Merge remote-tracking branch 'remotes/elmarco/tags/for-upstream' into staging
[qemu.git] / target-arm / cpu.h
blob7e89152bde9fe0524888265fcd84584a792a2748
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define TARGET_IS_BIENDIAN 1
37 #define CPUArchState struct CPUARMState
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 struct arm_boot_info;
98 #define NB_MMU_MODES 7
100 /* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
108 /* CPU state for each instance of a generic timer (in cp15 c14) */
109 typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
111 uint64_t ctl; /* Timer Control register */
112 } ARMGenericTimer;
114 #define GTIMER_PHYS 0
115 #define GTIMER_VIRT 1
116 #define NUM_GTIMERS 2
118 typedef struct {
119 uint64_t raw_tcr;
120 uint32_t mask;
121 uint32_t base_mask;
122 } TCR;
124 typedef struct CPUARMState {
125 /* Regs for current mode. */
126 uint32_t regs[16];
128 /* 32/64 switch only happens when taking and returning from
129 * exceptions so the overlap semantics are taken care of then
130 * instead of having a complicated union.
132 /* Regs for A64 mode. */
133 uint64_t xregs[32];
134 uint64_t pc;
135 /* PSTATE isn't an architectural register for ARMv8. However, it is
136 * convenient for us to assemble the underlying state into a 32 bit format
137 * identical to the architectural format used for the SPSR. (This is also
138 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
139 * 'pstate' register are.) Of the PSTATE bits:
140 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
141 * semantics as for AArch32, as described in the comments on each field)
142 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
143 * DAIF (exception masks) are kept in env->daif
144 * all other bits are stored in their correct places in env->pstate
146 uint32_t pstate;
147 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
149 /* Frequently accessed CPSR bits are stored separately for efficiency.
150 This contains all the other bits. Use cpsr_{read,write} to access
151 the whole CPSR. */
152 uint32_t uncached_cpsr;
153 uint32_t spsr;
155 /* Banked registers. */
156 uint64_t banked_spsr[8];
157 uint32_t banked_r13[8];
158 uint32_t banked_r14[8];
160 /* These hold r8-r12. */
161 uint32_t usr_regs[5];
162 uint32_t fiq_regs[5];
164 /* cpsr flag cache for faster execution */
165 uint32_t CF; /* 0 or 1 */
166 uint32_t VF; /* V is the bit 31. All other bits are undefined */
167 uint32_t NF; /* N is bit 31. All other bits are undefined. */
168 uint32_t ZF; /* Z set if zero. */
169 uint32_t QF; /* 0 or 1 */
170 uint32_t GE; /* cpsr[19:16] */
171 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
172 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
173 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
175 uint64_t elr_el[4]; /* AArch64 exception link regs */
176 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
178 /* System control coprocessor (cp15) */
179 struct {
180 uint32_t c0_cpuid;
181 union { /* Cache size selection */
182 struct {
183 uint64_t _unused_csselr0;
184 uint64_t csselr_ns;
185 uint64_t _unused_csselr1;
186 uint64_t csselr_s;
188 uint64_t csselr_el[4];
190 union { /* System control register. */
191 struct {
192 uint64_t _unused_sctlr;
193 uint64_t sctlr_ns;
194 uint64_t hsctlr;
195 uint64_t sctlr_s;
197 uint64_t sctlr_el[4];
199 uint64_t cpacr_el1; /* Architectural feature access control register */
200 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
201 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
202 uint64_t sder; /* Secure debug enable register. */
203 uint32_t nsacr; /* Non-secure access control register. */
204 union { /* MMU translation table base 0. */
205 struct {
206 uint64_t _unused_ttbr0_0;
207 uint64_t ttbr0_ns;
208 uint64_t _unused_ttbr0_1;
209 uint64_t ttbr0_s;
211 uint64_t ttbr0_el[4];
213 union { /* MMU translation table base 1. */
214 struct {
215 uint64_t _unused_ttbr1_0;
216 uint64_t ttbr1_ns;
217 uint64_t _unused_ttbr1_1;
218 uint64_t ttbr1_s;
220 uint64_t ttbr1_el[4];
222 /* MMU translation table base control. */
223 TCR tcr_el[4];
224 uint32_t c2_data; /* MPU data cachable bits. */
225 uint32_t c2_insn; /* MPU instruction cachable bits. */
226 union { /* MMU domain access control register
227 * MPU write buffer control.
229 struct {
230 uint64_t dacr_ns;
231 uint64_t dacr_s;
233 struct {
234 uint64_t dacr32_el2;
237 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
238 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
239 uint64_t hcr_el2; /* Hypervisor configuration register */
240 uint64_t scr_el3; /* Secure configuration register. */
241 union { /* Fault status registers. */
242 struct {
243 uint64_t ifsr_ns;
244 uint64_t ifsr_s;
246 struct {
247 uint64_t ifsr32_el2;
250 union {
251 struct {
252 uint64_t _unused_dfsr;
253 uint64_t dfsr_ns;
254 uint64_t hsr;
255 uint64_t dfsr_s;
257 uint64_t esr_el[4];
259 uint32_t c6_region[8]; /* MPU base/size registers. */
260 union { /* Fault address registers. */
261 struct {
262 uint64_t _unused_far0;
263 #ifdef HOST_WORDS_BIGENDIAN
264 uint32_t ifar_ns;
265 uint32_t dfar_ns;
266 uint32_t ifar_s;
267 uint32_t dfar_s;
268 #else
269 uint32_t dfar_ns;
270 uint32_t ifar_ns;
271 uint32_t dfar_s;
272 uint32_t ifar_s;
273 #endif
274 uint64_t _unused_far3;
276 uint64_t far_el[4];
278 union { /* Translation result. */
279 struct {
280 uint64_t _unused_par_0;
281 uint64_t par_ns;
282 uint64_t _unused_par_1;
283 uint64_t par_s;
285 uint64_t par_el[4];
288 uint32_t c6_rgnr;
290 uint32_t c9_insn; /* Cache lockdown registers. */
291 uint32_t c9_data;
292 uint64_t c9_pmcr; /* performance monitor control register */
293 uint64_t c9_pmcnten; /* perf monitor counter enables */
294 uint32_t c9_pmovsr; /* perf monitor overflow status */
295 uint32_t c9_pmxevtyper; /* perf monitor event type */
296 uint32_t c9_pmuserenr; /* perf monitor user enable */
297 uint32_t c9_pminten; /* perf monitor interrupt enables */
298 union { /* Memory attribute redirection */
299 struct {
300 #ifdef HOST_WORDS_BIGENDIAN
301 uint64_t _unused_mair_0;
302 uint32_t mair1_ns;
303 uint32_t mair0_ns;
304 uint64_t _unused_mair_1;
305 uint32_t mair1_s;
306 uint32_t mair0_s;
307 #else
308 uint64_t _unused_mair_0;
309 uint32_t mair0_ns;
310 uint32_t mair1_ns;
311 uint64_t _unused_mair_1;
312 uint32_t mair0_s;
313 uint32_t mair1_s;
314 #endif
316 uint64_t mair_el[4];
318 union { /* vector base address register */
319 struct {
320 uint64_t _unused_vbar;
321 uint64_t vbar_ns;
322 uint64_t hvbar;
323 uint64_t vbar_s;
325 uint64_t vbar_el[4];
327 uint32_t mvbar; /* (monitor) vector base address register */
