 if (rom_add_file_mr(filename, mr, -1) < 0) {
157 return -1;
160 return size;
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164 const char *source)
166 const char *nulp;
167 char *ptr;
169 if (buf_size <= 0) return;
170 nulp = memchr(source, 0, buf_size);
171 if (nulp) {
172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 } else {
174 rom_add_blob_fixed(name, source, buf_size, dest);
175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176 *ptr = 0;
180 /* A.OUT loader */
182 struct exec
184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
185 uint32_t a_text; /* length of text, in bytes */
186 uint32_t a_data; /* length of data, in bytes */
187 uint32_t a_bss; /* length of uninitialized data area, in bytes */
188 uint32_t a_syms; /* length of symbol table data in file, in bytes */
189 uint32_t a_entry; /* start address */
190 uint32_t a_trsize; /* length of relocation info for text, in bytes */
191 uint32_t a_drsize; /* length of relocation info for data, in bytes */
194 static void bswap_ahdr(struct exec *e)
196 bswap32s(&e->a_info);
197 bswap32s(&e->a_text);
198 bswap32s(&e->a_data);
199 bswap32s(&e->a_bss);
200 bswap32s(&e->a_syms);
201 bswap32s(&e->a_entry);
202 bswap32s(&e->a_trsize);
203 bswap32s(&e->a_drsize);
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x) \
213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
220 #define N_DATADDR(x, target_page_size) \
221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
225 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
226 int bswap_needed, hwaddr target_page_size)
228 int fd;
229 ssize_t size, ret;
230 struct exec e;
231 uint32_t magic;
233 fd = open(filename, O_RDONLY | O_BINARY);
234 if (fd < 0)
235 return -1;
237 size = read(fd, &e, sizeof(e));
238 if (size < 0)
239 goto fail;
241 if (bswap_needed) {
242 bswap_ahdr(&e);
245 magic = N_MAGIC(e);
246 switch (magic) {
247 case ZMAGIC:
248 case QMAGIC:
249 case OMAGIC:
250 if (e.a_text + e.a_data > max_sz)
251 goto fail;
252 lseek(fd, N_TXTOFF(e), SEEK_SET);
253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254 if (size < 0)
255 goto fail;
256 break;
257 case NMAGIC:
258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 goto fail;
260 lseek(fd, N_TXTOFF(e), SEEK_SET);
261 size = read_targphys(filename, fd, addr, e.a_text);
262 if (size < 0)
263 goto fail;
264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265 e.a_data);
266 if (ret < 0)
267 goto fail;
268 size += ret;
269 break;
270 default:
271 goto fail;
273 close(fd);
274 return size;
275 fail:
276 close(fd);
277 return -1;
280 /* ELF loader */
282 static void *load_at(int fd, off_t offset, size_t size)
284 void *ptr;
285 if (lseek(fd, offset, SEEK_SET) < 0)
286 return NULL;
287 ptr = g_malloc(size);
288 if (read(fd, ptr, size) != size) {
289 g_free(ptr);
290 return NULL;
292 return ptr;
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
299 #define ELF_CLASS ELFCLASS32
300 #include "elf.h"
302 #define SZ 32
303 #define elf_word uint32_t
304 #define elf_sword int32_t
305 #define bswapSZs bswap32s
306 #include "hw/elf_ops.h"
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr elf64_hdr
319 #define elf_phdr elf64_phdr
320 #define elf_note elf64_note
321 #define elf_shdr elf64_shdr
322 #define elf_sym elf64_sym
323 #define elf_rela elf64_rela
324 #define elf_word uint64_t
325 #define elf_sword int64_t
326 #define bswapSZs bswap64s
327 #define SZ 64
328 #include "hw/elf_ops.h"
330 const char *load_elf_strerror(ssize_t error)
332 switch (error) {
333 case 0:
334 return "No error";
335 case ELF_LOAD_FAILED:
336 return "Failed to load ELF";
337 case ELF_LOAD_NOT_ELF:
338 return "The image is not ELF";
339 case ELF_LOAD_WRONG_ARCH:
340 return "The image is from incompatible architecture";
341 case ELF_LOAD_WRONG_ENDIAN:
342 return "The image has incorrect endianness";
343 case ELF_LOAD_TOO_BIG:
344 return "The image segments are too big to load";
345 default:
346 return "Unknown error";
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 int fd;
353 uint8_t e_ident_local[EI_NIDENT];
354 uint8_t *e_ident;
355 size_t hdr_size, off;
356 bool is64l;
358 if (!hdr) {
359 hdr = e_ident_local;
361 e_ident = hdr;
363 fd = open(filename, O_RDONLY | O_BINARY);
364 if (fd < 0) {
365 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366 return;
368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370 goto fail;
372 if (e_ident[0] != ELFMAG0 ||
373 e_ident[1] != ELFMAG1 ||
374 e_ident[2] != ELFMAG2 ||
375 e_ident[3] != ELFMAG3) {
376 error_setg(errp, "Bad ELF magic");
377 goto fail;
380 is64l = e_ident[EI_CLASS] == ELFCLASS64;
381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382 if (is64) {
383 *is64 = is64l;
386 off = EI_NIDENT;
387 while (hdr != e_ident_local && off < hdr_size) {
388 size_t br = read(fd, hdr + off, hdr_size - off);
389 switch (br) {
390 case 0:
391 error_setg(errp, "File too short: %s", filename);
392 goto fail;
393 case -1:
394 error_setg_errno(errp, errno, "Failed to read file: %s",
395 filename);
396 goto fail;
398 off += br;
401 fail:
402 close(fd);
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 ssize_t load_elf(const char *filename,
407 uint64_t (*elf_note_fn)(void *, void *, bool),
408 uint64_t (*translate_fn)(void *, uint64_t),
