graph-lock: TSA annotations for lock/unlock functions
[qemu.git] / hw / arm / mps2-tz.c
blob284c09c91d33fba12045997530227ec6d63dc2e4
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/documentation/dai0547/latest/
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType {
82 FPGA_AN505,
83 FPGA_AN521,
84 FPGA_AN524,
85 FPGA_AN547,
86 } MPS2TZFPGAType;
89 * Define the layout of RAM in a board, including which parts are
90 * behind which MPCs.
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo {
95 const char *name;
96 uint32_t base;
97 uint32_t size;
98 int mpc; /* MPC number, -1 for "not behind an MPC" */
99 int mrindex;
100 int flags;
101 } RAMInfo;
104 * Flag values:
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
109 #define IS_ALIAS 1
110 #define IS_ROM 2
112 struct MPS2TZMachineClass {
113 MachineClass parent;
114 MPS2TZFPGAType fpga_type;
115 uint32_t scc_id;
116 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118 uint32_t len_oscclk;
119 const uint32_t *oscclk;
120 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123 int numirq; /* Number of external interrupts */
124 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127 const RAMInfo *raminfo;
128 const char *armsse_type;
129 uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
132 struct MPS2TZMachineState {
133 MachineState parent;
135 ARMSSE iotkit;
136 MemoryRegion ram[MPS2TZ_RAM_MAX];
137 MemoryRegion eth_usb_container;
139 MPS2SCC scc;
140 MPS2FPGAIO fpgaio;
141 TZPPC ppc[5];
142 TZMPC mpc[3];
143 PL022State spi[5];
144 ArmSbconI2CState i2c[5];
145 UnimplementedDeviceState i2s_audio;
146 UnimplementedDeviceState gpio[4];
147 UnimplementedDeviceState gfx;
148 UnimplementedDeviceState cldc;
149 UnimplementedDeviceState usb;
150 PL031State rtc;
151 PL080State dma[4];
152 TZMSC msc[4];
153 CMSDKAPBUART uart[6];
154 SplitIRQ sec_resp_splitter;
155 qemu_or_irq uart_irq_orgate;
156 DeviceState *lan9118;
157 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
158 Clock *sysclk;
159 Clock *s32kclk;
161 bool remap;
162 qemu_irq remap_irq;
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178 * emulation of that much guest RAM, so artificially make it smaller.
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
182 #else
183 #define MPS3_DDR_SIZE (2 * GiB)
184 #endif
186 static const uint32_t an505_oscclk[] = {
187 40000000,
188 24580000,
189 25000000,
192 static const uint32_t an524_oscclk[] = {
193 24000000,
194 32000000,
195 50000000,
196 50000000,
197 24576000,
198 23750000,
201 static const RAMInfo an505_raminfo[] = { {
202 .name = "ssram-0",
203 .base = 0x00000000,
204 .size = 0x00400000,
205 .mpc = 0,
206 .mrindex = 0,
207 }, {
208 .name = "ssram-1",
209 .base = 0x28000000,
210 .size = 0x00200000,
211 .mpc = 1,
212 .mrindex = 1,
213 }, {
214 .name = "ssram-2",
215 .base = 0x28200000,
216 .size = 0x00200000,
217 .mpc = 2,
218 .mrindex = 2,
219 }, {
220 .name = "ssram-0-alias",
221 .base = 0x00400000,
222 .size = 0x00400000,
223 .mpc = 0,
224 .mrindex = 3,
225 .flags = IS_ALIAS,
226 }, {
227 /* Use the largest bit of contiguous RAM as our "system memory" */
228 .name = "mps.ram",
229 .base = 0x80000000,
230 .size = 16 * MiB,
231 .mpc = -1,
232 .mrindex = -1,
233 }, {
234 .name = NULL,
239 * Note that the addresses and MPC numbering here should match up
240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
242 static const RAMInfo an524_raminfo[] = { {
243 .name = "bram",
244 .base = 0x00000000,
245 .size = 512 * KiB,
246 .mpc = 0,
247 .mrindex = 0,
248 }, {
249 /* We don't model QSPI flash yet; for now expose it as simple ROM */
250 .name = "QSPI",
251 .base = 0x28000000,
252 .size = 8 * MiB,
253 .mpc = 1,
254 .mrindex = 1,
255 .flags = IS_ROM,
256 }, {
257 .name = "DDR",
258 .base = 0x60000000,
259 .size = MPS3_DDR_SIZE,
260 .mpc = 2,
261 .mrindex = -1,
262 }, {
263 .name = NULL,
267 static const RAMInfo an547_raminfo[] = { {
268 .name = "sram",
269 .base = 0x01000000,
270 .size = 2 * MiB,
271 .mpc = 0,
272 .mrindex = 1,
273 }, {
