2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
23 #include <sys/types.h>
24 #include <sys/socket.h>
26 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
46 #define DDPRINTF(fmt, ...) \
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
54 #define DDDPRINTF(fmt, ...) \
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
103 #define CHECK_ERROR_STATE() \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
116 * A work request ID is 64-bits and we split up these bits
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
146 RDMA_WRID_RDMA_WRITE
= 1,
147 RDMA_WRID_SEND_CONTROL
= 2000,
148 RDMA_WRID_RECV_CONTROL
= 4000,
151 const char *wrid_desc
[] = {
152 [RDMA_WRID_NONE
] = "NONE",
153 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
173 * SEND/RECV IB Control Messages.
176 RDMA_CONTROL_NONE
= 0,
178 RDMA_CONTROL_READY
, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
190 const char *control_desc
[] = {
191 [RDMA_CONTROL_NONE
] = "NONE",
192 [RDMA_CONTROL_ERROR
] = "ERROR",
193 [RDMA_CONTROL_READY
] = "READY",
194 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
210 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
211 struct ibv_mr
*control_mr
; /* registration metadata */
212 size_t control_len
; /* length of the message */
213 uint8_t *control_curr
; /* start of unconsumed bytes */
214 } RDMAWorkRequestData
;
217 * Negotiate RDMA capabilities during connection-setup time.
224 static void caps_to_network(RDMACapabilities
*cap
)
226 cap
->version
= htonl(cap
->version
);
227 cap
->flags
= htonl(cap
->flags
);
230 static void network_to_caps(RDMACapabilities
*cap
)
232 cap
->version
= ntohl(cap
->version
);
233 cap
->flags
= ntohl(cap
->flags
);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock
{
244 uint8_t *local_host_addr
; /* local virtual address */
245 uint64_t remote_host_addr
; /* remote virtual address */
248 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
249 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
252 int index
; /* which block are we */
255 unsigned long *transit_bitmap
;
256 unsigned long *unregister_bitmap
;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock
{
267 uint64_t remote_host_addr
;
270 uint32_t remote_rkey
;
274 static uint64_t htonll(uint64_t v
)
276 union { uint32_t lv
[2]; uint64_t llv
; } u
;
277 u
.lv
[0] = htonl(v
>> 32);
278 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
282 static uint64_t ntohll(uint64_t v
) {
283 union { uint32_t lv
[2]; uint64_t llv
; } u
;
285 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
288 static void remote_block_to_network(RDMARemoteBlock
*rb
)
290 rb
->remote_host_addr
= htonll(rb
->remote_host_addr
);
291 rb
->offset
= htonll(rb
->offset
);
292 rb
->length
= htonll(rb
->length
);
293 rb
->remote_rkey
= htonl(rb
->remote_rkey
);
296 static void network_to_remote_block(RDMARemoteBlock
*rb
)
298 rb
->remote_host_addr
= ntohll(rb
->remote_host_addr
);
299 rb
->offset
= ntohll(rb
->offset
);
300 rb
->length
= ntohll(rb
->length
);
301 rb
->remote_rkey
= ntohl(rb
->remote_rkey
);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks
{
311 bool init
; /* main memory init complete */
312 RDMALocalBlock
*block
;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext
{
325 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected
;
336 /* number of outstanding writes */
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr
;
342 uint64_t current_length
;
343 /* index of ram block the current buffer belongs to */
345 /* index of the chunk in the current ram block */
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id
*cm_id
; /* connection manager ID */
358 struct rdma_cm_id
*listen_id
;
360 struct ibv_context
*verbs
;
361 struct rdma_event_channel
*channel
;
362 struct ibv_qp
*qp
; /* queue pair */
363 struct ibv_comp_channel
*comp_channel
; /* completion channel */
364 struct ibv_pd
*pd
; /* protection domain */
365 struct ibv_cq
*cq
; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks
;
379 RDMARemoteBlock
*block
;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination
;
388 int total_registrations
;
391 int unregister_current
, unregister_next
;
392 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
394 GHashTable
*blockmap
;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA
{
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED
{
411 uint32_t len
; /* Total length of data portion */
412 uint32_t type
; /* which control command to perform */
413 uint32_t repeat
; /* number of commands in data portion of same type */
417 static void control_to_network(RDMAControlHeader
*control
)
419 control
->type
= htonl(control
->type
);
420 control
->len
= htonl(control
->len
);
421 control
->repeat
= htonl(control
->repeat
);
424 static void network_to_control(RDMAControlHeader
*control
)
426 control
->type
= ntohl(control
->type
);
427 control
->len
= ntohl(control
->len
);
428 control
->repeat
= ntohl(control
->repeat
);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED
{
439 uint64_t current_addr
; /* offset into the ramblock of the chunk */
440 uint64_t chunk
; /* chunk to lookup if unregistering */
442 uint32_t current_index
; /* which ramblock the chunk belongs to */
444 uint64_t chunks
; /* how many sequential chunks to register */
447 static void register_to_network(RDMARegister
*reg
)
449 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
450 reg
->current_index
= htonl(reg
->current_index
);
451 reg
->chunks
= htonll(reg
->chunks
);
454 static void network_to_register(RDMARegister
*reg
)
456 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
457 reg
->current_index
= ntohl(reg
->current_index
);
458 reg
->chunks
= ntohll(reg
->chunks
);
461 typedef struct QEMU_PACKED
{
462 uint32_t value
; /* if zero, we will madvise() */
463 uint32_t block_idx
; /* which ram block index */
464 uint64_t offset
; /* where in the remote ramblock this chunk */
465 uint64_t length
; /* length of the chunk */
468 static void compress_to_network(RDMACompress
*comp
)
470 comp
->value
= htonl(comp
->value
);
471 comp
->block_idx
= htonl(comp
->block_idx
);
472 comp
->offset
= htonll(comp
->offset
);
473 comp
->length
= htonll(comp
->length
);
476 static void network_to_compress(RDMACompress
*comp
)
478 comp
->value
= ntohl(comp
->value
);
479 comp
->block_idx
= ntohl(comp
->block_idx
);
480 comp
->offset
= ntohll(comp
->offset
);
481 comp
->length
= ntohll(comp
->length
);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED
{
493 } RDMARegisterResult
;
495 static void result_to_network(RDMARegisterResult
*result
)
497 result
->rkey
= htonl(result
->rkey
);
498 result
->host_addr
= htonll(result
->host_addr
);
501 static void network_to_result(RDMARegisterResult
*result
)
503 result
->rkey
= ntohl(result
->rkey
);
504 result
->host_addr
= ntohll(result
->host_addr
);
507 const char *print_wrid(int wrid
);
508 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
509 uint8_t *data
, RDMAControlHeader
*resp
,
