1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/exec-all.h"
12 #include "exec/cpu_ldst.h"
14 #include <zlib.h> /* For crc32 */
15 #include "exec/semihost.h"
16 #include "sysemu/kvm.h"
18 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 #ifndef CONFIG_USER_ONLY
21 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
22 int access_type
, ARMMMUIdx mmu_idx
,
23 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
24 target_ulong
*page_size
, uint32_t *fsr
,
27 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
28 int access_type
, ARMMMUIdx mmu_idx
,
29 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
30 target_ulong
*page_size_ptr
, uint32_t *fsr
,
33 /* Definitions for the PMCCNTR and PMCR registers */
39 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
43 /* VFP data registers are always little-endian. */
44 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
46 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
49 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
50 /* Aliases for Q regs. */
53 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
54 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
58 switch (reg
- nregs
) {
59 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
60 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
61 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
66 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
70 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
72 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
75 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
78 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
79 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
83 switch (reg
- nregs
) {
84 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
85 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
86 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
91 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
95 /* 128 bit FP register */
96 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
97 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
101 stl_p(buf
, vfp_get_fpsr(env
));
105 stl_p(buf
, vfp_get_fpcr(env
));
112 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
116 /* 128 bit FP register */
117 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
118 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
122 vfp_set_fpsr(env
, ldl_p(buf
));
126 vfp_set_fpcr(env
, ldl_p(buf
));
133 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
135 assert(ri
->fieldoffset
);
136 if (cpreg_field_is_64bit(ri
)) {
137 return CPREG_FIELD64(env
, ri
);
139 return CPREG_FIELD32(env
, ri
);
143 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
146 assert(ri
->fieldoffset
);
147 if (cpreg_field_is_64bit(ri
)) {
148 CPREG_FIELD64(env
, ri
) = value
;
150 CPREG_FIELD32(env
, ri
) = value
;
154 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
156 return (char *)env
+ ri
->fieldoffset
;
159 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
161 /* Raw read of a coprocessor register (as needed for migration, etc). */
162 if (ri
->type
& ARM_CP_CONST
) {
163 return ri
->resetvalue
;
164 } else if (ri
->raw_readfn
) {
165 return ri
->raw_readfn(env
, ri
);
166 } else if (ri
->readfn
) {
167 return ri
->readfn(env
, ri
);
169 return raw_read(env
, ri
);
173 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
176 /* Raw write of a coprocessor register (as needed for migration, etc).
177 * Note that constant registers are treated as write-ignored; the
178 * caller should check for success by whether a readback gives the
181 if (ri
->type
& ARM_CP_CONST
) {
183 } else if (ri
->raw_writefn
) {
184 ri
->raw_writefn(env
, ri
, v
);
185 } else if (ri
->writefn
) {
186 ri
->writefn(env
, ri
, v
);
188 raw_write(env
, ri
, v
);
192 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
194 /* Return true if the regdef would cause an assertion if you called
195 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
196 * program bug for it not to have the NO_RAW flag).
197 * NB that returning false here doesn't necessarily mean that calling
198 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
199 * read/write access functions which are safe for raw use" from "has
200 * read/write access functions which have side effects but has forgotten
201 * to provide raw access functions".
202 * The tests here line up with the conditions in read/write_raw_cp_reg()
203 * and assertions in raw_read()/raw_write().
205 if ((ri
->type
& ARM_CP_CONST
) ||
207 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
213 bool write_cpustate_to_list(ARMCPU
*cpu
)
215 /* Write the coprocessor state from cpu->env to the (index,value) list. */
219 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
220 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
221 const ARMCPRegInfo
*ri
;
223 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
228 if (ri
->type
& ARM_CP_NO_RAW
) {
231 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
236 bool write_list_to_cpustate(ARMCPU
*cpu
)
241 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
242 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
243 uint64_t v
= cpu
->cpreg_values
[i
];
244 const ARMCPRegInfo
*ri
;
246 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
251 if (ri
->type
& ARM_CP_NO_RAW
) {
254 /* Write value and confirm it reads back as written
255 * (to catch read-only registers and partially read-only
256 * registers where the incoming migration value doesn't match)
258 write_raw_cp_reg(&cpu
->env
, ri
, v
);
259 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
266 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
268 ARMCPU
*cpu
= opaque
;
270 const ARMCPRegInfo
*ri
;
272 regidx
= *(uint32_t *)key
;
273 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
275 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
276 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
277 /* The value array need not be initialized at this point */
278 cpu
->cpreg_array_len
++;
282 static void count_cpreg(gpointer key
, gpointer opaque
)
284 ARMCPU
*cpu
= opaque
;
286 const ARMCPRegInfo
*ri
;
288 regidx
= *(uint32_t *)key
;
289 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
291 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
292 cpu
->cpreg_array_len
++;
296 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
298 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
299 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
310 void init_cpreg_list(ARMCPU
*cpu
)
312 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
313 * Note that we require cpreg_tuples[] to be sorted by key ID.
318 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
319 keys
= g_list_sort(keys
, cpreg_key_compare
);
321 cpu
->cpreg_array_len
= 0;
323 g_list_foreach(keys
, count_cpreg
, cpu
);
325 arraylen
= cpu
->cpreg_array_len
;
326 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
330 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
331 cpu
->cpreg_array_len
= 0;
333 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
335 assert(cpu
->cpreg_array_len
== arraylen
);
341 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
342 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 * access_el3_aa32ns: Used to check AArch32 register views.
345 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
348 const ARMCPRegInfo
*ri
,
351 bool secure
= arm_is_secure_below_el3(env
);
353 assert(!arm_el_is_aa64(env
, 3));
355 return CP_ACCESS_TRAP_UNCATEGORIZED
;
360 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
361 const ARMCPRegInfo
*ri
,
364 if (!arm_el_is_aa64(env
, 3)) {
365 return access_el3_aa32ns(env
, ri
, isread
);
370 /* Some secure-only AArch32 registers trap to EL3 if used from
371 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
372 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
373 * We assume that the .access field is set to PL1_RW.
375 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
376 const ARMCPRegInfo
*ri
,
379 if (arm_current_el(env
) == 3) {
382 if (arm_is_secure_below_el3(env
)) {
383 return CP_ACCESS_TRAP_EL3
;
385 /* This will be EL1 NS and EL2 NS, which just UNDEF */
386 return CP_ACCESS_TRAP_UNCATEGORIZED
;
389 /* Check for traps to "powerdown debug" registers, which are controlled
392 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
395 int el
= arm_current_el(env
);
397 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
398 && !arm_is_secure_below_el3(env
)) {
399 return CP_ACCESS_TRAP_EL2
;
401 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
402 return CP_ACCESS_TRAP_EL3
;
407 /* Check for traps to "debug ROM" registers, which are controlled
408 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
413 int el
= arm_current_el(env
);
415 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
416 && !arm_is_secure_below_el3(env
)) {
417 return CP_ACCESS_TRAP_EL2
;
419 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
420 return CP_ACCESS_TRAP_EL3
;
425 /* Check for traps to general debug registers, which are controlled
426 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
431 int el
= arm_current_el(env
);
433 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
434 && !arm_is_secure_below_el3(env
)) {
435 return CP_ACCESS_TRAP_EL2
;
437 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
438 return CP_ACCESS_TRAP_EL3
;
443 /* Check for traps to performance monitor registers, which are controlled
444 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
449 int el
= arm_current_el(env
);
451 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
452 && !arm_is_secure_below_el3(env
)) {
453 return CP_ACCESS_TRAP_EL2
;
455 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
456 return CP_ACCESS_TRAP_EL3
;
461 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
463 ARMCPU
*cpu
= arm_env_get_cpu(env
);
465 raw_write(env
, ri
, value
);
466 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
469 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
471 ARMCPU
*cpu
= arm_env_get_cpu(env
);
473 if (raw_read(env
, ri
) != value
) {
474 /* Unlike real hardware the qemu TLB uses virtual addresses,
475 * not modified virtual addresses, so this causes a TLB flush.
477 tlb_flush(CPU(cpu
), 1);
478 raw_write(env
, ri
, value
);
482 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
485 ARMCPU
*cpu
= arm_env_get_cpu(env
);
487 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
488 && !extended_addresses_enabled(env
)) {
489 /* For VMSA (when not using the LPAE long descriptor page table
490 * format) this register includes the ASID, so do a TLB flush.
491 * For PMSA it is purely a process ID and no action is needed.
493 tlb_flush(CPU(cpu
), 1);
495 raw_write(env
, ri
, value
);
498 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
501 /* Invalidate all (TLBIALL) */
502 ARMCPU
*cpu
= arm_env_get_cpu(env
);
504 tlb_flush(CPU(cpu
), 1);
507 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
510 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
511 ARMCPU
*cpu
= arm_env_get_cpu(env
);
513 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
516 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
519 /* Invalidate by ASID (TLBIASID) */
520 ARMCPU
*cpu
= arm_env_get_cpu(env
);
522 tlb_flush(CPU(cpu
), value
== 0);
525 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 ARMCPU
*cpu
= arm_env_get_cpu(env
);
531 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
534 /* IS variants of TLB operations must affect all cores */
535 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
540 CPU_FOREACH(other_cs
) {
541 tlb_flush(other_cs
, 1);
545 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
550 CPU_FOREACH(other_cs
) {
551 tlb_flush(other_cs
, value
== 0);
555 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
560 CPU_FOREACH(other_cs
) {
561 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
565 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
570 CPU_FOREACH(other_cs
) {
571 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
575 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
578 CPUState
*cs
= ENV_GET_CPU(env
);
580 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
584 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
589 CPU_FOREACH(other_cs
) {
590 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
591 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
595 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
598 /* Invalidate by IPA. This has to invalidate any structures that
599 * contain only stage 2 translation information, but does not need
600 * to apply to structures that contain combined stage 1 and stage 2
601 * translation information.
602 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
604 CPUState
*cs
= ENV_GET_CPU(env
);
607 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
611 pageaddr
= sextract64(value
<< 12, 0, 40);
613 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
616 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
622 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
626 pageaddr
= sextract64(value
<< 12, 0, 40);
628 CPU_FOREACH(other_cs
) {
629 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
633 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
636 CPUState
*cs
= ENV_GET_CPU(env
);
638 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
641 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
646 CPU_FOREACH(other_cs
) {
647 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
651 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
654 CPUState
*cs
= ENV_GET_CPU(env
);
655 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
657 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
660 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
664 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
666 CPU_FOREACH(other_cs
) {
667 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
671 static const ARMCPRegInfo cp_reginfo
[] = {
672 /* Define the secure and non-secure FCSE identifier CP registers
673 * separately because there is no secure bank in V8 (no _EL3). This allows
674 * the secure register to be properly reset and migrated. There is also no
675 * v8 EL1 version of the register so the non-secure instance stands alone.
677 { .name
= "FCSEIDR(NS)",
678 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
679 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
680 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
681 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
682 { .name
= "FCSEIDR(S)",
683 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
684 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
685 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
686 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
687 /* Define the secure and non-secure context identifier CP registers
688 * separately because there is no secure bank in V8 (no _EL3). This allows
689 * the secure register to be properly reset and migrated. In the
690 * non-secure case, the 32-bit register will have reset and migration
691 * disabled during registration as it is handled by the 64-bit instance.
693 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
694 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
695 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
696 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
697 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
698 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
699 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
700 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
701 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
702 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
706 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
707 /* NB: Some of these registers exist in v8 but with more precise
708 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
710 /* MMU Domain access control / MPU write buffer control */
712 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
713 .access
= PL1_RW
, .resetvalue
= 0,
714 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
715 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
716 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
717 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
718 * For v6 and v5, these mappings are overly broad.
720 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
721 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
722 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
723 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
724 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
725 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
726 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
727 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
728 /* Cache maintenance ops; some of this space may be overridden later. */
729 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
730 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
731 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
735 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
736 /* Not all pre-v6 cores implemented this WFI, so this is slightly
739 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
740 .access
= PL1_W
, .type
= ARM_CP_WFI
},
744 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
745 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
746 * is UNPREDICTABLE; we choose to NOP as most implementations do).
748 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
749 .access
= PL1_W
, .type
= ARM_CP_WFI
},
750 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
751 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
752 * OMAPCP will override this space.
754 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
755 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
757 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
758 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
760 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
761 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
762 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
764 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
765 * implementing it as RAZ means the "debug architecture version" bits
766 * will read as a reserved value, which should cause Linux to not try
767 * to use the debug hardware.
769 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
770 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
771 /* MMU TLB control. Note that the wildcarding means we cover not just
772 * the unified TLB ops but also the dside/iside/inner-shareable variants.
774 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
775 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
776 .type
= ARM_CP_NO_RAW
},
777 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
778 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
779 .type
= ARM_CP_NO_RAW
},
780 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
781 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
782 .type
= ARM_CP_NO_RAW
},
783 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
784 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
785 .type
= ARM_CP_NO_RAW
},
786 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
787 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
788 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
789 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
793 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
798 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
799 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
800 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
801 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
802 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
804 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
805 /* VFP coprocessor: cp10 & cp11 [23:20] */
806 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
808 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
809 /* ASEDIS [31] bit is RAO/WI */
813 /* VFPv3 and upwards with NEON implement 32 double precision
814 * registers (D0-D31).
816 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
817 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
818 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
824 env
->cp15
.cpacr_el1
= value
;
827 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
830 if (arm_feature(env
, ARM_FEATURE_V8
)) {
831 /* Check if CPACR accesses are to be trapped to EL2 */
832 if (arm_current_el(env
) == 1 &&
833 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
834 return CP_ACCESS_TRAP_EL2
;
835 /* Check if CPACR accesses are to be trapped to EL3 */
836 } else if (arm_current_el(env
) < 3 &&
837 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
838 return CP_ACCESS_TRAP_EL3
;
845 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
848 /* Check if CPTR accesses are set to trap to EL3 */
849 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
850 return CP_ACCESS_TRAP_EL3
;
856 static const ARMCPRegInfo v6_cp_reginfo
[] = {
857 /* prefetch by MVA in v6, NOP in v7 */
858 { .name
= "MVA_prefetch",
859 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
860 .access
= PL1_W
, .type
= ARM_CP_NOP
},
861 /* We need to break the TB after ISB to execute self-modifying code
862 * correctly and also to take any pending interrupts immediately.
863 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
865 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
866 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
867 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
868 .access
= PL0_W
, .type
= ARM_CP_NOP
},
869 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
870 .access
= PL0_W
, .type
= ARM_CP_NOP
},
871 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
873 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
874 offsetof(CPUARMState
, cp15
.ifar_ns
) },
876 /* Watchpoint Fault Address Register : should actually only be present
877 * for 1136, 1176, 11MPCore.
879 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
880 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
881 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
882 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
883 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
884 .resetvalue
= 0, .writefn
= cpacr_write
},
888 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
891 /* Performance monitor registers user accessibility is controlled
892 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
893 * trapping to EL2 or EL3 for other accesses.
895 int el
= arm_current_el(env
);
897 if (el
== 0 && !env
->cp15
.c9_pmuserenr
) {
898 return CP_ACCESS_TRAP
;
900 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
901 && !arm_is_secure_below_el3(env
)) {
902 return CP_ACCESS_TRAP_EL2
;
904 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
905 return CP_ACCESS_TRAP_EL3
;
911 #ifndef CONFIG_USER_ONLY
913 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
915 /* This does not support checking PMCCFILTR_EL0 register */
917 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
924 void pmccntr_sync(CPUARMState
*env
)
928 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
929 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
931 if (env
->cp15
.c9_pmcr
& PMCRD
) {
932 /* Increment once every 64 processor clock cycles */
936 if (arm_ccnt_enabled(env
)) {
937 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
941 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
947 /* The counter has been reset */
948 env
->cp15
.c15_ccnt
= 0;
951 /* only the DP, X, D and E bits are writable */
952 env
->cp15
.c9_pmcr
&= ~0x39;
953 env
->cp15
.c9_pmcr
|= (value
& 0x39);
958 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
960 uint64_t total_ticks
;
962 if (!arm_ccnt_enabled(env
)) {
963 /* Counter is disabled, do not change value */
964 return env
->cp15
.c15_ccnt
;
967 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
968 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
970 if (env
->cp15
.c9_pmcr
& PMCRD
) {
971 /* Increment once every 64 processor clock cycles */
974 return total_ticks
- env
->cp15
.c15_ccnt
;
977 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
980 uint64_t total_ticks
;
982 if (!arm_ccnt_enabled(env
)) {
983 /* Counter is disabled, set the absolute value */
984 env
->cp15
.c15_ccnt
= value
;
988 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
989 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
991 if (env
->cp15
.c9_pmcr
& PMCRD
) {
992 /* Increment once every 64 processor clock cycles */
995 env
->cp15
.c15_ccnt
= total_ticks
- value
;
998 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1001 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1003 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1006 #else /* CONFIG_USER_ONLY */
1008 void pmccntr_sync(CPUARMState
*env
)
1014 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1018 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
1022 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1026 env
->cp15
.c9_pmcnten
|= value
;
1029 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1033 env
->cp15
.c9_pmcnten
&= ~value
;
1036 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1039 env
->cp15
.c9_pmovsr
&= ~value
;
1042 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1045 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
1048 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1051 env
->cp15
.c9_pmuserenr
= value
& 1;
1054 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1057 /* We have no event counters so only the C bit can be changed */
1059 env
->cp15
.c9_pminten
|= value
;
1062 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1066 env
->cp15
.c9_pminten
&= ~value
;
1069 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1072 /* Note that even though the AArch64 view of this register has bits
1073 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1074 * architectural requirements for bits which are RES0 only in some
1075 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1076 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1078 raw_write(env
, ri
, value
& ~0x1FULL
);
1081 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1083 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1084 * For bits that vary between AArch32/64, code needs to check the
1085 * current execution mode before directly using the feature bit.
1087 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
1089 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1090 valid_mask
&= ~SCR_HCE
;
1092 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1093 * supported if EL2 exists. The bit is UNK/SBZP when
1094 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1095 * when EL2 is unavailable.
1096 * On ARMv8, this bit is always available.
1098 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1099 !arm_feature(env
, ARM_FEATURE_V8
)) {
1100 valid_mask
&= ~SCR_SMD
;
1104 /* Clear all-context RES0 bits. */
1105 value
&= valid_mask
;
1106 raw_write(env
, ri
, value
);
1109 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1111 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1113 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1116 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1117 ri
->secure
& ARM_CP_SECSTATE_S
);
1119 return cpu
->ccsidr
[index
];
1122 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1125 raw_write(env
, ri
, value
& 0xf);
1128 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1130 CPUState
*cs
= ENV_GET_CPU(env
);
1133 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1136 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1139 /* External aborts are not possible in QEMU so A bit is always clear */
1143 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1144 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1145 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1146 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1147 /* Performance monitors are implementation defined in v7,
1148 * but with an ARM recommended set of registers, which we
1149 * follow (although we don't actually implement any counters)
1151 * Performance registers fall into three categories:
1152 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1153 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1154 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1155 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1156 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1158 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1159 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1160 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1161 .writefn
= pmcntenset_write
,
1162 .accessfn
= pmreg_access
,
1163 .raw_writefn
= raw_write
},
1164 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1165 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1166 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1167 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1168 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1169 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1171 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1172 .accessfn
= pmreg_access
,
1173 .writefn
= pmcntenclr_write
,
1174 .type
= ARM_CP_ALIAS
},
1175 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1176 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1177 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1178 .type
= ARM_CP_ALIAS
,
1179 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1180 .writefn
= pmcntenclr_write
},
1181 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1182 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1183 .accessfn
= pmreg_access
,
1184 .writefn
= pmovsr_write
,
1185 .raw_writefn
= raw_write
},
1186 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1187 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1188 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1189 .type
= ARM_CP_ALIAS
,
1190 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1191 .writefn
= pmovsr_write
,
1192 .raw_writefn
= raw_write
},
1193 /* Unimplemented so WI. */
1194 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1195 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1196 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1197 * We choose to RAZ/WI.
1199 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1200 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1201 .accessfn
= pmreg_access
},
1202 #ifndef CONFIG_USER_ONLY
1203 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1204 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1205 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1206 .accessfn
= pmreg_access
},
1207 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1208 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1209 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1211 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1213 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1214 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1215 .writefn
= pmccfiltr_write
,
1216 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1218 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1220 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1222 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1223 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1224 .raw_writefn
= raw_write
},
1225 /* Unimplemented, RAZ/WI. */
1226 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1227 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1228 .accessfn
= pmreg_access
},
1229 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1230 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1231 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1233 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1234 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1235 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1236 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1237 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1239 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1240 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1241 .access
= PL1_RW
, .accessfn
= access_tpm
,
1242 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1244 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1245 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1246 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1247 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1248 .writefn
= pmintenclr_write
, },
1249 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1250 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1251 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1252 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1253 .writefn
= pmintenclr_write
},
1254 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1255 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1256 .access
= PL1_RW
, .writefn
= vbar_write
,
1257 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1258 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1260 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1261 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1262 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1263 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1264 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1265 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1266 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1267 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1268 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1269 * just RAZ for all cores:
1271 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1272 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1273 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1274 /* Auxiliary fault status registers: these also are IMPDEF, and we
1275 * choose to RAZ/WI for all cores.
1277 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1278 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1279 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1280 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1281 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1282 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1283 /* MAIR can just read-as-written because we don't implement caches
1284 * and so don't need to care about memory attributes.
1286 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1287 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1288 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1290 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1291 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1292 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1294 /* For non-long-descriptor page tables these are PRRR and NMRR;
1295 * regardless they still act as reads-as-written for QEMU.
1297 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1298 * allows them to assign the correct fieldoffset based on the endianness
1299 * handled in the field definitions.