274 .name = "sram 2",
275 .base = 0x21000000,
276 .size = 4 * MiB,
277 .mpc = -1,
278 .mrindex = 3,
279 }, {
280 /* We don't model QSPI flash yet; for now expose it as simple ROM */
281 .name = "QSPI",
282 .base = 0x28000000,
283 .size = 8 * MiB,
284 .mpc = 1,
285 .mrindex = 4,
286 .flags = IS_ROM,
287 }, {
288 .name = "DDR",
289 .base = 0x60000000,
290 .size = MPS3_DDR_SIZE,
291 .mpc = 2,
292 .mrindex = -1,
293 }, {
294 .name = NULL,
298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
300 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
301 const RAMInfo *p;
302 const RAMInfo *found = NULL;
304 for (p = mmc->raminfo; p->name; p++) {
305 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
306 /* There should only be one entry in the array for this MPC */
307 g_assert(!found);
308 found = p;
311 /* if raminfo array doesn't have an entry for each MPC this is a bug */
312 assert(found);
313 return found;
316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
317 const RAMInfo *raminfo)
319 /* Return an initialized MemoryRegion for the RAMInfo. */
320 MemoryRegion *ram;
322 if (raminfo->mrindex < 0) {
323 /* Means this RAMInfo is for QEMU's "system memory" */
324 MachineState *machine = MACHINE(mms);
325 assert(!(raminfo->flags & IS_ROM));
326 return machine->ram;
329 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
330 ram = &mms->ram[raminfo->mrindex];
332 memory_region_init_ram(ram, NULL, raminfo->name,
333 raminfo->size, &error_fatal);
334 if (raminfo->flags & IS_ROM) {
335 memory_region_set_readonly(ram, true);
337 return ram;
340 /* Create an alias of an entire original MemoryRegion @orig
341 * located at @base in the memory map.
343 static void make_ram_alias(MemoryRegion *mr, const char *name,
344 MemoryRegion *orig, hwaddr base)
346 memory_region_init_alias(mr, NULL, name, orig, 0,
347 memory_region_size(orig));
348 memory_region_add_subregion(get_system_memory(), base, mr);
351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
354 * Return a qemu_irq which will signal IRQ n to all CPUs in the
355 * SSE. The irqno should be as the CPU sees it, so the first
356 * external-to-the-SSE interrupt is 32.
358 MachineClass *mc = MACHINE_GET_CLASS(mms);
359 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
361 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
364 * Convert from "CPU irq number" (as listed in the FPGA image
365 * documentation) to the SSE external-interrupt number.
367 irqno -= 32;
369 if (mc->max_cpus > 1) {
370 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
371 } else {
372 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
376 /* Union describing the device-specific extra data we pass to the devfn. */
377 typedef union PPCExtraData {
378 bool i2c_internal;
379 } PPCExtraData;
381 /* Most of the devices in the AN505 FPGA image sit behind
382 * Peripheral Protection Controllers. These data structures
383 * define the layout of which devices sit behind which PPCs.
384 * The devfn for each port is a function which creates, configures
385 * and initializes the device, returning the MemoryRegion which
386 * needs to be plugged into the downstream end of the PPC port.
388 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
389 const char *name, hwaddr size,
390 const int *irqs,
391 const PPCExtraData *extradata);
393 typedef struct PPCPortInfo {
394 const char *name;
395 MakeDevFn *devfn;
396 void *opaque;
397 hwaddr addr;
398 hwaddr size;
399 int irqs[3]; /* currently no device needs more IRQ lines than this */
400 PPCExtraData extradata; /* to pass device-specific info to the devfn */
401 } PPCPortInfo;
403 typedef struct PPCInfo {
404 const char *name;
405 PPCPortInfo ports[TZ_NUM_PORTS];
406 } PPCInfo;
408 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
409 void *opaque,
410 const char *name, hwaddr size,
411 const int *irqs,
412 const PPCExtraData *extradata)
414 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
415 * and return a pointer to its MemoryRegion.