409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410 uint64_t *highaddr, uint32_t *pflags, int big_endian,
411 int elf_machine, int clear_lsb, int data_swab)
413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414 pentry, lowaddr, highaddr, pflags, big_endian,
415 elf_machine, clear_lsb, data_swab, NULL);
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 ssize_t load_elf_as(const char *filename,
420 uint64_t (*elf_note_fn)(void *, void *, bool),
421 uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, uint32_t *pflags, int big_endian,
424 int elf_machine, int clear_lsb, int data_swab,
425 AddressSpace *as)
427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
428 pentry, lowaddr, highaddr, pflags, big_endian,
429 elf_machine, clear_lsb, data_swab, as, true);
432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
433 ssize_t load_elf_ram(const char *filename,
434 uint64_t (*elf_note_fn)(void *, void *, bool),
435 uint64_t (*translate_fn)(void *, uint64_t),
436 void *translate_opaque, uint64_t *pentry,
437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
438 int big_endian, int elf_machine, int clear_lsb,
439 int data_swab, AddressSpace *as, bool load_rom)
441 return load_elf_ram_sym(filename, elf_note_fn,
442 translate_fn, translate_opaque,
443 pentry, lowaddr, highaddr, pflags, big_endian,
444 elf_machine, clear_lsb, data_swab, as,
445 load_rom, NULL);
448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
449 ssize_t load_elf_ram_sym(const char *filename,
450 uint64_t (*elf_note_fn)(void *, void *, bool),
451 uint64_t (*translate_fn)(void *, uint64_t),
452 void *translate_opaque, uint64_t *pentry,
453 uint64_t *lowaddr, uint64_t *highaddr,
454 uint32_t *pflags, int big_endian, int elf_machine,
455 int clear_lsb, int data_swab,
456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
458 int fd, data_order, target_data_order, must_swab;
459 ssize_t ret = ELF_LOAD_FAILED;
460 uint8_t e_ident[EI_NIDENT];
462 fd = open(filename, O_RDONLY | O_BINARY);
463 if (fd < 0) {
464 perror(filename);
465 return -1;
467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
468 goto fail;
469 if (e_ident[0] != ELFMAG0 ||
470 e_ident[1] != ELFMAG1 ||
471 e_ident[2] != ELFMAG2 ||
472 e_ident[3] != ELFMAG3) {
473 ret = ELF_LOAD_NOT_ELF;
474 goto fail;
476 #if HOST_BIG_ENDIAN
477 data_order = ELFDATA2MSB;
478 #else
479 data_order = ELFDATA2LSB;
480 #endif
481 must_swab = data_order != e_ident[EI_DATA];
482 if (big_endian) {
483 target_data_order = ELFDATA2MSB;
484 } else {
485 target_data_order = ELFDATA2LSB;
488 if (target_data_order != e_ident[EI_DATA]) {
489 ret = ELF_LOAD_WRONG_ENDIAN;
490 goto fail;
493 lseek(fd, 0, SEEK_SET);
494 if (e_ident[EI_CLASS] == ELFCLASS64) {
495 ret = load_elf64(filename, fd, elf_note_fn,
496 translate_fn, translate_opaque, must_swab,
497 pentry, lowaddr, highaddr, pflags, elf_machine,
498 clear_lsb, data_swab, as, load_rom, sym_cb);
499 } else {
500 ret = load_elf32(filename, fd, elf_note_fn,
501 translate_fn, translate_opaque, must_swab,
502 pentry, lowaddr, highaddr, pflags, elf_machine,
503 clear_lsb, data_swab, as, load_rom, sym_cb);
506 fail:
507 close(fd);
508 return ret;
511 static void bswap_uboot_header(uboot_image_header_t *hdr)
513 #if !HOST_BIG_ENDIAN
514 bswap32s(&hdr->ih_magic);
515 bswap32s(&hdr->ih_hcrc);
516 bswap32s(&hdr->ih_time);
517 bswap32s(&hdr->ih_size);
518 bswap32s(&hdr->ih_load);
519 bswap32s(&hdr->ih_ep);
520 bswap32s(&hdr->ih_dcrc);
521 #endif
525 #define ZALLOC_ALIGNMENT 16
527 static void *zalloc(void *x, unsigned items, unsigned size)
529 void *p;
531 size *= items;
532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
534 p = g_malloc(size);
536 return (p);
539 static void zfree(void *x, void *addr)
541 g_free(addr);
545 #define HEAD_CRC 2
546 #define EXTRA_FIELD 4
547 #define ORIG_NAME 8
548 #define COMMENT 0x10
549 #define RESERVED 0xe0
551 #define DEFLATED 8
553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
555 z_stream s;
556 ssize_t dstbytes;
557 int r, i, flags;
559 /* skip header */
560 i = 10;
561 if (srclen < 4) {
562 goto toosmall;
564 flags = src[3];
565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
566 puts ("Error: Bad gzipped data\n");
567 return -1;
569 if ((flags & EXTRA_FIELD) != 0) {
570 if (srclen < 12) {
571 goto toosmall;
573 i = 12 + src[10] + (src[11] << 8);
575 if ((flags & ORIG_NAME) != 0) {
576 while (i < srclen && src[i++] != 0) {
577 /* do nothing */
580 if ((flags & COMMENT) != 0) {
581 while (i < srclen && src[i++] != 0) {
582 /* do nothing */
585 if ((flags & HEAD_CRC) != 0) {
586 i += 2;
588 if (i >= srclen) {
589 goto toosmall;
592 s.zalloc = zalloc;
593 s.zfree = zfree;
595 r = inflateInit2(&s, -MAX_WBITS);
596 if (r != Z_OK) {
597 printf ("Error: inflateInit2() returned %d\n", r);
598 return (-1);
600 s.next_in = src + i;
601 s.avail_in = srclen - i;
602 s.next_out = dst;
603 s.avail_out = dstlen;
604 r = inflate(&s, Z_FINISH);
605 if (r != Z_OK && r != Z_STREAM_END) {
606 printf ("Error: inflate() returned %d\n", r);
607 return -1;
609 dstbytes = s.next_out - (unsigned char *) dst;
610 inflateEnd(&s);
612 return dstbytes;
614 toosmall:
615 puts("Error: gunzip out of data in header\n");
616 return -1;
619 /* Load a U-Boot image. */
620 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