1301 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1302 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1303 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1304 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1305 .resetfn
= arm_cp_reset_ignore
},
1306 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1307 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1308 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1309 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1310 .resetfn
= arm_cp_reset_ignore
},
1311 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1312 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1313 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1314 /* 32 bit ITLB invalidates */
1315 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1316 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1317 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1318 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1319 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1320 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1321 /* 32 bit DTLB invalidates */
1322 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1323 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1324 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1325 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1326 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1327 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1328 /* 32 bit TLB invalidates */
1329 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1330 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1331 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1332 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1333 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1334 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1335 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1336 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1340 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1341 /* 32 bit TLB invalidates, Inner Shareable */
1342 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1343 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1344 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1345 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1346 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1347 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1348 .writefn
= tlbiasid_is_write
},
1349 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1350 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1351 .writefn
= tlbimvaa_is_write
},
1355 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1362 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1365 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1366 return CP_ACCESS_TRAP
;
1368 return CP_ACCESS_OK
;
1371 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1372 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1373 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1375 .writefn
= teecr_write
},
1376 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1377 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1378 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1382 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1383 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1384 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1386 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1387 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1389 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1390 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1391 .resetfn
= arm_cp_reset_ignore
},
1392 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1393 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1394 .access
= PL0_R
|PL1_W
,
1395 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1397 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1398 .access
= PL0_R
|PL1_W
,
1399 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1400 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1401 .resetfn
= arm_cp_reset_ignore
},
1402 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1403 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1405 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1406 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1408 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1409 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1414 #ifndef CONFIG_USER_ONLY
1416 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1419 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1420 * Writable only at the highest implemented exception level.
1422 int el
= arm_current_el(env
);
1426 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1427 return CP_ACCESS_TRAP
;
1431 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1432 arm_is_secure_below_el3(env
)) {
1433 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1434 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1442 if (!isread
&& el
< arm_highest_el(env
)) {
1443 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1446 return CP_ACCESS_OK
;
1449 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1452 unsigned int cur_el
= arm_current_el(env
);
1453 bool secure
= arm_is_secure(env
);
1455 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1457 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1458 return CP_ACCESS_TRAP
;
1461 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1462 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1463 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1464 return CP_ACCESS_TRAP_EL2
;
1466 return CP_ACCESS_OK
;
1469 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1472 unsigned int cur_el
= arm_current_el(env
);
1473 bool secure
= arm_is_secure(env
);
1475 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1476 * EL0[PV]TEN is zero.
1479 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1480 return CP_ACCESS_TRAP
;
1483 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1484 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1485 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1486 return CP_ACCESS_TRAP_EL2
;
1488 return CP_ACCESS_OK
;
1491 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1492 const ARMCPRegInfo
*ri
,
1495 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1498 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1499 const ARMCPRegInfo
*ri
,
1502 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1505 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1508 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1511 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1514 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1517 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1518 const ARMCPRegInfo
*ri
,
1521 /* The AArch64 register view of the secure physical timer is
1522 * always accessible from EL3, and configurably accessible from
1525 switch (arm_current_el(env
)) {
1527 if (!arm_is_secure(env
)) {
1528 return CP_ACCESS_TRAP
;
1530 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1531 return CP_ACCESS_TRAP_EL3
;
1533 return CP_ACCESS_OK
;
1536 return CP_ACCESS_TRAP
;
1538 return CP_ACCESS_OK
;
1540 g_assert_not_reached();
1544 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1546 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1549 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1551 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1554 /* Timer enabled: calculate and set current ISTATUS, irq, and
1555 * reset timer to when ISTATUS next has to change
1557 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1558 cpu
->env
.cp15
.cntvoff_el2
: 0;
1559 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1560 /* Note that this must be unsigned 64 bit arithmetic: */
1561 int istatus
= count
- offset
>= gt
->cval
;
1564 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1565 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1566 (istatus
&& !(gt
->ctl
& 2)));
1568 /* Next transition is when count rolls back over to zero */
1569 nexttick
= UINT64_MAX
;
1571 /* Next transition is when we hit cval */
1572 nexttick
= gt
->cval
+ offset
;
1574 /* Note that the desired next expiry time might be beyond the
1575 * signed-64-bit range of a QEMUTimer -- in this case we just
1576 * set the timer for as far in the future as possible. When the
1577 * timer expires we will reset the timer for any remaining period.
1579 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1580 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1582 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1584 /* Timer disabled: ISTATUS and timer output always clear */
1586 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1587 timer_del(cpu
->gt_timer
[timeridx
]);
1591 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1594 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1596 timer_del(cpu
->gt_timer
[timeridx
]);
1599 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1601 return gt_get_countervalue(env
);
1604 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1606 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1609 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1613 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1614 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1617 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1620 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1622 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1623 (gt_get_countervalue(env
) - offset
));
1626 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1630 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1632 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1633 sextract64(value
, 0, 32);
1634 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1637 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1641 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1642 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1644 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1645 if ((oldval
^ value
) & 1) {
1646 /* Enable toggled */
1647 gt_recalc_timer(cpu
, timeridx
);
1648 } else if ((oldval
^ value
) & 2) {
1649 /* IMASK toggled: don't need to recalculate,
1650 * just set the interrupt line based on ISTATUS
1652 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1653 (oldval
& 4) && !(value
& 2));
1657 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1659 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1662 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1665 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1668 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1670 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1673 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1676 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1679 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1682 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1685 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1687 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1690 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1693 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1696 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1698 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1701 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1704 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1707 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1710 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1713 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1716 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1718 raw_write(env
, ri
, value
);
1719 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1722 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1724 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1727 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1730 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1733 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1735 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1738 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1741 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1744 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1747 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1750 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1752 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1755 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1758 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1761 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1763 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1766 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1769 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1772 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1775 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1778 void arm_gt_ptimer_cb(void *opaque
)
1780 ARMCPU
*cpu
= opaque
;
1782 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1785 void arm_gt_vtimer_cb(void *opaque
)
1787 ARMCPU
*cpu
= opaque
;
1789 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1792 void arm_gt_htimer_cb(void *opaque
)
1794 ARMCPU
*cpu
= opaque
;
1796 gt_recalc_timer(cpu
, GTIMER_HYP
);
1799 void arm_gt_stimer_cb(void *opaque
)
1801 ARMCPU
*cpu
= opaque
;
1803 gt_recalc_timer(cpu
, GTIMER_SEC
);
1806 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1807 /* Note that CNTFRQ is purely reads-as-written for the benefit
1808 * of software; writing it doesn't actually change the timer frequency.
1809 * Our reset value matches the fixed frequency we implement the timer at.
1811 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1812 .type
= ARM_CP_ALIAS
,
1813 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1814 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1816 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1817 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1818 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1819 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1820 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1822 /* overall control: mostly access permissions */
1823 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1824 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1826 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1829 /* per-timer control */
1830 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1831 .secure
= ARM_CP_SECSTATE_NS
,
1832 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1833 .accessfn
= gt_ptimer_access
,
1834 .fieldoffset
= offsetoflow32(CPUARMState
,
1835 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1836 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1838 { .name
= "CNTP_CTL(S)",
1839 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1840 .secure
= ARM_CP_SECSTATE_S
,
1841 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1842 .accessfn
= gt_ptimer_access
,
1843 .fieldoffset
= offsetoflow32(CPUARMState
,
1844 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1845 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1847 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1848 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1849 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1850 .accessfn
= gt_ptimer_access
,
1851 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1853 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1855 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1856 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1857 .accessfn
= gt_vtimer_access
,
1858 .fieldoffset
= offsetoflow32(CPUARMState
,
1859 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1860 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1862 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1863 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1864 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1865 .accessfn
= gt_vtimer_access
,
1866 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1868 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1870 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1871 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1872 .secure
= ARM_CP_SECSTATE_NS
,
1873 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1874 .accessfn
= gt_ptimer_access
,
1875 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1877 { .name
= "CNTP_TVAL(S)",
1878 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1879 .secure
= ARM_CP_SECSTATE_S
,
1880 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1881 .accessfn
= gt_ptimer_access
,
1882 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1884 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1885 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1886 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1887 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1888 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1890 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1891 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1892 .accessfn
= gt_vtimer_access
,
1893 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1895 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1896 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1897 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1898 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1899 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1901 /* The counter itself */
1902 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1903 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1904 .accessfn
= gt_pct_access
,
1905 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1907 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1908 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1909 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1910 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1912 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1913 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1914 .accessfn
= gt_vct_access
,
1915 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1917 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1918 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1919 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1920 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1922 /* Comparison value, indicating when the timer goes off */
1923 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1924 .secure
= ARM_CP_SECSTATE_NS
,
1925 .access
= PL1_RW
| PL0_R
,
1926 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1927 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1928 .accessfn
= gt_ptimer_access
,
1929 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1931 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1932 .secure
= ARM_CP_SECSTATE_S
,
1933 .access
= PL1_RW
| PL0_R
,
1934 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1935 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1936 .accessfn
= gt_ptimer_access
,
1937 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1939 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1940 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1941 .access
= PL1_RW
| PL0_R
,
1943 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1944 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1945 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1947 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1948 .access
= PL1_RW
| PL0_R
,
1949 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1950 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1951 .accessfn
= gt_vtimer_access
,
1952 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1954 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1955 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1956 .access
= PL1_RW
| PL0_R
,
1958 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1959 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1960 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1962 /* Secure timer -- this is actually restricted to only EL3
1963 * and configurably Secure-EL1 via the accessfn.
1965 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1966 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1967 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1968 .accessfn
= gt_stimer_access
,
1969 .readfn
= gt_sec_tval_read
,
1970 .writefn
= gt_sec_tval_write
,
1971 .resetfn
= gt_sec_timer_reset
,
1973 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1974 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1975 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1976 .accessfn
= gt_stimer_access
,
1977 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1979 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1981 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1982 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1983 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1984 .accessfn
= gt_stimer_access
,
1985 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1986 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1992 /* In user-mode none of the generic timer registers are accessible,
1993 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1994 * so instead just don't register any of them.
1996 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2002 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2004 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2005 raw_write(env
, ri
, value
);
2006 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2007 raw_write(env
, ri
, value
& 0xfffff6ff);
2009 raw_write(env
, ri
, value
& 0xfffff1ff);
2013 #ifndef CONFIG_USER_ONLY
2014 /* get_phys_addr() isn't present for user-mode-only targets */
2016 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2020 /* The ATS12NSO* operations must trap to EL3 if executed in
2021 * Secure EL1 (which can only happen if EL3 is AArch64).
2022 * They are simply UNDEF if executed from NS EL1.
2023 * They function normally from EL2 or EL3.
2025 if (arm_current_el(env
) == 1) {
2026 if (arm_is_secure_below_el3(env
)) {
2027 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2029 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2032 return CP_ACCESS_OK
;
2035 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2036 int access_type
, ARMMMUIdx mmu_idx
)
2039 target_ulong page_size
;
2044 MemTxAttrs attrs
= {};
2045 ARMMMUFaultInfo fi
= {};
2047 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
2048 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
2049 if (extended_addresses_enabled(env
)) {
2050 /* fsr is a DFSR/IFSR value for the long descriptor
2051 * translation table format, but with WnR always clear.
2052 * Convert it to a 64-bit PAR.
2054 par64
= (1 << 11); /* LPAE bit always set */
2056 par64
|= phys_addr
& ~0xfffULL
;
2057 if (!attrs
.secure
) {
2058 par64
|= (1 << 9); /* NS */
2060 /* We don't set the ATTR or SH fields in the PAR. */
2063 par64
|= (fsr
& 0x3f) << 1; /* FS */
2064 /* Note that S2WLK and FSTAGE are always zero, because we don't
2065 * implement virtualization and therefore there can't be a stage 2
2070 /* fsr is a DFSR/IFSR value for the short descriptor
2071 * translation table format (with WnR always clear).
2072 * Convert it to a 32-bit PAR.
2075 /* We do not set any attribute bits in the PAR */
2076 if (page_size
== (1 << 24)
2077 && arm_feature(env
, ARM_FEATURE_V7
)) {
2078 par64
= (phys_addr
& 0xff000000) | (1 << 1);
2080 par64
= phys_addr
& 0xfffff000;
2082 if (!attrs
.secure
) {
2083 par64
|= (1 << 9); /* NS */
2086 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
2087 ((fsr
& 0xf) << 1) | 1;
2093 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2095 int access_type
= ri
->opc2
& 1;
2098 int el
= arm_current_el(env
);
2099 bool secure
= arm_is_secure_below_el3(env
);
2101 switch (ri
->opc2
& 6) {
2103 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2106 mmu_idx
= ARMMMUIdx_S1E3
;
2109 mmu_idx
= ARMMMUIdx_S1NSE1
;
2112 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2115 g_assert_not_reached();
2119 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2122 mmu_idx
= ARMMMUIdx_S1SE0
;
2125 mmu_idx
= ARMMMUIdx_S1NSE0
;
2128 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2131 g_assert_not_reached();
2135 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2136 mmu_idx
= ARMMMUIdx_S12NSE1
;
2139 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2140 mmu_idx
= ARMMMUIdx_S12NSE0
;
2143 g_assert_not_reached();
2146 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2148 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2151 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2154 int access_type
= ri
->opc2
& 1;
2157 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2159 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2162 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2165 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2166 return CP_ACCESS_TRAP
;
2168 return CP_ACCESS_OK
;
2171 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2174 int access_type
= ri
->opc2
& 1;
2176 int secure
= arm_is_secure_below_el3(env
);
2178 switch (ri
->opc2
& 6) {
2181 case 0: /* AT S1E1R, AT S1E1W */
2182 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2184 case 4: /* AT S1E2R, AT S1E2W */
2185 mmu_idx
= ARMMMUIdx_S1E2
;
2187 case 6: /* AT S1E3R, AT S1E3W */
2188 mmu_idx
= ARMMMUIdx_S1E3
;
2191 g_assert_not_reached();
2194 case 2: /* AT S1E0R, AT S1E0W */
2195 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2197 case 4: /* AT S12E1R, AT S12E1W */
2198 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2200 case 6: /* AT S12E0R, AT S12E0W */
2201 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2204 g_assert_not_reached();
2207 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2211 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2212 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2213 .access
= PL1_RW
, .resetvalue
= 0,
2214 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2215 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2216 .writefn
= par_write
},
2217 #ifndef CONFIG_USER_ONLY
2218 /* This underdecoding is safe because the reginfo is NO_RAW. */
2219 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2220 .access
= PL1_W
, .accessfn
= ats_access
,
2221 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2226 /* Return basic MPU access permission bits. */
2227 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2234 for (i
= 0; i
< 16; i
+= 2) {
2235 ret
|= (val
>> i
) & mask
;
2241 /* Pad basic MPU access permission bits to extended format. */
2242 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2249 for (i
= 0; i
< 16; i
+= 2) {
2250 ret
|= (val
& mask
) << i
;
2256 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2259 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2262 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2264 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2267 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2270 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2273 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2275 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2278 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2280 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2286 u32p
+= env
->cp15
.c6_rgnr
;
2290 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2293 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2294 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2300 u32p
+= env
->cp15
.c6_rgnr
;
2301 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2305 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2307 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2308 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2314 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2317 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2321 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2323 if (value
>= nrgs
) {
2324 qemu_log_mask(LOG_GUEST_ERROR
,
2325 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2326 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2330 raw_write(env
, ri
, value
);
2333 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2334 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2335 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2336 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2337 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2338 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2339 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2340 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2341 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2342 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2343 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2344 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2345 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2346 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2348 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2349 .writefn
= pmsav7_rgnr_write
},
2353 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2354 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2355 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2356 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2357 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2358 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2359 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2360 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2361 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2362 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2364 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2366 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2368 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2370 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2372 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2373 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2375 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2376 /* Protection region base and size registers */
2377 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2378 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2379 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2380 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2381 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2382 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2383 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2384 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2385 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2386 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2387 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2388 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2389 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2390 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2391 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2392 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2393 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2394 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2395 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2396 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2397 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2398 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2399 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2400 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2404 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2407 TCR
*tcr
= raw_ptr(env
, ri
);
2408 int maskshift
= extract32(value
, 0, 3);
2410 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2411 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2412 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2413 * using Long-desciptor translation table format */
2414 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2415 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2416 /* In an implementation that includes the Security Extensions
2417 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2418 * Short-descriptor translation table format.
2420 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2426 /* Update the masks corresponding to the TCR bank being written
2427 * Note that we always calculate mask and base_mask, but
2428 * they are only used for short-descriptor tables (ie if EAE is 0);
2429 * for long-descriptor tables the TCR fields are used differently
2430 * and the mask and base_mask values are meaningless.
2432 tcr
->raw_tcr
= value
;
2433 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2434 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2437 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2440 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2442 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2443 /* With LPAE the TTBCR could result in a change of ASID
2444 * via the TTBCR.A1 bit, so do a TLB flush.
2446 tlb_flush(CPU(cpu
), 1);
2448 vmsa_ttbcr_raw_write(env
, ri
, value
);
2451 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2453 TCR
*tcr
= raw_ptr(env
, ri
);
2455 /* Reset both the TCR as well as the masks corresponding to the bank of
2456 * the TCR being reset.
2460 tcr
->base_mask
= 0xffffc000u
;
2463 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2466 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2467 TCR
*tcr
= raw_ptr(env
, ri
);
2469 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2470 tlb_flush(CPU(cpu
), 1);
2471 tcr
->raw_tcr
= value
;
2474 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2477 /* 64 bit accesses to the TTBRs can change the ASID and so we
2478 * must flush the TLB.
2480 if (cpreg_field_is_64bit(ri
)) {
2481 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2483 tlb_flush(CPU(cpu
), 1);
2485 raw_write(env
, ri
, value
);
2488 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2491 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2492 CPUState
*cs
= CPU(cpu
);
2494 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2495 if (raw_read(env
, ri
) != value
) {
2496 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2497 ARMMMUIdx_S2NS
, -1);
2498 raw_write(env
, ri
, value
);
2502 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2503 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2504 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2505 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2506 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2507 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2508 .access
= PL1_RW
, .resetvalue
= 0,
2509 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2510 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2511 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2512 .access
= PL1_RW
, .resetvalue
= 0,
2513 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2514 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2515 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2516 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2517 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2522 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2523 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2524 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2526 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2527 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2528 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2529 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2530 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2531 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2532 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2533 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2534 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2535 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2536 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2537 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2538 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2539 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2540 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2541 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2542 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2543 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2544 .raw_writefn
= vmsa_ttbcr_raw_write
,
2545 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2546 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2550 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2553 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2554 /* The OS_TYPE bit in this register changes the reported CPUID! */
2555 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2556 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2559 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2562 env
->cp15
.c15_threadid
= value
& 0xffff;
2565 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2568 /* Wait-for-interrupt (deprecated) */
2569 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2572 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2575 /* On OMAP there are registers indicating the max/min index of dcache lines
2576 * containing a dirty line; cache flush operations have to reset these.
2578 env
->cp15
.c15_i_max
= 0x000;
2579 env
->cp15
.c15_i_min
= 0xff0;
2582 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2583 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2584 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2585 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2587 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2588 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2589 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2591 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2592 .writefn
= omap_ticonfig_write
},
2593 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2595 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2596 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2597 .access
= PL1_RW
, .resetvalue
= 0xff0,
2598 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2599 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2601 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2602 .writefn
= omap_threadid_write
},
2603 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2604 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2605 .type
= ARM_CP_NO_RAW
,
2606 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2607 /* TODO: Peripheral port remap register:
2608 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2609 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2612 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2613 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2614 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2615 .writefn
= omap_cachemaint_write
},
2616 { .name
= "C9", .cp
= 15, .crn
= 9,
2617 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2618 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2622 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2625 env
->cp15
.c15_cpar
= value
& 0x3fff;
2628 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2629 { .name
= "XSCALE_CPAR",
2630 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2631 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2632 .writefn
= xscale_cpar_write
, },
2633 { .name
= "XSCALE_AUXCR",
2634 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2635 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2637 /* XScale specific cache-lockdown: since we have no cache we NOP these
2638 * and hope the guest does not really rely on cache behaviour.
2640 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2641 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2642 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2643 { .name
= "XSCALE_UNLOCK_ICACHE",
2644 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2645 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2646 { .name
= "XSCALE_DCACHE_LOCK",
2647 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2648 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2649 { .name
= "XSCALE_UNLOCK_DCACHE",
2650 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2651 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2655 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2656 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2657 * implementation of this implementation-defined space.
2658 * Ideally this should eventually disappear in favour of actually
2659 * implementing the correct behaviour for all cores.
2661 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2662 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2664 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2669 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2670 /* Cache status: RAZ because we have no cache so it's always clean */
2671 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2672 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2677 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2678 /* We never have a a block transfer operation in progress */
2679 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2680 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2682 /* The cache ops themselves: these all NOP for QEMU */
2683 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2684 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2685 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2686 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2687 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2688 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2689 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2690 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2691 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2692 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2693 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2694 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2698 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2699 /* The cache test-and-clean instructions always return (1 << 30)
2700 * to indicate that there are no dirty cache lines.
2702 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2703 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2704 .resetvalue
= (1 << 30) },
2705 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2706 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2707 .resetvalue
= (1 << 30) },
2711 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2712 /* Ignore ReadBuffer accesses */
2713 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2714 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2715 .access
= PL1_RW
, .resetvalue
= 0,
2716 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2720 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2722 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2723 unsigned int cur_el
= arm_current_el(env
);
2724 bool secure
= arm_is_secure(env
);
2726 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2727 return env
->cp15
.vpidr_el2
;
2729 return raw_read(env
, ri
);
2732 static uint64_t mpidr_read_val(CPUARMState
*env
)
2734 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2735 uint64_t mpidr
= cpu
->mp_affinity
;
2737 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2738 mpidr
|= (1U << 31);
2739 /* Cores which are uniprocessor (non-coherent)
2740 * but still implement the MP extensions set
2741 * bit 30. (For instance, Cortex-R5).
2743 if (cpu
->mp_is_up
) {
2744 mpidr
|= (1u << 30);
2750 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2752 unsigned int cur_el
= arm_current_el(env
);
2753 bool secure
= arm_is_secure(env
);
2755 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2756 return env
->cp15
.vmpidr_el2
;
2758 return mpidr_read_val(env
);
2761 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2762 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2763 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2764 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2768 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2770 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2771 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2772 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2774 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2775 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2776 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2778 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2779 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2780 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2781 offsetof(CPUARMState
, cp15
.par_ns
)} },
2782 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2783 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2784 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2785 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2786 .writefn
= vmsa_ttbr_write
, },
2787 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2788 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2789 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2790 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2791 .writefn
= vmsa_ttbr_write
, },
2795 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2797 return vfp_get_fpcr(env
);
2800 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2803 vfp_set_fpcr(env
, value
);
2806 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2808 return vfp_get_fpsr(env
);
2811 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2814 vfp_set_fpsr(env
, value
);
2817 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2820 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2821 return CP_ACCESS_TRAP
;
2823 return CP_ACCESS_OK
;
2826 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2829 env
->daif
= value
& PSTATE_DAIF
;
2832 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2833 const ARMCPRegInfo
*ri
,
2836 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2837 * SCTLR_EL1.UCI is set.