328 struct { /* FCSE PID. */
329 uint32_t fcseidr_ns;
330 uint32_t fcseidr_s;
332 union { /* Context ID. */
333 struct {
334 uint64_t _unused_contextidr_0;
335 uint64_t contextidr_ns;
336 uint64_t _unused_contextidr_1;
337 uint64_t contextidr_s;
339 uint64_t contextidr_el[4];
341 union { /* User RW Thread register. */
342 struct {
343 uint64_t tpidrurw_ns;
344 uint64_t tpidrprw_ns;
345 uint64_t htpidr;
346 uint64_t _tpidr_el3;
348 uint64_t tpidr_el[4];
350 /* The secure banks of these registers don't map anywhere */
351 uint64_t tpidrurw_s;
352 uint64_t tpidrprw_s;
353 uint64_t tpidruro_s;
355 union { /* User RO Thread register. */
356 uint64_t tpidruro_ns;
357 uint64_t tpidrro_el[1];
359 uint64_t c14_cntfrq; /* Counter Frequency register */
360 uint64_t c14_cntkctl; /* Timer Control register */
361 ARMGenericTimer c14_timer[NUM_GTIMERS];
362 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
363 uint32_t c15_ticonfig; /* TI925T configuration byte. */
364 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
365 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
366 uint32_t c15_threadid; /* TI debugger thread-ID. */
367 uint32_t c15_config_base_address; /* SCU base address. */
368 uint32_t c15_diagnostic; /* diagnostic register */
369 uint32_t c15_power_diagnostic;
370 uint32_t c15_power_control; /* power control */
371 uint64_t dbgbvr[16]; /* breakpoint value registers */
372 uint64_t dbgbcr[16]; /* breakpoint control registers */
373 uint64_t dbgwvr[16]; /* watchpoint value registers */
374 uint64_t dbgwcr[16]; /* watchpoint control registers */
375 uint64_t mdscr_el1;
376 /* If the counter is enabled, this stores the last time the counter
377 * was reset. Otherwise it stores the counter value
379 uint64_t c15_ccnt;
380 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
381 } cp15;
383 struct {
384 uint32_t other_sp;
385 uint32_t vecbase;
386 uint32_t basepri;
387 uint32_t control;
388 int current_sp;
389 int exception;
390 } v7m;
392 /* Information associated with an exception about to be taken:
393 * code which raises an exception must set cs->exception_index and
394 * the relevant parts of this structure; the cpu_do_interrupt function
395 * will then set the guest-visible registers as part of the exception
396 * entry process.
398 struct {
399 uint32_t syndrome; /* AArch64 format syndrome register */
400 uint32_t fsr; /* AArch32 format fault status register info */
401 uint64_t vaddress; /* virtual addr associated with exception, if any */
402 uint32_t target_el; /* EL the exception should be targeted for */
403 /* If we implement EL2 we will also need to store information
404 * about the intermediate physical address for stage 2 faults.
406 } exception;
408 /* Thumb-2 EE state. */
409 uint32_t teecr;
410 uint32_t teehbr;
412 /* VFP coprocessor state. */
413 struct {
414 /* VFP/Neon register state. Note that the mapping between S, D and Q
415 * views of the register bank differs between AArch64 and AArch32:
416 * In AArch32:
417 * Qn = regs[2n+1]:regs[2n]
418 * Dn = regs[n]
419 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
420 * (and regs[32] to regs[63] are inaccessible)
421 * In AArch64:
422 * Qn = regs[2n+1]:regs[2n]
423 * Dn = regs[2n]
424 * Sn = regs[2n] bits 31..0
425 * This corresponds to the architecturally defined mapping between
426 * the two execution states, and means we do not need to explicitly
427 * map these registers when changing states.
429 float64 regs[64];
431 uint32_t xregs[16];
432 /* We store these fpcsr fields separately for convenience. */
433 int vec_len;
434 int vec_stride;
436 /* scratch space when Tn are not sufficient. */
437 uint32_t scratch[8];
439 /* fp_status is the "normal" fp status. standard_fp_status retains
440 * values corresponding to the ARM "Standard FPSCR Value", ie
441 * default-NaN, flush-to-zero, round-to-nearest and is used by
442 * any operations (generally Neon) which the architecture defines
443 * as controlled by the standard FPSCR value rather than the FPSCR.
445 * To avoid having to transfer exception bits around, we simply
446 * say that the FPSCR cumulative exception flags are the logical
447 * OR of the flags in the two fp statuses. This relies on the
448 * only thing which needs to read the exception flags being
449 * an explicit FPSCR read.
451 float_status fp_status;
452 float_status standard_fp_status;
453 } vfp;
454 uint64_t exclusive_addr;
455 uint64_t exclusive_val;
456 uint64_t exclusive_high;
457 #if defined(CONFIG_USER_ONLY)
458 uint64_t exclusive_test;
459 uint32_t exclusive_info;
460 #endif
462 /* iwMMXt coprocessor state. */
463 struct {
464 uint64_t regs[16];
465 uint64_t val;
467 uint32_t cregs[16];
468 } iwmmxt;
470 /* For mixed endian mode. */
471 bool bswap_code;
473 #if defined(CONFIG_USER_ONLY)
474 /* For usermode syscall translation. */
475 int eabi;
476 #endif
478 struct CPUBreakpoint *cpu_breakpoint[16];
479 struct CPUWatchpoint *cpu_watchpoint[16];
481 CPU_COMMON
483 /* These fields after the common ones so they are preserved on reset. */
485 /* Internal CPU feature flags. */
486 uint64_t features;
488 /* PMSAv7 MPU */
489 struct {
490 uint32_t *drbar;
491 uint32_t *drsr;
492 uint32_t *dracr;
493 } pmsav7;
495 void *nvic;
496 const struct arm_boot_info *boot_info;
497 } CPUARMState;
499 #include "cpu-qom.h"
501 ARMCPU *cpu_arm_init(const char *cpu_model);
502 int cpu_arm_exec(CPUState *cpu);
503 uint32_t do_arm_semihosting(CPUARMState *env);
504 void aarch64_sync_32_to_64(CPUARMState *env);
505 void aarch64_sync_64_to_32(CPUARMState *env);
507 static inline bool is_a64(CPUARMState *env)
509 return env->aarch64;
512 /* you can call this signal handler from your SIGBUS and SIGSEGV
513 signal handlers to inform the virtual CPU of exceptions. non zero
514 is returned if the signal was handled by the virtual CPU. */
515 int cpu_arm_signal_handler(int host_signum, void *pinfo,
516 void *puc);
519 * pmccntr_sync
520 * @env: CPUARMState
522 * Synchronises the counter in the PMCCNTR. This must always be called twice,
523 * once before any action that might affect the timer and again afterwards.
524 * The function is used to swap the state of the register if required.
525 * This only happens when not in user mode (!CONFIG_USER_ONLY)
527 void pmccntr_sync(CPUARMState *env);
529 /* SCTLR bit meanings. Several bits have been reused in newer
530 * versions of the architecture; in that case we define constants
531 * for both old and new bit meanings. Code which tests against those
532 * bits should probably check or otherwise arrange that the CPU
533 * is the architectural version it expects.