621 hwaddr *loadaddr, int *is_linux,
622 uint8_t image_type,
623 uint64_t (*translate_fn)(void *, uint64_t),
624 void *translate_opaque, AddressSpace *as)
626 int fd;
627 ssize_t size;
628 hwaddr address;
629 uboot_image_header_t h;
630 uboot_image_header_t *hdr = &h;
631 uint8_t *data = NULL;
632 int ret = -1;
633 int do_uncompress = 0;
635 fd = open(filename, O_RDONLY | O_BINARY);
636 if (fd < 0)
637 return -1;
639 size = read(fd, hdr, sizeof(uboot_image_header_t));
640 if (size < sizeof(uboot_image_header_t)) {
641 goto out;
644 bswap_uboot_header(hdr);
646 if (hdr->ih_magic != IH_MAGIC)
647 goto out;
649 if (hdr->ih_type != image_type) {
650 if (!(image_type == IH_TYPE_KERNEL &&
651 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
652 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
653 image_type);
654 goto out;
658 /* TODO: Implement other image types. */
659 switch (hdr->ih_type) {
660 case IH_TYPE_KERNEL_NOLOAD:
661 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
662 fprintf(stderr, "this image format (kernel_noload) cannot be "
663 "loaded on this machine type");
664 goto out;
667 hdr->ih_load = *loadaddr + sizeof(*hdr);
668 hdr->ih_ep += hdr->ih_load;
669 /* fall through */
670 case IH_TYPE_KERNEL:
671 address = hdr->ih_load;
672 if (translate_fn) {
673 address = translate_fn(translate_opaque, address);
675 if (loadaddr) {
676 *loadaddr = hdr->ih_load;
679 switch (hdr->ih_comp) {
680 case IH_COMP_NONE:
681 break;
682 case IH_COMP_GZIP:
683 do_uncompress = 1;
684 break;
685 default:
686 fprintf(stderr,
687 "Unable to load u-boot images with compression type %d\n",
688 hdr->ih_comp);
689 goto out;
692 if (ep) {
693 *ep = hdr->ih_ep;
696 /* TODO: Check CPU type. */
697 if (is_linux) {
698 if (hdr->ih_os == IH_OS_LINUX) {
699 *is_linux = 1;
700 } else if (hdr->ih_os == IH_OS_VXWORKS) {
702 * VxWorks 7 uses the same boot interface as the Linux kernel
703 * on Arm (64-bit only), PowerPC and RISC-V architectures.
705 switch (hdr->ih_arch) {
706 case IH_ARCH_ARM64:
707 case IH_ARCH_PPC:
708 case IH_ARCH_RISCV:
709 *is_linux = 1;
710 break;
711 default:
712 *is_linux = 0;
713 break;
715 } else {
716 *is_linux = 0;
720 break;
721 case IH_TYPE_RAMDISK:
722 address = *loadaddr;
723 break;
724 default:
725 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
726 goto out;
729 data = g_malloc(hdr->ih_size);
731 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
732 fprintf(stderr, "Error reading file\n");
733 goto out;
736 if (do_uncompress) {
737 uint8_t *compressed_data;
738 size_t max_bytes;
739 ssize_t bytes;
741 compressed_data = data;
742 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
743 data = g_malloc(max_bytes);
745 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
746 g_free(compressed_data);
747 if (bytes < 0) {
748 fprintf(stderr, "Unable to decompress gzipped image!\n");
749 goto out;
751 hdr->ih_size = bytes;
754 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
756 ret = hdr->ih_size;
758 out:
759 g_free(data);
760 close(fd);
761 return ret;
764 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
765 int *is_linux,
766 uint64_t (*translate_fn)(void *, uint64_t),
767 void *translate_opaque)
769 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
770 translate_fn, translate_opaque, NULL);
773 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
774 int *is_linux,
775 uint64_t (*translate_fn)(void *, uint64_t),
776 void *translate_opaque, AddressSpace *as)
778 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
779 translate_fn, translate_opaque, as);
782 /* Load a ramdisk. */
783 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
785 return load_ramdisk_as(filename, addr, max_sz, NULL);
788 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
789 AddressSpace *as)
791 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
792 NULL, NULL, as);
795 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
796 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
797 uint8_t **buffer)
799 uint8_t *compressed_data = NULL;
800 uint8_t *data = NULL;
801 gsize len;
802 ssize_t bytes;
803 int ret = -1;
805 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
806 NULL)) {
807 goto out;
810 /* Is it a gzip-compressed file? */
811 if (len < 2 ||
812 compressed_data[0] != 0x1f ||
813 compressed_data[1] != 0x8b) {
814 goto out;
817 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
818 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
821 data = g_malloc(max_sz);
822 bytes = gunzip(data, max_sz, compressed_data, len);
823 if (bytes < 0) {
824 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
825 filename);
826 goto out;
829 /* trim to actual size and return to caller */
830 *buffer = g_realloc(data, bytes);
831 ret = bytes;
832 /* ownership has been transferred to caller */
833 data = NULL;
835 out:
836 g_free(compressed_data);
837 g_free(data);
838 return ret;
841 /* Load a gzip-compressed kernel. */
842 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
844 ssize_t bytes;
845 uint8_t *data;
847 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
848 if (bytes != -1) {
849 rom_add_blob_fixed(filename, data, bytes, addr);
850 g_free(data);
852 return bytes;
856 * Functions for reboot-persistent memory regions.
