hw/display/ramfb: Compile the ramfb code only when CONFIG_FW_CFG_DMA is set
[qemu.git] / util / qemu-coroutine-lock.c
blob27438a18585c4cfdb1f9d37270a03da5728f1912
1 /*
2 * coroutine queues and locks
4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * The lock-free mutex implementation is based on OSv
25 * (core/lfmutex.cc, include/lockfree/mutex.hh).
26 * Copyright (C) 2013 Cloudius Systems, Ltd.
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/coroutine.h"
32 #include "qemu/coroutine_int.h"
33 #include "qemu/processor.h"
34 #include "qemu/queue.h"
35 #include "block/aio.h"
36 #include "trace.h"
38 void qemu_co_queue_init(CoQueue *queue)
40 QSIMPLEQ_INIT(&queue->entries);
43 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock)
45 Coroutine *self = qemu_coroutine_self();
46 QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next);
48 if (lock) {
49 qemu_lockable_unlock(lock);
52 /* There is no race condition here. Other threads will call
53 * aio_co_schedule on our AioContext, which can reenter this
54 * coroutine but only after this yield and after the main loop
55 * has gone through the next iteration.
57 qemu_coroutine_yield();
58 assert(qemu_in_coroutine());
60 /* TODO: OSv implements wait morphing here, where the wakeup
61 * primitive automatically places the woken coroutine on the
62 * mutex's queue. This avoids the thundering herd effect.
63 * This could be implemented for CoMutexes, but not really for
64 * other cases of QemuLockable.
66 if (lock) {
67 qemu_lockable_lock(lock);
71 static bool qemu_co_queue_do_restart(CoQueue *queue, bool single)
73 Coroutine *next;
75 if (QSIMPLEQ_EMPTY(&queue->entries)) {
76 return false;
79 while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) {
80 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
81 aio_co_wake(next);
82 if (single) {
83 break;
86 return true;
89 bool coroutine_fn qemu_co_queue_next(CoQueue *queue)
91 assert(qemu_in_coroutine());
92 return qemu_co_queue_do_restart(queue, true);
95 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue)
97 assert(qemu_in_coroutine());
98 qemu_co_queue_do_restart(queue, false);
101 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock)
103 Coroutine *next;
105 next = QSIMPLEQ_FIRST(&queue->entries);
106 if (!next) {
107 return false;
110 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
111 if (lock) {
112 qemu_lockable_unlock(lock);
114 aio_co_wake(next);
115 if (lock) {
116 qemu_lockable_lock(lock);
118 return true;
121 bool qemu_co_queue_empty(CoQueue *queue)
123 return QSIMPLEQ_FIRST(&queue->entries) == NULL;
126 /* The wait records are handled with a multiple-producer, single-consumer
127 * lock-free queue. There cannot be two concurrent pop_waiter() calls
128 * because pop_waiter() can only be called while mutex->handoff is zero.
129 * This can happen in three cases:
130 * - in qemu_co_mutex_unlock, before the hand-off protocol has started.
131 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
132 * not take part in the handoff.
133 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
134 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
135 * the cmpxchg (it will see either 0 or the next sequence value) and
136 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has
137 * woken up someone.
138 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
139 * In this case another iteration starts with mutex->handoff == 0;
140 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
141 * qemu_co_mutex_unlock will go back to case (1).
143 * The following functions manage this queue.