417 UnimplementedDeviceState *uds = opaque;
419 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
420 qdev_prop_set_string(DEVICE(uds), "name", name);
421 qdev_prop_set_uint64(DEVICE(uds), "size", size);
422 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
423 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
426 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
427 const char *name, hwaddr size,
428 const int *irqs, const PPCExtraData *extradata)
430 /* The irq[] array is tx, rx, combined, in that order */
431 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
432 CMSDKAPBUART *uart = opaque;
433 int i = uart - &mms->uart[0];
434 SysBusDevice *s;
435 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
437 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
438 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
439 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
440 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
441 s = SYS_BUS_DEVICE(uart);
442 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
443 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
444 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
445 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
446 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
447 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
450 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
451 const char *name, hwaddr size,
452 const int *irqs, const PPCExtraData *extradata)
454 MPS2SCC *scc = opaque;
455 DeviceState *sccdev;
456 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
457 uint32_t i;
459 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
460 sccdev = DEVICE(scc);
461 qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
462 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
463 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
464 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
465 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
466 for (i = 0; i < mmc->len_oscclk; i++) {
467 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
468 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
470 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
471 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
474 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
475 const char *name, hwaddr size,
476 const int *irqs, const PPCExtraData *extradata)
478 MPS2FPGAIO *fpgaio = opaque;
479 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
481 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
482 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
483 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
484 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
485 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
486 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
489 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
490 const char *name, hwaddr size,
491 const int *irqs,
492 const PPCExtraData *extradata)
494 SysBusDevice *s;
495 NICInfo *nd = &nd_table[0];
497 /* In hardware this is a LAN9220; the LAN9118 is software compatible
498 * except that it doesn't support the checksum-offload feature.
500 qemu_check_nic_model(nd, "lan9118");
501 mms->lan9118 = qdev_new(TYPE_LAN9118);
502 qdev_set_nic_properties(mms->lan9118, nd);
504 s = SYS_BUS_DEVICE(mms->lan9118);
505 sysbus_realize_and_unref(s, &error_fatal);
506 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
507 return sysbus_mmio_get_region(s, 0);
510 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
511 const char *name, hwaddr size,
512 const int *irqs,
513 const PPCExtraData *extradata)
516 * The AN524 makes the ethernet and USB share a PPC port.
517 * irqs[] is the ethernet IRQ.
519 SysBusDevice *s;
520 NICInfo *nd = &nd_table[0];
522 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
523 "mps2-tz-eth-usb-container", 0x200000);
526 * In hardware this is a LAN9220; the LAN9118 is software compatible
527 * except that it doesn't support the checksum-offload feature.
529 qemu_check_nic_model(nd, "lan9118");
530 mms->lan9118 = qdev_new(TYPE_LAN9118);
531 qdev_set_nic_properties(mms->lan9118, nd);
533 s = SYS_BUS_DEVICE(mms->lan9118);
534 sysbus_realize_and_unref(s, &error_fatal);
535 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
537 memory_region_add_subregion(&mms->eth_usb_container,
538 0, sysbus_mmio_get_region(s, 0));
540 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
541 object_initialize_child(OBJECT(mms), "usb-otg",
542 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
543 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
544 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
545 s = SYS_BUS_DEVICE(&mms->usb);
546 sysbus_realize(s, &error_fatal);
548 memory_region_add_subregion(&mms->eth_usb_container,
549 0x100000, sysbus_mmio_get_region(s, 0));
551 return &mms->eth_usb_container;
554 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
555 const char *name, hwaddr size,
556 const int *irqs, const PPCExtraData *extradata)
558 TZMPC *mpc = opaque;
559 int i = mpc - &mms->mpc[0];
560 MemoryRegion *upstream;
561 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
562 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
564 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
565 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
566 &error_fatal);
567 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
568 /* Map the upstream end of the MPC into system memory */
569 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
570 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
571 /* and connect its interrupt to the IoTKit */
572 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
573 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
574 "mpcexp_status", i));
576 /* Return the register interface MR for our caller to map behind the PPC */
577 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
580 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
583 * Return the canonical address of the block which will be mapped
584 * at address 0x0 (i.e. where the vector table is).
585 * This is usually 0, but if the AN524 alternate memory map is
586 * enabled it will be the base address of the QSPI block.
588 return mms->remap ? 0x28000000 : 0;
591 static void remap_memory(MPS2TZMachineState *mms, int map)
594 * Remap the memory for the AN524. 'map' is the value of
595 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
596 * for the "option 1" mapping where QSPI is at address 0.
598 * Effectively we need to swap around the "upstream" ends of
599 * MPC 0 and MPC 1.