857 * - used for vga bios and option roms.
858 * - also linux kernel (-kernel / -initrd).
861 typedef struct Rom Rom;
863 struct Rom {
864 char *name;
865 char *path;
867 /* datasize is the amount of memory allocated in "data". If datasize is less
868 * than romsize, it means that the area from datasize to romsize is filled
869 * with zeros.
871 size_t romsize;
872 size_t datasize;
874 uint8_t *data;
875 MemoryRegion *mr;
876 AddressSpace *as;
877 int isrom;
878 char *fw_dir;
879 char *fw_file;
880 GMappedFile *mapped_file;
882 bool committed;
884 hwaddr addr;
885 QTAILQ_ENTRY(Rom) next;
888 static FWCfgState *fw_cfg;
889 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
892 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
893 * rom_add_elf_program())
895 static void rom_free_data(Rom *rom)
897 if (rom->mapped_file) {
898 g_mapped_file_unref(rom->mapped_file);
899 rom->mapped_file = NULL;
900 } else {
901 g_free(rom->data);
904 rom->data = NULL;
907 static void rom_free(Rom *rom)
909 rom_free_data(rom);
910 g_free(rom->path);
911 g_free(rom->name);
912 g_free(rom->fw_dir);
913 g_free(rom->fw_file);
914 g_free(rom);
917 static inline bool rom_order_compare(Rom *rom, Rom *item)
919 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
920 (rom->as == item->as && rom->addr >= item->addr);
923 static void rom_insert(Rom *rom)
925 Rom *item;
927 if (roms_loaded) {
928 hw_error ("ROM images must be loaded at startup\n");
931 /* The user didn't specify an address space, this is the default */
932 if (!rom->as) {
933 rom->as = &address_space_memory;
936 rom->committed = false;
938 /* List is ordered by load address in the same address space */
939 QTAILQ_FOREACH(item, &roms, next) {
940 if (rom_order_compare(rom, item)) {
941 continue;
943 QTAILQ_INSERT_BEFORE(item, rom, next);
944 return;
946 QTAILQ_INSERT_TAIL(&roms, rom, next);
949 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
951 if (fw_cfg) {
952 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
956 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
958 void *data;
960 rom->mr = g_malloc(sizeof(*rom->mr));
961 memory_region_init_resizeable_ram(rom->mr, owner, name,
962 rom->datasize, rom->romsize,
963 fw_cfg_resized,
964 &error_fatal);
965 memory_region_set_readonly(rom->mr, ro);
966 vmstate_register_ram_global(rom->mr);
968 data = memory_region_get_ram_ptr(rom->mr);
969 memcpy(data, rom->data, rom->datasize);
971 return data;
974 ssize_t rom_add_file(const char *file, const char *fw_dir,
975 hwaddr addr, int32_t bootindex,
976 bool option_rom, MemoryRegion *mr,
977 AddressSpace *as)
979 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
980 Rom *rom;
981 ssize_t rc;
982 int fd = -1;
983 char devpath[100];
985 if (as && mr) {
986 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
987 "not valid when loading a rom\n");
988 /* We haven't allocated anything so we don't need any cleanup */
989 return -1;
992 rom = g_malloc0(sizeof(*rom));
993 rom->name = g_strdup(file);
994 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
995 rom->as = as;
996 if (rom->path == NULL) {
997 rom->path = g_strdup(file);
1000 fd = open(rom->path, O_RDONLY | O_BINARY);
1001 if (fd == -1) {
1002 fprintf(stderr, "Could not open option rom '%s': %s\n",
1003 rom->path, strerror(errno));
1004 goto err;
1007 if (fw_dir) {
1008 rom->fw_dir = g_strdup(fw_dir);
1009 rom->fw_file = g_strdup(file);
1011 rom->addr = addr;
1012 rom->romsize = lseek(fd, 0, SEEK_END);
1013 if (rom->romsize == -1) {
1014 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1015 rom->name, strerror(errno));
1016 goto err;
1019 rom->datasize = rom->romsize;
1020 rom->data = g_malloc0(rom->datasize);
1021 lseek(fd, 0, SEEK_SET);
1022 rc = read(fd, rom->data, rom->datasize);
1023 if (rc != rom->datasize) {
1024 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1025 rom->name, rc, rom->datasize);
1026 goto err;
1028 close(fd);
1029 rom_insert(rom);
1030 if (rom->fw_file && fw_cfg) {
1031 const char *basename;
1032 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1033 void *data;
1035 basename = strrchr(rom->fw_file, '/');
1036 if (basename) {
1037 basename++;
1038 } else {
1039 basename = rom->fw_file;