145 typedef struct CoWaitRecord {
146 Coroutine *co;
147 QSLIST_ENTRY(CoWaitRecord) next;
148 } CoWaitRecord;
150 static void push_waiter(CoMutex *mutex, CoWaitRecord *w)
152 w->co = qemu_coroutine_self();
153 QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next);
156 static void move_waiters(CoMutex *mutex)
158 QSLIST_HEAD(, CoWaitRecord) reversed;
159 QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push);
160 while (!QSLIST_EMPTY(&reversed)) {
161 CoWaitRecord *w = QSLIST_FIRST(&reversed);
162 QSLIST_REMOVE_HEAD(&reversed, next);
163 QSLIST_INSERT_HEAD(&mutex->to_pop, w, next);
167 static CoWaitRecord *pop_waiter(CoMutex *mutex)
169 CoWaitRecord *w;
171 if (QSLIST_EMPTY(&mutex->to_pop)) {
172 move_waiters(mutex);
173 if (QSLIST_EMPTY(&mutex->to_pop)) {
174 return NULL;
177 w = QSLIST_FIRST(&mutex->to_pop);
178 QSLIST_REMOVE_HEAD(&mutex->to_pop, next);
179 return w;
182 static bool has_waiters(CoMutex *mutex)
184 return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push);
187 void qemu_co_mutex_init(CoMutex *mutex)
189 memset(mutex, 0, sizeof(*mutex));
192 static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co)
194 /* Read co before co->ctx; pairs with smp_wmb() in
195 * qemu_coroutine_enter().
197 smp_read_barrier_depends();
198 mutex->ctx = co->ctx;
199 aio_co_wake(co);
202 static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx,
203 CoMutex *mutex)
205 Coroutine *self = qemu_coroutine_self();
206 CoWaitRecord w;
207 unsigned old_handoff;
209 trace_qemu_co_mutex_lock_entry(mutex, self);
210 w.co = self;
211 push_waiter(mutex, &w);
213 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from
214 * a concurrent unlock() the responsibility of waking somebody up.
216 old_handoff = atomic_mb_read(&mutex->handoff);
217 if (old_handoff &&
218 has_waiters(mutex) &&
219 atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) {
220 /* There can be no concurrent pops, because there can be only
221 * one active handoff at a time.
223 CoWaitRecord *to_wake = pop_waiter(mutex);
224 Coroutine *co = to_wake->co;
225 if (co == self) {
226 /* We got the lock ourselves! */
227 assert(to_wake == &w);
228 mutex->ctx = ctx;
229 return;
232 qemu_co_mutex_wake(mutex, co);
235 qemu_coroutine_yield();
236 trace_qemu_co_mutex_lock_return(mutex, self);
239 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex)
241 AioContext *ctx = qemu_get_current_aio_context();
242 Coroutine *self = qemu_coroutine_self();
243 int waiters, i;
245 /* Running a very small critical section on pthread_mutex_t and CoMutex
246 * shows that pthread_mutex_t is much faster because it doesn't actually
247 * go to sleep. What happens is that the critical section is shorter
248 * than the latency of entering the kernel and thus FUTEX_WAIT always
249 * fails. With CoMutex there is no such latency but you still want to
250 * avoid wait and wakeup. So introduce it artificially.
252 i = 0;
253 retry_fast_path:
254 waiters = atomic_cmpxchg(&mutex->locked, 0, 1);
255 if (waiters != 0) {
256 while (waiters == 1 && ++i < 1000) {
257 if (atomic_read(&mutex->ctx) == ctx) {
258 break;
260 if (atomic_read(&mutex->locked) == 0) {
261 goto retry_fast_path;
263 cpu_relax();
265 waiters = atomic_fetch_inc(&mutex->locked);
268 if (waiters == 0) {
269 /* Uncontended. */
270 trace_qemu_co_mutex_lock_uncontended(mutex, self);
271 mutex->ctx = ctx;
272 } else {
273 qemu_co_mutex_lock_slowpath(ctx, mutex);
275 mutex->holder = self;
276 self->locks_held++;
279 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex)
281 Coroutine *self = qemu_coroutine_self();
283 trace_qemu_co_mutex_unlock_entry(mutex, self);
285 assert(mutex->locked);
286 assert(mutex->holder == self);
287 assert(qemu_in_coroutine());
289 mutex->ctx = NULL;
290 mutex->holder = NULL;
291 self->locks_held--;
292 if (atomic_fetch_dec(&mutex->locked) == 1) {
293 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
294 return;
297 for (;;) {
298 CoWaitRecord *to_wake = pop_waiter(mutex);
299 unsigned our_handoff;
301 if (to_wake) {
302 qemu_co_mutex_wake(mutex, to_wake->co);
303 break;
306 /* Some concurrent lock() is in progress (we know this because
307 * mutex->locked was >1) but it hasn't yet put itself on the wait
308 * queue. Pick a sequence number for the handoff protocol (not 0).