601 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
602 int i;
604 if (mmc->fpga_type != FPGA_AN524) {
605 return;
608 memory_region_transaction_begin();
609 for (i = 0; i < 2; i++) {
610 TZMPC *mpc = &mms->mpc[i];
611 MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
612 hwaddr addr = (i ^ map) ? 0x28000000 : 0;
614 memory_region_set_address(upstream, addr);
616 memory_region_transaction_commit();
619 static void remap_irq_fn(void *opaque, int n, int level)
621 MPS2TZMachineState *mms = opaque;
623 remap_memory(mms, level);
626 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
627 const char *name, hwaddr size,
628 const int *irqs, const PPCExtraData *extradata)
630 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
631 PL080State *dma = opaque;
632 int i = dma - &mms->dma[0];
633 SysBusDevice *s;
634 char *mscname = g_strdup_printf("%s-msc", name);
635 TZMSC *msc = &mms->msc[i];
636 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
637 MemoryRegion *msc_upstream;
638 MemoryRegion *msc_downstream;
641 * Each DMA device is a PL081 whose transaction master interface
642 * is guarded by a Master Security Controller. The downstream end of
643 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
644 * DMA devices can see all devices and memory that the CPU does.
646 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
647 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
648 object_property_set_link(OBJECT(msc), "downstream",
649 OBJECT(msc_downstream), &error_fatal);
650 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
651 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
653 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
654 qdev_get_gpio_in_named(iotkitdev,
655 "mscexp_status", i));
656 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
657 qdev_get_gpio_in_named(DEVICE(msc),
658 "irq_clear", 0));
659 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
660 qdev_get_gpio_in_named(DEVICE(msc),
661 "cfg_nonsec", 0));
662 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
663 ARRAY_SIZE(mms->ppc) + i,
664 qdev_get_gpio_in_named(DEVICE(msc),
665 "cfg_sec_resp", 0));
666 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
668 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
669 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
670 &error_fatal);
671 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
673 s = SYS_BUS_DEVICE(dma);
674 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
675 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
676 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
677 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
679 g_free(mscname);
680 return sysbus_mmio_get_region(s, 0);
683 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
684 const char *name, hwaddr size,
685 const int *irqs, const PPCExtraData *extradata)
688 * The AN505 has five PL022 SPI controllers.
689 * One of these should have the LCD controller behind it; the others
690 * are connected only to the FPGA's "general purpose SPI connector"
691 * or "shield" expansion connectors.
692 * Note that if we do implement devices behind SPI, the chip select
693 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
695 PL022State *spi = opaque;
696 SysBusDevice *s;
698 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
699 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
700 s = SYS_BUS_DEVICE(spi);
701 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
702 return sysbus_mmio_get_region(s, 0);
705 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
706 const char *name, hwaddr size,
707 const int *irqs, const PPCExtraData *extradata)
709 ArmSbconI2CState *i2c = opaque;
710 SysBusDevice *s;
712 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
713 s = SYS_BUS_DEVICE(i2c);
714 sysbus_realize(s, &error_fatal);
717 * If this is an internal-use-only i2c bus, mark it full
718 * so that user-created i2c devices are not plugged into it.
719 * If we implement models of any on-board i2c devices that
720 * plug in to one of the internal-use-only buses, then we will
721 * need to create and plugging those in here before we mark the
722 * bus as full.
724 if (extradata->i2c_internal) {
725 BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
726 qbus_mark_full(qbus);
729 return sysbus_mmio_get_region(s, 0);
732 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
733 const char *name, hwaddr size,
734 const int *irqs, const PPCExtraData *extradata)
736 PL031State *pl031 = opaque;
737 SysBusDevice *s;
739 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
740 s = SYS_BUS_DEVICE(pl031);
741 sysbus_realize(s, &error_fatal);
743 * The board docs don't give an IRQ number for the PL031, so
744 * presumably it is not connected.
746 return sysbus_mmio_get_region(s, 0);
749 static void create_non_mpc_ram(MPS2TZMachineState *mms)
752 * Handle the RAMs which are either not behind MPCs or which are
753 * aliases to another MPC.