535 #define SCTLR_M (1U << 0)
536 #define SCTLR_A (1U << 1)
537 #define SCTLR_C (1U << 2)
538 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
539 #define SCTLR_SA (1U << 3)
540 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
541 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
542 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
543 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
544 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
545 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
546 #define SCTLR_ITD (1U << 7) /* v8 onward */
547 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
548 #define SCTLR_SED (1U << 8) /* v8 onward */
549 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
550 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
551 #define SCTLR_F (1U << 10) /* up to v6 */
552 #define SCTLR_SW (1U << 10) /* v7 onward */
553 #define SCTLR_Z (1U << 11)
554 #define SCTLR_I (1U << 12)
555 #define SCTLR_V (1U << 13)
556 #define SCTLR_RR (1U << 14) /* up to v7 */
557 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
558 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
559 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
560 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
561 #define SCTLR_nTWI (1U << 16) /* v8 onward */
562 #define SCTLR_HA (1U << 17)
563 #define SCTLR_BR (1U << 17) /* PMSA only */
564 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
565 #define SCTLR_nTWE (1U << 18) /* v8 onward */
566 #define SCTLR_WXN (1U << 19)
567 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
568 #define SCTLR_UWXN (1U << 20) /* v7 onward */
569 #define SCTLR_FI (1U << 21)
570 #define SCTLR_U (1U << 22)
571 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
572 #define SCTLR_VE (1U << 24) /* up to v7 */
573 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
574 #define SCTLR_EE (1U << 25)
575 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
576 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
577 #define SCTLR_NMFI (1U << 27)
578 #define SCTLR_TRE (1U << 28)
579 #define SCTLR_AFE (1U << 29)
580 #define SCTLR_TE (1U << 30)
582 #define CPTR_TCPAC (1U << 31)
583 #define CPTR_TTA (1U << 20)
584 #define CPTR_TFP (1U << 10)
586 #define CPSR_M (0x1fU)
587 #define CPSR_T (1U << 5)
588 #define CPSR_F (1U << 6)
589 #define CPSR_I (1U << 7)
590 #define CPSR_A (1U << 8)
591 #define CPSR_E (1U << 9)
592 #define CPSR_IT_2_7 (0xfc00U)
593 #define CPSR_GE (0xfU << 16)
594 #define CPSR_IL (1U << 20)
595 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
596 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
597 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
598 * where it is live state but not accessible to the AArch32 code.
600 #define CPSR_RESERVED (0x7U << 21)
601 #define CPSR_J (1U << 24)
602 #define CPSR_IT_0_1 (3U << 25)
603 #define CPSR_Q (1U << 27)
604 #define CPSR_V (1U << 28)
605 #define CPSR_C (1U << 29)
606 #define CPSR_Z (1U << 30)
607 #define CPSR_N (1U << 31)
608 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
609 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
611 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
612 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
613 | CPSR_NZCV)
614 /* Bits writable in user mode. */
615 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
616 /* Execution state bits. MRS read as zero, MSR writes ignored. */
617 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
618 /* Mask of bits which may be set by exception return copying them from SPSR */
619 #define CPSR_ERET_MASK (~CPSR_RESERVED)
621 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
622 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
623 #define TTBCR_PD0 (1U << 4)
624 #define TTBCR_PD1 (1U << 5)
625 #define TTBCR_EPD0 (1U << 7)
626 #define TTBCR_IRGN0 (3U << 8)
627 #define TTBCR_ORGN0 (3U << 10)
628 #define TTBCR_SH0 (3U << 12)
629 #define TTBCR_T1SZ (3U << 16)
630 #define TTBCR_A1 (1U << 22)
631 #define TTBCR_EPD1 (1U << 23)
632 #define TTBCR_IRGN1 (3U << 24)
633 #define TTBCR_ORGN1 (3U << 26)
634 #define TTBCR_SH1 (1U << 28)
635 #define TTBCR_EAE (1U << 31)
637 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
638 * Only these are valid when in AArch64 mode; in
639 * AArch32 mode SPSRs are basically CPSR-format.
641 #define PSTATE_SP (1U)
642 #define PSTATE_M (0xFU)
643 #define PSTATE_nRW (1U << 4)
644 #define PSTATE_F (1U << 6)
645 #define PSTATE_I (1U << 7)
646 #define PSTATE_A (1U << 8)
647 #define PSTATE_D (1U << 9)
648 #define PSTATE_IL (1U << 20)
649 #define PSTATE_SS (1U << 21)
650 #define PSTATE_V (1U << 28)
651 #define PSTATE_C (1U << 29)
652 #define PSTATE_Z (1U << 30)
653 #define PSTATE_N (1U << 31)
654 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
655 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
656 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
657 /* Mode values for AArch64 */
658 #define PSTATE_MODE_EL3h 13
659 #define PSTATE_MODE_EL3t 12
660 #define PSTATE_MODE_EL2h 9
661 #define PSTATE_MODE_EL2t 8
662 #define PSTATE_MODE_EL1h 5
663 #define PSTATE_MODE_EL1t 4
664 #define PSTATE_MODE_EL0t 0
666 /* Map EL and handler into a PSTATE_MODE. */
667 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
669 return (el << 2) | handler;
672 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
673 * interprocessing, so we don't attempt to sync with the cpsr state used by
674 * the 32 bit decoder.