511 int (*callback
)(RDMAContext
*rdma
));
513 static inline uint64_t ram_chunk_index(uint8_t *start
, uint8_t *host
)
515 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock
*rdma_ram_block
,
521 return (uint8_t *) (((uintptr_t) rdma_ram_block
->local_host_addr
)
522 + (i
<< RDMA_REG_CHUNK_SHIFT
));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock
*rdma_ram_block
, uint64_t i
)
527 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
528 (1UL << RDMA_REG_CHUNK_SHIFT
);
530 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
531 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
537 static int __qemu_rdma_add_block(RDMAContext
*rdma
, void *host_addr
,
538 ram_addr_t block_offset
, uint64_t length
)
540 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
541 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
542 (void *) block_offset
);
543 RDMALocalBlock
*old
= local
->block
;
545 assert(block
== NULL
);
547 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) * (local
->nb_blocks
+ 1));
549 if (local
->nb_blocks
) {
552 for (x
= 0; x
< local
->nb_blocks
; x
++) {
553 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
554 g_hash_table_insert(rdma
->blockmap
, (void *)old
[x
].offset
,
557 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
561 block
= &local
->block
[local
->nb_blocks
];
563 block
->local_host_addr
= host_addr
;
564 block
->offset
= block_offset
;
565 block
->length
= length
;
566 block
->index
= local
->nb_blocks
;
567 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
568 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
569 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
570 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
571 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
572 block
->remote_keys
= g_malloc0(block
->nb_chunks
* sizeof(uint32_t));
574 block
->is_ram_block
= local
->init
? false : true;
576 g_hash_table_insert(rdma
->blockmap
, (void *) block_offset
, block
);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64
", offset: %" PRIu64
579 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
580 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
581 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
582 BITS_TO_LONGS(block
->nb_chunks
) *
583 sizeof(unsigned long) * 8, block
->nb_chunks
);
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr
,
596 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
598 __qemu_rdma_add_block(opaque
, host_addr
, block_offset
, length
);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
608 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
610 assert(rdma
->blockmap
== NULL
);
611 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
612 memset(local
, 0, sizeof *local
);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
614 DPRINTF("Allocated %d local ram block structures\n", local
->nb_blocks
);
615 rdma
->block
= (RDMARemoteBlock
*) g_malloc0(sizeof(RDMARemoteBlock
) *
616 rdma
->local_ram_blocks
.nb_blocks
);
621 static int __qemu_rdma_delete_block(RDMAContext
*rdma
, ram_addr_t block_offset
)
623 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
624 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
625 (void *) block_offset
);
626 RDMALocalBlock
*old
= local
->block
;
634 for (j
= 0; j
< block
->nb_chunks
; j
++) {
635 if (!block
->pmr
[j
]) {
638 ibv_dereg_mr(block
->pmr
[j
]);
639 rdma
->total_registrations
--;
646 ibv_dereg_mr(block
->mr
);
647 rdma
->total_registrations
--;
651 g_free(block
->transit_bitmap
);
652 block
->transit_bitmap
= NULL
;
654 g_free(block
->unregister_bitmap
);
655 block
->unregister_bitmap
= NULL
;
657 g_free(block
->remote_keys
);
658 block
->remote_keys
= NULL
;
660 for (x
= 0; x
< local
->nb_blocks
; x
++) {
661 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
664 if (local
->nb_blocks
> 1) {
666 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) *
667 (local
->nb_blocks
- 1));
670 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
673 if (block
->index
< (local
->nb_blocks
- 1)) {
674 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
675 sizeof(RDMALocalBlock
) *
676 (local
->nb_blocks
- (block
->index
+ 1)));
679 assert(block
== local
->block
);
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64
", offset: %" PRIu64
684 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
685 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
686 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
687 BITS_TO_LONGS(block
->nb_chunks
) *
688 sizeof(unsigned long) * 8, block
->nb_chunks
);
694 if (local
->nb_blocks
) {
695 for (x
= 0; x
< local
->nb_blocks
; x
++) {
696 g_hash_table_insert(rdma
->blockmap
, (void *)local
->block
[x
].offset
,
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
710 struct ibv_port_attr port
;
712 if (ibv_query_port(verbs
, 1, &port
)) {
713 fprintf(stderr
, "FAILED TO QUERY PORT INFORMATION!\n");
717 printf("%s RDMA Device opened: kernel name %s "
718 "uverbs device name %s, "
719 "infiniband_verbs class device path %s, "
720 "infiniband class device path %s, "
721 "transport: (%d) %s\n",
724 verbs
->device
->dev_name
,
725 verbs
->device
->dev_path
,
726 verbs
->device
->ibdev_path
,
728 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
729 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
730 ? "Ethernet" : "Unknown"));
734 * Put in the log file the RDMA gid addressing information,
735 * useful for folks who have trouble understanding the
736 * RDMA device hierarchy in the kernel.
738 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
742 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
743 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
744 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who
, sgid
, dgid
);
748 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
749 * We will try the next addrinfo struct, and fail if there are
750 * no other valid addresses to bind against.
752 * If user is listening on '[::]', then we will not have a opened a device
753 * yet and have no way of verifying if the device is RoCE or not.
755 * In this case, the source VM will throw an error for ALL types of
756 * connections (both IPv4 and IPv6) if the destination machine does not have
757 * a regular infiniband network available for use.
759 * The only way to guarantee that an error is thrown for broken kernels is
760 * for the management software to choose a *specific* interface at bind time
761 * and validate what time of hardware it is.
763 * Unfortunately, this puts the user in a fix:
765 * If the source VM connects with an IPv4 address without knowing that the
766 * destination has bound to '[::]' the migration will unconditionally fail
767 * unless the management software is explicitly listening on the the IPv4
768 * address while using a RoCE-based device.
770 * If the source VM connects with an IPv6 address, then we're OK because we can
771 * throw an error on the source (and similarly on the destination).