755 const RAMInfo *p;
756 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
758 for (p = mmc->raminfo; p->name; p++) {
759 if (p->flags & IS_ALIAS) {
760 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
761 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
762 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
763 } else if (p->mpc == -1) {
764 /* RAM not behind an MPC */
765 MemoryRegion *mr = mr_for_raminfo(mms, p);
766 memory_region_add_subregion(get_system_memory(), p->base, mr);
771 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
773 /* Return the size of the RAM block at guest address zero */
774 const RAMInfo *p;
775 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
778 * Use a per-board specification (for when the boot RAM is in
779 * the SSE and so doesn't have a RAMInfo list entry)
781 if (mmc->boot_ram_size) {
782 return mmc->boot_ram_size;
785 for (p = mmc->raminfo; p->name; p++) {
786 if (p->base == boot_mem_base(mms)) {
787 return p->size;
790 g_assert_not_reached();
793 static void mps2tz_common_init(MachineState *machine)
795 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
796 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
797 MachineClass *mc = MACHINE_GET_CLASS(machine);
798 MemoryRegion *system_memory = get_system_memory();
799 DeviceState *iotkitdev;
800 DeviceState *dev_splitter;
801 const PPCInfo *ppcs;
802 int num_ppcs;
803 int i;
805 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
806 error_report("This board can only be used with CPU %s",
807 mc->default_cpu_type);
808 exit(1);
811 if (machine->ram_size != mc->default_ram_size) {
812 char *sz = size_to_str(mc->default_ram_size);
813 error_report("Invalid RAM size, should be %s", sz);
814 g_free(sz);
815 exit(EXIT_FAILURE);
818 /* These clocks don't need migration because they are fixed-frequency */
819 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
820 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
821 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
822 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
824 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
825 mmc->armsse_type);
826 iotkitdev = DEVICE(&mms->iotkit);
827 object_property_set_link(OBJECT(&mms->iotkit), "memory",
828 OBJECT(system_memory), &error_abort);
829 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
830 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
831 qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
832 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
833 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
834 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
837 * If this board has more than one CPU, then we need to create splitters
838 * to feed the IRQ inputs for each CPU in the SSE from each device in the
839 * board. If there is only one CPU, we can just wire the device IRQ
840 * directly to the SSE's IRQ input.
842 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
843 if (mc->max_cpus > 1) {
844 for (i = 0; i < mmc->numirq; i++) {
845 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
846 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
848 object_initialize_child_with_props(OBJECT(machine), name,
849 splitter, sizeof(*splitter),
850 TYPE_SPLIT_IRQ, &error_fatal,
851 NULL);
852 g_free(name);
854 object_property_set_int(OBJECT(splitter), "num-lines", 2,
855 &error_fatal);
856 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
857 qdev_connect_gpio_out(DEVICE(splitter), 0,
858 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
859 "EXP_IRQ", i));
860 qdev_connect_gpio_out(DEVICE(splitter), 1,
861 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
862 "EXP_CPU1_IRQ", i));
866 /* The sec_resp_cfg output from the IoTKit must be split into multiple
867 * lines, one for each of the PPCs we create here, plus one per MSC.
869 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
870 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
871 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
872 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
873 &error_fatal);
874 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
875 dev_splitter = DEVICE(&mms->sec_resp_splitter);
876 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
877 qdev_get_gpio_in(dev_splitter, 0));
880 * The IoTKit sets up much of the memory layout, including
881 * the aliases between secure and non-secure regions in the
882 * address space, and also most of the devices in the system.
883 * The FPGA itself contains various RAMs and some additional devices.
884 * The FPGA images have an odd combination of different RAMs,
885 * because in hardware they are different implementations and
886 * connected to different buses, giving varying performance/size
887 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
888 * call the largest lump our "system memory".
892 * The overflow IRQs for all UARTs are ORed together.
893 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
894 * Create the OR gate for this: it has one input for the TX overflow
895 * and one for the RX overflow for each UART we might have.
896 * (If the board has fewer than the maximum possible number of UARTs
897 * those inputs are never wired up and are treated as always-zero.)
899 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
900 &mms->uart_irq_orgate, TYPE_OR_IRQ);
901 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
902 2 * ARRAY_SIZE(mms->uart),
903 &error_fatal);
904 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
905 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
906 get_sse_irq_in(mms, mmc->uart_overflow_irq));
908 /* Most of the devices in the FPGA are behind Peripheral Protection
909 * Controllers. The required order for initializing things is:
910 * + initialize the PPC
911 * + initialize, configure and realize downstream devices
912 * + connect downstream device MemoryRegions to the PPC
913 * + realize the PPC
914 * + map the PPC's MemoryRegions to the places in the address map
915 * where the downstream devices should appear
916 * + wire up the PPC's control lines to the IoTKit object
919 const PPCInfo an505_ppcs[] = { {
920 .name = "apb_ppcexp0",
921 .ports = {
922 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
923 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
924 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
926 }, {
927 .name = "apb_ppcexp1",
928 .ports = {
929 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
930 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
931 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
932 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
933 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
934 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
935 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
936 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
937 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
938 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
939 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
940 { .i2c_internal = true /* touchscreen */ } },
941 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
942 { .i2c_internal = true /* audio conf */ } },
943 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
944 { .i2c_internal = false /* shield 0 */ } },
945 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
946 { .i2c_internal = false /* shield 1 */ } },
948 }, {
949 .name = "apb_ppcexp2",
950 .ports = {
951 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
952 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
953 0x40301000, 0x1000 },
954 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
956 }, {
957 .name = "ahb_ppcexp0",
958 .ports = {
959 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
960 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