2839 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2840 return CP_ACCESS_TRAP
;
2842 return CP_ACCESS_OK
;
2845 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2846 * Page D4-1736 (DDI0487A.b)
2849 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2852 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2853 CPUState
*cs
= CPU(cpu
);
2855 if (arm_is_secure_below_el3(env
)) {
2856 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2858 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2862 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2865 bool sec
= arm_is_secure_below_el3(env
);
2868 CPU_FOREACH(other_cs
) {
2870 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2872 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2873 ARMMMUIdx_S12NSE0
, -1);
2878 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2881 /* Note that the 'ALL' scope must invalidate both stage 1 and
2882 * stage 2 translations, whereas most other scopes only invalidate
2883 * stage 1 translations.
2885 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2886 CPUState
*cs
= CPU(cpu
);
2888 if (arm_is_secure_below_el3(env
)) {
2889 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2891 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2892 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2893 ARMMMUIdx_S2NS
, -1);
2895 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2900 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2903 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2904 CPUState
*cs
= CPU(cpu
);
2906 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2909 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2912 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2913 CPUState
*cs
= CPU(cpu
);
2915 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2918 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2921 /* Note that the 'ALL' scope must invalidate both stage 1 and
2922 * stage 2 translations, whereas most other scopes only invalidate
2923 * stage 1 translations.
2925 bool sec
= arm_is_secure_below_el3(env
);
2926 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2929 CPU_FOREACH(other_cs
) {
2931 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2932 } else if (has_el2
) {
2933 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2934 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2936 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2937 ARMMMUIdx_S12NSE0
, -1);
2942 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2947 CPU_FOREACH(other_cs
) {
2948 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2952 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2957 CPU_FOREACH(other_cs
) {
2958 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2962 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2965 /* Invalidate by VA, EL1&0 (AArch64 version).
2966 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2967 * since we don't support flush-for-specific-ASID-only or
2968 * flush-last-level-only.
2970 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2971 CPUState
*cs
= CPU(cpu
);
2972 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2974 if (arm_is_secure_below_el3(env
)) {
2975 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2976 ARMMMUIdx_S1SE0
, -1);
2978 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2979 ARMMMUIdx_S12NSE0
, -1);
2983 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2986 /* Invalidate by VA, EL2
2987 * Currently handles both VAE2 and VALE2, since we don't support
2988 * flush-last-level-only.
2990 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2991 CPUState
*cs
= CPU(cpu
);
2992 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2994 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2997 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3000 /* Invalidate by VA, EL3
3001 * Currently handles both VAE3 and VALE3, since we don't support
3002 * flush-last-level-only.
3004 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3005 CPUState
*cs
= CPU(cpu
);
3006 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3008 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
3011 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3014 bool sec
= arm_is_secure_below_el3(env
);
3016 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3018 CPU_FOREACH(other_cs
) {
3020 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
3021 ARMMMUIdx_S1SE0
, -1);
3023 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
3024 ARMMMUIdx_S12NSE0
, -1);
3029 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3033 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3035 CPU_FOREACH(other_cs
) {
3036 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
3040 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3044 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3046 CPU_FOREACH(other_cs
) {
3047 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
3051 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3054 /* Invalidate by IPA. This has to invalidate any structures that
3055 * contain only stage 2 translation information, but does not need
3056 * to apply to structures that contain combined stage 1 and stage 2
3057 * translation information.
3058 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3060 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3061 CPUState
*cs
= CPU(cpu
);
3064 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3068 pageaddr
= sextract64(value
<< 12, 0, 48);
3070 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
3073 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3079 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3083 pageaddr
= sextract64(value
<< 12, 0, 48);
3085 CPU_FOREACH(other_cs
) {
3086 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
3090 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3093 /* We don't implement EL2, so the only control on DC ZVA is the
3094 * bit in the SCTLR which can prohibit access for EL0.
3096 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3097 return CP_ACCESS_TRAP
;
3099 return CP_ACCESS_OK
;
3102 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3104 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3105 int dzp_bit
= 1 << 4;
3107 /* DZP indicates whether DC ZVA access is allowed */
3108 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3111 return cpu
->dcz_blocksize
| dzp_bit
;
3114 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3117 if (!(env
->pstate
& PSTATE_SP
)) {
3118 /* Access to SP_EL0 is undefined if it's being used as
3119 * the stack pointer.
3121 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3123 return CP_ACCESS_OK
;
3126 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3128 return env
->pstate
& PSTATE_SP
;
3131 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3133 update_spsel(env
, val
);
3136 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3139 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3141 if (raw_read(env
, ri
) == value
) {
3142 /* Skip the TLB flush if nothing actually changed; Linux likes
3143 * to do a lot of pointless SCTLR writes.
3148 raw_write(env
, ri
, value
);
3149 /* ??? Lots of these bits are not implemented. */
3150 /* This may enable/disable the MMU, so do a TLB flush. */
3151 tlb_flush(CPU(cpu
), 1);
3154 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3157 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3158 return CP_ACCESS_TRAP_FP_EL2
;
3160 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3161 return CP_ACCESS_TRAP_FP_EL3
;
3163 return CP_ACCESS_OK
;
3166 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3169 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3172 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3173 /* Minimal set of EL0-visible registers. This will need to be expanded
3174 * significantly for system emulation of AArch64 CPUs.
3176 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3177 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3178 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3179 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3180 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3181 .type
= ARM_CP_NO_RAW
,
3182 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3183 .fieldoffset
= offsetof(CPUARMState
, daif
),
3184 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3185 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3186 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3187 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3188 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3189 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3190 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3191 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3192 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3193 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3194 .readfn
= aa64_dczid_read
},
3195 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3196 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3197 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3198 #ifndef CONFIG_USER_ONLY
3199 /* Avoid overhead of an access check that always passes in user-mode */
3200 .accessfn
= aa64_zva_access
,
3203 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3204 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3205 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3206 /* Cache ops: all NOPs since we don't emulate caches */
3207 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3208 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3209 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3210 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3211 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3212 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3213 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3214 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3215 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3216 .accessfn
= aa64_cacheop_access
},
3217 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3218 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3219 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3220 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3221 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3222 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3223 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3224 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3225 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3226 .accessfn
= aa64_cacheop_access
},
3227 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3228 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3229 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3230 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3231 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3232 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3233 .accessfn
= aa64_cacheop_access
},
3234 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3235 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3236 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3237 .accessfn
= aa64_cacheop_access
},
3238 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3239 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3240 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3241 /* TLBI operations */
3242 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3243 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3244 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3245 .writefn
= tlbi_aa64_vmalle1is_write
},
3246 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3247 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3248 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3249 .writefn
= tlbi_aa64_vae1is_write
},
3250 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3251 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3252 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3253 .writefn
= tlbi_aa64_vmalle1is_write
},
3254 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3255 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3256 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3257 .writefn
= tlbi_aa64_vae1is_write
},
3258 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3259 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3260 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3261 .writefn
= tlbi_aa64_vae1is_write
},
3262 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3263 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3264 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3265 .writefn
= tlbi_aa64_vae1is_write
},
3266 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3267 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3268 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3269 .writefn
= tlbi_aa64_vmalle1_write
},
3270 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3271 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3272 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3273 .writefn
= tlbi_aa64_vae1_write
},
3274 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3275 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3276 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3277 .writefn
= tlbi_aa64_vmalle1_write
},
3278 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3279 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3280 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3281 .writefn
= tlbi_aa64_vae1_write
},
3282 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3283 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3284 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3285 .writefn
= tlbi_aa64_vae1_write
},
3286 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3287 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3288 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3289 .writefn
= tlbi_aa64_vae1_write
},
3290 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3291 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3292 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3293 .writefn
= tlbi_aa64_ipas2e1is_write
},
3294 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3295 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3296 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3297 .writefn
= tlbi_aa64_ipas2e1is_write
},
3298 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3299 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3300 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3301 .writefn
= tlbi_aa64_alle1is_write
},
3302 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3303 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3304 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3305 .writefn
= tlbi_aa64_alle1is_write
},
3306 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3307 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3308 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3309 .writefn
= tlbi_aa64_ipas2e1_write
},
3310 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3311 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3312 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3313 .writefn
= tlbi_aa64_ipas2e1_write
},
3314 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3315 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3316 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3317 .writefn
= tlbi_aa64_alle1_write
},
3318 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3319 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3320 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3321 .writefn
= tlbi_aa64_alle1is_write
},
3322 #ifndef CONFIG_USER_ONLY
3323 /* 64 bit address translation operations */
3324 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3325 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3326 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3327 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3328 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3329 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3330 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3331 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3332 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3333 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3334 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3335 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3336 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3337 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3338 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3339 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3340 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3341 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3342 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3343 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3344 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3345 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3346 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3347 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3348 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3349 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3350 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3351 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3352 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3353 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3354 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3355 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3356 .type
= ARM_CP_ALIAS
,
3357 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3358 .access
= PL1_RW
, .resetvalue
= 0,
3359 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3360 .writefn
= par_write
},
3362 /* TLB invalidate last level of translation table walk */
3363 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3364 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3365 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3366 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3367 .writefn
= tlbimvaa_is_write
},
3368 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3369 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3370 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3371 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3372 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3373 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3374 .writefn
= tlbimva_hyp_write
},
3375 { .name
= "TLBIMVALHIS",
3376 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3377 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3378 .writefn
= tlbimva_hyp_is_write
},
3379 { .name
= "TLBIIPAS2",
3380 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3381 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3382 .writefn
= tlbiipas2_write
},
3383 { .name
= "TLBIIPAS2IS",
3384 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3385 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3386 .writefn
= tlbiipas2_is_write
},
3387 { .name
= "TLBIIPAS2L",
3388 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3389 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3390 .writefn
= tlbiipas2_write
},
3391 { .name
= "TLBIIPAS2LIS",
3392 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3393 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3394 .writefn
= tlbiipas2_is_write
},
3395 /* 32 bit cache operations */
3396 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3397 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3398 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3399 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3400 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3401 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3402 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3403 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3404 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3405 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3406 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3407 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3408 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3409 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3410 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3411 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3412 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3413 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3414 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3415 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3416 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3417 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3418 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3419 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3420 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3421 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3422 /* MMU Domain access control / MPU write buffer control */
3423 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3424 .access
= PL1_RW
, .resetvalue
= 0,
3425 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3426 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3427 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3428 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3429 .type
= ARM_CP_ALIAS
,
3430 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3432 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3433 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3434 .type
= ARM_CP_ALIAS
,
3435 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3437 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3438 /* We rely on the access checks not allowing the guest to write to the
3439 * state field when SPSel indicates that it's being used as the stack
3442 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3443 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3444 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3445 .type
= ARM_CP_ALIAS
,
3446 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3447 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3448 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3449 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3450 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3451 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3452 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3453 .type
= ARM_CP_NO_RAW
,
3454 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3455 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3456 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3457 .type
= ARM_CP_ALIAS
,
3458 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3459 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3460 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3461 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3462 .access
= PL2_RW
, .resetvalue
= 0,
3463 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3464 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3465 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3466 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3467 .access
= PL2_RW
, .resetvalue
= 0,
3468 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3469 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3470 .type
= ARM_CP_ALIAS
,
3471 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3473 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3474 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3475 .type
= ARM_CP_ALIAS
,
3476 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3478 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3479 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3480 .type
= ARM_CP_ALIAS
,
3481 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3483 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3484 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3485 .type
= ARM_CP_ALIAS
,
3486 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3488 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3489 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3490 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3492 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3493 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3494 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3495 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3496 .writefn
= sdcr_write
,
3497 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3501 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3502 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3503 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3504 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3506 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3507 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3508 .type
= ARM_CP_NO_RAW
,
3509 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3511 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3512 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3513 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3514 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3515 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3516 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3517 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3519 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3520 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3521 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3522 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3523 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3524 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3526 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3527 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3528 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3530 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3531 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3532 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3534 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3535 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3536 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3538 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3539 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3540 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3541 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3542 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3543 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3544 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3545 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3546 .cp
= 15, .opc1
= 6, .crm
= 2,
3547 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3548 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3549 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3550 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3551 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3552 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3553 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3554 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3555 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3556 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3557 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3558 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3559 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3560 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3561 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3562 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3564 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3565 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3566 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3567 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3568 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3569 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3570 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3571 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3573 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3574 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3575 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3576 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3577 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3579 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3580 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3581 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3582 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3583 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3584 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3585 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3586 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3587 .access
= PL2_RW
, .accessfn
= access_tda
,
3588 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3589 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3590 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3591 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3592 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3593 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3594 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
3595 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3599 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3601 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3602 uint64_t valid_mask
= HCR_MASK
;
3604 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3605 valid_mask
&= ~HCR_HCD
;
3607 valid_mask
&= ~HCR_TSC
;
3610 /* Clear RES0 bits. */
3611 value
&= valid_mask
;
3613 /* These bits change the MMU setup:
3614 * HCR_VM enables stage 2 translation
3615 * HCR_PTW forbids certain page-table setups
3616 * HCR_DC Disables stage1 and enables stage2 translation
3618 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3619 tlb_flush(CPU(cpu
), 1);
3621 raw_write(env
, ri
, value
);
3624 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3625 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3626 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3627 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3628 .writefn
= hcr_write
},
3629 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3630 .type
= ARM_CP_ALIAS
,
3631 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3633 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3634 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3635 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3636 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3637 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3638 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3639 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3640 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3641 .type
= ARM_CP_ALIAS
,
3642 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3644 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3645 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3646 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3647 .access
= PL2_RW
, .writefn
= vbar_write
,
3648 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3650 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3651 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3652 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3653 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3654 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3655 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3656 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3657 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3658 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3659 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3660 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3662 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3663 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3664 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3665 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3666 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3667 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3668 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3670 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3671 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3672 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3673 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3675 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3676 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3677 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3679 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3680 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3681 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3683 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3684 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3686 /* no .writefn needed as this can't cause an ASID change;
3687 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3689 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3690 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3691 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3692 .type
= ARM_CP_ALIAS
,
3693 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3694 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3695 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3696 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3698 /* no .writefn needed as this can't cause an ASID change;
3699 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3701 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3702 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3703 .cp
= 15, .opc1
= 6, .crm
= 2,
3704 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3705 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3706 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3707 .writefn
= vttbr_write
},
3708 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3709 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3710 .access
= PL2_RW
, .writefn
= vttbr_write
,
3711 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3712 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3713 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3714 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3715 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3716 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3717 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3718 .access
= PL2_RW
, .resetvalue
= 0,
3719 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3720 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3721 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3722 .access
= PL2_RW
, .resetvalue
= 0,
3723 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3724 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3725 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3726 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3727 { .name
= "TLBIALLNSNH",
3728 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3729 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3730 .writefn
= tlbiall_nsnh_write
},
3731 { .name
= "TLBIALLNSNHIS",
3732 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3733 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3734 .writefn
= tlbiall_nsnh_is_write
},
3735 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3736 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3737 .writefn
= tlbiall_hyp_write
},
3738 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3739 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3740 .writefn
= tlbiall_hyp_is_write
},
3741 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3742 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3743 .writefn
= tlbimva_hyp_write
},
3744 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3745 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3746 .writefn
= tlbimva_hyp_is_write
},
3747 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3748 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3749 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3750 .writefn
= tlbi_aa64_alle2_write
},
3751 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3752 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3753 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3754 .writefn
= tlbi_aa64_vae2_write
},
3755 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3756 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3757 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3758 .writefn
= tlbi_aa64_vae2_write
},
3759 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3760 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3761 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3762 .writefn
= tlbi_aa64_alle2is_write
},
3763 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3764 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3765 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3766 .writefn
= tlbi_aa64_vae2is_write
},
3767 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3768 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3769 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3770 .writefn
= tlbi_aa64_vae2is_write
},
3771 #ifndef CONFIG_USER_ONLY
3772 /* Unlike the other EL2-related AT operations, these must
3773 * UNDEF from EL3 if EL2 is not implemented, which is why we
3774 * define them here rather than with the rest of the AT ops.
3776 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3777 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3778 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3779 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3780 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3781 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3782 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3783 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3784 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3785 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3786 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3787 * to behave as if SCR.NS was 1.
3789 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3791 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3792 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3794 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3795 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3796 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3797 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3798 * reset values as IMPDEF. We choose to reset to 3 to comply with
3799 * both ARMv7 and ARMv8.
3801 .access
= PL2_RW
, .resetvalue
= 3,
3802 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3803 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3804 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3805 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3806 .writefn
= gt_cntvoff_write
,
3807 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3808 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3809 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3810 .writefn
= gt_cntvoff_write
,
3811 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3812 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3813 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3814 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3815 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3816 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3817 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3818 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3819 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3820 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3821 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3822 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3823 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
3824 .resetfn
= gt_hyp_timer_reset
,
3825 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3826 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3828 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3830 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3832 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3834 /* The only field of MDCR_EL2 that has a defined architectural reset value
3835 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3836 * don't impelment any PMU event counters, so using zero as a reset
3837 * value for MDCR_EL2 is okay
3839 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3840 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3841 .access
= PL2_RW
, .resetvalue
= 0,
3842 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3843 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3844 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3845 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3846 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3847 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3848 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3850 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3851 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3852 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
3854 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
3858 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3861 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3862 * At Secure EL1 it traps to EL3.
3864 if (arm_current_el(env
) == 3) {
3865 return CP_ACCESS_OK
;
3867 if (arm_is_secure_below_el3(env
)) {
3868 return CP_ACCESS_TRAP_EL3
;
3870 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3872 return CP_ACCESS_OK
;
3874 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3877 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3878 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3879 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3880 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3881 .resetvalue
= 0, .writefn
= scr_write
},
3882 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3883 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3884 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3885 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3886 .writefn
= scr_write
},
3887 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3888 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3889 .access
= PL3_RW
, .resetvalue
= 0,
3890 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3892 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3893 .access
= PL3_RW
, .resetvalue
= 0,
3894 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3895 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3896 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3897 .writefn
= vbar_write
, .resetvalue
= 0,
3898 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3899 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3900 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3901 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3902 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3903 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3904 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3906 /* no .writefn needed as this can't cause an ASID change;
3907 * we must provide a .raw_writefn and .resetfn because we handle
3908 * reset and migration for the AArch32 TTBCR(S), which might be
3909 * using mask and base_mask.
3911 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
3912 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3913 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3914 .type
= ARM_CP_ALIAS
,
3915 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3917 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3918 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3919 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3920 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3921 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3922 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3923 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3924 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3925 .type
= ARM_CP_ALIAS
,
3926 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3928 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3929 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3930 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3931 .access
= PL3_RW
, .writefn
= vbar_write
,
3932 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3934 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3935 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3936 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3937 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3938 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3939 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3940 .access
= PL3_RW
, .resetvalue
= 0,
3941 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3942 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3943 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3944 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3946 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3947 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3948 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3950 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3951 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3952 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3954 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3955 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3956 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3957 .writefn
= tlbi_aa64_alle3is_write
},
3958 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3959 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3960 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3961 .writefn
= tlbi_aa64_vae3is_write
},
3962 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3963 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3964 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3965 .writefn
= tlbi_aa64_vae3is_write
},
3966 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3967 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3968 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3969 .writefn
= tlbi_aa64_alle3_write
},
3970 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3971 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3972 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3973 .writefn
= tlbi_aa64_vae3_write
},
3974 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3975 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3976 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3977 .writefn
= tlbi_aa64_vae3_write
},
3981 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3984 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3985 * but the AArch32 CTR has its own reginfo struct)
3987 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3988 return CP_ACCESS_TRAP
;
3990 return CP_ACCESS_OK
;
3993 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3996 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3997 * read via a bit in OSLSR_EL1.
4001 if (ri
->state
== ARM_CP_STATE_AA32
) {
4002 oslock
= (value
== 0xC5ACCE55);
4007 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
4010 static const ARMCPRegInfo debug_cp_reginfo
[] = {
4011 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4012 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4013 * unlike DBGDRAR it is never accessible from EL0.
4014 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4017 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
4018 .access
= PL0_R
, .accessfn
= access_tdra
,
4019 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4020 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
4021 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4022 .access
= PL1_R
, .accessfn
= access_tdra
,
4023 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4024 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
4025 .access
= PL0_R
, .accessfn
= access_tdra
,
4026 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4027 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4028 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
4029 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4030 .access
= PL1_RW
, .accessfn
= access_tda
,
4031 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
4033 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4034 * We don't implement the configurable EL0 access.
4036 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
4037 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4038 .type
= ARM_CP_ALIAS
,
4039 .access
= PL1_R
, .accessfn
= access_tda
,
4040 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
4041 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
4042 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
4043 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4044 .accessfn
= access_tdosa
,
4045 .writefn
= oslar_write
},
4046 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
4047 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
4048 .access
= PL1_R
, .resetvalue
= 10,
4049 .accessfn
= access_tdosa
,
4050 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
4051 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4052 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4053 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
4054 .access
= PL1_RW
, .accessfn
= access_tdosa
,
4055 .type
= ARM_CP_NOP
},
4056 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4057 * implement vector catch debug events yet.
4060 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4061 .access
= PL1_RW
, .accessfn
= access_tda
,
4062 .type
= ARM_CP_NOP
},
4066 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
4067 /* 64 bit access versions of the (dummy) debug registers */
4068 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
4069 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4070 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
4071 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4075 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
4077 CPUARMState
*env
= &cpu
->env
;
4079 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
4080 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
4082 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
4084 if (env
->cpu_watchpoint
[n
]) {
4085 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
4086 env
->cpu_watchpoint
[n
] = NULL
;
4089 if (!extract64(wcr
, 0, 1)) {
4090 /* E bit clear : watchpoint disabled */
4094 switch (extract64(wcr
, 3, 2)) {
4096 /* LSC 00 is reserved and must behave as if the wp is disabled */
4099 flags
|= BP_MEM_READ
;
4102 flags
|= BP_MEM_WRITE
;
4105 flags
|= BP_MEM_ACCESS
;
4109 /* Attempts to use both MASK and BAS fields simultaneously are
4110 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4111 * thus generating a watchpoint for every byte in the masked region.
4113 mask
= extract64(wcr
, 24, 4);
4114 if (mask
== 1 || mask
== 2) {
4115 /* Reserved values of MASK; we must act as if the mask value was
4116 * some non-reserved value, or as if the watchpoint were disabled.