676 static inline uint32_t pstate_read(CPUARMState *env)
678 int ZF;
680 ZF = (env->ZF == 0);
681 return (env->NF & 0x80000000) | (ZF << 30)
682 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
683 | env->pstate | env->daif;
686 static inline void pstate_write(CPUARMState *env, uint32_t val)
688 env->ZF = (~val) & PSTATE_Z;
689 env->NF = val;
690 env->CF = (val >> 29) & 1;
691 env->VF = (val << 3) & 0x80000000;
692 env->daif = val & PSTATE_DAIF;
693 env->pstate = val & ~CACHED_PSTATE_BITS;
696 /* Return the current CPSR value. */
697 uint32_t cpsr_read(CPUARMState *env);
698 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
699 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
701 /* Return the current xPSR value. */
702 static inline uint32_t xpsr_read(CPUARMState *env)
704 int ZF;
705 ZF = (env->ZF == 0);
706 return (env->NF & 0x80000000) | (ZF << 30)
707 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
708 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
709 | ((env->condexec_bits & 0xfc) << 8)
710 | env->v7m.exception;
713 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
714 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
716 if (mask & CPSR_NZCV) {
717 env->ZF = (~val) & CPSR_Z;
718 env->NF = val;
719 env->CF = (val >> 29) & 1;
720 env->VF = (val << 3) & 0x80000000;
722 if (mask & CPSR_Q)
723 env->QF = ((val & CPSR_Q) != 0);
724 if (mask & (1 << 24))
725 env->thumb = ((val & (1 << 24)) != 0);
726 if (mask & CPSR_IT_0_1) {
727 env->condexec_bits &= ~3;
728 env->condexec_bits |= (val >> 25) & 3;
730 if (mask & CPSR_IT_2_7) {
731 env->condexec_bits &= 3;
732 env->condexec_bits |= (val >> 8) & 0xfc;
734 if (mask & 0x1ff) {
735 env->v7m.exception = val & 0x1ff;
739 #define HCR_VM (1ULL << 0)
740 #define HCR_SWIO (1ULL << 1)
741 #define HCR_PTW (1ULL << 2)
742 #define HCR_FMO (1ULL << 3)
743 #define HCR_IMO (1ULL << 4)
744 #define HCR_AMO (1ULL << 5)
745 #define HCR_VF (1ULL << 6)
746 #define HCR_VI (1ULL << 7)
747 #define HCR_VSE (1ULL << 8)
748 #define HCR_FB (1ULL << 9)
749 #define HCR_BSU_MASK (3ULL << 10)
750 #define HCR_DC (1ULL << 12)
751 #define HCR_TWI (1ULL << 13)
752 #define HCR_TWE (1ULL << 14)
753 #define HCR_TID0 (1ULL << 15)
754 #define HCR_TID1 (1ULL << 16)
755 #define HCR_TID2 (1ULL << 17)
756 #define HCR_TID3 (1ULL << 18)
757 #define HCR_TSC (1ULL << 19)
758 #define HCR_TIDCP (1ULL << 20)
759 #define HCR_TACR (1ULL << 21)
760 #define HCR_TSW (1ULL << 22)
761 #define HCR_TPC (1ULL << 23)
762 #define HCR_TPU (1ULL << 24)
763 #define HCR_TTLB (1ULL << 25)
764 #define HCR_TVM (1ULL << 26)
765 #define HCR_TGE (1ULL << 27)
766 #define HCR_TDZ (1ULL << 28)
767 #define HCR_HCD (1ULL << 29)
768 #define HCR_TRVM (1ULL << 30)
769 #define HCR_RW (1ULL << 31)
770 #define HCR_CD (1ULL << 32)
771 #define HCR_ID (1ULL << 33)
772 #define HCR_MASK ((1ULL << 34) - 1)
774 #define SCR_NS (1U << 0)
775 #define SCR_IRQ (1U << 1)
776 #define SCR_FIQ (1U << 2)
777 #define SCR_EA (1U << 3)
778 #define SCR_FW (1U << 4)
779 #define SCR_AW (1U << 5)
780 #define SCR_NET (1U << 6)
781 #define SCR_SMD (1U << 7)
782 #define SCR_HCE (1U << 8)
783 #define SCR_SIF (1U << 9)
784 #define SCR_RW (1U << 10)
785 #define SCR_ST (1U << 11)
786 #define SCR_TWI (1U << 12)
787 #define SCR_TWE (1U << 13)
788 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
789 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
791 /* Return the current FPSCR value. */
792 uint32_t vfp_get_fpscr(CPUARMState *env);
793 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
795 /* For A64 the FPSCR is split into two logically distinct registers,
796 * FPCR and FPSR. However since they still use non-overlapping bits
797 * we store the underlying state in fpscr and just mask on read/write.
799 #define FPSR_MASK 0xf800009f
800 #define FPCR_MASK 0x07f79f00
801 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
803 return vfp_get_fpscr(env) & FPSR_MASK;
806 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
808 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
809 vfp_set_fpscr(env, new_fpscr);
812 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
814 return vfp_get_fpscr(env) & FPCR_MASK;
817 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
819 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
820 vfp_set_fpscr(env, new_fpscr);
823 enum arm_cpu_mode {
824 ARM_CPU_MODE_USR = 0x10,
825 ARM_CPU_MODE_FIQ = 0x11,
826 ARM_CPU_MODE_IRQ = 0x12,
827 ARM_CPU_MODE_SVC = 0x13,
828 ARM_CPU_MODE_MON = 0x16,
829 ARM_CPU_MODE_ABT = 0x17,
830 ARM_CPU_MODE_HYP = 0x1a,
831 ARM_CPU_MODE_UND = 0x1b,
832 ARM_CPU_MODE_SYS = 0x1f
835 /* VFP system registers. */
836 #define ARM_VFP_FPSID 0
837 #define ARM_VFP_FPSCR 1
838 #define ARM_VFP_MVFR2 5
839 #define ARM_VFP_MVFR1 6
840 #define ARM_VFP_MVFR0 7
841 #define ARM_VFP_FPEXC 8
842 #define ARM_VFP_FPINST 9
843 #define ARM_VFP_FPINST2 10
845 /* iwMMXt coprocessor control registers. */
846 #define ARM_IWMMXT_wCID 0
847 #define ARM_IWMMXT_wCon 1
848 #define ARM_IWMMXT_wCSSF 2
849 #define ARM_IWMMXT_wCASF 3
850 #define ARM_IWMMXT_wCGR0 8
851 #define ARM_IWMMXT_wCGR1 9
852 #define ARM_IWMMXT_wCGR2 10
853 #define ARM_IWMMXT_wCGR3 11
855 /* If adding a feature bit which corresponds to a Linux ELF
856 * HWCAP bit, remember to update the feature-bit-to-hwcap
857 * mapping in linux-user/elfload.c:get_elf_hwcap().
859 enum arm_features {
860 ARM_FEATURE_VFP,
861 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
862 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
863 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
864 ARM_FEATURE_V6,
865 ARM_FEATURE_V6K,
866 ARM_FEATURE_V7,
867 ARM_FEATURE_THUMB2,
868 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
869 ARM_FEATURE_VFP3,
870 ARM_FEATURE_VFP_FP16,
871 ARM_FEATURE_NEON,
872 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
873 ARM_FEATURE_M, /* Microcontroller profile. */
874 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
875 ARM_FEATURE_THUMB2EE,
876 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
877 ARM_FEATURE_V4T,
878 ARM_FEATURE_V5,
879 ARM_FEATURE_STRONGARM,
880 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
881 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
882 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
883 ARM_FEATURE_GENERIC_TIMER,
884 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
885 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
886 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
887 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
888 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
889 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
890 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
891 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
892 ARM_FEATURE_V8,
893 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
894 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
895 ARM_FEATURE_CBAR, /* has cp15 CBAR */
896 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
897 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
898 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
899 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
900 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
901 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
902 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
903 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
906 static inline int arm_feature(CPUARMState *env, int feature)
908 return (env->features & (1ULL << feature)) != 0;
911 #if !defined(CONFIG_USER_ONLY)
912 /* Return true if exception levels below EL3 are in secure state,
913 * or would be following an exception return to that level.
914 * Unlike arm_is_secure() (which is always a question about the
915 * _current_ state of the CPU) this doesn't care about the current
916 * EL or mode.
918 static inline bool arm_is_secure_below_el3(CPUARMState *env)
920 if (arm_feature(env, ARM_FEATURE_EL3)) {
921 return !(env->cp15.scr_el3 & SCR_NS);
922 } else {
923 /* If EL2 is not supported then the secure state is implementation
924 * defined, in which case QEMU defaults to non-secure.
926 return false;
930 /* Return true if the processor is in secure state */
931 static inline bool arm_is_secure(CPUARMState *env)
933 if (arm_feature(env, ARM_FEATURE_EL3)) {
934 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
935 /* CPU currently in AArch64 state and EL3 */
936 return true;
937 } else if (!is_a64(env) &&
938 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
939 /* CPU currently in AArch32 state and monitor mode */
940 return true;
943 return arm_is_secure_below_el3(env);
946 #else
947 static inline bool arm_is_secure_below_el3(CPUARMState *env)
949 return false;
952 static inline bool arm_is_secure(CPUARMState *env)
954 return false;
956 #endif
958 /* Return true if the specified exception level is running in AArch64 state. */
959 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
961 /* We don't currently support EL2, and this isn't valid for EL0
962 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
963 * then the state of EL0 isn't well defined.)