961 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
962 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
963 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
964 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
966 }, {
967 .name = "ahb_ppcexp1",
968 .ports = {
969 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
970 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
971 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
972 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
977 const PPCInfo an524_ppcs[] = { {
978 .name = "apb_ppcexp0",
979 .ports = {
980 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
981 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
982 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
984 }, {
985 .name = "apb_ppcexp1",
986 .ports = {
987 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
988 { .i2c_internal = true /* touchscreen */ } },
989 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
990 { .i2c_internal = true /* audio conf */ } },
991 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
992 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
993 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
994 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
995 { .i2c_internal = false /* shield 0 */ } },
996 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
997 { .i2c_internal = false /* shield 1 */ } },
998 { /* port 7 reserved */ },
999 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1000 { .i2c_internal = true /* DDR4 EEPROM */ } },
1002 }, {
1003 .name = "apb_ppcexp2",
1004 .ports = {
1005 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1006 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1007 0x41301000, 0x1000 },
1008 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1009 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1010 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1011 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1012 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1013 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1014 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1016 { /* port 9 reserved */ },
1017 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1018 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1020 }, {
1021 .name = "ahb_ppcexp0",
1022 .ports = {
1023 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1024 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1025 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1026 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1027 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1032 const PPCInfo an547_ppcs[] = { {
1033 .name = "apb_ppcexp0",
1034 .ports = {
1035 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1036 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1037 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1039 }, {
1040 .name = "apb_ppcexp1",
1041 .ports = {
1042 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1043 { .i2c_internal = true /* touchscreen */ } },
1044 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1045 { .i2c_internal = true /* audio conf */ } },
1046 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1047 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1048 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1049 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1050 { .i2c_internal = false /* shield 0 */ } },
1051 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1052 { .i2c_internal = false /* shield 1 */ } },
1053 { /* port 7 reserved */ },
1054 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1055 { .i2c_internal = true /* DDR4 EEPROM */ } },
1057 }, {
1058 .name = "apb_ppcexp2",
1059 .ports = {
1060 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1061 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1062 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1063 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1064 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1065 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1066 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1067 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1068 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1070 { /* port 9 reserved */ },
1071 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1072 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1074 }, {
1075 .name = "ahb_ppcexp0",
1076 .ports = {
1077 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1078 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1079 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1080 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1081 { /* port 4 USER AHB interface 0 */ },
1082 { /* port 5 USER AHB interface 1 */ },
1083 { /* port 6 USER AHB interface 2 */ },
1084 { /* port 7 USER AHB interface 3 */ },
1085 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1090 switch (mmc->fpga_type) {
1091 case FPGA_AN505:
1092 case FPGA_AN521:
1093 ppcs = an505_ppcs;
1094 num_ppcs = ARRAY_SIZE(an505_ppcs);
1095 break;
1096 case FPGA_AN524:
1097 ppcs = an524_ppcs;
1098 num_ppcs = ARRAY_SIZE(an524_ppcs);
1099 break;
1100 case FPGA_AN547:
1101 ppcs = an547_ppcs;
1102 num_ppcs = ARRAY_SIZE(an547_ppcs);
1103 break;
1104 default:
1105 g_assert_not_reached();
1108 for (i = 0; i < num_ppcs; i++) {
1109 const PPCInfo *ppcinfo = &ppcs[i];
1110 TZPPC *ppc = &mms->ppc[i];
1111 DeviceState *ppcdev;
1112 int port;
1113 char *gpioname;
1115 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1116 TYPE_TZ_PPC);
1117 ppcdev = DEVICE(ppc);
1119 for (port = 0; port < TZ_NUM_PORTS; port++) {
1120 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1121 MemoryRegion *mr;
1122 char *portname;
1124 if (!pinfo->devfn) {
1125 continue;
1128 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1129 pinfo->irqs, &pinfo->extradata);
1130 portname = g_strdup_printf("port[%d]", port);
1131 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1132 &error_fatal);
1133 g_free(portname);
1136 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1138 for (port = 0; port < TZ_NUM_PORTS; port++) {
1139 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1141 if (!pinfo->devfn) {
1142 continue;
1144 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1146 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1147 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1148 qdev_get_gpio_in_named(ppcdev,
1149 "cfg_nonsec",
1150 port));
1151 g_free(gpioname);
1152 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1153 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1154 qdev_get_gpio_in_named(ppcdev,
1155 "cfg_ap", port));
1156 g_free(gpioname);
1159 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1160 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1161 qdev_get_gpio_in_named(ppcdev,
1162 "irq_enable", 0));
1163 g_free(gpioname);
1164 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1165 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1166 qdev_get_gpio_in_named(ppcdev,
1167 "irq_clear", 0));
1168 g_free(gpioname);
1169 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1170 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1171 qdev_get_gpio_in_named(iotkitdev,
1172 gpioname, 0));
1173 g_free(gpioname);
1175 qdev_connect_gpio_out(dev_splitter, i,
1176 qdev_get_gpio_in_named(ppcdev,
1177 "cfg_sec_resp", 0));
1180 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1182 if (mmc->fpga_type == FPGA_AN547) {
1183 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1184 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1187 create_non_mpc_ram(mms);
1189 if (mmc->fpga_type == FPGA_AN524) {
1191 * Connect the line from the SCC so that we can remap when the
1192 * guest updates that register.