4117 * We choose the latter.
4121 /* Watchpoint covers an aligned area up to 2GB in size */
4123 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4124 * whether the watchpoint fires when the unmasked bits match; we opt
4125 * to generate the exceptions.
4129 /* Watchpoint covers bytes defined by the byte address select bits */
4130 int bas
= extract64(wcr
, 5, 8);
4134 /* This must act as if the watchpoint is disabled */
4138 if (extract64(wvr
, 2, 1)) {
4139 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4140 * ignored, and BAS[3:0] define which bytes to watch.
4144 /* The BAS bits are supposed to be programmed to indicate a contiguous
4145 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4146 * we fire for each byte in the word/doubleword addressed by the WVR.
4147 * We choose to ignore any non-zero bits after the first range of 1s.
4149 basstart
= ctz32(bas
);
4150 len
= cto32(bas
>> basstart
);
4154 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4155 &env
->cpu_watchpoint
[n
]);
4158 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4161 CPUARMState
*env
= &cpu
->env
;
4163 /* Completely clear out existing QEMU watchpoints and our array, to
4164 * avoid possible stale entries following migration load.
4166 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4167 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4169 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4170 hw_watchpoint_update(cpu
, i
);
4174 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4177 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4180 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4181 * register reads and behaves as if values written are sign extended.
4182 * Bits [1:0] are RES0.
4184 value
= sextract64(value
, 0, 49) & ~3ULL;
4186 raw_write(env
, ri
, value
);
4187 hw_watchpoint_update(cpu
, i
);
4190 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4193 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4196 raw_write(env
, ri
, value
);
4197 hw_watchpoint_update(cpu
, i
);
4200 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4202 CPUARMState
*env
= &cpu
->env
;
4203 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4204 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4209 if (env
->cpu_breakpoint
[n
]) {
4210 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4211 env
->cpu_breakpoint
[n
] = NULL
;
4214 if (!extract64(bcr
, 0, 1)) {
4215 /* E bit clear : watchpoint disabled */
4219 bt
= extract64(bcr
, 20, 4);
4222 case 4: /* unlinked address mismatch (reserved if AArch64) */
4223 case 5: /* linked address mismatch (reserved if AArch64) */
4224 qemu_log_mask(LOG_UNIMP
,
4225 "arm: address mismatch breakpoint types not implemented");
4227 case 0: /* unlinked address match */
4228 case 1: /* linked address match */
4230 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4231 * we behave as if the register was sign extended. Bits [1:0] are
4232 * RES0. The BAS field is used to allow setting breakpoints on 16
4233 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4234 * a bp will fire if the addresses covered by the bp and the addresses
4235 * covered by the insn overlap but the insn doesn't start at the
4236 * start of the bp address range. We choose to require the insn and
4237 * the bp to have the same address. The constraints on writing to
4238 * BAS enforced in dbgbcr_write mean we have only four cases:
4239 * 0b0000 => no breakpoint
4240 * 0b0011 => breakpoint on addr
4241 * 0b1100 => breakpoint on addr + 2
4242 * 0b1111 => breakpoint on addr
4243 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4245 int bas
= extract64(bcr
, 5, 4);
4246 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4255 case 2: /* unlinked context ID match */
4256 case 8: /* unlinked VMID match (reserved if no EL2) */
4257 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4258 qemu_log_mask(LOG_UNIMP
,
4259 "arm: unlinked context breakpoint types not implemented");
4261 case 9: /* linked VMID match (reserved if no EL2) */
4262 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4263 case 3: /* linked context ID match */
4265 /* We must generate no events for Linked context matches (unless
4266 * they are linked to by some other bp/wp, which is handled in
4267 * updates for the linking bp/wp). We choose to also generate no events
4268 * for reserved values.
4273 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4276 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4279 CPUARMState
*env
= &cpu
->env
;
4281 /* Completely clear out existing QEMU breakpoints and our array, to
4282 * avoid possible stale entries following migration load.
4284 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4285 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4287 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4288 hw_breakpoint_update(cpu
, i
);
4292 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4295 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4298 raw_write(env
, ri
, value
);
4299 hw_breakpoint_update(cpu
, i
);
4302 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4305 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4308 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4311 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4312 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4314 raw_write(env
, ri
, value
);
4315 hw_breakpoint_update(cpu
, i
);
4318 static void define_debug_regs(ARMCPU
*cpu
)
4320 /* Define v7 and v8 architectural debug registers.
4321 * These are just dummy implementations for now.
4324 int wrps
, brps
, ctx_cmps
;
4325 ARMCPRegInfo dbgdidr
= {
4326 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4327 .access
= PL0_R
, .accessfn
= access_tda
,
4328 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4331 /* Note that all these register fields hold "number of Xs minus 1". */
4332 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4333 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4334 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4336 assert(ctx_cmps
<= brps
);
4338 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4339 * of the debug registers such as number of breakpoints;
4340 * check that if they both exist then they agree.
4342 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4343 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4344 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4345 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4348 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4349 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4351 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4352 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4355 for (i
= 0; i
< brps
+ 1; i
++) {
4356 ARMCPRegInfo dbgregs
[] = {
4357 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4358 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4359 .access
= PL1_RW
, .accessfn
= access_tda
,
4360 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4361 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4363 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4364 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4365 .access
= PL1_RW
, .accessfn
= access_tda
,
4366 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4367 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4371 define_arm_cp_regs(cpu
, dbgregs
);
4374 for (i
= 0; i
< wrps
+ 1; i
++) {
4375 ARMCPRegInfo dbgregs
[] = {
4376 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4377 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4378 .access
= PL1_RW
, .accessfn
= access_tda
,
4379 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4380 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4382 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4383 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4384 .access
= PL1_RW
, .accessfn
= access_tda
,
4385 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4386 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4390 define_arm_cp_regs(cpu
, dbgregs
);
4394 void register_cp_regs_for_features(ARMCPU
*cpu
)
4396 /* Register all the coprocessor registers based on feature bits */
4397 CPUARMState
*env
= &cpu
->env
;
4398 if (arm_feature(env
, ARM_FEATURE_M
)) {
4399 /* M profile has no coprocessor registers */
4403 define_arm_cp_regs(cpu
, cp_reginfo
);
4404 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4405 /* Must go early as it is full of wildcards that may be
4406 * overridden by later definitions.
4408 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4411 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4412 /* The ID registers all have impdef reset values */
4413 ARMCPRegInfo v6_idregs
[] = {
4414 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4415 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4416 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4417 .resetvalue
= cpu
->id_pfr0
},
4418 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4419 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4420 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4421 .resetvalue
= cpu
->id_pfr1
},
4422 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4423 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4424 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4425 .resetvalue
= cpu
->id_dfr0
},
4426 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4427 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4428 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4429 .resetvalue
= cpu
->id_afr0
},
4430 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4431 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4432 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4433 .resetvalue
= cpu
->id_mmfr0
},
4434 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4435 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4436 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4437 .resetvalue
= cpu
->id_mmfr1
},
4438 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4439 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4440 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4441 .resetvalue
= cpu
->id_mmfr2
},
4442 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4443 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4444 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4445 .resetvalue
= cpu
->id_mmfr3
},
4446 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4447 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4448 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4449 .resetvalue
= cpu
->id_isar0
},
4450 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4451 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4452 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4453 .resetvalue
= cpu
->id_isar1
},
4454 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4455 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4456 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4457 .resetvalue
= cpu
->id_isar2
},
4458 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4459 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4460 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4461 .resetvalue
= cpu
->id_isar3
},
4462 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4463 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4464 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4465 .resetvalue
= cpu
->id_isar4
},
4466 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4467 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4468 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4469 .resetvalue
= cpu
->id_isar5
},
4470 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
4471 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
4472 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4473 .resetvalue
= cpu
->id_mmfr4
},
4474 /* 7 is as yet unallocated and must RAZ */
4475 { .name
= "ID_ISAR7_RESERVED", .state
= ARM_CP_STATE_BOTH
,
4476 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
4477 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4481 define_arm_cp_regs(cpu
, v6_idregs
);
4482 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4484 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4486 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4487 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4489 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4490 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4491 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4493 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4494 /* v7 performance monitor control register: same implementor
4495 * field as main ID register, and we implement only the cycle
4498 #ifndef CONFIG_USER_ONLY
4499 ARMCPRegInfo pmcr
= {
4500 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4502 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4503 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4504 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4505 .raw_writefn
= raw_write
,
4507 ARMCPRegInfo pmcr64
= {
4508 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4509 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4510 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4512 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4513 .resetvalue
= cpu
->midr
& 0xff000000,
4514 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4516 define_one_arm_cp_reg(cpu
, &pmcr
);
4517 define_one_arm_cp_reg(cpu
, &pmcr64
);
4519 ARMCPRegInfo clidr
= {
4520 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4521 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4522 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4524 define_one_arm_cp_reg(cpu
, &clidr
);
4525 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4526 define_debug_regs(cpu
);
4528 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4530 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4531 /* AArch64 ID registers, which all have impdef reset values.
4532 * Note that within the ID register ranges the unused slots
4533 * must all RAZ, not UNDEF; future architecture versions may
4534 * define new registers here.
4536 ARMCPRegInfo v8_idregs
[] = {
4537 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4538 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4539 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4540 .resetvalue
= cpu
->id_aa64pfr0
},
4541 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4542 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4543 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4544 .resetvalue
= cpu
->id_aa64pfr1
},
4545 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4546 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
4547 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4549 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4550 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
4551 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4553 { .name
= "ID_AA64PFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4554 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
4555 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4557 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4558 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
4559 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4561 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4562 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
4563 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4565 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4566 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
4567 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4569 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4570 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4571 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4572 /* We mask out the PMUVer field, because we don't currently
4573 * implement the PMU. Not advertising it prevents the guest
4574 * from trying to use it and getting UNDEFs on registers we
4577 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4578 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4579 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4580 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4581 .resetvalue
= cpu
->id_aa64dfr1
},
4582 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4583 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
4584 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4586 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4587 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
4588 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4590 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4591 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4592 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4593 .resetvalue
= cpu
->id_aa64afr0
},
4594 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4595 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4596 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4597 .resetvalue
= cpu
->id_aa64afr1
},
4598 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4599 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
4600 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4602 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4603 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
4604 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4606 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4607 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4608 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4609 .resetvalue
= cpu
->id_aa64isar0
},
4610 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4611 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4612 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4613 .resetvalue
= cpu
->id_aa64isar1
},
4614 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4615 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
4616 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4618 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4619 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
4620 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4622 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4623 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
4624 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4626 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4627 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
4628 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4630 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4631 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
4632 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4634 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4635 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
4636 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4638 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4639 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4640 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4641 .resetvalue
= cpu
->id_aa64mmfr0
},
4642 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4643 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4644 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4645 .resetvalue
= cpu
->id_aa64mmfr1
},
4646 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4647 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
4648 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4650 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4651 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
4652 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4654 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4655 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
4656 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4658 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4659 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
4660 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4662 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4663 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
4664 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4666 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4667 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
4668 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4670 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4671 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4672 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4673 .resetvalue
= cpu
->mvfr0
},
4674 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4675 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4676 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4677 .resetvalue
= cpu
->mvfr1
},
4678 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4679 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4680 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4681 .resetvalue
= cpu
->mvfr2
},
4682 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4683 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
4684 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4686 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4687 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
4688 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4690 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4691 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
4692 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4694 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4695 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
4696 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4698 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4699 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
4700 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4702 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4703 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4704 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4705 .resetvalue
= cpu
->pmceid0
},
4706 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4707 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4708 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4709 .resetvalue
= cpu
->pmceid0
},
4710 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4711 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4712 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4713 .resetvalue
= cpu
->pmceid1
},
4714 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4715 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4716 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4717 .resetvalue
= cpu
->pmceid1
},
4720 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4721 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4722 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4723 ARMCPRegInfo rvbar
= {
4724 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4725 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4726 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4728 define_one_arm_cp_reg(cpu
, &rvbar
);
4730 define_arm_cp_regs(cpu
, v8_idregs
);
4731 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4733 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4734 uint64_t vmpidr_def
= mpidr_read_val(env
);
4735 ARMCPRegInfo vpidr_regs
[] = {
4736 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4737 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4738 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4739 .resetvalue
= cpu
->midr
,
4740 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4741 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4742 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4743 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4744 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4745 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4746 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4747 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4748 .resetvalue
= vmpidr_def
,
4749 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4750 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4751 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4753 .resetvalue
= vmpidr_def
,
4754 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4757 define_arm_cp_regs(cpu
, vpidr_regs
);
4758 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4759 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4760 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4761 ARMCPRegInfo rvbar
= {
4762 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4763 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4764 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4766 define_one_arm_cp_reg(cpu
, &rvbar
);
4769 /* If EL2 is missing but higher ELs are enabled, we need to
4770 * register the no_el2 reginfos.
4772 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4773 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4774 * of MIDR_EL1 and MPIDR_EL1.
4776 ARMCPRegInfo vpidr_regs
[] = {
4777 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4778 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4779 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4780 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4781 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4782 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4783 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4784 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4785 .type
= ARM_CP_NO_RAW
,
4786 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4789 define_arm_cp_regs(cpu
, vpidr_regs
);
4790 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4793 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4794 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4795 ARMCPRegInfo el3_regs
[] = {
4796 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4797 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4798 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
4799 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4800 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
4802 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4803 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
4804 .resetvalue
= cpu
->reset_sctlr
},
4808 define_arm_cp_regs(cpu
, el3_regs
);
4810 /* The behaviour of NSACR is sufficiently various that we don't
4811 * try to describe it in a single reginfo:
4812 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4813 * reads as constant 0xc00 from NS EL1 and NS EL2
4814 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4815 * if v7 without EL3, register doesn't exist
4816 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4818 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4819 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4820 ARMCPRegInfo nsacr
= {
4821 .name
= "NSACR", .type
= ARM_CP_CONST
,
4822 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4823 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4826 define_one_arm_cp_reg(cpu
, &nsacr
);
4828 ARMCPRegInfo nsacr
= {
4830 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4831 .access
= PL3_RW
| PL1_R
,
4833 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4835 define_one_arm_cp_reg(cpu
, &nsacr
);
4838 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4839 ARMCPRegInfo nsacr
= {
4840 .name
= "NSACR", .type
= ARM_CP_CONST
,
4841 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4845 define_one_arm_cp_reg(cpu
, &nsacr
);
4849 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4850 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4851 /* PMSAv6 not implemented */
4852 assert(arm_feature(env
, ARM_FEATURE_V7
));
4853 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4854 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4856 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4859 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4860 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4862 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4863 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4865 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4866 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4868 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4869 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4871 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4872 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4874 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4875 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4877 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4878 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4880 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4881 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4883 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4884 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4886 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4887 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4889 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4890 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4892 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4893 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4895 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4896 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4897 * be read-only (ie write causes UNDEF exception).
4900 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4901 /* Pre-v8 MIDR space.
4902 * Note that the MIDR isn't a simple constant register because
4903 * of the TI925 behaviour where writes to another register can
4904 * cause the MIDR value to change.
4906 * Unimplemented registers in the c15 0 0 0 space default to
4907 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4908 * and friends override accordingly.
4911 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4912 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4913 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4914 .readfn
= midr_read
,
4915 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4916 .type
= ARM_CP_OVERRIDE
},
4917 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4919 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4920 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4922 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4923 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4925 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4926 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4928 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4929 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4931 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4932 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4935 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4936 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4937 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4938 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4939 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4940 .readfn
= midr_read
},
4941 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4942 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4943 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4944 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4945 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4946 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4947 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4948 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4949 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4950 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4953 ARMCPRegInfo id_cp_reginfo
[] = {
4954 /* These are common to v8 and pre-v8 */
4956 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4957 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4958 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4959 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4960 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4961 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4962 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4964 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4965 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4968 /* TLBTR is specific to VMSA */
4969 ARMCPRegInfo id_tlbtr_reginfo
= {
4971 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4972 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4974 /* MPUIR is specific to PMSA V6+ */
4975 ARMCPRegInfo id_mpuir_reginfo
= {
4977 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4978 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4979 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4981 ARMCPRegInfo crn0_wi_reginfo
= {
4982 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4983 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4984 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4986 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4987 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4989 /* Register the blanket "writes ignored" value first to cover the
4990 * whole space. Then update the specific ID registers to allow write
4991 * access, so that they ignore writes rather than causing them to
4994 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4995 for (r
= id_pre_v8_midr_cp_reginfo
;
4996 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4999 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5002 id_tlbtr_reginfo
.access
= PL1_RW
;
5003 id_tlbtr_reginfo
.access
= PL1_RW
;
5005 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5006 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
5008 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
5010 define_arm_cp_regs(cpu
, id_cp_reginfo
);
5011 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
5012 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
5013 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5014 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
5018 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
5019 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
5022 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
5023 ARMCPRegInfo auxcr_reginfo
[] = {
5024 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5025 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
5026 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
5027 .resetvalue
= cpu
->reset_auxcr
},
5028 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
5029 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
5030 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5032 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
5033 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
5034 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5038 define_arm_cp_regs(cpu
, auxcr_reginfo
);
5041 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
5042 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5043 /* 32 bit view is [31:18] 0...0 [43:32]. */
5044 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
5045 | extract64(cpu
->reset_cbar
, 32, 12);
5046 ARMCPRegInfo cbar_reginfo
[] = {
5048 .type
= ARM_CP_CONST
,
5049 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5050 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
5051 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
5052 .type
= ARM_CP_CONST
,
5053 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
5054 .access
= PL1_R
, .resetvalue
= cbar32
},
5057 /* We don't implement a r/w 64 bit CBAR currently */
5058 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
5059 define_arm_cp_regs(cpu
, cbar_reginfo
);
5061 ARMCPRegInfo cbar
= {
5063 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5064 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
5065 .fieldoffset
= offsetof(CPUARMState
,
5066 cp15
.c15_config_base_address
)
5068 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
5069 cbar
.access
= PL1_R
;
5070 cbar
.fieldoffset
= 0;
5071 cbar
.type
= ARM_CP_CONST
;
5073 define_one_arm_cp_reg(cpu
, &cbar
);
5077 /* Generic registers whose values depend on the implementation */
5079 ARMCPRegInfo sctlr
= {
5080 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
5081 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5083 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
5084 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
5085 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
5086 .raw_writefn
= raw_write
,
5088 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5089 /* Normally we would always end the TB on an SCTLR write, but Linux
5090 * arch/arm/mach-pxa/sleep.S expects two instructions following
5091 * an MMU enable to execute from cache. Imitate this behaviour.
5093 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
5095 define_one_arm_cp_reg(cpu
, &sctlr
);
5099 ARMCPU
*cpu_arm_init(const char *cpu_model
)
5101 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
5104 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
5106 CPUState
*cs
= CPU(cpu
);
5107 CPUARMState
*env
= &cpu
->env
;
5109 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5110 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
5111 aarch64_fpu_gdb_set_reg
,
5112 34, "aarch64-fpu.xml", 0);
5113 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
5114 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5115 51, "arm-neon.xml", 0);
5116 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
5117 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5118 35, "arm-vfp3.xml", 0);
5119 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
5120 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5121 19, "arm-vfp.xml", 0);
5125 /* Sort alphabetically by type name, except for "any". */
5126 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
5128 ObjectClass
*class_a
= (ObjectClass
*)a
;
5129 ObjectClass
*class_b
= (ObjectClass
*)b
;
5130 const char *name_a
, *name_b
;
5132 name_a
= object_class_get_name(class_a
);
5133 name_b
= object_class_get_name(class_b
);
5134 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
5136 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
5139 return strcmp(name_a
, name_b
);
5143 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
5145 ObjectClass
*oc
= data
;
5146 CPUListState
*s
= user_data
;
5147 const char *typename
;
5150 typename
= object_class_get_name(oc
);
5151 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5152 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
5157 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5161 .cpu_fprintf
= cpu_fprintf
,
5165 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5166 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5167 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5168 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5171 /* The 'host' CPU type is dynamically registered only if KVM is
5172 * enabled, so we have to special-case it here:
5174 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
5178 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5180 ObjectClass
*oc
= data
;
5181 CpuDefinitionInfoList
**cpu_list
= user_data
;
5182 CpuDefinitionInfoList
*entry
;
5183 CpuDefinitionInfo
*info
;
5184 const char *typename
;
5186 typename
= object_class_get_name(oc
);
5187 info
= g_malloc0(sizeof(*info
));
5188 info
->name
= g_strndup(typename
,
5189 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5191 entry
= g_malloc0(sizeof(*entry
));
5192 entry
->value
= info
;
5193 entry
->next
= *cpu_list
;
5197 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5199 CpuDefinitionInfoList
*cpu_list
= NULL
;
5202 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5203 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5209 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5210 void *opaque
, int state
, int secstate
,
5211 int crm
, int opc1
, int opc2
)
5213 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5214 * add a single reginfo struct to the hash table.
5216 uint32_t *key
= g_new(uint32_t, 1);
5217 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5218 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5219 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5221 /* Reset the secure state to the specific incoming state. This is
5222 * necessary as the register may have been defined with both states.
5224 r2
->secure
= secstate
;
5226 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5227 /* Register is banked (using both entries in array).
5228 * Overwriting fieldoffset as the array is only used to define
5229 * banked registers but later only fieldoffset is used.
5231 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5234 if (state
== ARM_CP_STATE_AA32
) {
5235 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5236 /* If the register is banked then we don't need to migrate or
5237 * reset the 32-bit instance in certain cases:
5239 * 1) If the register has both 32-bit and 64-bit instances then we
5240 * can count on the 64-bit instance taking care of the
5242 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5243 * taking care of the secure bank. This requires that separate
5244 * 32 and 64-bit definitions are provided.
5246 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5247 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5248 r2
->type
|= ARM_CP_ALIAS
;
5250 } else if ((secstate
!= r
->secure
) && !ns
) {
5251 /* The register is not banked so we only want to allow migration of
5252 * the non-secure instance.
5254 r2
->type
|= ARM_CP_ALIAS
;
5257 if (r
->state
== ARM_CP_STATE_BOTH
) {
5258 /* We assume it is a cp15 register if the .cp field is left unset.