965 assert(el == 1 || el == 3);
967 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
968 * is a QEMU-imposed simplification which we may wish to change later.
969 * If we in future support EL2 and/or EL3, then the state of lower
970 * exception levels is controlled by the HCR.RW and SCR.RW bits.
972 return arm_feature(env, ARM_FEATURE_AARCH64);
975 /* Function for determing whether guest cp register reads and writes should
976 * access the secure or non-secure bank of a cp register. When EL3 is
977 * operating in AArch32 state, the NS-bit determines whether the secure
978 * instance of a cp register should be used. When EL3 is AArch64 (or if
979 * it doesn't exist at all) then there is no register banking, and all
980 * accesses are to the non-secure version.
982 static inline bool access_secure_reg(CPUARMState *env)
984 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
985 !arm_el_is_aa64(env, 3) &&
986 !(env->cp15.scr_el3 & SCR_NS));
988 return ret;
991 /* Macros for accessing a specified CP register bank */
992 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
993 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
995 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
996 do { \
997 if (_secure) { \
998 (_env)->cp15._regname##_s = (_val); \
999 } else { \
1000 (_env)->cp15._regname##_ns = (_val); \
1002 } while (0)
1004 /* Macros for automatically accessing a specific CP register bank depending on
1005 * the current secure state of the system. These macros are not intended for
1006 * supporting instruction translation reads/writes as these are dependent
1007 * solely on the SCR.NS bit and not the mode.
1009 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1010 A32_BANKED_REG_GET((_env), _regname, \
1011 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1013 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1014 A32_BANKED_REG_SET((_env), _regname, \
1015 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1016 (_val))
1018 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1019 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1020 uint32_t cur_el, bool secure);
1022 /* Interface between CPU and Interrupt controller. */
1023 void armv7m_nvic_set_pending(void *opaque, int irq);
1024 int armv7m_nvic_acknowledge_irq(void *opaque);
1025 void armv7m_nvic_complete_irq(void *opaque, int irq);
1027 /* Interface for defining coprocessor registers.
1028 * Registers are defined in tables of arm_cp_reginfo structs
1029 * which are passed to define_arm_cp_regs().
1032 /* When looking up a coprocessor register we look for it
1033 * via an integer which encodes all of:
1034 * coprocessor number
1035 * Crn, Crm, opc1, opc2 fields
1036 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1037 * or via MRRC/MCRR?)
1038 * non-secure/secure bank (AArch32 only)
1039 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1040 * (In this case crn and opc2 should be zero.)
1041 * For AArch64, there is no 32/64 bit size distinction;
1042 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1043 * and 4 bit CRn and CRm. The encoding patterns are chosen
1044 * to be easy to convert to and from the KVM encodings, and also
1045 * so that the hashtable can contain both AArch32 and AArch64
1046 * registers (to allow for interprocessing where we might run
1047 * 32 bit code on a 64 bit core).
1049 /* This bit is private to our hashtable cpreg; in KVM register
1050 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1051 * in the upper bits of the 64 bit ID.
1053 #define CP_REG_AA64_SHIFT 28
1054 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1056 /* To enable banking of coprocessor registers depending on ns-bit we
1057 * add a bit to distinguish between secure and non-secure cpregs in the
1058 * hashtable.
1060 #define CP_REG_NS_SHIFT 29
1061 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1063 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1064 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1065 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1067 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1068 (CP_REG_AA64_MASK | \
1069 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1070 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1071 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1072 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1073 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1074 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1076 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1077 * version used as a key for the coprocessor register hashtable
1079 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1081 uint32_t cpregid = kvmid;
1082 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1083 cpregid |= CP_REG_AA64_MASK;
1084 } else {
1085 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1086 cpregid |= (1 << 15);
1089 /* KVM is always non-secure so add the NS flag on AArch32 register
1090 * entries.
1092 cpregid |= 1 << CP_REG_NS_SHIFT;
1094 return cpregid;
1097 /* Convert a truncated 32 bit hashtable key into the full
1098 * 64 bit KVM register ID.
1100 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1102 uint64_t kvmid;
1104 if (cpregid & CP_REG_AA64_MASK) {
1105 kvmid = cpregid & ~CP_REG_AA64_MASK;
1106 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1107 } else {
1108 kvmid = cpregid & ~(1 << 15);
1109 if (cpregid & (1 << 15)) {
1110 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1111 } else {
1112 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1115 return kvmid;
1118 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1119 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1120 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1121 * TCG can assume the value to be constant (ie load at translate time)
1122 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1123 * indicates that the TB should not be ended after a write to this register
1124 * (the default is that the TB ends after cp writes). OVERRIDE permits
1125 * a register definition to override a previous definition for the
1126 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1127 * old must have the OVERRIDE bit set.
1128 * ALIAS indicates that this register is an alias view of some underlying
1129 * state which is also visible via another register, and that the other
1130 * register is handling migration and reset; registers marked ALIAS will not be
1131 * migrated but may have their state set by syncing of register state from KVM.
1132 * NO_RAW indicates that this register has no underlying state and does not
1133 * support raw access for state saving/loading; it will not be used for either
1134 * migration or KVM state synchronization. (Typically this is for "registers"
1135 * which are actually used as instructions for cache maintenance and so on.)
1136 * IO indicates that this register does I/O and therefore its accesses
1137 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1138 * registers which implement clocks or timers require this.
1140 #define ARM_CP_SPECIAL 1
1141 #define ARM_CP_CONST 2
1142 #define ARM_CP_64BIT 4
1143 #define ARM_CP_SUPPRESS_TB_END 8
1144 #define ARM_CP_OVERRIDE 16
1145 #define ARM_CP_ALIAS 32
1146 #define ARM_CP_IO 64
1147 #define ARM_CP_NO_RAW 128
1148 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1149 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1150 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1151 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1152 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1153 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1154 /* Used only as a terminator for ARMCPRegInfo lists */
1155 #define ARM_CP_SENTINEL 0xffff
1156 /* Mask of only the flag bits in a type field */
1157 #define ARM_CP_FLAG_MASK 0xff
1159 /* Valid values for ARMCPRegInfo state field, indicating which of
1160 * the AArch32 and AArch64 execution states this register is visible in.
1161 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1162 * If the reginfo is declared to be visible in both states then a second
1163 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1164 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1165 * Note that we rely on the values of these enums as we iterate through
1166 * the various states in some places.
1168 enum {
1169 ARM_CP_STATE_AA32 = 0,
1170 ARM_CP_STATE_AA64 = 1,
1171 ARM_CP_STATE_BOTH = 2,
1174 /* ARM CP register secure state flags. These flags identify security state
1175 * attributes for a given CP register entry.
1176 * The existence of both or neither secure and non-secure flags indicates that
1177 * the register has both a secure and non-secure hash entry. A single one of
1178 * these flags causes the register to only be hashed for the specified
1179 * security state.
1180 * Although definitions may have any combination of the S/NS bits, each
1181 * registered entry will only have one to identify whether the entry is secure
1182 * or non-secure.
1184 enum {
1185 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1186 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1189 /* Return true if cptype is a valid type field. This is used to try to
1190 * catch errors where the sentinel has been accidentally left off the end
1191 * of a list of registers.