1041 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1042 basename);
1043 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1045 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1046 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1047 } else {
1048 data = rom->data;
1051 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1052 } else {
1053 if (mr) {
1054 rom->mr = mr;
1055 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1056 } else {
1057 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1061 add_boot_device_path(bootindex, NULL, devpath);
1062 return 0;
1064 err:
1065 if (fd != -1)
1066 close(fd);
1068 rom_free(rom);
1069 return -1;
1072 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1073 size_t max_len, hwaddr addr, const char *fw_file_name,
1074 FWCfgCallback fw_callback, void *callback_opaque,
1075 AddressSpace *as, bool read_only)
1077 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1078 Rom *rom;
1079 MemoryRegion *mr = NULL;
1081 rom = g_malloc0(sizeof(*rom));
1082 rom->name = g_strdup(name);
1083 rom->as = as;
1084 rom->addr = addr;
1085 rom->romsize = max_len ? max_len : len;
1086 rom->datasize = len;
1087 g_assert(rom->romsize >= rom->datasize);
1088 rom->data = g_malloc0(rom->datasize);
1089 memcpy(rom->data, blob, len);
1090 rom_insert(rom);
1091 if (fw_file_name && fw_cfg) {
1092 char devpath[100];
1093 void *data;
1095 if (read_only) {
1096 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1097 } else {
1098 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1101 if (mc->rom_file_has_mr) {
1102 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1103 mr = rom->mr;
1104 } else {
1105 data = rom->data;
1108 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1109 fw_callback, NULL, callback_opaque,
1110 data, rom->datasize, read_only);
1112 return mr;
1115 /* This function is specific for elf program because we don't need to allocate
1116 * all the rom. We just allocate the first part and the rest is just zeros. This
1117 * is why romsize and datasize are different. Also, this function takes its own
1118 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1120 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1121 size_t datasize, size_t romsize, hwaddr addr,
1122 AddressSpace *as)
1124 Rom *rom;
1126 rom = g_malloc0(sizeof(*rom));
1127 rom->name = g_strdup(name);
1128 rom->addr = addr;
1129 rom->datasize = datasize;
1130 rom->romsize = romsize;
1131 rom->data = data;
1132 rom->as = as;
1134 if (mapped_file && data) {
1135 g_mapped_file_ref(mapped_file);
1136 rom->mapped_file = mapped_file;
1139 rom_insert(rom);
1140 return 0;
1143 ssize_t rom_add_vga(const char *file)
1145 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1148 ssize_t rom_add_option(const char *file, int32_t bootindex)
1150 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1153 static void rom_reset(void *unused)
1155 Rom *rom;
1157 QTAILQ_FOREACH(rom, &roms, next) {
1158 if (rom->fw_file) {
1159 continue;
1162 * We don't need to fill in the RAM with ROM data because we'll fill
1163 * the data in during the next incoming migration in all cases. Note
1164 * that some of those RAMs can actually be modified by the guest.
1166 if (runstate_check(RUN_STATE_INMIGRATE)) {
1167 if (rom->data && rom->isrom) {
1169 * Free it so that a rom_reset after migration doesn't
1170 * overwrite a potentially modified 'rom'.
1172 rom_free_data(rom);
1174 continue;
1177 if (rom->data == NULL) {
1178 continue;
1180 if (rom->mr) {
1181 void *host = memory_region_get_ram_ptr(rom->mr);
1182 memcpy(host, rom->data, rom->datasize);
1183 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1184 } else {
1185 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1186 rom->data, rom->datasize);
1187 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1188 rom->romsize - rom->datasize,
1189 MEMTXATTRS_UNSPECIFIED);
1191 if (rom->isrom) {
1192 /* rom needs to be written only once */
1193 rom_free_data(rom);
1196 * The rom loader is really on the same level as firmware in the guest
1197 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1198 * that the instruction cache for that new region is clear, so that the
1199 * CPU definitely fetches its instructions from the just written data.