5264 #ifdef HOST_WORDS_BIGENDIAN
5265 if (r2
->fieldoffset
) {
5266 r2
->fieldoffset
+= sizeof(uint32_t);
5271 if (state
== ARM_CP_STATE_AA64
) {
5272 /* To allow abbreviation of ARMCPRegInfo
5273 * definitions, we treat cp == 0 as equivalent to
5274 * the value for "standard guest-visible sysreg".
5275 * STATE_BOTH definitions are also always "standard
5276 * sysreg" in their AArch64 view (the .cp value may
5277 * be non-zero for the benefit of the AArch32 view).
5279 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
5280 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
5282 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
5283 r2
->opc0
, opc1
, opc2
);
5285 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
5288 r2
->opaque
= opaque
;
5290 /* reginfo passed to helpers is correct for the actual access,
5291 * and is never ARM_CP_STATE_BOTH:
5294 /* Make sure reginfo passed to helpers for wildcarded regs
5295 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5300 /* By convention, for wildcarded registers only the first
5301 * entry is used for migration; the others are marked as
5302 * ALIAS so we don't try to transfer the register
5303 * multiple times. Special registers (ie NOP/WFI) are
5304 * never migratable and not even raw-accessible.
5306 if ((r
->type
& ARM_CP_SPECIAL
)) {
5307 r2
->type
|= ARM_CP_NO_RAW
;
5309 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5310 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5311 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5312 r2
->type
|= ARM_CP_ALIAS
;
5315 /* Check that raw accesses are either forbidden or handled. Note that
5316 * we can't assert this earlier because the setup of fieldoffset for
5317 * banked registers has to be done first.
5319 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5320 assert(!raw_accessors_invalid(r2
));
5323 /* Overriding of an existing definition must be explicitly
5326 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5327 ARMCPRegInfo
*oldreg
;
5328 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5329 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5330 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5331 "crn=%d crm=%d opc1=%d opc2=%d, "
5332 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5333 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5334 oldreg
->name
, r2
->name
);
5335 g_assert_not_reached();
5338 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5342 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5343 const ARMCPRegInfo
*r
, void *opaque
)
5345 /* Define implementations of coprocessor registers.
5346 * We store these in a hashtable because typically
5347 * there are less than 150 registers in a space which
5348 * is 16*16*16*8*8 = 262144 in size.
5349 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5350 * If a register is defined twice then the second definition is
5351 * used, so this can be used to define some generic registers and
5352 * then override them with implementation specific variations.
5353 * At least one of the original and the second definition should
5354 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5355 * against accidental use.
5357 * The state field defines whether the register is to be
5358 * visible in the AArch32 or AArch64 execution state. If the
5359 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5360 * reginfo structure for the AArch32 view, which sees the lower
5361 * 32 bits of the 64 bit register.
5363 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5364 * be wildcarded. AArch64 registers are always considered to be 64
5365 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5366 * the register, if any.
5368 int crm
, opc1
, opc2
, state
;
5369 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5370 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5371 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5372 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5373 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5374 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5375 /* 64 bit registers have only CRm and Opc1 fields */
5376 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5377 /* op0 only exists in the AArch64 encodings */
5378 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5379 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5380 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5381 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5382 * encodes a minimum access level for the register. We roll this
5383 * runtime check into our general permission check code, so check
5384 * here that the reginfo's specified permissions are strict enough
5385 * to encompass the generic architectural permission check.
5387 if (r
->state
!= ARM_CP_STATE_AA32
) {
5390 case 0: case 1: case 2:
5403 /* unallocated encoding, so not possible */
5411 /* min_EL EL1, secure mode only (we don't check the latter) */
5415 /* broken reginfo with out-of-range opc1 */
5419 /* assert our permissions are not too lax (stricter is fine) */
5420 assert((r
->access
& ~mask
) == 0);
5423 /* Check that the register definition has enough info to handle
5424 * reads and writes if they are permitted.
5426 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5427 if (r
->access
& PL3_R
) {
5428 assert((r
->fieldoffset
||
5429 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5432 if (r
->access
& PL3_W
) {
5433 assert((r
->fieldoffset
||
5434 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5438 /* Bad type field probably means missing sentinel at end of reg list */
5439 assert(cptype_valid(r
->type
));
5440 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5441 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5442 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5443 for (state
= ARM_CP_STATE_AA32
;
5444 state
<= ARM_CP_STATE_AA64
; state
++) {
5445 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5448 if (state
== ARM_CP_STATE_AA32
) {
5449 /* Under AArch32 CP registers can be common
5450 * (same for secure and non-secure world) or banked.
5452 switch (r
->secure
) {
5453 case ARM_CP_SECSTATE_S
:
5454 case ARM_CP_SECSTATE_NS
:
5455 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5456 r
->secure
, crm
, opc1
, opc2
);
5459 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5462 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5468 /* AArch64 registers get mapped to non-secure instance
5470 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5480 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5481 const ARMCPRegInfo
*regs
, void *opaque
)
5483 /* Define a whole list of registers */
5484 const ARMCPRegInfo
*r
;
5485 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5486 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5490 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5492 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5495 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5498 /* Helper coprocessor write function for write-ignore registers */
5501 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5503 /* Helper coprocessor write function for read-as-zero registers */
5507 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5509 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5512 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
5514 /* Return true if it is not valid for us to switch to
5515 * this CPU mode (ie all the UNPREDICTABLE cases in
5516 * the ARM ARM CPSRWriteByInstr pseudocode).
5519 /* Changes to or from Hyp via MSR and CPS are illegal. */
5520 if (write_type
== CPSRWriteByInstr
&&
5521 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
5522 mode
== ARM_CPU_MODE_HYP
)) {
5527 case ARM_CPU_MODE_USR
:
5529 case ARM_CPU_MODE_SYS
:
5530 case ARM_CPU_MODE_SVC
:
5531 case ARM_CPU_MODE_ABT
:
5532 case ARM_CPU_MODE_UND
:
5533 case ARM_CPU_MODE_IRQ
:
5534 case ARM_CPU_MODE_FIQ
:
5535 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5536 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5538 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5539 * and CPS are treated as illegal mode changes.
5541 if (write_type
== CPSRWriteByInstr
&&
5542 (env
->cp15
.hcr_el2
& HCR_TGE
) &&
5543 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
5544 !arm_is_secure_below_el3(env
)) {
5548 case ARM_CPU_MODE_HYP
:
5549 return !arm_feature(env
, ARM_FEATURE_EL2
)
5550 || arm_current_el(env
) < 2 || arm_is_secure(env
);
5551 case ARM_CPU_MODE_MON
:
5552 return arm_current_el(env
) < 3;
5558 uint32_t cpsr_read(CPUARMState
*env
)
5561 ZF
= (env
->ZF
== 0);
5562 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5563 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5564 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5565 | ((env
->condexec_bits
& 0xfc) << 8)
5566 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5569 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
5570 CPSRWriteType write_type
)
5572 uint32_t changed_daif
;
5574 if (mask
& CPSR_NZCV
) {
5575 env
->ZF
= (~val
) & CPSR_Z
;
5577 env
->CF
= (val
>> 29) & 1;
5578 env
->VF
= (val
<< 3) & 0x80000000;
5581 env
->QF
= ((val
& CPSR_Q
) != 0);
5583 env
->thumb
= ((val
& CPSR_T
) != 0);
5584 if (mask
& CPSR_IT_0_1
) {
5585 env
->condexec_bits
&= ~3;
5586 env
->condexec_bits
|= (val
>> 25) & 3;
5588 if (mask
& CPSR_IT_2_7
) {
5589 env
->condexec_bits
&= 3;
5590 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5592 if (mask
& CPSR_GE
) {
5593 env
->GE
= (val
>> 16) & 0xf;
5596 /* In a V7 implementation that includes the security extensions but does
5597 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5598 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5599 * bits respectively.
5601 * In a V8 implementation, it is permitted for privileged software to
5602 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5604 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
5605 arm_feature(env
, ARM_FEATURE_EL3
) &&
5606 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5607 !arm_is_secure(env
)) {
5609 changed_daif
= (env
->daif
^ val
) & mask
;
5611 if (changed_daif
& CPSR_A
) {
5612 /* Check to see if we are allowed to change the masking of async
5613 * abort exceptions from a non-secure state.
5615 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5616 qemu_log_mask(LOG_GUEST_ERROR
,
5617 "Ignoring attempt to switch CPSR_A flag from "
5618 "non-secure world with SCR.AW bit clear\n");
5623 if (changed_daif
& CPSR_F
) {
5624 /* Check to see if we are allowed to change the masking of FIQ
5625 * exceptions from a non-secure state.
5627 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5628 qemu_log_mask(LOG_GUEST_ERROR
,
5629 "Ignoring attempt to switch CPSR_F flag from "
5630 "non-secure world with SCR.FW bit clear\n");
5634 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5635 * If this bit is set software is not allowed to mask
5636 * FIQs, but is allowed to set CPSR_F to 0.
5638 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5640 qemu_log_mask(LOG_GUEST_ERROR
,
5641 "Ignoring attempt to enable CPSR_F flag "
5642 "(non-maskable FIQ [NMFI] support enabled)\n");
5648 env
->daif
&= ~(CPSR_AIF
& mask
);
5649 env
->daif
|= val
& CPSR_AIF
& mask
;
5651 if (write_type
!= CPSRWriteRaw
&&
5652 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
5653 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
5654 /* Note that we can only get here in USR mode if this is a
5655 * gdb stub write; for this case we follow the architectural
5656 * behaviour for guest writes in USR mode of ignoring an attempt
5657 * to switch mode. (Those are caught by translate.c for writes
5658 * triggered by guest instructions.)
5661 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
5662 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5663 * v7, and has defined behaviour in v8:
5664 * + leave CPSR.M untouched
5665 * + allow changes to the other CPSR fields
5667 * For user changes via the GDB stub, we don't set PSTATE.IL,
5668 * as this would be unnecessarily harsh for a user error.
5671 if (write_type
!= CPSRWriteByGDBStub
&&
5672 arm_feature(env
, ARM_FEATURE_V8
)) {
5677 switch_mode(env
, val
& CPSR_M
);
5680 mask
&= ~CACHED_CPSR_BITS
;
5681 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5684 /* Sign/zero extend */
5685 uint32_t HELPER(sxtb16
)(uint32_t x
)
5688 res
= (uint16_t)(int8_t)x
;
5689 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5693 uint32_t HELPER(uxtb16
)(uint32_t x
)
5696 res
= (uint16_t)(uint8_t)x
;
5697 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5701 uint32_t HELPER(clz
)(uint32_t x
)
5706 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5710 if (num
== INT_MIN
&& den
== -1)
5715 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5722 uint32_t HELPER(rbit
)(uint32_t x
)
5727 #if defined(CONFIG_USER_ONLY)
5729 /* These should probably raise undefined insn exceptions. */
5730 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5732 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5734 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5737 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5739 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5741 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5745 void switch_mode(CPUARMState
*env
, int mode
)
5747 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5749 if (mode
!= ARM_CPU_MODE_USR
) {
5750 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5754 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5755 uint32_t cur_el
, bool secure
)
5760 void aarch64_sync_64_to_32(CPUARMState
*env
)
5762 g_assert_not_reached();
5767 void switch_mode(CPUARMState
*env
, int mode
)
5772 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5773 if (mode
== old_mode
)
5776 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5777 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5778 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5779 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5780 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5781 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5784 i
= bank_number(old_mode
);
5785 env
->banked_r13
[i
] = env
->regs
[13];
5786 env
->banked_r14
[i
] = env
->regs
[14];
5787 env
->banked_spsr
[i
] = env
->spsr
;
5789 i
= bank_number(mode
);
5790 env
->regs
[13] = env
->banked_r13
[i
];
5791 env
->regs
[14] = env
->banked_r14
[i
];
5792 env
->spsr
= env
->banked_spsr
[i
];
5795 /* Physical Interrupt Target EL Lookup Table
5797 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5799 * The below multi-dimensional table is used for looking up the target
5800 * exception level given numerous condition criteria. Specifically, the
5801 * target EL is based on SCR and HCR routing controls as well as the
5802 * currently executing EL and secure state.
5805 * target_el_table[2][2][2][2][2][4]
5806 * | | | | | +--- Current EL
5807 * | | | | +------ Non-secure(0)/Secure(1)
5808 * | | | +--------- HCR mask override
5809 * | | +------------ SCR exec state control
5810 * | +--------------- SCR mask override
5811 * +------------------ 32-bit(0)/64-bit(1) EL3
5813 * The table values are as such:
5817 * The ARM ARM target EL table includes entries indicating that an "exception
5818 * is not taken". The two cases where this is applicable are:
5819 * 1) An exception is taken from EL3 but the SCR does not have the exception
5821 * 2) An exception is taken from EL2 but the HCR does not have the exception
5823 * In these two cases, the below table contain a target of EL1. This value is
5824 * returned as it is expected that the consumer of the table data will check
5825 * for "target EL >= current EL" to ensure the exception is not taken.
5829 * BIT IRQ IMO Non-secure Secure
5830 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5832 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5833 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5834 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5835 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5836 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5837 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5838 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5839 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5840 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5841 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5842 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5843 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5844 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5845 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5846 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5847 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5848 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5852 * Determine the target EL for physical exceptions
5854 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5855 uint32_t cur_el
, bool secure
)
5857 CPUARMState
*env
= cs
->env_ptr
;
5862 /* Is the highest EL AArch64? */
5863 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5865 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5866 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5868 /* Either EL2 is the highest EL (and so the EL2 register width
5869 * is given by is64); or there is no EL2 or EL3, in which case
5870 * the value of 'rw' does not affect the table lookup anyway.
5877 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5878 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5881 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5882 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5885 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5886 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5890 /* If HCR.TGE is set then HCR is treated as being 1 */
5891 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5893 /* Perform a table-lookup for the target EL given the current state */
5894 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5896 assert(target_el
> 0);
5901 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5903 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5906 stl_phys(cs
->as
, env
->regs
[13], val
);
5909 static uint32_t v7m_pop(CPUARMState
*env
)
5911 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5914 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5919 /* Switch to V7M main or process stack pointer. */
5920 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5923 if (env
->v7m
.current_sp
!= process
) {
5924 tmp
= env
->v7m
.other_sp
;
5925 env
->v7m
.other_sp
= env
->regs
[13];
5926 env
->regs
[13] = tmp
;
5927 env
->v7m
.current_sp
= process
;
5931 static void do_v7m_exception_exit(CPUARMState
*env
)
5936 type
= env
->regs
[15];
5937 if (env
->v7m
.exception
!= 0)
5938 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5940 /* Switch to the target stack. */
5941 switch_v7m_sp(env
, (type
& 4) != 0);
5942 /* Pop registers. */
5943 env
->regs
[0] = v7m_pop(env
);
5944 env
->regs
[1] = v7m_pop(env
);
5945 env
->regs
[2] = v7m_pop(env
);
5946 env
->regs
[3] = v7m_pop(env
);
5947 env
->regs
[12] = v7m_pop(env
);
5948 env
->regs
[14] = v7m_pop(env
);
5949 env
->regs
[15] = v7m_pop(env
);
5950 if (env
->regs
[15] & 1) {
5951 qemu_log_mask(LOG_GUEST_ERROR
,
5952 "M profile return from interrupt with misaligned "
5953 "PC is UNPREDICTABLE\n");
5954 /* Actual hardware seems to ignore the lsbit, and there are several
5955 * RTOSes out there which incorrectly assume the r15 in the stack
5956 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5958 env
->regs
[15] &= ~1U;
5960 xpsr
= v7m_pop(env
);
5961 xpsr_write(env
, xpsr
, 0xfffffdff);
5962 /* Undo stack alignment. */
5965 /* ??? The exception return type specifies Thread/Handler mode. However
5966 this is also implied by the xPSR value. Not sure what to do
5967 if there is a mismatch. */
5968 /* ??? Likewise for mismatches between the CONTROL register and the stack
5972 static void arm_log_exception(int idx
)
5974 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
5975 const char *exc
= NULL
;
5977 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
5978 exc
= excnames
[idx
];
5983 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
5987 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5989 ARMCPU
*cpu
= ARM_CPU(cs
);
5990 CPUARMState
*env
= &cpu
->env
;
5991 uint32_t xpsr
= xpsr_read(env
);
5995 arm_log_exception(cs
->exception_index
);
5998 if (env
->v7m
.current_sp
)
6000 if (env
->v7m
.exception
== 0)
6003 /* For exceptions we just mark as pending on the NVIC, and let that
6005 /* TODO: Need to escalate if the current priority is higher than the
6006 one we're raising. */
6007 switch (cs
->exception_index
) {
6009 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6012 /* The PC already points to the next instruction. */
6013 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
6015 case EXCP_PREFETCH_ABORT
:
6016 case EXCP_DATA_ABORT
:
6017 /* TODO: if we implemented the MPU registers, this is where we
6018 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6020 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
6023 if (semihosting_enabled()) {
6025 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
6028 qemu_log_mask(CPU_LOG_INT
,
6029 "...handling as semihosting call 0x%x\n",
6031 env
->regs
[0] = do_arm_semihosting(env
);
6035 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
6038 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
6040 case EXCP_EXCEPTION_EXIT
:
6041 do_v7m_exception_exit(env
);
6044 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6045 return; /* Never happens. Keep compiler happy. */
6048 /* Align stack pointer. */
6049 /* ??? Should only do this if Configuration Control Register
6050 STACKALIGN bit is set. */
6051 if (env
->regs
[13] & 4) {
6055 /* Switch to the handler mode. */
6056 v7m_push(env
, xpsr
);
6057 v7m_push(env
, env
->regs
[15]);
6058 v7m_push(env
, env
->regs
[14]);
6059 v7m_push(env
, env
->regs
[12]);
6060 v7m_push(env
, env
->regs
[3]);
6061 v7m_push(env
, env
->regs
[2]);
6062 v7m_push(env
, env
->regs
[1]);
6063 v7m_push(env
, env
->regs
[0]);
6064 switch_v7m_sp(env
, 0);
6066 env
->condexec_bits
= 0;
6068 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
6069 env
->regs
[15] = addr
& 0xfffffffe;
6070 env
->thumb
= addr
& 1;
6073 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6074 * register set. This is necessary when switching between AArch32 and AArch64
6077 void aarch64_sync_32_to_64(CPUARMState
*env
)
6080 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6082 /* We can blanket copy R[0:7] to X[0:7] */
6083 for (i
= 0; i
< 8; i
++) {
6084 env
->xregs
[i
] = env
->regs
[i
];
6087 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6088 * Otherwise, they come from the banked user regs.
6090 if (mode
== ARM_CPU_MODE_FIQ
) {
6091 for (i
= 8; i
< 13; i
++) {
6092 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
6095 for (i
= 8; i
< 13; i
++) {
6096 env
->xregs
[i
] = env
->regs
[i
];
6100 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6101 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6102 * from the mode banked register.
6104 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6105 env
->xregs
[13] = env
->regs
[13];
6106 env
->xregs
[14] = env
->regs
[14];
6108 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
6109 /* HYP is an exception in that it is copied from r14 */
6110 if (mode
== ARM_CPU_MODE_HYP
) {
6111 env
->xregs
[14] = env
->regs
[14];
6113 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
6117 if (mode
== ARM_CPU_MODE_HYP
) {
6118 env
->xregs
[15] = env
->regs
[13];
6120 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
6123 if (mode
== ARM_CPU_MODE_IRQ
) {
6124 env
->xregs
[16] = env
->regs
[14];
6125 env
->xregs
[17] = env
->regs
[13];
6127 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
6128 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
6131 if (mode
== ARM_CPU_MODE_SVC
) {
6132 env
->xregs
[18] = env
->regs
[14];
6133 env
->xregs
[19] = env
->regs
[13];
6135 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
6136 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
6139 if (mode
== ARM_CPU_MODE_ABT
) {
6140 env
->xregs
[20] = env
->regs
[14];
6141 env
->xregs
[21] = env
->regs
[13];
6143 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
6144 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
6147 if (mode
== ARM_CPU_MODE_UND
) {
6148 env
->xregs
[22] = env
->regs
[14];
6149 env
->xregs
[23] = env
->regs
[13];
6151 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
6152 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
6155 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6156 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6157 * FIQ bank for r8-r14.
6159 if (mode
== ARM_CPU_MODE_FIQ
) {
6160 for (i
= 24; i
< 31; i
++) {
6161 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
6164 for (i
= 24; i
< 29; i
++) {
6165 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
6167 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
6168 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
6171 env
->pc
= env
->regs
[15];
6174 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6175 * register set. This is necessary when switching between AArch32 and AArch64
6178 void aarch64_sync_64_to_32(CPUARMState
*env
)
6181 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6183 /* We can blanket copy X[0:7] to R[0:7] */
6184 for (i
= 0; i
< 8; i
++) {
6185 env
->regs
[i
] = env
->xregs
[i
];
6188 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6189 * Otherwise, we copy x8-x12 into the banked user regs.
6191 if (mode
== ARM_CPU_MODE_FIQ
) {
6192 for (i
= 8; i
< 13; i
++) {
6193 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
6196 for (i
= 8; i
< 13; i
++) {
6197 env
->regs
[i
] = env
->xregs
[i
];
6201 /* Registers r13 & r14 depend on the current mode.
6202 * If we are in a given mode, we copy the corresponding x registers to r13
6203 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6206 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6207 env
->regs
[13] = env
->xregs
[13];
6208 env
->regs
[14] = env
->xregs
[14];
6210 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
6212 /* HYP is an exception in that it does not have its own banked r14 but
6213 * shares the USR r14
6215 if (mode
== ARM_CPU_MODE_HYP
) {
6216 env
->regs
[14] = env
->xregs
[14];
6218 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
6222 if (mode
== ARM_CPU_MODE_HYP
) {
6223 env
->regs
[13] = env
->xregs
[15];
6225 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
6228 if (mode
== ARM_CPU_MODE_IRQ
) {
6229 env
->regs
[14] = env
->xregs
[16];
6230 env
->regs
[13] = env
->xregs
[17];
6232 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
6233 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
6236 if (mode
== ARM_CPU_MODE_SVC
) {
6237 env
->regs
[14] = env
->xregs
[18];
6238 env
->regs
[13] = env
->xregs
[19];
6240 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
6241 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
6244 if (mode
== ARM_CPU_MODE_ABT
) {
6245 env
->regs
[14] = env
->xregs
[20];
6246 env
->regs
[13] = env
->xregs
[21];
6248 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
6249 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
6252 if (mode
== ARM_CPU_MODE_UND
) {
6253 env
->regs
[14] = env
->xregs
[22];
6254 env
->regs
[13] = env
->xregs
[23];
6256 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
6257 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
6260 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6261 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6262 * FIQ bank for r8-r14.