1193 static inline bool cptype_valid(int cptype)
1195 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1196 || ((cptype & ARM_CP_SPECIAL) &&
1197 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1200 /* Access rights:
1201 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1202 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1203 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1204 * (ie any of the privileged modes in Secure state, or Monitor mode).
1205 * If a register is accessible in one privilege level it's always accessible
1206 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1207 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1208 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1209 * terminology a little and call this PL3.
1210 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1211 * with the ELx exception levels.
1213 * If access permissions for a register are more complex than can be
1214 * described with these bits, then use a laxer set of restrictions, and
1215 * do the more restrictive/complex check inside a helper function.
1217 #define PL3_R 0x80
1218 #define PL3_W 0x40
1219 #define PL2_R (0x20 | PL3_R)
1220 #define PL2_W (0x10 | PL3_W)
1221 #define PL1_R (0x08 | PL2_R)
1222 #define PL1_W (0x04 | PL2_W)
1223 #define PL0_R (0x02 | PL1_R)
1224 #define PL0_W (0x01 | PL1_W)
1226 #define PL3_RW (PL3_R | PL3_W)
1227 #define PL2_RW (PL2_R | PL2_W)
1228 #define PL1_RW (PL1_R | PL1_W)
1229 #define PL0_RW (PL0_R | PL0_W)
1231 /* Return the current Exception Level (as per ARMv8; note that this differs
1232 * from the ARMv7 Privilege Level).
1234 static inline int arm_current_el(CPUARMState *env)
1236 if (arm_feature(env, ARM_FEATURE_M)) {
1237 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1240 if (is_a64(env)) {
1241 return extract32(env->pstate, 2, 2);
1244 switch (env->uncached_cpsr & 0x1f) {
1245 case ARM_CPU_MODE_USR:
1246 return 0;
1247 case ARM_CPU_MODE_HYP:
1248 return 2;
1249 case ARM_CPU_MODE_MON:
1250 return 3;
1251 default:
1252 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1253 /* If EL3 is 32-bit then all secure privileged modes run in
1254 * EL3
1256 return 3;
1259 return 1;
1263 typedef struct ARMCPRegInfo ARMCPRegInfo;
1265 typedef enum CPAccessResult {
1266 /* Access is permitted */
1267 CP_ACCESS_OK = 0,
1268 /* Access fails due to a configurable trap or enable which would
1269 * result in a categorized exception syndrome giving information about
1270 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1271 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1272 * PL1 if in EL0, otherwise to the current EL).
1274 CP_ACCESS_TRAP = 1,
1275 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1276 * Note that this is not a catch-all case -- the set of cases which may
1277 * result in this failure is specifically defined by the architecture.
1279 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1280 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1281 CP_ACCESS_TRAP_EL2 = 3,
1282 CP_ACCESS_TRAP_EL3 = 4,
1283 } CPAccessResult;
1285 /* Access functions for coprocessor registers. These cannot fail and
1286 * may not raise exceptions.
1288 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1289 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1290 uint64_t value);
1291 /* Access permission check functions for coprocessor registers. */
1292 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1293 /* Hook function for register reset */
1294 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1296 #define CP_ANY 0xff
1298 /* Definition of an ARM coprocessor register */
1299 struct ARMCPRegInfo {
1300 /* Name of register (useful mainly for debugging, need not be unique) */
1301 const char *name;
1302 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1303 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1304 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1305 * will be decoded to this register. The register read and write
1306 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1307 * used by the program, so it is possible to register a wildcard and
1308 * then behave differently on read/write if necessary.
1309 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1310 * must both be zero.
1311 * For AArch64-visible registers, opc0 is also used.
1312 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1313 * way to distinguish (for KVM's benefit) guest-visible system registers
1314 * from demuxed ones provided to preserve the "no side effects on
1315 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1316 * visible (to match KVM's encoding); cp==0 will be converted to
1317 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1319 uint8_t cp;
1320 uint8_t crn;
1321 uint8_t crm;
1322 uint8_t opc0;
1323 uint8_t opc1;
1324 uint8_t opc2;
1325 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1326 int state;
1327 /* Register type: ARM_CP_* bits/values */
1328 int type;
1329 /* Access rights: PL*_[RW] */
1330 int access;
1331 /* Security state: ARM_CP_SECSTATE_* bits/values */
1332 int secure;
1333 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1334 * this register was defined: can be used to hand data through to the
1335 * register read/write functions, since they are passed the ARMCPRegInfo*.
1337 void *opaque;
1338 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1339 * fieldoffset is non-zero, the reset value of the register.
1341 uint64_t resetvalue;
1342 /* Offset of the field in CPUARMState for this register.
1344 * This is not needed if either:
1345 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1346 * 2. both readfn and writefn are specified
1348 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1350 /* Offsets of the secure and non-secure fields in CPUARMState for the
1351 * register if it is banked. These fields are only used during the static
1352 * registration of a register. During hashing the bank associated
1353 * with a given security state is copied to fieldoffset which is used from
1354 * there on out.
1356 * It is expected that register definitions use either fieldoffset or
1357 * bank_fieldoffsets in the definition but not both. It is also expected
1358 * that both bank offsets are set when defining a banked register. This
1359 * use indicates that a register is banked.
1361 ptrdiff_t bank_fieldoffsets[2];
1363 /* Function for making any access checks for this register in addition to
1364 * those specified by the 'access' permissions bits. If NULL, no extra
1365 * checks required. The access check is performed at runtime, not at
1366 * translate time.
1368 CPAccessFn *accessfn;
1369 /* Function for handling reads of this register. If NULL, then reads
1370 * will be done by loading from the offset into CPUARMState specified
1371 * by fieldoffset.
1373 CPReadFn *readfn;
1374 /* Function for handling writes of this register. If NULL, then writes
1375 * will be done by writing to the offset into CPUARMState specified
1376 * by fieldoffset.
1378 CPWriteFn *writefn;
1379 /* Function for doing a "raw" read; used when we need to copy
1380 * coprocessor state to the kernel for KVM or out for
1381 * migration. This only needs to be provided if there is also a
1382 * readfn and it has side effects (for instance clear-on-read bits).
1384 CPReadFn *raw_readfn;
1385 /* Function for doing a "raw" write; used when we need to copy KVM
1386 * kernel coprocessor state into userspace, or for inbound
1387 * migration. This only needs to be provided if there is also a
1388 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1389 * or similar behaviour.
1391 CPWriteFn *raw_writefn;
1392 /* Function for resetting the register. If NULL, then reset will be done
1393 * by writing resetvalue to the field specified in fieldoffset. If
1394 * fieldoffset is 0 then no reset will be done.
1396 CPResetFn *resetfn;
1399 /* Macros which are lvalues for the field in CPUARMState for the
1400 * ARMCPRegInfo *ri.
1402 #define CPREG_FIELD32(env, ri) \
1403 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1404 #define CPREG_FIELD64(env, ri) \
1405 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1407 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1409 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1410 const ARMCPRegInfo *regs, void *opaque);
1411 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1412 const ARMCPRegInfo *regs, void *opaque);
1413 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1415 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1417 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1419 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1421 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1423 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1424 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1425 uint64_t value);
1426 /* CPReadFn that can be used for read-as-zero behaviour */
1427 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1429 /* CPResetFn that does nothing, for use if no reset is required even
1430 * if fieldoffset is non zero.