773 * But in mixed environments, this will be broken for a while until it is fixed
776 * We do provide a *tiny* bit of help in this function: We can list all of the
777 * devices in the system and check to see if all the devices are RoCE or
780 * If we detect that we have a *pure* RoCE environment, then we can safely
781 * thrown an error even if the management software has specified '[::]' as the
784 * However, if there is are multiple hetergeneous devices, then we cannot make
785 * this assumption and the user just has to be sure they know what they are
788 * Patches are being reviewed on linux-rdma.
790 static int qemu_rdma_broken_ipv6_kernel(Error
**errp
, struct ibv_context
*verbs
)
792 struct ibv_port_attr port_attr
;
794 /* This bug only exists in linux, to our knowledge. */
798 * Verbs are only NULL if management has bound to '[::]'.
800 * Let's iterate through all the devices and see if there any pure IB
801 * devices (non-ethernet).
803 * If not, then we can safely proceed with the migration.
804 * Otherwise, there are no guarantees until the bug is fixed in linux.
808 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
809 bool roce_found
= false;
810 bool ib_found
= false;
812 for (x
= 0; x
< num_devices
; x
++) {
813 verbs
= ibv_open_device(dev_list
[x
]);
815 if (ibv_query_port(verbs
, 1, &port_attr
)) {
816 ibv_close_device(verbs
);
817 ERROR(errp
, "Could not query initial IB port");
821 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
823 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
827 ibv_close_device(verbs
);
833 fprintf(stderr
, "WARN: migrations may fail:"
834 " IPv6 over RoCE / iWARP in linux"
835 " is broken. But since you appear to have a"
836 " mixed RoCE / IB environment, be sure to only"
837 " migrate over the IB fabric until the kernel "
838 " fixes the bug.\n");
840 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
841 " and your management software has specified '[::]'"
842 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
851 * If we have a verbs context, that means that some other than '[::]' was
852 * used by the management software for binding. In which case we can actually
853 * warn the user about a potential broken kernel;
856 /* IB ports start with 1, not 0 */
857 if (ibv_query_port(verbs
, 1, &port_attr
)) {
858 ERROR(errp
, "Could not query initial IB port");
862 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
863 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
864 "(but patches on linux-rdma in progress)");
874 * Figure out which RDMA device corresponds to the requested IP hostname
875 * Also create the initial connection manager identifiers for opening
878 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
881 struct rdma_addrinfo
*res
;
883 struct rdma_cm_event
*cm_event
;
884 char ip
[40] = "unknown";
885 struct rdma_addrinfo
*e
;
887 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
888 ERROR(errp
, "RDMA hostname has not been set");
892 /* create CM channel */
893 rdma
->channel
= rdma_create_event_channel();
894 if (!rdma
->channel
) {
895 ERROR(errp
, "could not create CM channel");
900 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
902 ERROR(errp
, "could not create channel id");
903 goto err_resolve_create_id
;
906 snprintf(port_str
, 16, "%d", rdma
->port
);
909 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
911 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
912 goto err_resolve_get_addr
;
915 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
916 inet_ntop(e
->ai_family
,
917 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
918 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
920 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
921 RDMA_RESOLVE_TIMEOUT_MS
);
923 if (e
->ai_family
== AF_INET6
) {
924 ret
= qemu_rdma_broken_ipv6_kernel(errp
, rdma
->cm_id
->verbs
);
933 ERROR(errp
, "could not resolve address %s", rdma
->host
);
934 goto err_resolve_get_addr
;
937 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
939 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
941 ERROR(errp
, "could not perform event_addr_resolved");
942 goto err_resolve_get_addr
;
945 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
946 ERROR(errp
, "result not equal to event_addr_resolved %s",
947 rdma_event_str(cm_event
->event
));
948 perror("rdma_resolve_addr");
950 goto err_resolve_get_addr
;
952 rdma_ack_cm_event(cm_event
);
955 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
957 ERROR(errp
, "could not resolve rdma route");
958 goto err_resolve_get_addr
;
961 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
963 ERROR(errp
, "could not perform event_route_resolved");
964 goto err_resolve_get_addr
;
966 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
967 ERROR(errp
, "result not equal to event_route_resolved: %s",
968 rdma_event_str(cm_event
->event
));
969 rdma_ack_cm_event(cm_event
);
971 goto err_resolve_get_addr
;
973 rdma_ack_cm_event(cm_event
);
974 rdma
->verbs
= rdma
->cm_id
->verbs
;
975 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
976 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
979 err_resolve_get_addr
:
980 rdma_destroy_id(rdma
->cm_id
);
982 err_resolve_create_id
:
983 rdma_destroy_event_channel(rdma
->channel
);
984 rdma
->channel
= NULL
;
989 * Create protection domain and completion queues
991 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
994 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
996 fprintf(stderr
, "failed to allocate protection domain\n");
1000 /* create completion channel */
1001 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1002 if (!rdma
->comp_channel
) {
1003 fprintf(stderr
, "failed to allocate completion channel\n");
1004 goto err_alloc_pd_cq
;
1008 * Completion queue can be filled by both read and write work requests,
1009 * so must reflect the sum of both possible queue sizes.
1011 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1012 NULL
, rdma
->comp_channel
, 0);
1014 fprintf(stderr
, "failed to allocate completion queue\n");
1015 goto err_alloc_pd_cq
;
1022 ibv_dealloc_pd(rdma
->pd
);
1024 if (rdma
->comp_channel
) {
1025 ibv_destroy_comp_channel(rdma
->comp_channel
);
1028 rdma
->comp_channel
= NULL
;
1034 * Create queue pairs.
1036 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1038 struct ibv_qp_init_attr attr
= { 0 };
1041 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1042 attr
.cap
.max_recv_wr
= 3;
1043 attr
.cap
.max_send_sge
= 1;
1044 attr
.cap
.max_recv_sge
= 1;
1045 attr
.send_cq
= rdma
->cq
;
1046 attr
.recv_cq
= rdma
->cq
;
1047 attr
.qp_type
= IBV_QPT_RC
;
1049 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1054 rdma
->qp
= rdma
->cm_id
->qp
;
1058 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1061 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1063 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1064 local
->block
[i
].mr
=
1065 ibv_reg_mr(rdma
->pd
,
1066 local
->block
[i
].local_host_addr
,
1067 local
->block
[i
].length
,
1068 IBV_ACCESS_LOCAL_WRITE
|
1069 IBV_ACCESS_REMOTE_WRITE
1071 if (!local
->block
[i
].mr
) {
1072 perror("Failed to register local dest ram block!\n");
1075 rdma
->total_registrations
++;
1078 if (i
>= local
->nb_blocks
) {
1082 for (i
--; i
>= 0; i
--) {
1083 ibv_dereg_mr(local
->block
[i
].mr
);
1084 rdma
->total_registrations
--;
1092 * Find the ram block that corresponds to the page requested to be
1093 * transmitted by QEMU.