1194 mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1195 qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1196 mms->remap_irq);
1199 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1200 0, boot_ram_size(mms));
1203 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1204 int *iregion, bool *exempt, bool *ns, bool *nsc)
1207 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1208 * the Master Security Controllers. Thes have the same logic as
1209 * is used by the IoTKit for the IDAU connected to the CPU, except
1210 * that MSCs don't care about the NSC attribute.
1212 int region = extract32(address, 28, 4);
1214 *ns = !(region & 1);
1215 *nsc = false;
1216 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1217 *exempt = (address & 0xeff00000) == 0xe0000000;
1218 *iregion = region;
1221 static char *mps2_get_remap(Object *obj, Error **errp)
1223 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1224 const char *val = mms->remap ? "QSPI" : "BRAM";
1225 return g_strdup(val);
1228 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1230 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1232 if (!strcmp(value, "BRAM")) {
1233 mms->remap = false;
1234 } else if (!strcmp(value, "QSPI")) {
1235 mms->remap = true;
1236 } else {
1237 error_setg(errp, "Invalid remap value");
1238 error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1242 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
1244 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1247 * Set the initial memory mapping before triggering the reset of
1248 * the rest of the system, so that the guest image loader and CPU
1249 * reset see the correct mapping.
1251 remap_memory(mms, mms->remap);
1252 qemu_devices_reset(reason);
1255 static void mps2tz_class_init(ObjectClass *oc, void *data)
1257 MachineClass *mc = MACHINE_CLASS(oc);
1258 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1260 mc->init = mps2tz_common_init;
1261 mc->reset = mps2_machine_reset;
1262 iic->check = mps2_tz_idau_check;
1265 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1268 * Set mc->default_ram_size and default_ram_id from the
1269 * information in mmc->raminfo.
1271 MachineClass *mc = MACHINE_CLASS(mmc);
1272 const RAMInfo *p;
1274 for (p = mmc->raminfo; p->name; p++) {
1275 if (p->mrindex < 0) {
1276 /* Found the entry for "system memory" */
1277 mc->default_ram_size = p->size;
1278 mc->default_ram_id = p->name;
1279 return;
1282 g_assert_not_reached();
1285 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1287 MachineClass *mc = MACHINE_CLASS(oc);
1288 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1290 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1291 mc->default_cpus = 1;
1292 mc->min_cpus = mc->default_cpus;
1293 mc->max_cpus = mc->default_cpus;
1294 mmc->fpga_type = FPGA_AN505;
1295 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1296 mmc->scc_id = 0x41045050;
1297 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1298 mmc->apb_periph_frq = mmc->sysclk_frq;
1299 mmc->oscclk = an505_oscclk;
1300 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1301 mmc->fpgaio_num_leds = 2;
1302 mmc->fpgaio_has_switches = false;
1303 mmc->fpgaio_has_dbgctrl = false;
1304 mmc->numirq = 92;
1305 mmc->uart_overflow_irq = 47;
1306 mmc->init_svtor = 0x10000000;
1307 mmc->sram_addr_width = 15;
1308 mmc->raminfo = an505_raminfo;
1309 mmc->armsse_type = TYPE_IOTKIT;
1310 mmc->boot_ram_size = 0;
1311 mps2tz_set_default_ram_info(mmc);
1314 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1316 MachineClass *mc = MACHINE_CLASS(oc);
1317 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1319 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1320 mc->default_cpus = 2;
1321 mc->min_cpus = mc->default_cpus;
1322 mc->max_cpus = mc->default_cpus;
1323 mmc->fpga_type = FPGA_AN521;
1324 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1325 mmc->scc_id = 0x41045210;
1326 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1327 mmc->apb_periph_frq = mmc->sysclk_frq;