6264 if (mode
== ARM_CPU_MODE_FIQ
) {
6265 for (i
= 24; i
< 31; i
++) {
6266 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
6269 for (i
= 24; i
< 29; i
++) {
6270 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
6272 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
6273 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
6276 env
->regs
[15] = env
->pc
;
6279 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
6281 ARMCPU
*cpu
= ARM_CPU(cs
);
6282 CPUARMState
*env
= &cpu
->env
;
6289 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6290 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
6292 case EC_BREAKPOINT_SAME_EL
:
6296 case EC_WATCHPOINT_SAME_EL
:
6302 case EC_VECTORCATCH
:
6311 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
6314 /* TODO: Vectored interrupt controller. */
6315 switch (cs
->exception_index
) {
6317 new_mode
= ARM_CPU_MODE_UND
;
6326 new_mode
= ARM_CPU_MODE_SVC
;
6329 /* The PC already points to the next instruction. */
6333 env
->exception
.fsr
= 2;
6334 /* Fall through to prefetch abort. */
6335 case EXCP_PREFETCH_ABORT
:
6336 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
6337 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
6338 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
6339 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
6340 new_mode
= ARM_CPU_MODE_ABT
;
6342 mask
= CPSR_A
| CPSR_I
;
6345 case EXCP_DATA_ABORT
:
6346 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
6347 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
6348 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
6350 (uint32_t)env
->exception
.vaddress
);
6351 new_mode
= ARM_CPU_MODE_ABT
;
6353 mask
= CPSR_A
| CPSR_I
;
6357 new_mode
= ARM_CPU_MODE_IRQ
;
6359 /* Disable IRQ and imprecise data aborts. */
6360 mask
= CPSR_A
| CPSR_I
;
6362 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
6363 /* IRQ routed to monitor mode */
6364 new_mode
= ARM_CPU_MODE_MON
;
6369 new_mode
= ARM_CPU_MODE_FIQ
;
6371 /* Disable FIQ, IRQ and imprecise data aborts. */
6372 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6373 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6374 /* FIQ routed to monitor mode */
6375 new_mode
= ARM_CPU_MODE_MON
;
6380 new_mode
= ARM_CPU_MODE_MON
;
6382 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6386 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6387 return; /* Never happens. Keep compiler happy. */
6390 if (new_mode
== ARM_CPU_MODE_MON
) {
6391 addr
+= env
->cp15
.mvbar
;
6392 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6393 /* High vectors. When enabled, base address cannot be remapped. */
6396 /* ARM v7 architectures provide a vector base address register to remap
6397 * the interrupt vector table.
6398 * This register is only followed in non-monitor mode, and is banked.
6399 * Note: only bits 31:5 are valid.
6401 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6404 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6405 env
->cp15
.scr_el3
&= ~SCR_NS
;
6408 switch_mode (env
, new_mode
);
6409 /* For exceptions taken to AArch32 we must clear the SS bit in both
6410 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6412 env
->uncached_cpsr
&= ~PSTATE_SS
;
6413 env
->spsr
= cpsr_read(env
);
6414 /* Clear IT bits. */
6415 env
->condexec_bits
= 0;
6416 /* Switch to the new mode, and to the correct instruction set. */
6417 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6418 /* Set new mode endianness */
6419 env
->uncached_cpsr
&= ~CPSR_E
;
6420 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
6421 env
->uncached_cpsr
|= ~CPSR_E
;
6424 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6425 * and we should just guard the thumb mode on V4 */
6426 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6427 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6429 env
->regs
[14] = env
->regs
[15] + offset
;
6430 env
->regs
[15] = addr
;
6433 /* Handle exception entry to a target EL which is using AArch64 */
6434 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6436 ARMCPU
*cpu
= ARM_CPU(cs
);
6437 CPUARMState
*env
= &cpu
->env
;
6438 unsigned int new_el
= env
->exception
.target_el
;
6439 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6440 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6442 if (arm_current_el(env
) < new_el
) {
6443 /* Entry vector offset depends on whether the implemented EL
6444 * immediately lower than the target level is using AArch32 or AArch64
6450 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6453 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6456 is_aa64
= is_a64(env
);
6459 g_assert_not_reached();
6467 } else if (pstate_read(env
) & PSTATE_SP
) {
6471 switch (cs
->exception_index
) {
6472 case EXCP_PREFETCH_ABORT
:
6473 case EXCP_DATA_ABORT
:
6474 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6475 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6476 env
->cp15
.far_el
[new_el
]);
6484 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6495 qemu_log_mask(CPU_LOG_INT
,
6496 "...handling as semihosting call 0x%" PRIx64
"\n",
6498 env
->xregs
[0] = do_arm_semihosting(env
);
6501 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6505 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6506 aarch64_save_sp(env
, arm_current_el(env
));
6507 env
->elr_el
[new_el
] = env
->pc
;
6509 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6510 env
->elr_el
[new_el
] = env
->regs
[15];
6512 aarch64_sync_32_to_64(env
);
6514 env
->condexec_bits
= 0;
6516 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6517 env
->elr_el
[new_el
]);
6519 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6521 aarch64_restore_sp(env
, new_el
);
6525 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6526 new_el
, env
->pc
, pstate_read(env
));
6529 static inline bool check_for_semihosting(CPUState
*cs
)
6531 /* Check whether this exception is a semihosting call; if so
6532 * then handle it and return true; otherwise return false.
6534 ARMCPU
*cpu
= ARM_CPU(cs
);
6535 CPUARMState
*env
= &cpu
->env
;
6538 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6539 /* This is always the 64-bit semihosting exception.
6540 * The "is this usermode" and "is semihosting enabled"
6541 * checks have been done at translate time.
6543 qemu_log_mask(CPU_LOG_INT
,
6544 "...handling as semihosting call 0x%" PRIx64
"\n",
6546 env
->xregs
[0] = do_arm_semihosting(env
);
6553 /* Only intercept calls from privileged modes, to provide some
6554 * semblance of security.
6556 if (!semihosting_enabled() ||
6557 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6561 switch (cs
->exception_index
) {
6563 /* Check for semihosting interrupt. */
6565 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
6571 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
6573 if (imm
== 0x123456) {
6579 /* See if this is a semihosting syscall. */
6581 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
6593 qemu_log_mask(CPU_LOG_INT
,
6594 "...handling as semihosting call 0x%x\n",
6596 env
->regs
[0] = do_arm_semihosting(env
);
6601 /* Handle a CPU exception for A and R profile CPUs.
6602 * Do any appropriate logging, handle PSCI calls, and then hand off
6603 * to the AArch64-entry or AArch32-entry function depending on the
6604 * target exception level's register width.
6606 void arm_cpu_do_interrupt(CPUState
*cs
)
6608 ARMCPU
*cpu
= ARM_CPU(cs
);
6609 CPUARMState
*env
= &cpu
->env
;
6610 unsigned int new_el
= env
->exception
.target_el
;
6614 arm_log_exception(cs
->exception_index
);
6615 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6617 if (qemu_loglevel_mask(CPU_LOG_INT
)
6618 && !excp_is_internal(cs
->exception_index
)) {
6619 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6620 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6621 env
->exception
.syndrome
);
6624 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6625 arm_handle_psci_call(cpu
);
6626 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6630 /* Semihosting semantics depend on the register width of the
6631 * code that caused the exception, not the target exception level,
6632 * so must be handled here.
6634 if (check_for_semihosting(cs
)) {
6638 assert(!excp_is_internal(cs
->exception_index
));
6639 if (arm_el_is_aa64(env
, new_el
)) {
6640 arm_cpu_do_interrupt_aarch64(cs
);
6642 arm_cpu_do_interrupt_aarch32(cs
);
6645 arm_call_el_change_hook(cpu
);
6647 if (!kvm_enabled()) {
6648 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6652 /* Return the exception level which controls this address translation regime */
6653 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6656 case ARMMMUIdx_S2NS
:
6657 case ARMMMUIdx_S1E2
:
6659 case ARMMMUIdx_S1E3
:
6661 case ARMMMUIdx_S1SE0
:
6662 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6663 case ARMMMUIdx_S1SE1
:
6664 case ARMMMUIdx_S1NSE0
:
6665 case ARMMMUIdx_S1NSE1
:
6668 g_assert_not_reached();
6672 /* Return true if this address translation regime is secure */
6673 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6676 case ARMMMUIdx_S12NSE0
:
6677 case ARMMMUIdx_S12NSE1
:
6678 case ARMMMUIdx_S1NSE0
:
6679 case ARMMMUIdx_S1NSE1
:
6680 case ARMMMUIdx_S1E2
:
6681 case ARMMMUIdx_S2NS
:
6683 case ARMMMUIdx_S1E3
:
6684 case ARMMMUIdx_S1SE0
:
6685 case ARMMMUIdx_S1SE1
:
6688 g_assert_not_reached();
6692 /* Return the SCTLR value which controls this address translation regime */
6693 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6695 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6698 /* Return true if the specified stage of address translation is disabled */
6699 static inline bool regime_translation_disabled(CPUARMState
*env
,
6702 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6703 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6705 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6708 static inline bool regime_translation_big_endian(CPUARMState
*env
,
6711 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
6714 /* Return the TCR controlling this translation regime */
6715 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6717 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6718 return &env
->cp15
.vtcr_el2
;
6720 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6723 /* Return the TTBR associated with this translation regime */
6724 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6727 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6728 return env
->cp15
.vttbr_el2
;
6731 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6733 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6737 /* Return true if the translation regime is using LPAE format page tables */
6738 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6741 int el
= regime_el(env
, mmu_idx
);
6742 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6745 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6746 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6752 /* Returns true if the stage 1 translation regime is using LPAE format page
6753 * tables. Used when raising alignment exceptions, whose FSR changes depending
6754 * on whether the long or short descriptor format is in use. */
6755 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6757 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6758 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6761 return regime_using_lpae_format(env
, mmu_idx
);
6764 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6767 case ARMMMUIdx_S1SE0
:
6768 case ARMMMUIdx_S1NSE0
:
6772 case ARMMMUIdx_S12NSE0
:
6773 case ARMMMUIdx_S12NSE1
:
6774 g_assert_not_reached();
6778 /* Translate section/page access permissions to page
6779 * R/W protection flags
6782 * @mmu_idx: MMU index indicating required translation regime
6783 * @ap: The 3-bit access permissions (AP[2:0])
6784 * @domain_prot: The 2-bit domain access permissions
6786 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6787 int ap
, int domain_prot
)
6789 bool is_user
= regime_is_user(env
, mmu_idx
);
6791 if (domain_prot
== 3) {
6792 return PAGE_READ
| PAGE_WRITE
;
6797 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6800 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6802 return is_user
? 0 : PAGE_READ
;
6809 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6814 return PAGE_READ
| PAGE_WRITE
;
6817 return PAGE_READ
| PAGE_WRITE
;
6818 case 4: /* Reserved. */
6821 return is_user
? 0 : PAGE_READ
;
6825 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6830 g_assert_not_reached();
6834 /* Translate section/page access permissions to page
6835 * R/W protection flags.
6837 * @ap: The 2-bit simple AP (AP[2:1])
6838 * @is_user: TRUE if accessing from PL0
6840 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6844 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6846 return PAGE_READ
| PAGE_WRITE
;
6848 return is_user
? 0 : PAGE_READ
;
6852 g_assert_not_reached();
6857 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6859 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6862 /* Translate S2 section/page access permissions to protection flags
6865 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6866 * @xn: XN (execute-never) bit
6868 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6879 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
6886 /* Translate section/page access permissions to protection flags
6889 * @mmu_idx: MMU index indicating required translation regime
6890 * @is_aa64: TRUE if AArch64
6891 * @ap: The 2-bit simple AP (AP[2:1])
6892 * @ns: NS (non-secure) bit
6893 * @xn: XN (execute-never) bit
6894 * @pxn: PXN (privileged execute-never) bit
6896 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6897 int ap
, int ns
, int xn
, int pxn
)
6899 bool is_user
= regime_is_user(env
, mmu_idx
);
6900 int prot_rw
, user_rw
;
6904 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6906 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6910 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6913 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6917 /* TODO have_wxn should be replaced with
6918 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6919 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6920 * compatible processors have EL2, which is required for [U]WXN.
6922 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6925 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6929 switch (regime_el(env
, mmu_idx
)) {
6932 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6939 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6940 switch (regime_el(env
, mmu_idx
)) {
6944 xn
= xn
|| !(user_rw
& PAGE_READ
);
6948 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6950 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6951 (uwxn
&& (user_rw
& PAGE_WRITE
));
6961 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6964 return prot_rw
| PAGE_EXEC
;
6967 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6968 uint32_t *table
, uint32_t address
)
6970 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6971 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6973 if (address
& tcr
->mask
) {
6974 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6975 /* Translation table walk disabled for TTBR1 */
6978 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6980 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6981 /* Translation table walk disabled for TTBR0 */
6984 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6986 *table
|= (address
>> 18) & 0x3ffc;
6990 /* Translate a S1 pagetable walk through S2 if needed. */
6991 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6992 hwaddr addr
, MemTxAttrs txattrs
,
6994 ARMMMUFaultInfo
*fi
)
6996 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6997 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6998 target_ulong s2size
;
7003 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
7004 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
7016 /* All loads done in the course of a page table walk go through here.
7017 * TODO: rather than ignoring errors from physical memory reads (which
7018 * are external aborts in ARM terminology) we should propagate this
7019 * error out so that we can turn it into a Data Abort if this walk
7020 * was being done for a CPU load/store or an address translation instruction
7021 * (but not if it was for a debug access).
7023 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
7024 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
7025 ARMMMUFaultInfo
*fi
)
7027 ARMCPU
*cpu
= ARM_CPU(cs
);
7028 CPUARMState
*env
= &cpu
->env
;
7029 MemTxAttrs attrs
= {};
7032 attrs
.secure
= is_secure
;
7033 as
= arm_addressspace(cs
, attrs
);
7034 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
7038 if (regime_translation_big_endian(env
, mmu_idx
)) {
7039 return address_space_ldl_be(as
, addr
, attrs
, NULL
);
7041 return address_space_ldl_le(as
, addr
, attrs
, NULL
);
7045 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
7046 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
7047 ARMMMUFaultInfo
*fi
)
7049 ARMCPU
*cpu
= ARM_CPU(cs
);
7050 CPUARMState
*env
= &cpu
->env
;
7051 MemTxAttrs attrs
= {};
7054 attrs
.secure
= is_secure
;
7055 as
= arm_addressspace(cs
, attrs
);
7056 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
7060 if (regime_translation_big_endian(env
, mmu_idx
)) {
7061 return address_space_ldq_be(as
, addr
, attrs
, NULL
);
7063 return address_space_ldq_le(as
, addr
, attrs
, NULL
);
7067 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
7068 int access_type
, ARMMMUIdx mmu_idx
,
7069 hwaddr
*phys_ptr
, int *prot
,
7070 target_ulong
*page_size
, uint32_t *fsr
,
7071 ARMMMUFaultInfo
*fi
)
7073 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7084 /* Pagetable walk. */
7085 /* Lookup l1 descriptor. */
7086 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7087 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7091 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7094 domain
= (desc
>> 5) & 0x0f;
7095 if (regime_el(env
, mmu_idx
) == 1) {
7096 dacr
= env
->cp15
.dacr_ns
;
7098 dacr
= env
->cp15
.dacr_s
;
7100 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7102 /* Section translation fault. */
7106 if (domain_prot
== 0 || domain_prot
== 2) {
7108 code
= 9; /* Section domain fault. */
7110 code
= 11; /* Page domain fault. */
7115 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7116 ap
= (desc
>> 10) & 3;
7118 *page_size
= 1024 * 1024;
7120 /* Lookup l2 entry. */
7122 /* Coarse pagetable. */
7123 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7125 /* Fine pagetable. */
7126 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
7128 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7131 case 0: /* Page translation fault. */
7134 case 1: /* 64k page. */
7135 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7136 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
7137 *page_size
= 0x10000;
7139 case 2: /* 4k page. */
7140 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7141 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
7142 *page_size
= 0x1000;
7144 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7146 /* ARMv6/XScale extended small page format */
7147 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
7148 || arm_feature(env
, ARM_FEATURE_V6
)) {
7149 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7150 *page_size
= 0x1000;
7152 /* UNPREDICTABLE in ARMv5; we choose to take a
7153 * page translation fault.
7159 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
7162 ap
= (desc
>> 4) & 3;
7165 /* Never happens, but compiler isn't smart enough to tell. */
7170 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7171 *prot
|= *prot
? PAGE_EXEC
: 0;
7172 if (!(*prot
& (1 << access_type
))) {
7173 /* Access permission fault. */
7176 *phys_ptr
= phys_addr
;
7179 *fsr
= code
| (domain
<< 4);
7183 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
7184 int access_type
, ARMMMUIdx mmu_idx
,
7185 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7186 target_ulong
*page_size
, uint32_t *fsr
,
7187 ARMMMUFaultInfo
*fi
)
7189 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7203 /* Pagetable walk. */
7204 /* Lookup l1 descriptor. */
7205 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7206 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7210 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7213 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
7214 /* Section translation fault, or attempt to use the encoding
7215 * which is Reserved on implementations without PXN.
7220 if ((type
== 1) || !(desc
& (1 << 18))) {
7221 /* Page or Section. */
7222 domain
= (desc
>> 5) & 0x0f;
7224 if (regime_el(env
, mmu_idx
) == 1) {
7225 dacr
= env
->cp15
.dacr_ns
;
7227 dacr
= env
->cp15
.dacr_s
;
7229 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7230 if (domain_prot
== 0 || domain_prot
== 2) {
7232 code
= 9; /* Section domain fault. */
7234 code
= 11; /* Page domain fault. */
7239 if (desc
& (1 << 18)) {
7241 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
7242 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
7243 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
7244 *page_size
= 0x1000000;
7247 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7248 *page_size
= 0x100000;
7250 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
7251 xn
= desc
& (1 << 4);
7254 ns
= extract32(desc
, 19, 1);
7256 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
7257 pxn
= (desc
>> 2) & 1;
7259 ns
= extract32(desc
, 3, 1);
7260 /* Lookup l2 entry. */
7261 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7262 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7264 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
7266 case 0: /* Page translation fault. */
7269 case 1: /* 64k page. */
7270 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7271 xn
= desc
& (1 << 15);
7272 *page_size
= 0x10000;
7274 case 2: case 3: /* 4k page. */
7275 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7277 *page_size
= 0x1000;
7280 /* Never happens, but compiler isn't smart enough to tell. */
7285 if (domain_prot
== 3) {
7286 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7288 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
7291 if (xn
&& access_type
== 2)
7294 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
7295 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
7296 /* The simplified model uses AP[0] as an access control bit. */
7297 if ((ap
& 1) == 0) {
7298 /* Access flag fault. */
7299 code
= (code
== 15) ? 6 : 3;
7302 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
7304 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7309 if (!(*prot
& (1 << access_type
))) {
7310 /* Access permission fault. */
7315 /* The NS bit will (as required by the architecture) have no effect if
7316 * the CPU doesn't support TZ or this is a non-secure translation
7317 * regime, because the attribute will already be non-secure.
7319 attrs
->secure
= false;
7321 *phys_ptr
= phys_addr
;
7324 *fsr
= code
| (domain
<< 4);
7328 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7329 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7332 translation_fault
= 1,
7334 permission_fault
= 3,
7338 * check_s2_mmu_setup
7340 * @is_aa64: True if the translation regime is in AArch64 state
7341 * @startlevel: Suggested starting level
7342 * @inputsize: Bitsize of IPAs
7343 * @stride: Page-table stride (See the ARM ARM)
7345 * Returns true if the suggested S2 translation parameters are OK and
7348 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
7349 int inputsize
, int stride
)
7351 const int grainsize
= stride
+ 3;
7354 /* Negative levels are never allowed. */
7359 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
7360 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
7365 CPUARMState
*env
= &cpu
->env
;
7366 unsigned int pamax
= arm_pamax(cpu
);
7369 case 13: /* 64KB Pages. */
7370 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
7374 case 11: /* 16KB Pages. */
7375 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
7379 case 9: /* 4KB Pages. */
7380 if (level
== 0 && pamax
<= 42) {
7385 g_assert_not_reached();
7388 /* Inputsize checks. */
7389 if (inputsize
> pamax
&&
7390 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7391 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7395 /* AArch32 only supports 4KB pages. Assert on that. */
7396 assert(stride
== 9);
7405 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7406 int access_type
, ARMMMUIdx mmu_idx
,
7407 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7408 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7409 ARMMMUFaultInfo
*fi
)
7411 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7412 CPUState
*cs
= CPU(cpu
);
7413 /* Read an LPAE long-descriptor translation table. */
7414 MMUFaultType fault_type
= translation_fault
;
7421 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
7422 uint32_t tableattrs
;
7423 target_ulong page_size
;
7429 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7430 int ap
, ns
, xn
, pxn
;
7431 uint32_t el
= regime_el(env
, mmu_idx
);
7432 bool ttbr1_valid
= true;
7433 uint64_t descaddrmask
;
7434 bool aarch64
= arm_el_is_aa64(env
, el
);
7437 * This code does not handle the different format TCR for VTCR_EL2.
7438 * This code also does not support shareability levels.
7439 * Attribute and permission bit handling should also be checked when adding
7440 * support for those page table walks.
7446 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7447 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7450 if (extract64(address
, 55, 1)) {
7451 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7453 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7458 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7462 ttbr1_valid
= false;
7467 /* There is no TTBR1 for EL2 */
7469 ttbr1_valid
= false;
7473 /* Determine whether this address is in the region controlled by
7474 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7475 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7476 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7479 /* AArch64 translation. */
7480 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7481 t0sz
= MIN(t0sz
, 39);
7482 t0sz
= MAX(t0sz
, 16);
7483 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7484 /* AArch32 stage 1 translation. */
7485 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7487 /* AArch32 stage 2 translation. */
7488 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7489 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7490 /* Address size is 40-bit for a stage 2 translation,
7491 * and t0sz can be negative (from -8 to 7),
7492 * so we need to adjust it to use the TTBR selecting logic below.