1095 * Once the block is found, also identify which 'chunk' within that
1096 * block that the page belongs to.
1098 * This search cannot fail or the migration will fail.
1100 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1101 uint64_t block_offset
,
1104 uint64_t *block_index
,
1105 uint64_t *chunk_index
)
1107 uint64_t current_addr
= block_offset
+ offset
;
1108 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1109 (void *) block_offset
);
1111 assert(current_addr
>= block
->offset
);
1112 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1114 *block_index
= block
->index
;
1115 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1116 block
->local_host_addr
+ (current_addr
- block
->offset
));
1122 * Register a chunk with IB. If the chunk was already registered
1123 * previously, then skip.
1125 * Also return the keys associated with the registration needed
1126 * to perform the actual RDMA operation.
1128 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1129 RDMALocalBlock
*block
, uint8_t *host_addr
,
1130 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1131 uint8_t *chunk_start
, uint8_t *chunk_end
)
1135 *lkey
= block
->mr
->lkey
;
1138 *rkey
= block
->mr
->rkey
;
1143 /* allocate memory to store chunk MRs */
1145 block
->pmr
= g_malloc0(block
->nb_chunks
* sizeof(struct ibv_mr
*));
1152 * If 'rkey', then we're the destination, so grant access to the source.
1154 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1156 if (!block
->pmr
[chunk
]) {
1157 uint64_t len
= chunk_end
- chunk_start
;
1159 DDPRINTF("Registering %" PRIu64
" bytes @ %p\n",
1162 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1164 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1165 IBV_ACCESS_REMOTE_WRITE
) : 0));
1167 if (!block
->pmr
[chunk
]) {
1168 perror("Failed to register chunk!");
1169 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1170 " start %" PRIu64
" end %" PRIu64
" host %" PRIu64
1171 " local %" PRIu64
" registrations: %d\n",
1172 block
->index
, chunk
, (uint64_t) chunk_start
,
1173 (uint64_t) chunk_end
, (uint64_t) host_addr
,
1174 (uint64_t) block
->local_host_addr
,
1175 rdma
->total_registrations
);
1178 rdma
->total_registrations
++;
1182 *lkey
= block
->pmr
[chunk
]->lkey
;
1185 *rkey
= block
->pmr
[chunk
]->rkey
;
1191 * Register (at connection time) the memory used for control
1194 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1196 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1197 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1198 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1199 if (rdma
->wr_data
[idx
].control_mr
) {
1200 rdma
->total_registrations
++;
1203 fprintf(stderr
, "qemu_rdma_reg_control failed!\n");
1207 const char *print_wrid(int wrid
)
1209 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1210 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1212 return wrid_desc
[wrid
];
1216 * RDMA requires memory registration (mlock/pinning), but this is not good for
1219 * In preparation for the future where LRU information or workload-specific
1220 * writable writable working set memory access behavior is available to QEMU
1221 * it would be nice to have in place the ability to UN-register/UN-pin
1222 * particular memory regions from the RDMA hardware when it is determine that
1223 * those regions of memory will likely not be accessed again in the near future.
1225 * While we do not yet have such information right now, the following
1226 * compile-time option allows us to perform a non-optimized version of this
1229 * By uncommenting this option, you will cause *all* RDMA transfers to be
1230 * unregistered immediately after the transfer completes on both sides of the
1231 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1233 * This will have a terrible impact on migration performance, so until future
1234 * workload information or LRU information is available, do not attempt to use
1235 * this feature except for basic testing.
1237 //#define RDMA_UNREGISTRATION_EXAMPLE
1240 * Perform a non-optimized memory unregistration after every transfer
1241 * for demonsration purposes, only if pin-all is not requested.
1243 * Potential optimizations:
1244 * 1. Start a new thread to run this function continuously
1246 - and for receipt of unregister messages
1248 * 3. Use workload hints.
1250 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1252 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1254 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1256 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1258 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1259 RDMALocalBlock
*block
=
1260 &(rdma
->local_ram_blocks
.block
[index
]);
1261 RDMARegister reg
= { .current_index
= index
};
1262 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1264 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1265 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1269 DDPRINTF("Processing unregister for chunk: %" PRIu64
1270 " at position %d\n", chunk
, rdma
->unregister_current
);
1272 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1273 rdma
->unregister_current
++;
1275 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1276 rdma
->unregister_current
= 0;
1281 * Unregistration is speculative (because migration is single-threaded
1282 * and we cannot break the protocol's inifinband message ordering).
1283 * Thus, if the memory is currently being used for transmission,
1284 * then abort the attempt to unregister and try again
1285 * later the next time a completion is received for this memory.
1287 clear_bit(chunk
, block
->unregister_bitmap
);
1289 if (test_bit(chunk
, block
->transit_bitmap
)) {
1290 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64
"\n", chunk
);
1294 DDPRINTF("Sending unregister for chunk: %" PRIu64
"\n", chunk
);
1296 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1297 block
->pmr
[chunk
] = NULL
;
1298 block
->remote_keys
[chunk
] = 0;
1301 perror("unregistration chunk failed");
1304 rdma
->total_registrations
--;
1306 reg
.key
.chunk
= chunk
;
1307 register_to_network(®
);
1308 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1314 DDPRINTF("Unregister for chunk: %" PRIu64
" complete.\n", chunk
);
1320 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1323 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1325 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1326 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1332 * Set bit for unregistration in the next iteration.
1333 * We cannot transmit right here, but will unpin later.
1335 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1336 uint64_t chunk
, uint64_t wr_id
)
1338 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1339 fprintf(stderr
, "rdma migration: queue is full!\n");
1341 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1343 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1344 DDPRINTF("Appending unregister chunk %" PRIu64
1345 " at position %d\n", chunk
, rdma
->unregister_next
);
1347 rdma
->unregistrations
[rdma
->unregister_next
++] =
1348 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1350 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1351 rdma
->unregister_next
= 0;
1354 DDPRINTF("Unregister chunk %" PRIu64
" already in queue.\n",
1361 * Consult the connection manager to see a work request
1362 * (of any kind) has completed.