310 if (++mutex->sequence == 0) {
311 mutex->sequence = 1;
314 our_handoff = mutex->sequence;
315 atomic_mb_set(&mutex->handoff, our_handoff);
316 if (!has_waiters(mutex)) {
317 /* The concurrent lock has not added itself yet, so it
318 * will be able to pick our handoff.
320 break;
323 /* Try to do the handoff protocol ourselves; if somebody else has
324 * already taken it, however, we're done and they're responsible.
326 if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) {
327 break;
331 trace_qemu_co_mutex_unlock_return(mutex, self);
334 void qemu_co_rwlock_init(CoRwlock *lock)
336 memset(lock, 0, sizeof(*lock));
337 qemu_co_queue_init(&lock->queue);
338 qemu_co_mutex_init(&lock->mutex);
341 void qemu_co_rwlock_rdlock(CoRwlock *lock)
343 Coroutine *self = qemu_coroutine_self();
345 qemu_co_mutex_lock(&lock->mutex);
346 /* For fairness, wait if a writer is in line. */
347 while (lock->pending_writer) {
348 qemu_co_queue_wait(&lock->queue, &lock->mutex);
350 lock->reader++;
351 qemu_co_mutex_unlock(&lock->mutex);
353 /* The rest of the read-side critical section is run without the mutex. */
354 self->locks_held++;
357 void qemu_co_rwlock_unlock(CoRwlock *lock)
359 Coroutine *self = qemu_coroutine_self();
361 assert(qemu_in_coroutine());
362 if (!lock->reader) {
363 /* The critical section started in qemu_co_rwlock_wrlock. */
364 qemu_co_queue_restart_all(&lock->queue);
365 } else {
366 self->locks_held--;
368 qemu_co_mutex_lock(&lock->mutex);
369 lock->reader--;
370 assert(lock->reader >= 0);
371 /* Wakeup only one waiting writer */
372 if (!lock->reader) {
373 qemu_co_queue_next(&lock->queue);
376 qemu_co_mutex_unlock(&lock->mutex);
379 void qemu_co_rwlock_downgrade(CoRwlock *lock)
381 Coroutine *self = qemu_coroutine_self();
383 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or
384 * qemu_co_rwlock_upgrade.
386 assert(lock->reader == 0);
387 lock->reader++;
388 qemu_co_mutex_unlock(&lock->mutex);
390 /* The rest of the read-side critical section is run without the mutex. */
391 self->locks_held++;
394 void qemu_co_rwlock_wrlock(CoRwlock *lock)
396 qemu_co_mutex_lock(&lock->mutex);
397 lock->pending_writer++;
398 while (lock->reader) {
399 qemu_co_queue_wait(&lock->queue, &lock->mutex);
401 lock->pending_writer--;
403 /* The rest of the write-side critical section is run with
404 * the mutex taken, so that lock->reader remains zero.
405 * There is no need to update self->locks_held.
409 void qemu_co_rwlock_upgrade(CoRwlock *lock)
411 Coroutine *self = qemu_coroutine_self();
413 qemu_co_mutex_lock(&lock->mutex);
414 assert(lock->reader > 0);
415 lock->reader--;
416 lock->pending_writer++;
417 while (lock->reader) {
418 qemu_co_queue_wait(&lock->queue, &lock->mutex);
420 lock->pending_writer--;
422 /* The rest of the write-side critical section is run with
423 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do
424 * not account for the lock twice in self->locks_held.
426 self->locks_held--;