7495 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4) + 8;
7497 /* If the sign-extend bit is not the same as t0sz[3], the result
7498 * is unpredictable. Flag this as a guest error. */
7500 qemu_log_mask(LOG_GUEST_ERROR
,
7501 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7504 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7506 t1sz
= MIN(t1sz
, 39);
7507 t1sz
= MAX(t1sz
, 16);
7509 if (t0sz
&& !extract64(address
, addrsize
- t0sz
, t0sz
- tbi
)) {
7510 /* there is a ttbr0 region and we are in it (high bits all zero) */
7512 } else if (ttbr1_valid
&& t1sz
&&
7513 !extract64(~address
, addrsize
- t1sz
, t1sz
- tbi
)) {
7514 /* there is a ttbr1 region and we are in it (high bits all one) */
7517 /* ttbr0 region is "everything not in the ttbr1 region" */
7519 } else if (!t1sz
&& ttbr1_valid
) {
7520 /* ttbr1 region is "everything not in the ttbr0 region" */
7523 /* in the gap between the two regions, this is a Translation fault */
7524 fault_type
= translation_fault
;
7528 /* Note that QEMU ignores shareability and cacheability attributes,
7529 * so we don't need to do anything with the SH, ORGN, IRGN fields
7530 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7531 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7532 * implement any ASID-like capability so we can ignore it (instead
7533 * we will always flush the TLB any time the ASID is changed).
7535 if (ttbr_select
== 0) {
7536 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7538 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7540 inputsize
= addrsize
- t0sz
;
7542 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7543 if (tg
== 1) { /* 64KB pages */
7546 if (tg
== 2) { /* 16KB pages */
7550 /* We should only be here if TTBR1 is valid */
7551 assert(ttbr1_valid
);
7553 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7554 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7555 inputsize
= addrsize
- t1sz
;
7557 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7558 if (tg
== 3) { /* 64KB pages */
7561 if (tg
== 1) { /* 16KB pages */
7566 /* Here we should have set up all the parameters for the translation:
7567 * inputsize, ttbr, epd, stride, tbi
7571 /* Translation table walk disabled => Translation fault on TLB miss
7572 * Note: This is always 0 on 64-bit EL2 and EL3.
7577 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7578 /* The starting level depends on the virtual address size (which can
7579 * be up to 48 bits) and the translation granule size. It indicates
7580 * the number of strides (stride bits at a time) needed to
7581 * consume the bits of the input address. In the pseudocode this is:
7582 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7583 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7584 * our 'stride + 3' and 'stride' is our 'stride'.
7585 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7586 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7587 * = 4 - (inputsize - 4) / stride;
7589 level
= 4 - (inputsize
- 4) / stride
;
7591 /* For stage 2 translations the starting level is specified by the
7592 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7594 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
7595 uint32_t startlevel
;
7598 if (!aarch64
|| stride
== 9) {
7599 /* AArch32 or 4KB pages */
7600 startlevel
= 2 - sl0
;
7602 /* 16KB or 64KB pages */
7603 startlevel
= 3 - sl0
;
7606 /* Check that the starting level is valid. */
7607 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
7610 fault_type
= translation_fault
;
7616 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
7617 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
7619 /* Now we can extract the actual base address from the TTBR */
7620 descaddr
= extract64(ttbr
, 0, 48);
7621 descaddr
&= ~indexmask
;
7623 /* The address field in the descriptor goes up to bit 39 for ARMv7
7624 * but up to bit 47 for ARMv8, but we use the descaddrmask
7625 * up to bit 39 for AArch32, because we don't need other bits in that case
7626 * to construct next descriptor address (anyway they should be all zeroes).
7628 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
7629 ~indexmask_grainsize
;
7631 /* Secure accesses start with the page table in secure memory and
7632 * can be downgraded to non-secure at any step. Non-secure accesses
7633 * remain non-secure. We implement this by just ORing in the NSTable/NS
7634 * bits at each step.
7636 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7638 uint64_t descriptor
;
7641 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
7643 nstable
= extract32(tableattrs
, 4, 1);
7644 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7649 if (!(descriptor
& 1) ||
7650 (!(descriptor
& 2) && (level
== 3))) {
7651 /* Invalid, or the Reserved level 3 encoding */
7654 descaddr
= descriptor
& descaddrmask
;
7656 if ((descriptor
& 2) && (level
< 3)) {
7657 /* Table entry. The top five bits are attributes which may
7658 * propagate down through lower levels of the table (and
7659 * which are all arranged so that 0 means "no effect", so
7660 * we can gather them up by ORing in the bits at each level).
7662 tableattrs
|= extract64(descriptor
, 59, 5);
7664 indexmask
= indexmask_grainsize
;
7667 /* Block entry at level 1 or 2, or page entry at level 3.
7668 * These are basically the same thing, although the number
7669 * of bits we pull in from the vaddr varies.
7671 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7672 descaddr
|= (address
& (page_size
- 1));
7673 /* Extract attributes from the descriptor */
7674 attrs
= extract64(descriptor
, 2, 10)
7675 | (extract64(descriptor
, 52, 12) << 10);
7677 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7678 /* Stage 2 table descriptors do not include any attribute fields */
7681 /* Merge in attributes from table descriptors */
7682 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7683 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7684 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7685 * means "force PL1 access only", which means forcing AP[1] to 0.
7687 if (extract32(tableattrs
, 2, 1)) {
7690 attrs
|= nstable
<< 3; /* NS */
7693 /* Here descaddr is the final physical address, and attributes
7696 fault_type
= access_fault
;
7697 if ((attrs
& (1 << 8)) == 0) {
7702 ap
= extract32(attrs
, 4, 2);
7703 xn
= extract32(attrs
, 12, 1);
7705 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7707 *prot
= get_S2prot(env
, ap
, xn
);
7709 ns
= extract32(attrs
, 3, 1);
7710 pxn
= extract32(attrs
, 11, 1);
7711 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
7714 fault_type
= permission_fault
;
7715 if (!(*prot
& (1 << access_type
))) {
7720 /* The NS bit will (as required by the architecture) have no effect if
7721 * the CPU doesn't support TZ or this is a non-secure translation
7722 * regime, because the attribute will already be non-secure.
7724 txattrs
->secure
= false;
7726 *phys_ptr
= descaddr
;
7727 *page_size_ptr
= page_size
;
7731 /* Long-descriptor format IFSR/DFSR value */
7732 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7733 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7734 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7738 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7740 int32_t address
, int *prot
)
7742 *prot
= PAGE_READ
| PAGE_WRITE
;
7744 case 0xF0000000 ... 0xFFFFFFFF:
7745 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7749 case 0x00000000 ... 0x7FFFFFFF:
7756 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7757 int access_type
, ARMMMUIdx mmu_idx
,
7758 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7760 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7762 bool is_user
= regime_is_user(env
, mmu_idx
);
7764 *phys_ptr
= address
;
7767 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7768 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7769 } else { /* MPU enabled */
7770 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7772 uint32_t base
= env
->pmsav7
.drbar
[n
];
7773 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7777 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7782 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7786 rmask
= (1ull << rsize
) - 1;
7789 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7790 "to DRSR region size, mask = %" PRIx32
,
7795 if (address
< base
|| address
> base
+ rmask
) {
7799 /* Region matched */
7801 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7803 uint32_t srdis_mask
;
7805 rsize
-= 3; /* sub region size (power of 2) */
7806 snd
= ((address
- base
) >> rsize
) & 0x7;
7807 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7809 srdis_mask
= srdis
? 0x3 : 0x0;
7810 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7811 /* This will check in groups of 2, 4 and then 8, whether
7812 * the subregion bits are consistent. rsize is incremented
7813 * back up to give the region size, considering consistent
7814 * adjacent subregions as one region. Stop testing if rsize
7815 * is already big enough for an entire QEMU page.
7817 int snd_rounded
= snd
& ~(i
- 1);
7818 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7819 snd_rounded
+ 8, i
);
7820 if (srdis_mask
^ srdis_multi
) {
7823 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7827 if (rsize
< TARGET_PAGE_BITS
) {
7828 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7829 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7830 rsize
, TARGET_PAGE_BITS
);
7839 if (n
== -1) { /* no hits */
7840 if (cpu
->pmsav7_dregion
&&
7841 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7842 /* background fault */
7846 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7847 } else { /* a MPU hit! */
7848 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7850 if (is_user
) { /* User mode AP bit decoding */
7855 break; /* no access */
7857 *prot
|= PAGE_WRITE
;
7861 *prot
|= PAGE_READ
| PAGE_EXEC
;
7864 qemu_log_mask(LOG_GUEST_ERROR
,
7865 "Bad value for AP bits in DRACR %"
7868 } else { /* Priv. mode AP bits decoding */
7871 break; /* no access */
7875 *prot
|= PAGE_WRITE
;
7879 *prot
|= PAGE_READ
| PAGE_EXEC
;
7882 qemu_log_mask(LOG_GUEST_ERROR
,
7883 "Bad value for AP bits in DRACR %"
7889 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7890 *prot
&= ~PAGE_EXEC
;
7895 *fsr
= 0x00d; /* Permission fault */
7896 return !(*prot
& (1 << access_type
));
7899 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7900 int access_type
, ARMMMUIdx mmu_idx
,
7901 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7906 bool is_user
= regime_is_user(env
, mmu_idx
);
7908 *phys_ptr
= address
;
7909 for (n
= 7; n
>= 0; n
--) {
7910 base
= env
->cp15
.c6_region
[n
];
7911 if ((base
& 1) == 0) {
7914 mask
= 1 << ((base
>> 1) & 0x1f);
7915 /* Keep this shift separate from the above to avoid an
7916 (undefined) << 32. */
7917 mask
= (mask
<< 1) - 1;
7918 if (((base
^ address
) & ~mask
) == 0) {
7927 if (access_type
== 2) {
7928 mask
= env
->cp15
.pmsav5_insn_ap
;
7930 mask
= env
->cp15
.pmsav5_data_ap
;
7932 mask
= (mask
>> (n
* 4)) & 0xf;
7942 *prot
= PAGE_READ
| PAGE_WRITE
;
7947 *prot
|= PAGE_WRITE
;
7951 *prot
= PAGE_READ
| PAGE_WRITE
;
7964 /* Bad permission. */
7972 /* get_phys_addr - get the physical address for this virtual address
7974 * Find the physical address corresponding to the given virtual address,
7975 * by doing a translation table walk on MMU based systems or using the
7976 * MPU state on MPU based systems.
7978 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7979 * prot and page_size may not be filled in, and the populated fsr value provides
7980 * information on why the translation aborted, in the format of a
7981 * DFSR/IFSR fault register, with the following caveats:
7982 * * we honour the short vs long DFSR format differences.
7983 * * the WnR bit is never set (the caller must do this).
7984 * * for PSMAv5 based systems we don't bother to return a full FSR format
7988 * @address: virtual address to get physical address for
7989 * @access_type: 0 for read, 1 for write, 2 for execute
7990 * @mmu_idx: MMU index indicating required translation regime
7991 * @phys_ptr: set to the physical address corresponding to the virtual address
7992 * @attrs: set to the memory transaction attributes to use
7993 * @prot: set to the permissions for the page containing phys_ptr
7994 * @page_size: set to the size of the page containing phys_ptr
7995 * @fsr: set to the DFSR/IFSR value on failure
7997 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7998 int access_type
, ARMMMUIdx mmu_idx
,
7999 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
8000 target_ulong
*page_size
, uint32_t *fsr
,
8001 ARMMMUFaultInfo
*fi
)
8003 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
8004 /* Call ourselves recursively to do the stage 1 and then stage 2
8007 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
8012 ret
= get_phys_addr(env
, address
, access_type
,
8013 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
8014 prot
, page_size
, fsr
, fi
);
8016 /* If S1 fails or S2 is disabled, return early. */
8017 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
8022 /* S1 is done. Now do S2 translation. */
8023 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
8024 phys_ptr
, attrs
, &s2_prot
,
8025 page_size
, fsr
, fi
);
8027 /* Combine the S1 and S2 perms. */
8032 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8034 mmu_idx
+= ARMMMUIdx_S1NSE0
;
8038 /* The page table entries may downgrade secure to non-secure, but
8039 * cannot upgrade an non-secure translation regime's attributes
8042 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
8043 attrs
->user
= regime_is_user(env
, mmu_idx
);
8045 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8046 * In v7 and earlier it affects all stage 1 translations.
8048 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
8049 && !arm_feature(env
, ARM_FEATURE_V8
)) {
8050 if (regime_el(env
, mmu_idx
) == 3) {
8051 address
+= env
->cp15
.fcseidr_s
;
8053 address
+= env
->cp15
.fcseidr_ns
;
8057 /* pmsav7 has special handling for when MPU is disabled so call it before
8058 * the common MMU/MPU disabled check below.
8060 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
8061 arm_feature(env
, ARM_FEATURE_V7
)) {
8062 *page_size
= TARGET_PAGE_SIZE
;
8063 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
8064 phys_ptr
, prot
, fsr
);
8067 if (regime_translation_disabled(env
, mmu_idx
)) {
8068 /* MMU/MPU disabled. */
8069 *phys_ptr
= address
;
8070 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
8071 *page_size
= TARGET_PAGE_SIZE
;
8075 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
8077 *page_size
= TARGET_PAGE_SIZE
;
8078 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
8079 phys_ptr
, prot
, fsr
);
8082 if (regime_using_lpae_format(env
, mmu_idx
)) {
8083 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8084 attrs
, prot
, page_size
, fsr
, fi
);
8085 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
8086 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8087 attrs
, prot
, page_size
, fsr
, fi
);
8089 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8090 prot
, page_size
, fsr
, fi
);
8094 /* Walk the page table and (if the mapping exists) add the page
8095 * to the TLB. Return false on success, or true on failure. Populate
8096 * fsr with ARM DFSR/IFSR fault register format value on failure.
8098 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
8099 int access_type
, int mmu_idx
, uint32_t *fsr
,
8100 ARMMMUFaultInfo
*fi
)
8102 ARMCPU
*cpu
= ARM_CPU(cs
);
8103 CPUARMState
*env
= &cpu
->env
;
8105 target_ulong page_size
;
8108 MemTxAttrs attrs
= {};
8110 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
8111 &attrs
, &prot
, &page_size
, fsr
, fi
);
8113 /* Map a single [sub]page. */
8114 phys_addr
&= TARGET_PAGE_MASK
;
8115 address
&= TARGET_PAGE_MASK
;
8116 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
8117 prot
, mmu_idx
, page_size
);
8124 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
8127 ARMCPU
*cpu
= ARM_CPU(cs
);
8128 CPUARMState
*env
= &cpu
->env
;
8130 target_ulong page_size
;
8134 ARMMMUFaultInfo fi
= {};
8136 *attrs
= (MemTxAttrs
) {};
8138 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
8139 attrs
, &prot
, &page_size
, &fsr
, &fi
);
8147 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
8149 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8153 return xpsr_read(env
) & 0xf8000000;
8155 return xpsr_read(env
) & 0xf80001ff;
8157 return xpsr_read(env
) & 0xff00fc00;
8159 return xpsr_read(env
) & 0xff00fdff;
8161 return xpsr_read(env
) & 0x000001ff;
8163 return xpsr_read(env
) & 0x0700fc00;
8165 return xpsr_read(env
) & 0x0700edff;
8167 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
8169 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
8170 case 16: /* PRIMASK */
8171 return (env
->daif
& PSTATE_I
) != 0;
8172 case 17: /* BASEPRI */
8173 case 18: /* BASEPRI_MAX */
8174 return env
->v7m
.basepri
;
8175 case 19: /* FAULTMASK */
8176 return (env
->daif
& PSTATE_F
) != 0;
8177 case 20: /* CONTROL */
8178 return env
->v7m
.control
;
8180 /* ??? For debugging only. */
8181 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
8186 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
8188 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8192 xpsr_write(env
, val
, 0xf8000000);
8195 xpsr_write(env
, val
, 0xf8000000);
8198 xpsr_write(env
, val
, 0xfe00fc00);
8201 xpsr_write(env
, val
, 0xfe00fc00);
8204 /* IPSR bits are readonly. */
8207 xpsr_write(env
, val
, 0x0600fc00);
8210 xpsr_write(env
, val
, 0x0600fc00);
8213 if (env
->v7m
.current_sp
)
8214 env
->v7m
.other_sp
= val
;
8216 env
->regs
[13] = val
;
8219 if (env
->v7m
.current_sp
)
8220 env
->regs
[13] = val
;
8222 env
->v7m
.other_sp
= val
;
8224 case 16: /* PRIMASK */
8226 env
->daif
|= PSTATE_I
;
8228 env
->daif
&= ~PSTATE_I
;
8231 case 17: /* BASEPRI */
8232 env
->v7m
.basepri
= val
& 0xff;
8234 case 18: /* BASEPRI_MAX */
8236 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
8237 env
->v7m
.basepri
= val
;
8239 case 19: /* FAULTMASK */
8241 env
->daif
|= PSTATE_F
;
8243 env
->daif
&= ~PSTATE_F
;
8246 case 20: /* CONTROL */
8247 env
->v7m
.control
= val
& 3;
8248 switch_v7m_sp(env
, (val
& 2) != 0);
8251 /* ??? For debugging only. */
8252 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
8259 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
8261 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8262 * Note that we do not implement the (architecturally mandated)
8263 * alignment fault for attempts to use this on Device memory
8264 * (which matches the usual QEMU behaviour of not implementing either
8265 * alignment faults or any memory attribute handling).
8268 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8269 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
8270 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
8272 #ifndef CONFIG_USER_ONLY
8274 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8275 * the block size so we might have to do more than one TLB lookup.
8276 * We know that in fact for any v8 CPU the page size is at least 4K
8277 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8278 * 1K as an artefact of legacy v5 subpage support being present in the
8279 * same QEMU executable.
8281 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
8282 void *hostaddr
[maxidx
];
8284 unsigned mmu_idx
= cpu_mmu_index(env
, false);
8285 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
8287 for (try = 0; try < 2; try++) {
8289 for (i
= 0; i
< maxidx
; i
++) {
8290 hostaddr
[i
] = tlb_vaddr_to_host(env
,
8291 vaddr
+ TARGET_PAGE_SIZE
* i
,
8298 /* If it's all in the TLB it's fair game for just writing to;
8299 * we know we don't need to update dirty status, etc.
8301 for (i
= 0; i
< maxidx
- 1; i
++) {
8302 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
8304 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
8307 /* OK, try a store and see if we can populate the tlb. This
8308 * might cause an exception if the memory isn't writable,
8309 * in which case we will longjmp out of here. We must for
8310 * this purpose use the actual register value passed to us
8311 * so that we get the fault address right.
8313 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
8314 /* Now we can populate the other TLB entries, if any */
8315 for (i
= 0; i
< maxidx
; i
++) {
8316 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
8317 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
8318 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
8323 /* Slow path (probably attempt to do this to an I/O device or
8324 * similar, or clearing of a block of code we have translations
8325 * cached for). Just do a series of byte writes as the architecture
8326 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8327 * memset(), unmap() sequence here because:
8328 * + we'd need to account for the blocksize being larger than a page
8329 * + the direct-RAM access case is almost always going to be dealt
8330 * with in the fastpath code above, so there's no speed benefit
8331 * + we would have to deal with the map returning NULL because the
8332 * bounce buffer was in use
8334 for (i
= 0; i
< blocklen
; i
++) {
8335 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
8339 memset(g2h(vaddr
), 0, blocklen
);
8343 /* Note that signed overflow is undefined in C. The following routines are
8344 careful to use unsigned types where modulo arithmetic is required.