1363 * Return the work request ID that completed.
1365 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1372 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1375 *wr_id_out
= RDMA_WRID_NONE
;
1380 fprintf(stderr
, "ibv_poll_cq return %d!\n", ret
);
1384 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1386 if (wc
.status
!= IBV_WC_SUCCESS
) {
1387 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1388 wc
.status
, ibv_wc_status_str(wc
.status
));
1389 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1394 if (rdma
->control_ready_expected
&&
1395 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1396 DDDPRINTF("completion %s #%" PRId64
" received (%" PRId64
")"
1397 " left %d\n", wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1398 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1399 rdma
->control_ready_expected
= 0;
1402 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1404 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1406 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1407 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1409 DDDPRINTF("completions %s (%" PRId64
") left %d, "
1410 "block %" PRIu64
", chunk: %" PRIu64
" %p %p\n",
1411 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
, index
, chunk
,
1412 block
->local_host_addr
, (void *)block
->remote_host_addr
);
1414 clear_bit(chunk
, block
->transit_bitmap
);
1416 if (rdma
->nb_sent
> 0) {
1420 if (!rdma
->pin_all
) {
1422 * FYI: If one wanted to signal a specific chunk to be unregistered
1423 * using LRU or workload-specific information, this is the function
1424 * you would call to do so. That chunk would then get asynchronously
1425 * unregistered later.
1427 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1428 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1432 DDDPRINTF("other completion %s (%" PRId64
") received left %d\n",
1433 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1436 *wr_id_out
= wc
.wr_id
;
1438 *byte_len
= wc
.byte_len
;
1445 * Block until the next work request has completed.
1447 * First poll to see if a work request has already completed,
1450 * If we encounter completed work requests for IDs other than
1451 * the one we're interested in, then that's generally an error.
1453 * The only exception is actual RDMA Write completions. These
1454 * completions only need to be recorded, but do not actually
1455 * need further processing.
1457 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1460 int num_cq_events
= 0, ret
= 0;
1463 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1465 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1469 while (wr_id
!= wrid_requested
) {
1470 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1475 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1477 if (wr_id
== RDMA_WRID_NONE
) {
1480 if (wr_id
!= wrid_requested
) {
1481 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1482 print_wrid(wrid_requested
),
1483 wrid_requested
, print_wrid(wr_id
), wr_id
);
1487 if (wr_id
== wrid_requested
) {
1493 * Coroutine doesn't start until process_incoming_migration()
1494 * so don't yield unless we know we're running inside of a coroutine.
1496 if (rdma
->migration_started_on_destination
) {
1497 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1500 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1501 perror("ibv_get_cq_event");
1502 goto err_block_for_wrid
;
1507 if (ibv_req_notify_cq(cq
, 0)) {
1508 goto err_block_for_wrid
;
1511 while (wr_id
!= wrid_requested
) {
1512 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1514 goto err_block_for_wrid
;
1517 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1519 if (wr_id
== RDMA_WRID_NONE
) {
1522 if (wr_id
!= wrid_requested
) {
1523 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1524 print_wrid(wrid_requested
), wrid_requested
,
1525 print_wrid(wr_id
), wr_id
);
1529 if (wr_id
== wrid_requested
) {
1530 goto success_block_for_wrid
;
1534 success_block_for_wrid
:
1535 if (num_cq_events
) {
1536 ibv_ack_cq_events(cq
, num_cq_events
);
1541 if (num_cq_events
) {
1542 ibv_ack_cq_events(cq
, num_cq_events
);
1548 * Post a SEND message work request for the control channel
1549 * containing some data and block until the post completes.
1551 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1552 RDMAControlHeader
*head
)
1555 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1556 struct ibv_send_wr
*bad_wr
;
1557 struct ibv_sge sge
= {
1558 .addr
= (uint64_t)(wr
->control
),
1559 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1560 .lkey
= wr
->control_mr
->lkey
,
1562 struct ibv_send_wr send_wr
= {
1563 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1564 .opcode
= IBV_WR_SEND
,
1565 .send_flags
= IBV_SEND_SIGNALED
,
1570 DDDPRINTF("CONTROL: sending %s..\n", control_desc
[head
->type
]);
1573 * We don't actually need to do a memcpy() in here if we used
1574 * the "sge" properly, but since we're only sending control messages
1575 * (not RAM in a performance-critical path), then its OK for now.
1577 * The copy makes the RDMAControlHeader simpler to manipulate
1578 * for the time being.
1580 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1581 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1582 control_to_network((void *) wr
->control
);
1585 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1589 if (ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
)) {
1594 fprintf(stderr
, "Failed to use post IB SEND for control!\n");
1598 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1600 fprintf(stderr
, "rdma migration: send polling control error!\n");
1607 * Post a RECV work request in anticipation of some future receipt
1608 * of data on the control channel.
1610 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1612 struct ibv_recv_wr
*bad_wr
;
1613 struct ibv_sge sge
= {
1614 .addr
= (uint64_t)(rdma
->wr_data
[idx
].control
),
1615 .length
= RDMA_CONTROL_MAX_BUFFER
,
1616 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1619 struct ibv_recv_wr recv_wr
= {
1620 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1626 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1634 * Block and wait for a RECV control channel message to arrive.
1636 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1637 RDMAControlHeader
*head
, int expecting
, int idx
)
1640 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1644 fprintf(stderr
, "rdma migration: recv polling control error!\n");
1648 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1649 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1651 DDDPRINTF("CONTROL: %s receiving...\n", control_desc
[expecting
]);
1653 if (expecting
== RDMA_CONTROL_NONE
) {
1654 DDDPRINTF("Surprise: got %s (%d)\n",
1655 control_desc
[head
->type
], head
->type
);
1656 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1657 fprintf(stderr
, "Was expecting a %s (%d) control message"
1658 ", but got: %s (%d), length: %d\n",
1659 control_desc
[expecting
], expecting
,
1660 control_desc
[head
->type
], head
->type
, head
->len
);
1663 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1664 fprintf(stderr
, "too long length: %d\n", head
->len
);
1667 if (sizeof(*head
) + head
->len
!= byte_len
) {
1668 fprintf(stderr
, "Malformed length: %d byte_len %d\n",
1669 head
->len
, byte_len
);
1677 * When a RECV work request has completed, the work request's
1678 * buffer is pointed at the header.