1432 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1434 /* Return true if this reginfo struct's field in the cpu state struct
1435 * is 64 bits wide.
1437 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1439 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1442 static inline bool cp_access_ok(int current_el,
1443 const ARMCPRegInfo *ri, int isread)
1445 return (ri->access >> ((current_el * 2) + isread)) & 1;
1449 * write_list_to_cpustate
1450 * @cpu: ARMCPU
1452 * For each register listed in the ARMCPU cpreg_indexes list, write
1453 * its value from the cpreg_values list into the ARMCPUState structure.
1454 * This updates TCG's working data structures from KVM data or
1455 * from incoming migration state.
1457 * Returns: true if all register values were updated correctly,
1458 * false if some register was unknown or could not be written.
1459 * Note that we do not stop early on failure -- we will attempt
1460 * writing all registers in the list.
1462 bool write_list_to_cpustate(ARMCPU *cpu);
1465 * write_cpustate_to_list:
1466 * @cpu: ARMCPU
1468 * For each register listed in the ARMCPU cpreg_indexes list, write
1469 * its value from the ARMCPUState structure into the cpreg_values list.
1470 * This is used to copy info from TCG's working data structures into
1471 * KVM or for outbound migration.
1473 * Returns: true if all register values were read correctly,
1474 * false if some register was unknown or could not be read.
1475 * Note that we do not stop early on failure -- we will attempt
1476 * reading all registers in the list.
1478 bool write_cpustate_to_list(ARMCPU *cpu);
1480 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1481 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1482 conventional cores (ie. Application or Realtime profile). */
1484 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1486 #define ARM_CPUID_TI915T 0x54029152
1487 #define ARM_CPUID_TI925T 0x54029252
1489 #if defined(CONFIG_USER_ONLY)
1490 #define TARGET_PAGE_BITS 12
1491 #else
1492 /* The ARM MMU allows 1k pages. */
1493 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1494 architecture revisions. Maybe a configure option to disable them. */
1495 #define TARGET_PAGE_BITS 10
1496 #endif
1498 #if defined(TARGET_AARCH64)
1499 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1500 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1501 #else
1502 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1503 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1504 #endif
1506 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1507 unsigned int target_el)
1509 CPUARMState *env = cs->env_ptr;
1510 unsigned int cur_el = arm_current_el(env);
1511 bool secure = arm_is_secure(env);
1512 uint32_t scr;
1513 uint32_t hcr;
1514 bool pstate_unmasked;
1515 int8_t unmasked = 0;
1517 /* Don't take exceptions if they target a lower EL.
1518 * This check should catch any exceptions that would not be taken but left
1519 * pending.
1521 if (cur_el > target_el) {
1522 return false;
1525 switch (excp_idx) {
1526 case EXCP_FIQ:
1527 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1528 * override the CPSR.F in determining if the exception is masked or
1529 * not. If neither of these are set then we fall back to the CPSR.F
1530 * setting otherwise we further assess the state below.
1532 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1533 scr = (env->cp15.scr_el3 & SCR_FIQ);
1535 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1536 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1537 * set then FIQs can be masked by CPSR.F when non-secure but only
1538 * when FIQs are only routed to EL3.
1540 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1541 pstate_unmasked = !(env->daif & PSTATE_F);
1542 break;
1544 case EXCP_IRQ:
1545 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1546 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1547 * setting has already been taken into consideration when setting the
1548 * target EL, so it does not have a further affect here.
1550 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1551 scr = false;
1552 pstate_unmasked = !(env->daif & PSTATE_I);
1553 break;
1555 case EXCP_VFIQ:
1556 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1557 /* VFIQs are only taken when hypervized and non-secure. */
1558 return false;
1560 return !(env->daif & PSTATE_F);
1561 case EXCP_VIRQ:
1562 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1563 /* VIRQs are only taken when hypervized and non-secure. */
1564 return false;
1566 return !(env->daif & PSTATE_I);
1567 default:
1568 g_assert_not_reached();
1571 /* Use the target EL, current execution state and SCR/HCR settings to
1572 * determine whether the corresponding CPSR bit is used to mask the
1573 * interrupt.
1575 if ((target_el > cur_el) && (target_el != 1)) {
1576 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1577 unmasked = 1;
1581 /* The PSTATE bits only mask the interrupt if we have not overriden the
1582 * ability above.
1584 return unmasked || pstate_unmasked;
1587 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1589 #define cpu_exec cpu_arm_exec
1590 #define cpu_gen_code cpu_arm_gen_code
1591 #define cpu_signal_handler cpu_arm_signal_handler
1592 #define cpu_list arm_cpu_list
1594 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1596 * If EL3 is 64-bit:
1597 * + NonSecure EL1 & 0 stage 1
1598 * + NonSecure EL1 & 0 stage 2
1599 * + NonSecure EL2
1600 * + Secure EL1 & EL0
1601 * + Secure EL3
1602 * If EL3 is 32-bit:
1603 * + NonSecure PL1 & 0 stage 1
1604 * + NonSecure PL1 & 0 stage 2
1605 * + NonSecure PL2
1606 * + Secure PL0 & PL1
1607 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1609 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1610 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1611 * may differ in access permissions even if the VA->PA map is the same
1612 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1613 * translation, which means that we have one mmu_idx that deals with two
1614 * concatenated translation regimes [this sort of combined s1+2 TLB is
1615 * architecturally permitted]
1616 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1617 * handling via the TLB. The only way to do a stage 1 translation without
1618 * the immediate stage 2 translation is via the ATS or AT system insns,
1619 * which can be slow-pathed and always do a page table walk.
1620 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1621 * translation regimes, because they map reasonably well to each other
1622 * and they can't both be active at the same time.
1623 * This gives us the following list of mmu_idx values:
1625 * NS EL0 (aka NS PL0) stage 1+2
1626 * NS EL1 (aka NS PL1) stage 1+2
1627 * NS EL2 (aka NS PL2)
1628 * S EL3 (aka S PL1)
1629 * S EL0 (aka S PL0)
1630 * S EL1 (not used if EL3 is 32 bit)
1631 * NS EL0+1 stage 2
1633 * (The last of these is an mmu_idx because we want to be able to use the TLB
1634 * for the accesses done as part of a stage 1 page table walk, rather than
1635 * having to walk the stage 2 page table over and over.)
1637 * Our enumeration includes at the end some entries which are not "true"
1638 * mmu_idx values in that they don't have corresponding TLBs and are only
1639 * valid for doing slow path page table walks.
1641 * The constant names here are patterned after the general style of the names
1642 * of the AT/ATS operations.
1643 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1645 typedef enum ARMMMUIdx {
1646 ARMMMUIdx_S12NSE0 = 0,
1647 ARMMMUIdx_S12NSE1 = 1,
1648 ARMMMUIdx_S1E2 = 2,
1649 ARMMMUIdx_S1E3 = 3,
1650 ARMMMUIdx_S1SE0 = 4,
1651 ARMMMUIdx_S1SE1 = 5,
1652 ARMMMUIdx_S2NS = 6,
1653 /* Indexes below here don't have TLBs and are used only for AT system
1654 * instructions or for the first stage of an S12 page table walk.