1201 cpu_flush_icache_range(rom->addr, rom->datasize);
1203 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1207 /* Return true if two consecutive ROMs in the ROM list overlap */
1208 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1210 if (!last_rom) {
1211 return false;
1213 return last_rom->as == this_rom->as &&
1214 last_rom->addr + last_rom->romsize > this_rom->addr;
1217 static const char *rom_as_name(Rom *rom)
1219 const char *name = rom->as ? rom->as->name : NULL;
1220 return name ?: "anonymous";
1223 static void rom_print_overlap_error_header(void)
1225 error_report("Some ROM regions are overlapping");
1226 error_printf(
1227 "These ROM regions might have been loaded by "
1228 "direct user request or by default.\n"
1229 "They could be BIOS/firmware images, a guest kernel, "
1230 "initrd or some other file loaded into guest memory.\n"
1231 "Check whether you intended to load all this guest code, and "
1232 "whether it has been built to load to the correct addresses.\n");
1235 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1237 error_printf(
1238 "\nThe following two regions overlap (in the %s address space):\n",
1239 rom_as_name(rom));
1240 error_printf(
1241 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1242 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1243 error_printf(
1244 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1245 rom->name, rom->addr, rom->addr + rom->romsize);
1248 int rom_check_and_register_reset(void)
1250 MemoryRegionSection section;
1251 Rom *rom, *last_rom = NULL;
1252 bool found_overlap = false;
1254 QTAILQ_FOREACH(rom, &roms, next) {
1255 if (rom->fw_file) {
1256 continue;
1258 if (!rom->mr) {
1259 if (roms_overlap(last_rom, rom)) {
1260 if (!found_overlap) {
1261 found_overlap = true;
1262 rom_print_overlap_error_header();
1264 rom_print_one_overlap_error(last_rom, rom);
1265 /* Keep going through the list so we report all overlaps */
1267 last_rom = rom;
1269 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1270 rom->addr, 1);
1271 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1272 memory_region_unref(section.mr);
1274 if (found_overlap) {
1275 return -1;
1278 qemu_register_reset(rom_reset, NULL);
1279 roms_loaded = 1;
1280 return 0;
1283 void rom_set_fw(FWCfgState *f)
1285 fw_cfg = f;
1288 void rom_set_order_override(int order)
1290 if (!fw_cfg)
1291 return;
1292 fw_cfg_set_order_override(fw_cfg, order);
1295 void rom_reset_order_override(void)
1297 if (!fw_cfg)
1298 return;
1299 fw_cfg_reset_order_override(fw_cfg);
1302 void rom_transaction_begin(void)
1304 Rom *rom;
1306 /* Ignore ROMs added without the transaction API */
1307 QTAILQ_FOREACH(rom, &roms, next) {
1308 rom->committed = true;
1312 void rom_transaction_end(bool commit)
1314 Rom *rom;
1315 Rom *tmp;
1317 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1318 if (rom->committed) {
1319 continue;
1321 if (commit) {
1322 rom->committed = true;
1323 } else {
1324 QTAILQ_REMOVE(&roms, rom, next);
1325 rom_free(rom);
1330 static Rom *find_rom(hwaddr addr, size_t size)
1332 Rom *rom;
1334 QTAILQ_FOREACH(rom, &roms, next) {
1335 if (rom->fw_file) {
1336 continue;
1338 if (rom->mr) {
1339 continue;
1341 if (rom->addr > addr) {
1342 continue;
1344 if (rom->addr + rom->romsize < addr + size) {
1345 continue;
1347 return rom;
1349 return NULL;
1352 typedef struct RomSec {
1353 hwaddr base;
1354 int se; /* start/end flag */
1355 } RomSec;
1359 * Sort into address order. We break ties between rom-startpoints
1360 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1361 * transition before the 1->0 transition. Either way round would
1362 * work, but this way saves a little work later by avoiding
1363 * dealing with "gaps" of 0 length.
1365 static gint sort_secs(gconstpointer a, gconstpointer b)
1367 RomSec *ra = (RomSec *) a;
1368 RomSec *rb = (RomSec *) b;
1370 if (ra->base == rb->base) {
1371 return ra->se - rb->se;
1373 return ra->base > rb->base ? 1 : -1;
1376 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1378 RomSec *cand = g_new(RomSec, 1);
1379 cand->base = base;
1380 cand->se = se;
1381 return g_list_prepend(secs, cand);
1384 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1386 Rom *rom;
1387 RomSec *cand;
1388 RomGap res = {0, 0};
1389 hwaddr gapstart = base;
1390 GList *it, *secs = NULL;
1391 int count = 0;
1393 QTAILQ_FOREACH(rom, &roms, next) {
1394 /* Ignore blobs being loaded to special places */
1395 if (rom->mr || rom->fw_file) {
1396 continue;
1398 /* ignore anything finishing bellow base */
1399 if (rom->addr + rom->romsize <= base) {
1400 continue;
1402 /* ignore anything starting above the region */
1403 if (rom->addr >= base + size) {
1404 continue;
1407 /* Save the start and end of each relevant ROM */
1408 secs = add_romsec_to_list(secs, rom->addr, 1);
1410 if (rom->addr + rom->romsize < base + size) {
1411 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1415 /* sentinel */
1416 secs = add_romsec_to_list(secs, base + size, 1);
1418 secs = g_list_sort(secs, sort_secs);
1420 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1421 cand = (RomSec *) it->data;
1422 if (count == 0 && count + cand->se == 1) {
1423 size_t gap = cand->base - gapstart;
1424 if (gap > res.size) {
1425 res.base = gapstart;
1426 res.size = gap;
1428 } else if (count == 1 && count + cand->se == 0) {
1429 gapstart = cand->base;
1431 count += cand->se;
1434 g_list_free_full(secs, g_free);
1435 return res;
1439 * Copies memory from registered ROMs to dest. Any memory that is contained in
1440 * a ROM between addr and addr + size is copied. Note that this can involve
1441 * multiple ROMs, which need not start at addr and need not end at addr + size.
1443 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1445 hwaddr end = addr + size;
1446 uint8_t *s, *d = dest;
1447 size_t l = 0;
1448 Rom *rom;
1450 QTAILQ_FOREACH(rom, &roms, next) {
1451 if (rom->fw_file) {
1452 continue;
1454 if (rom->mr) {
1455 continue;
1457 if (rom->addr + rom->romsize < addr) {
1458 continue;
1460 if (rom->addr > end || rom->addr < addr) {
1461 break;
1464 d = dest + (rom->addr - addr);
1465 s = rom->data;
1466 l = rom->datasize;
1468 if ((d + l) > (dest + size)) {
1469 l = dest - d;
1472 if (l > 0) {
1473 memcpy(d, s, l);
1476 if (rom->romsize > rom->datasize) {
1477 /* If datasize is less than romsize, it means that we didn't
1478 * allocate all the ROM because the trailing data are only zeros.