1680 * This will advance the pointer to the data portion
1681 * of the control message of the work request's buffer that
1682 * was populated after the work request finished.
1684 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1685 RDMAControlHeader
*head
)
1687 rdma
->wr_data
[idx
].control_len
= head
->len
;
1688 rdma
->wr_data
[idx
].control_curr
=
1689 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1693 * This is an 'atomic' high-level operation to deliver a single, unified
1694 * control-channel message.
1696 * Additionally, if the user is expecting some kind of reply to this message,
1697 * they can request a 'resp' response message be filled in by posting an
1698 * additional work request on behalf of the user and waiting for an additional
1701 * The extra (optional) response is used during registration to us from having
1702 * to perform an *additional* exchange of message just to provide a response by
1703 * instead piggy-backing on the acknowledgement.
1705 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1706 uint8_t *data
, RDMAControlHeader
*resp
,
1708 int (*callback
)(RDMAContext
*rdma
))
1713 * Wait until the dest is ready before attempting to deliver the message
1714 * by waiting for a READY message.
1716 if (rdma
->control_ready_expected
) {
1717 RDMAControlHeader resp
;
1718 ret
= qemu_rdma_exchange_get_response(rdma
,
1719 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1726 * If the user is expecting a response, post a WR in anticipation of it.
1729 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1731 fprintf(stderr
, "rdma migration: error posting"
1732 " extra control recv for anticipated result!");
1738 * Post a WR to replace the one we just consumed for the READY message.
1740 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1742 fprintf(stderr
, "rdma migration: error posting first control recv!");
1747 * Deliver the control message that was requested.
1749 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1752 fprintf(stderr
, "Failed to send control buffer!\n");
1757 * If we're expecting a response, block and wait for it.
1761 DDPRINTF("Issuing callback before receiving response...\n");
1762 ret
= callback(rdma
);
1768 DDPRINTF("Waiting for response %s\n", control_desc
[resp
->type
]);
1769 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1770 resp
->type
, RDMA_WRID_DATA
);
1776 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1778 *resp_idx
= RDMA_WRID_DATA
;
1780 DDPRINTF("Response %s received.\n", control_desc
[resp
->type
]);
1783 rdma
->control_ready_expected
= 1;
1789 * This is an 'atomic' high-level operation to receive a single, unified
1790 * control-channel message.
1792 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1795 RDMAControlHeader ready
= {
1797 .type
= RDMA_CONTROL_READY
,
1803 * Inform the source that we're ready to receive a message.
1805 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1808 fprintf(stderr
, "Failed to send control buffer!\n");
1813 * Block and wait for the message.
1815 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1816 expecting
, RDMA_WRID_READY
);
1822 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1825 * Post a new RECV work request to replace the one we just consumed.
1827 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1829 fprintf(stderr
, "rdma migration: error posting second control recv!");
1837 * Write an actual chunk of memory using RDMA.
1839 * If we're using dynamic registration on the dest-side, we have to
1840 * send a registration command first.
1842 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1843 int current_index
, uint64_t current_addr
,
1847 struct ibv_send_wr send_wr
= { 0 };
1848 struct ibv_send_wr
*bad_wr
;
1849 int reg_result_idx
, ret
, count
= 0;
1850 uint64_t chunk
, chunks
;
1851 uint8_t *chunk_start
, *chunk_end
;
1852 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1854 RDMARegisterResult
*reg_result
;
1855 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1856 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1857 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1862 sge
.addr
= (uint64_t)(block
->local_host_addr
+
1863 (current_addr
- block
->offset
));
1864 sge
.length
= length
;
1866 chunk
= ram_chunk_index(block
->local_host_addr
, (uint8_t *) sge
.addr
);
1867 chunk_start
= ram_chunk_start(block
, chunk
);
1869 if (block
->is_ram_block
) {
1870 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1872 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1876 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1878 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1883 DDPRINTF("Writing %" PRIu64
" chunks, (%" PRIu64
" MB)\n",
1884 chunks
+ 1, (chunks
+ 1) * (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1886 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1888 if (!rdma
->pin_all
) {
1889 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1890 qemu_rdma_unregister_waiting(rdma
);
1894 while (test_bit(chunk
, block
->transit_bitmap
)) {
1896 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1897 " current %" PRIu64
" len %" PRIu64
" %d %d\n",
1898 count
++, current_index
, chunk
,
1899 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1901 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1904 fprintf(stderr
, "Failed to Wait for previous write to complete "
1905 "block %d chunk %" PRIu64
1906 " current %" PRIu64
" len %" PRIu64
" %d\n",
1907 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1912 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1913 if (!block
->remote_keys
[chunk
]) {
1915 * This chunk has not yet been registered, so first check to see
1916 * if the entire chunk is zero. If so, tell the other size to
1917 * memset() + madvise() the entire chunk without RDMA.
1920 if (can_use_buffer_find_nonzero_offset((void *)sge
.addr
, length
)
1921 && buffer_find_nonzero_offset((void *)sge
.addr
,
1922 length
) == length
) {
1923 RDMACompress comp
= {
1924 .offset
= current_addr
,
1926 .block_idx
= current_index
,
1930 head
.len
= sizeof(comp
);
1931 head
.type
= RDMA_CONTROL_COMPRESS
;
1933 DDPRINTF("Entire chunk is zero, sending compress: %"
1935 "bytes, index: %d, offset: %" PRId64
"...\n",
1936 chunk
, sge
.length
, current_index
, current_addr
);
1938 compress_to_network(&comp
);
1939 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1940 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1946 acct_update_position(f
, sge
.length
, true);
1952 * Otherwise, tell other side to register.