1656 ARMMMUIdx_S1NSE0 = 7,
1657 ARMMMUIdx_S1NSE1 = 8,
1658 } ARMMMUIdx;
1660 #define MMU_USER_IDX 0
1662 /* Return the exception level we're running at if this is our mmu_idx */
1663 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1665 assert(mmu_idx < ARMMMUIdx_S2NS);
1666 return mmu_idx & 3;
1669 /* Determine the current mmu_idx to use for normal loads/stores */
1670 static inline int cpu_mmu_index(CPUARMState *env)
1672 int el = arm_current_el(env);
1674 if (el < 2 && arm_is_secure_below_el3(env)) {
1675 return ARMMMUIdx_S1SE0 + el;
1677 return el;
1680 /* Return the Exception Level targeted by debug exceptions;
1681 * currently always EL1 since we don't implement EL2 or EL3.
1683 static inline int arm_debug_target_el(CPUARMState *env)
1685 return 1;
1688 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1690 if (arm_current_el(env) == arm_debug_target_el(env)) {
1691 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1692 || (env->daif & PSTATE_D)) {
1693 return false;
1696 return true;
1699 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1701 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1702 return aa64_generate_debug_exceptions(env);
1704 return arm_current_el(env) != 2;
1707 /* Return true if debugging exceptions are currently enabled.
1708 * This corresponds to what in ARM ARM pseudocode would be
1709 * if UsingAArch32() then
1710 * return AArch32.GenerateDebugExceptions()
1711 * else
1712 * return AArch64.GenerateDebugExceptions()
1713 * We choose to push the if() down into this function for clarity,
1714 * since the pseudocode has it at all callsites except for the one in
1715 * CheckSoftwareStep(), where it is elided because both branches would
1716 * always return the same value.
1718 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1719 * don't yet implement those exception levels or their associated trap bits.
1721 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1723 if (env->aarch64) {
1724 return aa64_generate_debug_exceptions(env);
1725 } else {
1726 return aa32_generate_debug_exceptions(env);
1730 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1731 * implicitly means this always returns false in pre-v8 CPUs.)
1733 static inline bool arm_singlestep_active(CPUARMState *env)
1735 return extract32(env->cp15.mdscr_el1, 0, 1)
1736 && arm_el_is_aa64(env, arm_debug_target_el(env))
1737 && arm_generate_debug_exceptions(env);
1740 #include "exec/cpu-all.h"
1742 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1743 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1744 * We put flags which are shared between 32 and 64 bit mode at the top
1745 * of the word, and flags which apply to only one mode at the bottom.
1747 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1748 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1749 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1750 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1751 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1752 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1753 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1754 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1755 /* Target EL if we take a floating-point-disabled exception */
1756 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1757 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
1759 /* Bit usage when in AArch32 state: */
1760 #define ARM_TBFLAG_THUMB_SHIFT 0
1761 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1762 #define ARM_TBFLAG_VECLEN_SHIFT 1
1763 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1764 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1765 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1766 #define ARM_TBFLAG_VFPEN_SHIFT 7
1767 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1768 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1769 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1770 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1771 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1772 /* We store the bottom two bits of the CPAR as TB flags and handle
1773 * checks on the other bits at runtime
1775 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
1776 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1777 /* Indicates whether cp register reads and writes by guest code should access
1778 * the secure or nonsecure bank of banked registers; note that this is not
1779 * the same thing as the current security state of the processor!
1781 #define ARM_TBFLAG_NS_SHIFT 19
1782 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1784 /* Bit usage when in AArch64 state: currently we have no A64 specific bits */
1786 /* some convenience accessor macros */
1787 #define ARM_TBFLAG_AARCH64_STATE(F) \
1788 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1789 #define ARM_TBFLAG_MMUIDX(F) \
1790 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1791 #define ARM_TBFLAG_SS_ACTIVE(F) \
1792 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1793 #define ARM_TBFLAG_PSTATE_SS(F) \
1794 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1795 #define ARM_TBFLAG_FPEXC_EL(F) \
1796 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
1797 #define ARM_TBFLAG_THUMB(F) \
1798 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1799 #define ARM_TBFLAG_VECLEN(F) \
1800 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1801 #define ARM_TBFLAG_VECSTRIDE(F) \
1802 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1803 #define ARM_TBFLAG_VFPEN(F) \
1804 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1805 #define ARM_TBFLAG_CONDEXEC(F) \
1806 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1807 #define ARM_TBFLAG_BSWAP_CODE(F) \
1808 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1809 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1810 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1811 #define ARM_TBFLAG_NS(F) \
1812 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1814 /* Return the exception level to which FP-disabled exceptions should
1815 * be taken, or 0 if FP is enabled.
1817 static inline int fp_exception_el(CPUARMState *env)
1819 int fpen;
1820 int cur_el = arm_current_el(env);
1822 /* CPACR and the CPTR registers don't exist before v6, so FP is
1823 * always accessible
1825 if (!arm_feature(env, ARM_FEATURE_V6)) {
1826 return 0;
1829 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1830 * 0, 2 : trap EL0 and EL1/PL1 accesses
1831 * 1 : trap only EL0 accesses
1832 * 3 : trap no accesses
1834 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1835 switch (fpen) {
1836 case 0:
1837 case 2:
1838 if (cur_el == 0 || cur_el == 1) {
1839 /* Trap to PL1, which might be EL1 or EL3 */
1840 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1841 return 3;
1843 return 1;
1845 if (cur_el == 3 && !is_a64(env)) {
1846 /* Secure PL1 running at EL3 */
1847 return 3;
1849 break;
1850 case 1:
1851 if (cur_el == 0) {
1852 return 1;
1854 break;
1855 case 3:
1856 break;
1859 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1860 * check because zero bits in the registers mean "don't trap".
1863 /* CPTR_EL2 : present in v7VE or v8 */
1864 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1865 && !arm_is_secure_below_el3(env)) {
1866 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1867 return 2;
1870 /* CPTR_EL3 : present in v8 */
1871 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1872 /* Trap all FP ops to EL3 */
1873 return 3;
1876 return 0;
1879 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1880 target_ulong *cs_base, int *flags)
1882 if (is_a64(env)) {
1883 *pc = env->pc;
1884 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1885 } else {
1886 *pc = env->regs[15];
1887 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1888 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1889 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1890 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1891 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1892 if (!(access_secure_reg(env))) {
1893 *flags |= ARM_TBFLAG_NS_MASK;
1895 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1896 || arm_el_is_aa64(env, 1)) {
1897 *flags |= ARM_TBFLAG_VFPEN_MASK;
1899 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1900 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1903 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1904 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1905 * states defined in the ARM ARM for software singlestep:
1906 * SS_ACTIVE PSTATE.SS State
1907 * 0 x Inactive (the TB flag for SS is always 0)
1908 * 1 0 Active-pending
1909 * 1 1 Active-not-pending
1911 if (arm_singlestep_active(env)) {
1912 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1913 if (is_a64(env)) {
1914 if (env->pstate & PSTATE_SS) {
1915 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1917 } else {
1918 if (env->uncached_cpsr & PSTATE_SS) {
1919 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1923 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
1925 *cs_base = 0;
1928 #include "exec/exec-all.h"
1930 enum {
1931 QEMU_PSCI_CONDUIT_DISABLED = 0,
1932 QEMU_PSCI_CONDUIT_SMC = 1,
1933 QEMU_PSCI_CONDUIT_HVC = 2,
1936 #endif