8345 Failure to do so _will_ break on newer gcc. */
8347 /* Signed saturating arithmetic. */
8349 /* Perform 16-bit signed saturating addition. */
8350 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
8355 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
8364 /* Perform 8-bit signed saturating addition. */
8365 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
8370 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
8379 /* Perform 16-bit signed saturating subtraction. */
8380 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
8385 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8394 /* Perform 8-bit signed saturating subtraction. */
8395 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8400 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8409 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8410 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8411 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8412 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8415 #include "op_addsub.h"
8417 /* Unsigned saturating arithmetic. */
8418 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8427 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8435 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8444 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8452 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8453 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8454 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8455 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8458 #include "op_addsub.h"
8460 /* Signed modulo arithmetic. */
8461 #define SARITH16(a, b, n, op) do { \
8463 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8464 RESULT(sum, n, 16); \
8466 ge |= 3 << (n * 2); \
8469 #define SARITH8(a, b, n, op) do { \
8471 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8472 RESULT(sum, n, 8); \
8478 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8479 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8480 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8481 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8485 #include "op_addsub.h"
8487 /* Unsigned modulo arithmetic. */
8488 #define ADD16(a, b, n) do { \
8490 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8491 RESULT(sum, n, 16); \
8492 if ((sum >> 16) == 1) \
8493 ge |= 3 << (n * 2); \
8496 #define ADD8(a, b, n) do { \
8498 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8499 RESULT(sum, n, 8); \
8500 if ((sum >> 8) == 1) \
8504 #define SUB16(a, b, n) do { \
8506 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8507 RESULT(sum, n, 16); \
8508 if ((sum >> 16) == 0) \
8509 ge |= 3 << (n * 2); \
8512 #define SUB8(a, b, n) do { \
8514 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8515 RESULT(sum, n, 8); \
8516 if ((sum >> 8) == 0) \
8523 #include "op_addsub.h"
8525 /* Halved signed arithmetic. */
8526 #define ADD16(a, b, n) \
8527 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8528 #define SUB16(a, b, n) \
8529 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8530 #define ADD8(a, b, n) \
8531 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8532 #define SUB8(a, b, n) \
8533 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8536 #include "op_addsub.h"
8538 /* Halved unsigned arithmetic. */
8539 #define ADD16(a, b, n) \
8540 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8541 #define SUB16(a, b, n) \
8542 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8543 #define ADD8(a, b, n) \
8544 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8545 #define SUB8(a, b, n) \
8546 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8549 #include "op_addsub.h"
8551 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8559 /* Unsigned sum of absolute byte differences. */
8560 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8563 sum
= do_usad(a
, b
);
8564 sum
+= do_usad(a
>> 8, b
>> 8);
8565 sum
+= do_usad(a
>> 16, b
>>16);
8566 sum
+= do_usad(a
>> 24, b
>> 24);
8570 /* For ARMv6 SEL instruction. */
8571 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8584 return (a
& mask
) | (b
& ~mask
);
8587 /* VFP support. We follow the convention used for VFP instructions:
8588 Single precision routines have a "s" suffix, double precision a
8591 /* Convert host exception flags to vfp form. */
8592 static inline int vfp_exceptbits_from_host(int host_bits
)
8594 int target_bits
= 0;
8596 if (host_bits
& float_flag_invalid
)
8598 if (host_bits
& float_flag_divbyzero
)
8600 if (host_bits
& float_flag_overflow
)
8602 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8604 if (host_bits
& float_flag_inexact
)
8605 target_bits
|= 0x10;
8606 if (host_bits
& float_flag_input_denormal
)
8607 target_bits
|= 0x80;
8611 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8616 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8617 | (env
->vfp
.vec_len
<< 16)
8618 | (env
->vfp
.vec_stride
<< 20);
8619 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8620 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8621 fpscr
|= vfp_exceptbits_from_host(i
);
8625 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8627 return HELPER(vfp_get_fpscr
)(env
);
8630 /* Convert vfp exception flags to target form. */
8631 static inline int vfp_exceptbits_to_host(int target_bits
)
8635 if (target_bits
& 1)
8636 host_bits
|= float_flag_invalid
;
8637 if (target_bits
& 2)
8638 host_bits
|= float_flag_divbyzero
;
8639 if (target_bits
& 4)
8640 host_bits
|= float_flag_overflow
;
8641 if (target_bits
& 8)
8642 host_bits
|= float_flag_underflow
;
8643 if (target_bits
& 0x10)
8644 host_bits
|= float_flag_inexact
;
8645 if (target_bits
& 0x80)
8646 host_bits
|= float_flag_input_denormal
;
8650 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8655 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8656 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8657 env
->vfp
.vec_len
= (val
>> 16) & 7;
8658 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8661 if (changed
& (3 << 22)) {
8662 i
= (val
>> 22) & 3;
8664 case FPROUNDING_TIEEVEN
:
8665 i
= float_round_nearest_even
;
8667 case FPROUNDING_POSINF
:
8670 case FPROUNDING_NEGINF
:
8671 i
= float_round_down
;
8673 case FPROUNDING_ZERO
:
8674 i
= float_round_to_zero
;
8677 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8679 if (changed
& (1 << 24)) {
8680 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8681 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8683 if (changed
& (1 << 25))
8684 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8686 i
= vfp_exceptbits_to_host(val
);
8687 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8688 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8691 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8693 HELPER(vfp_set_fpscr
)(env
, val
);
8696 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8698 #define VFP_BINOP(name) \
8699 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8701 float_status *fpst = fpstp; \
8702 return float32_ ## name(a, b, fpst); \
8704 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8706 float_status *fpst = fpstp; \
8707 return float64_ ## name(a, b, fpst); \
8719 float32
VFP_HELPER(neg
, s
)(float32 a
)
8721 return float32_chs(a
);
8724 float64
VFP_HELPER(neg
, d
)(float64 a
)
8726 return float64_chs(a
);
8729 float32
VFP_HELPER(abs
, s
)(float32 a
)
8731 return float32_abs(a
);
8734 float64
VFP_HELPER(abs
, d
)(float64 a
)
8736 return float64_abs(a
);
8739 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8741 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8744 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8746 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8749 /* XXX: check quiet/signaling case */
8750 #define DO_VFP_cmp(p, type) \
8751 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8754 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8755 case 0: flags = 0x6; break; \
8756 case -1: flags = 0x8; break; \
8757 case 1: flags = 0x2; break; \
8758 default: case 2: flags = 0x3; break; \
8760 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8761 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8763 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8766 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8767 case 0: flags = 0x6; break; \
8768 case -1: flags = 0x8; break; \
8769 case 1: flags = 0x2; break; \
8770 default: case 2: flags = 0x3; break; \
8772 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8773 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8775 DO_VFP_cmp(s
, float32
)
8776 DO_VFP_cmp(d
, float64
)
8779 /* Integer to float and float to integer conversions */
8781 #define CONV_ITOF(name, fsz, sign) \
8782 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8784 float_status *fpst = fpstp; \
8785 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8788 #define CONV_FTOI(name, fsz, sign, round) \
8789 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8791 float_status *fpst = fpstp; \
8792 if (float##fsz##_is_any_nan(x)) { \
8793 float_raise(float_flag_invalid, fpst); \
8796 return float##fsz##_to_##sign##int32##round(x, fpst); \
8799 #define FLOAT_CONVS(name, p, fsz, sign) \
8800 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8801 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8802 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8804 FLOAT_CONVS(si
, s
, 32, )
8805 FLOAT_CONVS(si
, d
, 64, )
8806 FLOAT_CONVS(ui
, s
, 32, u
)
8807 FLOAT_CONVS(ui
, d
, 64, u
)
8813 /* floating point conversion */
8814 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8816 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8817 /* ARM requires that S<->D conversion of any kind of NaN generates
8818 * a quiet NaN by forcing the most significant frac bit to 1.
8820 return float64_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
8823 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8825 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8826 /* ARM requires that S<->D conversion of any kind of NaN generates
8827 * a quiet NaN by forcing the most significant frac bit to 1.
8829 return float32_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
8832 /* VFP3 fixed point conversion. */
8833 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8834 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8837 float_status *fpst = fpstp; \
8839 tmp = itype##_to_##float##fsz(x, fpst); \
8840 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8843 /* Notice that we want only input-denormal exception flags from the
8844 * scalbn operation: the other possible flags (overflow+inexact if
8845 * we overflow to infinity, output-denormal) aren't correct for the
8846 * complete scale-and-convert operation.
8848 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8849 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8853 float_status *fpst = fpstp; \
8854 int old_exc_flags = get_float_exception_flags(fpst); \
8856 if (float##fsz##_is_any_nan(x)) { \
8857 float_raise(float_flag_invalid, fpst); \
8860 tmp = float##fsz##_scalbn(x, shift, fpst); \
8861 old_exc_flags |= get_float_exception_flags(fpst) \
8862 & float_flag_input_denormal; \
8863 set_float_exception_flags(old_exc_flags, fpst); \
8864 return float##fsz##_to_##itype##round(tmp, fpst); \
8867 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8868 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8869 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8870 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8872 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8873 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8874 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8876 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8877 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8878 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8879 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8880 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8881 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8882 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8883 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8884 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8885 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8886 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8887 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8889 #undef VFP_CONV_FIX_FLOAT
8890 #undef VFP_CONV_FLOAT_FIX_ROUND
8892 /* Set the current fp rounding mode and return the old one.
8893 * The argument is a softfloat float_round_ value.
8895 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8897 float_status
*fp_status
= &env
->vfp
.fp_status
;
8899 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8900 set_float_rounding_mode(rmode
, fp_status
);
8905 /* Set the current fp rounding mode in the standard fp status and return
8906 * the old one. This is for NEON instructions that need to change the
8907 * rounding mode but wish to use the standard FPSCR values for everything
8908 * else. Always set the rounding mode back to the correct value after
8910 * The argument is a softfloat float_round_ value.
8912 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8914 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8916 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8917 set_float_rounding_mode(rmode
, fp_status
);
8922 /* Half precision conversions. */
8923 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8925 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8926 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8928 return float32_maybe_silence_nan(r
, s
);
8933 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8935 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8936 float16 r
= float32_to_float16(a
, ieee
, s
);
8938 r
= float16_maybe_silence_nan(r
, s
);
8940 return float16_val(r
);
8943 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8945 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8948 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8950 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8953 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8955 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8958 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8960 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8963 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8965 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8966 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8968 return float64_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
8973 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8975 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8976 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8978 r
= float16_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
8980 return float16_val(r
);
8983 #define float32_two make_float32(0x40000000)
8984 #define float32_three make_float32(0x40400000)
8985 #define float32_one_point_five make_float32(0x3fc00000)
8987 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8989 float_status
*s
= &env
->vfp
.standard_fp_status
;
8990 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8991 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8992 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8993 float_raise(float_flag_input_denormal
, s
);
8997 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
9000 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
9002 float_status
*s
= &env
->vfp
.standard_fp_status
;
9004 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
9005 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
9006 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
9007 float_raise(float_flag_input_denormal
, s
);
9009 return float32_one_point_five
;
9011 product
= float32_mul(a
, b
, s
);
9012 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
9017 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9018 * int->float conversions at run-time. */
9019 #define float64_256 make_float64(0x4070000000000000LL)
9020 #define float64_512 make_float64(0x4080000000000000LL)
9021 #define float32_maxnorm make_float32(0x7f7fffff)
9022 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9024 /* Reciprocal functions
9026 * The algorithm that must be used to calculate the estimate
9027 * is specified by the ARM ARM, see FPRecipEstimate()
9030 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
9032 /* These calculations mustn't set any fp exception flags,
9033 * so we use a local copy of the fp_status.
9035 float_status dummy_status
= *real_fp_status
;
9036 float_status
*s
= &dummy_status
;
9037 /* q = (int)(a * 512.0) */
9038 float64 q
= float64_mul(float64_512
, a
, s
);
9039 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9041 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9042 q
= int64_to_float64(q_int
, s
);
9043 q
= float64_add(q
, float64_half
, s
);
9044 q
= float64_div(q
, float64_512
, s
);
9045 q
= float64_div(float64_one
, q
, s
);
9047 /* s = (int)(256.0 * r + 0.5) */
9048 q
= float64_mul(q
, float64_256
, s
);
9049 q
= float64_add(q
, float64_half
, s
);
9050 q_int
= float64_to_int64_round_to_zero(q
, s
);
9052 /* return (double)s / 256.0 */
9053 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9056 /* Common wrapper to call recip_estimate */
9057 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
9059 uint64_t val64
= float64_val(num
);
9060 uint64_t frac
= extract64(val64
, 0, 52);
9061 int64_t exp
= extract64(val64
, 52, 11);
9063 float64 scaled
, estimate
;
9065 /* Generate the scaled number for the estimate function */
9067 if (extract64(frac
, 51, 1) == 0) {
9069 frac
= extract64(frac
, 0, 50) << 2;
9071 frac
= extract64(frac
, 0, 51) << 1;
9075 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9076 scaled
= make_float64((0x3feULL
<< 52)
9077 | extract64(frac
, 44, 8) << 44);
9079 estimate
= recip_estimate(scaled
, fpst
);
9081 /* Build new result */
9082 val64
= float64_val(estimate
);
9083 sbit
= 0x8000000000000000ULL
& val64
;
9085 frac
= extract64(val64
, 0, 52);
9088 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
9089 } else if (exp
== -1) {
9090 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
9094 return make_float64(sbit
| (exp
<< 52) | frac
);
9097 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
9099 switch (fpst
->float_rounding_mode
) {
9100 case float_round_nearest_even
: /* Round to Nearest */
9102 case float_round_up
: /* Round to +Inf */
9104 case float_round_down
: /* Round to -Inf */
9106 case float_round_to_zero
: /* Round to Zero */
9110 g_assert_not_reached();
9113 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
9115 float_status
*fpst
= fpstp
;
9116 float32 f32
= float32_squash_input_denormal(input
, fpst
);
9117 uint32_t f32_val
= float32_val(f32
);
9118 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
9119 int32_t f32_exp
= extract32(f32_val
, 23, 8);
9120 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
9126 if (float32_is_any_nan(f32
)) {
9128 if (float32_is_signaling_nan(f32
, fpst
)) {
9129 float_raise(float_flag_invalid
, fpst
);
9130 nan
= float32_maybe_silence_nan(f32
, fpst
);
9132 if (fpst
->default_nan_mode
) {
9133 nan
= float32_default_nan(fpst
);
9136 } else if (float32_is_infinity(f32
)) {
9137 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
9138 } else if (float32_is_zero(f32
)) {
9139 float_raise(float_flag_divbyzero
, fpst
);
9140 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9141 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
9142 /* Abs(value) < 2.0^-128 */
9143 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9144 if (round_to_inf(fpst
, f32_sbit
)) {
9145 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9147 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
9149 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
9150 float_raise(float_flag_underflow
, fpst
);
9151 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
9155 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
9156 r64
= call_recip_estimate(f64
, 253, fpst
);
9157 r64_val
= float64_val(r64
);
9158 r64_exp
= extract64(r64_val
, 52, 11);
9159 r64_frac
= extract64(r64_val
, 0, 52);
9161 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9162 return make_float32(f32_sbit
|
9163 (r64_exp
& 0xff) << 23 |
9164 extract64(r64_frac
, 29, 24));
9167 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
9169 float_status
*fpst
= fpstp
;
9170 float64 f64
= float64_squash_input_denormal(input
, fpst
);
9171 uint64_t f64_val
= float64_val(f64
);
9172 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
9173 int64_t f64_exp
= extract64(f64_val
, 52, 11);
9179 /* Deal with any special cases */
9180 if (float64_is_any_nan(f64
)) {
9182 if (float64_is_signaling_nan(f64
, fpst
)) {
9183 float_raise(float_flag_invalid
, fpst
);
9184 nan
= float64_maybe_silence_nan(f64
, fpst
);
9186 if (fpst
->default_nan_mode
) {
9187 nan
= float64_default_nan(fpst
);
9190 } else if (float64_is_infinity(f64
)) {
9191 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9192 } else if (float64_is_zero(f64
)) {
9193 float_raise(float_flag_divbyzero
, fpst
);
9194 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9195 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
9196 /* Abs(value) < 2.0^-1024 */
9197 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9198 if (round_to_inf(fpst
, f64_sbit
)) {
9199 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9201 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
9203 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
9204 float_raise(float_flag_underflow
, fpst
);
9205 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9208 r64
= call_recip_estimate(f64
, 2045, fpst
);
9209 r64_val
= float64_val(r64
);
9210 r64_exp
= extract64(r64_val
, 52, 11);
9211 r64_frac
= extract64(r64_val
, 0, 52);
9213 /* result = sign : result_exp<10:0> : fraction<51:0> */
9214 return make_float64(f64_sbit
|
9215 ((r64_exp
& 0x7ff) << 52) |
9219 /* The algorithm that must be used to calculate the estimate
9220 * is specified by the ARM ARM.
9222 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
9224 /* These calculations mustn't set any fp exception flags,
9225 * so we use a local copy of the fp_status.
9227 float_status dummy_status
= *real_fp_status
;
9228 float_status
*s
= &dummy_status
;
9232 if (float64_lt(a
, float64_half
, s
)) {
9233 /* range 0.25 <= a < 0.5 */
9235 /* a in units of 1/512 rounded down */
9236 /* q0 = (int)(a * 512.0); */
9237 q
= float64_mul(float64_512
, a
, s
);
9238 q_int
= float64_to_int64_round_to_zero(q
, s
);
9240 /* reciprocal root r */
9241 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9242 q
= int64_to_float64(q_int
, s
);
9243 q
= float64_add(q
, float64_half
, s
);
9244 q
= float64_div(q
, float64_512
, s
);
9245 q
= float64_sqrt(q
, s
);
9246 q
= float64_div(float64_one
, q
, s
);
9248 /* range 0.5 <= a < 1.0 */
9250 /* a in units of 1/256 rounded down */
9251 /* q1 = (int)(a * 256.0); */
9252 q
= float64_mul(float64_256
, a
, s
);
9253 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9255 /* reciprocal root r */
9256 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9257 q
= int64_to_float64(q_int
, s
);
9258 q
= float64_add(q
, float64_half
, s
);
9259 q
= float64_div(q
, float64_256
, s
);
9260 q
= float64_sqrt(q
, s
);
9261 q
= float64_div(float64_one
, q
, s
);
9263 /* r in units of 1/256 rounded to nearest */
9264 /* s = (int)(256.0 * r + 0.5); */
9266 q
= float64_mul(q
, float64_256
,s
);
9267 q
= float64_add(q
, float64_half
, s
);
9268 q_int
= float64_to_int64_round_to_zero(q
, s
);
9270 /* return (double)s / 256.0;*/
9271 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9274 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
9276 float_status
*s
= fpstp
;
9277 float32 f32
= float32_squash_input_denormal(input
, s
);
9278 uint32_t val
= float32_val(f32
);
9279 uint32_t f32_sbit
= 0x80000000 & val
;
9280 int32_t f32_exp
= extract32(val
, 23, 8);
9281 uint32_t f32_frac
= extract32(val
, 0, 23);
9287 if (float32_is_any_nan(f32
)) {
9289 if (float32_is_signaling_nan(f32
, s
)) {
9290 float_raise(float_flag_invalid
, s
);
9291 nan
= float32_maybe_silence_nan(f32
, s
);
9293 if (s
->default_nan_mode
) {
9294 nan
= float32_default_nan(s
);
9297 } else if (float32_is_zero(f32
)) {
9298 float_raise(float_flag_divbyzero
, s
);
9299 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9300 } else if (float32_is_neg(f32
)) {
9301 float_raise(float_flag_invalid
, s
);
9302 return float32_default_nan(s
);
9303 } else if (float32_is_infinity(f32
)) {
9304 return float32_zero
;
9307 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9308 * preserving the parity of the exponent. */
9310 f64_frac
= ((uint64_t) f32_frac
) << 29;
9312 while (extract64(f64_frac
, 51, 1) == 0) {
9313 f64_frac
= f64_frac
<< 1;
9314 f32_exp
= f32_exp
-1;
9316 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9319 if (extract64(f32_exp
, 0, 1) == 0) {
9320 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9324 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9329 result_exp
= (380 - f32_exp
) / 2;
9331 f64
= recip_sqrt_estimate(f64
, s
);
9333 val64
= float64_val(f64
);
9335 val
= ((result_exp
& 0xff) << 23)
9336 | ((val64
>> 29) & 0x7fffff);
9337 return make_float32(val
);
9340 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
9342 float_status
*s
= fpstp
;
9343 float64 f64
= float64_squash_input_denormal(input
, s
);
9344 uint64_t val
= float64_val(f64
);
9345 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
9346 int64_t f64_exp
= extract64(val
, 52, 11);
9347 uint64_t f64_frac
= extract64(val
, 0, 52);
9349 uint64_t result_frac
;
9351 if (float64_is_any_nan(f64
)) {
9353 if (float64_is_signaling_nan(f64
, s
)) {
9354 float_raise(float_flag_invalid
, s
);
9355 nan
= float64_maybe_silence_nan(f64
, s
);
9357 if (s
->default_nan_mode
) {
9358 nan
= float64_default_nan(s
);
9361 } else if (float64_is_zero(f64
)) {
9362 float_raise(float_flag_divbyzero
, s
);
9363 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9364 } else if (float64_is_neg(f64
)) {
9365 float_raise(float_flag_invalid
, s
);
9366 return float64_default_nan(s
);
9367 } else if (float64_is_infinity(f64
)) {
9368 return float64_zero
;
9371 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9372 * preserving the parity of the exponent. */
9375 while (extract64(f64_frac
, 51, 1) == 0) {
9376 f64_frac
= f64_frac
<< 1;
9377 f64_exp
= f64_exp
- 1;
9379 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9382 if (extract64(f64_exp
, 0, 1) == 0) {
9383 f64
= make_float64(f64_sbit
9387 f64
= make_float64(f64_sbit
9392 result_exp
= (3068 - f64_exp
) / 2;
9394 f64
= recip_sqrt_estimate(f64
, s
);
9396 result_frac
= extract64(float64_val(f64
), 0, 52);
9398 return make_float64(f64_sbit
|
9399 ((result_exp
& 0x7ff) << 52) |
9403 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9405 float_status
*s
= fpstp
;
9408 if ((a
& 0x80000000) == 0) {
9412 f64
= make_float64((0x3feULL
<< 52)
9413 | ((int64_t)(a
& 0x7fffffff) << 21));
9415 f64
= recip_estimate(f64
, s
);
9417 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9420 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9422 float_status
*fpst
= fpstp
;
9425 if ((a
& 0xc0000000) == 0) {
9429 if (a
& 0x80000000) {
9430 f64
= make_float64((0x3feULL
<< 52)
9431 | ((uint64_t)(a
& 0x7fffffff) << 21));
9432 } else { /* bits 31-30 == '01' */
9433 f64
= make_float64((0x3fdULL
<< 52)
9434 | ((uint64_t)(a
& 0x3fffffff) << 22));
9437 f64
= recip_sqrt_estimate(f64
, fpst
);
9439 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9442 /* VFPv4 fused multiply-accumulate */
9443 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9445 float_status
*fpst
= fpstp
;
9446 return float32_muladd(a
, b
, c
, 0, fpst
);
9449 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9451 float_status
*fpst
= fpstp
;
9452 return float64_muladd(a
, b
, c
, 0, fpst
);
9455 /* ARMv8 round to integral */
9456 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9458 return float32_round_to_int(x
, fp_status
);
9461 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9463 return float64_round_to_int(x
, fp_status
);
9466 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9468 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9471 ret
= float32_round_to_int(x
, fp_status
);
9473 /* Suppress any inexact exceptions the conversion produced */
9474 if (!(old_flags
& float_flag_inexact
)) {
9475 new_flags
= get_float_exception_flags(fp_status
);
9476 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9482 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9484 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9487 ret
= float64_round_to_int(x
, fp_status
);
9489 new_flags
= get_float_exception_flags(fp_status
);
9491 /* Suppress any inexact exceptions the conversion produced */
9492 if (!(old_flags
& float_flag_inexact
)) {
9493 new_flags
= get_float_exception_flags(fp_status
);
9494 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9500 /* Convert ARM rounding mode to softfloat */
9501 int arm_rmode_to_sf(int rmode
)
9504 case FPROUNDING_TIEAWAY
:
9505 rmode
= float_round_ties_away
;
9507 case FPROUNDING_ODD
:
9508 /* FIXME: add support for TIEAWAY and ODD */
9509 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9511 case FPROUNDING_TIEEVEN
:
9513 rmode
= float_round_nearest_even
;
9515 case FPROUNDING_POSINF
:
9516 rmode
= float_round_up
;
9518 case FPROUNDING_NEGINF
:
9519 rmode
= float_round_down
;
9521 case FPROUNDING_ZERO
:
9522 rmode
= float_round_to_zero
;
9529 * The upper bytes of val (above the number specified by 'bytes') must have
9530 * been zeroed out by the caller.
9532 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9538 /* zlib crc32 converts the accumulator and output to one's complement. */
9539 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9542 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9548 /* Linux crc32c converts the output to one's complement. */
9549 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;