1328 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1329 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1330 mmc->fpgaio_num_leds = 2;
1331 mmc->fpgaio_has_switches = false;
1332 mmc->fpgaio_has_dbgctrl = false;
1333 mmc->numirq = 92;
1334 mmc->uart_overflow_irq = 47;
1335 mmc->init_svtor = 0x10000000;
1336 mmc->sram_addr_width = 15;
1337 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1338 mmc->armsse_type = TYPE_SSE200;
1339 mmc->boot_ram_size = 0;
1340 mps2tz_set_default_ram_info(mmc);
1343 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1345 MachineClass *mc = MACHINE_CLASS(oc);
1346 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1348 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1349 mc->default_cpus = 2;
1350 mc->min_cpus = mc->default_cpus;
1351 mc->max_cpus = mc->default_cpus;
1352 mmc->fpga_type = FPGA_AN524;
1353 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1354 mmc->scc_id = 0x41045240;
1355 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1356 mmc->apb_periph_frq = mmc->sysclk_frq;
1357 mmc->oscclk = an524_oscclk;
1358 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1359 mmc->fpgaio_num_leds = 10;
1360 mmc->fpgaio_has_switches = true;
1361 mmc->fpgaio_has_dbgctrl = false;
1362 mmc->numirq = 95;
1363 mmc->uart_overflow_irq = 47;
1364 mmc->init_svtor = 0x10000000;
1365 mmc->sram_addr_width = 15;
1366 mmc->raminfo = an524_raminfo;
1367 mmc->armsse_type = TYPE_SSE200;
1368 mmc->boot_ram_size = 0;
1369 mps2tz_set_default_ram_info(mmc);
1371 object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1372 object_class_property_set_description(oc, "remap",
1373 "Set memory mapping. Valid values "
1374 "are BRAM (default) and QSPI.");
1377 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1379 MachineClass *mc = MACHINE_CLASS(oc);
1380 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1382 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1383 mc->default_cpus = 1;
1384 mc->min_cpus = mc->default_cpus;
1385 mc->max_cpus = mc->default_cpus;
1386 mmc->fpga_type = FPGA_AN547;
1387 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1388 mmc->scc_id = 0x41055470;
1389 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1390 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1391 mmc->oscclk = an524_oscclk; /* same as AN524 */
1392 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1393 mmc->fpgaio_num_leds = 10;
1394 mmc->fpgaio_has_switches = true;
1395 mmc->fpgaio_has_dbgctrl = true;
1396 mmc->numirq = 96;
1397 mmc->uart_overflow_irq = 48;
1398 mmc->init_svtor = 0x00000000;
1399 mmc->sram_addr_width = 21;
1400 mmc->raminfo = an547_raminfo;
1401 mmc->armsse_type = TYPE_SSE300;
1402 mmc->boot_ram_size = 512 * KiB;
1403 mps2tz_set_default_ram_info(mmc);
1406 static const TypeInfo mps2tz_info = {
1407 .name = TYPE_MPS2TZ_MACHINE,
1408 .parent = TYPE_MACHINE,
1409 .abstract = true,
1410 .instance_size = sizeof(MPS2TZMachineState),
1411 .class_size = sizeof(MPS2TZMachineClass),
1412 .class_init = mps2tz_class_init,
1413 .interfaces = (InterfaceInfo[]) {
1414 { TYPE_IDAU_INTERFACE },
1419 static const TypeInfo mps2tz_an505_info = {
1420 .name = TYPE_MPS2TZ_AN505_MACHINE,
1421 .parent = TYPE_MPS2TZ_MACHINE,
1422 .class_init = mps2tz_an505_class_init,
1425 static const TypeInfo mps2tz_an521_info = {
1426 .name = TYPE_MPS2TZ_AN521_MACHINE,
1427 .parent = TYPE_MPS2TZ_MACHINE,
1428 .class_init = mps2tz_an521_class_init,
1431 static const TypeInfo mps3tz_an524_info = {
1432 .name = TYPE_MPS3TZ_AN524_MACHINE,
1433 .parent = TYPE_MPS2TZ_MACHINE,
1434 .class_init = mps3tz_an524_class_init,
1437 static const TypeInfo mps3tz_an547_info = {
1438 .name = TYPE_MPS3TZ_AN547_MACHINE,
1439 .parent = TYPE_MPS2TZ_MACHINE,
1440 .class_init = mps3tz_an547_class_init,
1443 static void mps2tz_machine_init(void)
1445 type_register_static(&mps2tz_info);
1446 type_register_static(&mps2tz_an505_info);
1447 type_register_static(&mps2tz_an521_info);
1448 type_register_static(&mps3tz_an524_info);
1449 type_register_static(&mps3tz_an547_info);
1452 type_init(mps2tz_machine_init);