1481 d += l;
1482 l = rom->romsize - rom->datasize;
1484 if ((d + l) > (dest + size)) {
1485 /* Rom size doesn't fit in the destination area. Adjust to avoid
1486 * overflow.
1488 l = dest - d;
1491 if (l > 0) {
1492 memset(d, 0x0, l);
1497 return (d + l) - dest;
1500 void *rom_ptr(hwaddr addr, size_t size)
1502 Rom *rom;
1504 rom = find_rom(addr, size);
1505 if (!rom || !rom->data)
1506 return NULL;
1507 return rom->data + (addr - rom->addr);
1510 typedef struct FindRomCBData {
1511 size_t size; /* Amount of data we want from ROM, in bytes */
1512 MemoryRegion *mr; /* MR at the unaliased guest addr */
1513 hwaddr xlat; /* Offset of addr within mr */
1514 void *rom; /* Output: rom data pointer, if found */
1515 } FindRomCBData;
1517 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1518 hwaddr offset_in_region, void *opaque)
1520 FindRomCBData *cbdata = opaque;
1521 hwaddr alias_addr;
1523 if (mr != cbdata->mr) {
1524 return false;
1527 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1528 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1529 if (!cbdata->rom) {
1530 return false;
1532 /* Found a match, stop iterating */
1533 return true;
1536 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1539 * Find any ROM data for the given guest address range. If there
1540 * is a ROM blob then return a pointer to the host memory
1541 * corresponding to 'addr'; otherwise return NULL.
1543 * We look not only for ROM blobs that were loaded directly to
1544 * addr, but also for ROM blobs that were loaded to aliases of
1545 * that memory at other addresses within the AddressSpace.
1547 * Note that we do not check @as against the 'as' member in the
1548 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1549 * AddressSpace which the rom blob should be written to, whereas
1550 * our @as argument is the AddressSpace which we are (effectively)
1551 * reading from, and the same underlying RAM will often be visible
1552 * in multiple AddressSpaces. (A common example is a ROM blob
1553 * written to the 'system' address space but then read back via a
1554 * CPU's cpu->as pointer.) This does mean we might potentially
1555 * return a false-positive match if a ROM blob was loaded into an
1556 * AS which is entirely separate and distinct from the one we're
1557 * querying, but this issue exists also for rom_ptr() and hasn't
1558 * caused any problems in practice.
1560 FlatView *fv;
1561 void *rom;
1562 hwaddr len_unused;
1563 FindRomCBData cbdata = {};
1565 /* Easy case: there's data at the actual address */
1566 rom = rom_ptr(addr, size);
1567 if (rom) {
1568 return rom;
1571 RCU_READ_LOCK_GUARD();
1573 fv = address_space_to_flatview(as);
1574 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1575 false, MEMTXATTRS_UNSPECIFIED);
1576 if (!cbdata.mr) {
1577 /* Nothing at this address, so there can't be any aliasing */
1578 return NULL;
1580 cbdata.size = size;
1581 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1582 return cbdata.rom;
1585 HumanReadableText *qmp_x_query_roms(Error **errp)
1587 Rom *rom;
1588 g_autoptr(GString) buf = g_string_new("");
1590 QTAILQ_FOREACH(rom, &roms, next) {
1591 if (rom->mr) {
1592 g_string_append_printf(buf, "%s"
1593 " size=0x%06zx name=\"%s\"\n",
1594 memory_region_name(rom->mr),
1595 rom->romsize,
1596 rom->name);
1597 } else if (!rom->fw_file) {
1598 g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1599 " size=0x%06zx mem=%s name=\"%s\"\n",
1600 rom->addr, rom->romsize,
1601 rom->isrom ? "rom" : "ram",
1602 rom->name);
1603 } else {
1604 g_string_append_printf(buf, "fw=%s/%s"
1605 " size=0x%06zx name=\"%s\"\n",
1606 rom->fw_dir,
1607 rom->fw_file,
1608 rom->romsize,
1609 rom->name);
1613 return human_readable_text_from_str(buf);
1616 typedef enum HexRecord HexRecord;
1617 enum HexRecord {
1618 DATA_RECORD = 0,
1619 EOF_RECORD,
1620 EXT_SEG_ADDR_RECORD,
1621 START_SEG_ADDR_RECORD,
1622 EXT_LINEAR_ADDR_RECORD,
1623 START_LINEAR_ADDR_RECORD,
1626 /* Each record contains a 16-bit address which is combined with the upper 16
1627 * bits of the implicit "next address" to form a 32-bit address.