1954 reg
.current_index
= current_index
;
1955 if (block
->is_ram_block
) {
1956 reg
.key
.current_addr
= current_addr
;
1958 reg
.key
.chunk
= chunk
;
1960 reg
.chunks
= chunks
;
1962 DDPRINTF("Sending registration request chunk %" PRIu64
" for %d "
1963 "bytes, index: %d, offset: %" PRId64
"...\n",
1964 chunk
, sge
.length
, current_index
, current_addr
);
1966 register_to_network(®
);
1967 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1968 &resp
, ®_result_idx
, NULL
);
1973 /* try to overlap this single registration with the one we sent. */
1974 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1975 (uint8_t *) sge
.addr
,
1976 &sge
.lkey
, NULL
, chunk
,
1977 chunk_start
, chunk_end
)) {
1978 fprintf(stderr
, "cannot get lkey!\n");
1982 reg_result
= (RDMARegisterResult
*)
1983 rdma
->wr_data
[reg_result_idx
].control_curr
;
1985 network_to_result(reg_result
);
1987 DDPRINTF("Received registration result:"
1988 " my key: %x their key %x, chunk %" PRIu64
"\n",
1989 block
->remote_keys
[chunk
], reg_result
->rkey
, chunk
);
1991 block
->remote_keys
[chunk
] = reg_result
->rkey
;
1992 block
->remote_host_addr
= reg_result
->host_addr
;
1994 /* already registered before */
1995 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1996 (uint8_t *)sge
.addr
,
1997 &sge
.lkey
, NULL
, chunk
,
1998 chunk_start
, chunk_end
)) {
1999 fprintf(stderr
, "cannot get lkey!\n");
2004 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2006 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2008 if (qemu_rdma_register_and_get_keys(rdma
, block
, (uint8_t *)sge
.addr
,
2009 &sge
.lkey
, NULL
, chunk
,
2010 chunk_start
, chunk_end
)) {
2011 fprintf(stderr
, "cannot get lkey!\n");
2017 * Encode the ram block index and chunk within this wrid.
2018 * We will use this information at the time of completion
2019 * to figure out which bitmap to check against and then which
2020 * chunk in the bitmap to look for.
2022 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2023 current_index
, chunk
);
2025 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2026 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2027 send_wr
.sg_list
= &sge
;
2028 send_wr
.num_sge
= 1;
2029 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2030 (current_addr
- block
->offset
);
2032 DDDPRINTF("Posting chunk: %" PRIu64
", addr: %lx"
2033 " remote: %lx, bytes %" PRIu32
"\n",
2034 chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2038 * ibv_post_send() does not return negative error numbers,
2039 * per the specification they are positive - no idea why.
2041 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2043 if (ret
== ENOMEM
) {
2044 DDPRINTF("send queue is full. wait a little....\n");
2045 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2047 fprintf(stderr
, "rdma migration: failed to make "
2048 "room in full send queue! %d\n", ret
);
2054 } else if (ret
> 0) {
2055 perror("rdma migration: post rdma write failed");
2059 set_bit(chunk
, block
->transit_bitmap
);
2060 acct_update_position(f
, sge
.length
, false);
2061 rdma
->total_writes
++;
2067 * Push out any unwritten RDMA operations.
2069 * We support sending out multiple chunks at the same time.
2070 * Not all of them need to get signaled in the completion queue.
2072 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2076 if (!rdma
->current_length
) {
2080 ret
= qemu_rdma_write_one(f
, rdma
,
2081 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2089 DDDPRINTF("sent total: %d\n", rdma
->nb_sent
);
2092 rdma
->current_length
= 0;
2093 rdma
->current_addr
= 0;
2098 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2099 uint64_t offset
, uint64_t len
)
2101 RDMALocalBlock
*block
;
2105 if (rdma
->current_index
< 0) {
2109 if (rdma
->current_chunk
< 0) {
2113 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2114 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2115 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2117 if (rdma
->current_length
== 0) {
2122 * Only merge into chunk sequentially.
2124 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2128 if (offset
< block
->offset
) {
2132 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2136 if ((host_addr
+ len
) > chunk_end
) {
2144 * We're not actually writing here, but doing three things:
2146 * 1. Identify the chunk the buffer belongs to.
2147 * 2. If the chunk is full or the buffer doesn't belong to the current
2148 * chunk, then start a new chunk and flush() the old chunk.
2149 * 3. To keep the hardware busy, we also group chunks into batches
2150 * and only require that a batch gets acknowledged in the completion
2151 * qeueue instead of each individual chunk.
2153 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2154 uint64_t block_offset
, uint64_t offset
,
2157 uint64_t current_addr
= block_offset
+ offset
;
2158 uint64_t index
= rdma
->current_index
;
2159 uint64_t chunk
= rdma
->current_chunk
;
2162 /* If we cannot merge it, we flush the current buffer first. */
2163 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2164 ret
= qemu_rdma_write_flush(f
, rdma
);
2168 rdma
->current_length
= 0;
2169 rdma
->current_addr
= current_addr
;
2171 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2172 offset
, len
, &index
, &chunk
);
2174 fprintf(stderr
, "ram block search failed\n");
2177 rdma
->current_index
= index
;
2178 rdma
->current_chunk
= chunk
;
2182 rdma
->current_length
+= len
;
2184 /* flush it if buffer is too large */
2185 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2186 return qemu_rdma_write_flush(f
, rdma
);
2192 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2194 struct rdma_cm_event
*cm_event
;
2198 if (rdma
->error_state
) {
2199 RDMAControlHeader head
= { .len
= 0,
2200 .type
= RDMA_CONTROL_ERROR
,
2203 fprintf(stderr
, "Early error. Sending error.\n");
2204 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2207 ret
= rdma_disconnect(rdma
->cm_id
);
2209 DDPRINTF("waiting for disconnect\n");
2210 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2212 rdma_ack_cm_event(cm_event
);
2215 DDPRINTF("Disconnected.\n");
2219 g_free(rdma
->block
);
2222 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2223 if (rdma
->wr_data
[idx
].control_mr
) {
2224 rdma
->total_registrations
--;
2225 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2227 rdma
->wr_data
[idx
].control_mr
= NULL
;
2230 if (rdma
->local_ram_blocks
.block
) {
2231 while (rdma
->local_ram_blocks
.nb_blocks
) {
2232 __qemu_rdma_delete_block(rdma
,
2233 rdma
->local_ram_blocks
.block
->offset
);
2238 ibv_destroy_qp(rdma
->qp
);
2242 ibv_destroy_cq(rdma
->cq
);
2245 if (rdma
->comp_channel
) {
2246 ibv_destroy_comp_channel(rdma
->comp_channel
);
2247 rdma
->comp_channel
= NULL
;
2250 ibv_dealloc_pd(rdma
->pd
);
2253 if (rdma
->listen_id
) {
2254 rdma_destroy_id(rdma
->listen_id
);
2255 rdma
->listen_id
= NULL
;
2258 rdma_destroy_id(rdma
->cm_id
);
2261 if (rdma
->channel
) {
2262 rdma_destroy_event_channel(rdma
->channel
);
2263 rdma
->channel
= NULL
;
2270 static int qemu_rdma_source_init(RDMAContext
*rdma
, Error
**errp
, bool pin_all
)
2273 Error
*local_err
= NULL
, **temp
= &local_err
;
2276 * Will be validated against destination's actual capabilities
2277 * after the connect() completes.