1629 #define NEXT_ADDR_MASK 0xffff0000
1631 #define DATA_FIELD_MAX_LEN 0xff
1632 #define LEN_EXCEPT_DATA 0x5
1633 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1634 * sizeof(checksum) */
1635 typedef struct {
1636 uint8_t byte_count;
1637 uint16_t address;
1638 uint8_t record_type;
1639 uint8_t data[DATA_FIELD_MAX_LEN];
1640 uint8_t checksum;
1641 } HexLine;
1643 /* return 0 or -1 if error */
1644 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1645 uint32_t *index, const bool in_process)
1647 /* +-------+---------------+-------+---------------------+--------+
1648 * | byte | |record | | |
1649 * | count | address | type | data |checksum|
1650 * +-------+---------------+-------+---------------------+--------+
1651 * ^ ^ ^ ^ ^ ^
1652 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1654 uint8_t value = 0;
1655 uint32_t idx = *index;
1656 /* ignore space */
1657 if (g_ascii_isspace(c)) {
1658 return true;
1660 if (!g_ascii_isxdigit(c) || !in_process) {
1661 return false;
1663 value = g_ascii_xdigit_value(c);
1664 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1665 if (idx < 2) {
1666 line->byte_count |= value;
1667 } else if (2 <= idx && idx < 6) {
1668 line->address <<= 4;
1669 line->address += g_ascii_xdigit_value(c);
1670 } else if (6 <= idx && idx < 8) {
1671 line->record_type |= value;
1672 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1673 line->data[(idx - 8) >> 1] |= value;
1674 } else if (8 + 2 * line->byte_count <= idx &&
1675 idx < 10 + 2 * line->byte_count) {
1676 line->checksum |= value;
1677 } else {
1678 return false;
1680 *our_checksum += value;
1681 ++(*index);
1682 return true;
1685 typedef struct {
1686 const char *filename;
1687 HexLine line;
1688 uint8_t *bin_buf;
1689 hwaddr *start_addr;
1690 int total_size;
1691 uint32_t next_address_to_write;
1692 uint32_t current_address;
1693 uint32_t current_rom_index;
1694 uint32_t rom_start_address;
1695 AddressSpace *as;
1696 bool complete;
1697 } HexParser;
1699 /* return size or -1 if error */
1700 static int handle_record_type(HexParser *parser)
1702 HexLine *line = &(parser->line);
1703 switch (line->record_type) {
1704 case DATA_RECORD:
1705 parser->current_address =
1706 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1707 /* verify this is a contiguous block of memory */
1708 if (parser->current_address != parser->next_address_to_write) {
1709 if (parser->current_rom_index != 0) {
1710 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1711 parser->current_rom_index,
1712 parser->rom_start_address, parser->as);
1714 parser->rom_start_address = parser->current_address;
1715 parser->current_rom_index = 0;
1718 /* copy from line buffer to output bin_buf */
1719 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1720 line->byte_count);
1721 parser->current_rom_index += line->byte_count;
1722 parser->total_size += line->byte_count;
1723 /* save next address to write */
1724 parser->next_address_to_write =
1725 parser->current_address + line->byte_count;
1726 break;
1728 case EOF_RECORD:
1729 if (parser->current_rom_index != 0) {
1730 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1731 parser->current_rom_index,
1732 parser->rom_start_address, parser->as);
1734 parser->complete = true;
1735 return parser->total_size;
1736 case EXT_SEG_ADDR_RECORD:
1737 case EXT_LINEAR_ADDR_RECORD:
1738 if (line->byte_count != 2 && line->address != 0) {
1739 return -1;
1742 if (parser->current_rom_index != 0) {
1743 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1744 parser->current_rom_index,
1745 parser->rom_start_address, parser->as);
1748 /* save next address to write,
1749 * in case of non-contiguous block of memory */
1750 parser->next_address_to_write = (line->data[0] << 12) |
1751 (line->data[1] << 4);
1752 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1753 parser->next_address_to_write <<= 12;
1756 parser->rom_start_address = parser->next_address_to_write;
1757 parser->current_rom_index = 0;
1758 break;
1760 case START_SEG_ADDR_RECORD:
1761 if (line->byte_count != 4 && line->address != 0) {
1762 return -1;
1765 /* x86 16-bit CS:IP segmented addressing */
1766 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1767 ((line->data[2] << 8) | line->data[3]);
1768 break;
1770 case START_LINEAR_ADDR_RECORD:
1771 if (line->byte_count != 4 && line->address != 0) {
1772 return -1;
1775 *(parser->start_addr) = ldl_be_p(line->data);
1776 break;
1778 default:
1779 return -1;
1782 return parser->total_size;
1785 /* return size or -1 if error */
1786 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1787 size_t hex_blob_size, AddressSpace *as)
1789 bool in_process = false; /* avoid re-enter and
1790 * check whether record begin with ':' */
1791 uint8_t *end = hex_blob + hex_blob_size;
1792 uint8_t our_checksum = 0;
1793 uint32_t record_index = 0;
1794 HexParser parser = {
1795 .filename = filename,
1796 .bin_buf = g_malloc(hex_blob_size),
1797 .start_addr = addr,
1798 .as = as,
1799 .complete = false
1802 rom_transaction_begin();
1804 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1805 switch (*hex_blob) {
1806 case '\r':
1807 case '\n':
1808 if (!in_process) {
1809 break;
1812 in_process = false;
1813 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1814 record_index ||
1815 our_checksum != 0) {
1816 parser.total_size = -1;
1817 goto out;
1820 if (handle_record_type(&parser) == -1) {
1821 parser.total_size = -1;
1822 goto out;
1824 break;
1826 /* start of a new record. */
1827 case ':':
1828 memset(&parser.line, 0, sizeof(HexLine));
1829 in_process = true;
1830 record_index = 0;
1831 break;
1833 /* decoding lines */
1834 default:
1835 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1836 &record_index, in_process)) {
1837 parser.total_size = -1;
1838 goto out;
1840 break;
1844 out:
1845 g_free(parser.bin_buf);
1846 rom_transaction_end(parser.total_size != -1);
1847 return parser.total_size;
1850 /* return size or -1 if error */
1851 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1852 AddressSpace *as)
1854 gsize hex_blob_size;
1855 gchar *hex_blob;
1856 ssize_t total_size = 0;
1858 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1859 return -1;
1862 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1863 hex_blob_size, as);
1865 g_free(hex_blob);
1866 return total_size;