2279 rdma
->pin_all
= pin_all
;
2281 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2283 goto err_rdma_source_init
;
2286 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2288 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2289 " limits may be too low. Please check $ ulimit -a # and "
2290 "search for 'ulimit -l' in the output");
2291 goto err_rdma_source_init
;
2294 ret
= qemu_rdma_alloc_qp(rdma
);
2296 ERROR(temp
, "rdma migration: error allocating qp!");
2297 goto err_rdma_source_init
;
2300 ret
= qemu_rdma_init_ram_blocks(rdma
);
2302 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2303 goto err_rdma_source_init
;
2306 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2307 ret
= qemu_rdma_reg_control(rdma
, idx
);
2309 ERROR(temp
, "rdma migration: error registering %d control!",
2311 goto err_rdma_source_init
;
2317 err_rdma_source_init
:
2318 error_propagate(errp
, local_err
);
2319 qemu_rdma_cleanup(rdma
);
2323 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2325 RDMACapabilities cap
= {
2326 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2329 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2331 .private_data
= &cap
,
2332 .private_data_len
= sizeof(cap
),
2334 struct rdma_cm_event
*cm_event
;
2338 * Only negotiate the capability with destination if the user
2339 * on the source first requested the capability.
2341 if (rdma
->pin_all
) {
2342 DPRINTF("Server pin-all memory requested.\n");
2343 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2346 caps_to_network(&cap
);
2348 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2350 perror("rdma_connect");
2351 ERROR(errp
, "connecting to destination!");
2352 rdma_destroy_id(rdma
->cm_id
);
2354 goto err_rdma_source_connect
;
2357 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2359 perror("rdma_get_cm_event after rdma_connect");
2360 ERROR(errp
, "connecting to destination!");
2361 rdma_ack_cm_event(cm_event
);
2362 rdma_destroy_id(rdma
->cm_id
);
2364 goto err_rdma_source_connect
;
2367 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2368 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2369 ERROR(errp
, "connecting to destination!");
2370 rdma_ack_cm_event(cm_event
);
2371 rdma_destroy_id(rdma
->cm_id
);
2373 goto err_rdma_source_connect
;
2376 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2377 network_to_caps(&cap
);
2380 * Verify that the *requested* capabilities are supported by the destination
2381 * and disable them otherwise.
2383 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2384 ERROR(errp
, "Server cannot support pinning all memory. "
2385 "Will register memory dynamically.");
2386 rdma
->pin_all
= false;
2389 DPRINTF("Pin all memory: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2391 rdma_ack_cm_event(cm_event
);
2393 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2395 ERROR(errp
, "posting second control recv!");
2396 goto err_rdma_source_connect
;
2399 rdma
->control_ready_expected
= 1;
2403 err_rdma_source_connect
:
2404 qemu_rdma_cleanup(rdma
);
2408 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2410 int ret
= -EINVAL
, idx
;
2411 struct rdma_cm_id
*listen_id
;
2412 char ip
[40] = "unknown";
2413 struct rdma_addrinfo
*res
;
2416 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2417 rdma
->wr_data
[idx
].control_len
= 0;
2418 rdma
->wr_data
[idx
].control_curr
= NULL
;
2421 if (rdma
->host
== NULL
) {
2422 ERROR(errp
, "RDMA host is not set!");
2423 rdma
->error_state
= -EINVAL
;
2426 /* create CM channel */
2427 rdma
->channel
= rdma_create_event_channel();
2428 if (!rdma
->channel
) {
2429 ERROR(errp
, "could not create rdma event channel");
2430 rdma
->error_state
= -EINVAL
;
2435 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2437 ERROR(errp
, "could not create cm_id!");
2438 goto err_dest_init_create_listen_id
;
2441 snprintf(port_str
, 16, "%d", rdma
->port
);
2442 port_str
[15] = '\0';
2444 if (rdma
->host
&& strcmp("", rdma
->host
)) {
2445 struct rdma_addrinfo
*e
;
2447 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2449 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2450 goto err_dest_init_bind_addr
;
2453 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2454 inet_ntop(e
->ai_family
,
2455 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2456 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
2457 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2459 if (e
->ai_family
== AF_INET6
) {
2460 ret
= qemu_rdma_broken_ipv6_kernel(errp
, listen_id
->verbs
);
2470 ERROR(errp
, "Error: could not rdma_bind_addr!");
2471 goto err_dest_init_bind_addr
;
2473 ERROR(errp
, "migration host and port not specified!");
2475 goto err_dest_init_bind_addr
;
2479 rdma
->listen_id
= listen_id
;
2480 qemu_rdma_dump_gid("dest_init", listen_id
);
2483 err_dest_init_bind_addr
:
2484 rdma_destroy_id(listen_id
);
2485 err_dest_init_create_listen_id
:
2486 rdma_destroy_event_channel(rdma
->channel
);
2487 rdma
->channel
= NULL
;
2488 rdma
->error_state
= ret
;
2493 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2495 RDMAContext
*rdma
= NULL
;
2496 InetSocketAddress
*addr
;
2499 rdma
= g_malloc0(sizeof(RDMAContext
));
2500 memset(rdma
, 0, sizeof(RDMAContext
));
2501 rdma
->current_index
= -1;
2502 rdma
->current_chunk
= -1;
2504 addr
= inet_parse(host_port
, NULL
);
2506 rdma
->port
= atoi(addr
->port
);
2507 rdma
->host
= g_strdup(addr
->host
);
2509 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2519 * QEMUFile interface to the control channel.
2520 * SEND messages for control only.
2521 * pc.ram is handled with regular RDMA messages.
2523 static int qemu_rdma_put_buffer(void *opaque
, const uint8_t *buf
,
2524 int64_t pos
, int size
)
2526 QEMUFileRDMA
*r
= opaque
;
2527 QEMUFile
*f
= r
->file
;
2528 RDMAContext
*rdma
= r
->rdma
;
2529 size_t remaining
= size
;
2530 uint8_t * data
= (void *) buf
;
2533 CHECK_ERROR_STATE();
2536 * Push out any writes that
2537 * we're queued up for pc.ram.
2539 ret
= qemu_rdma_write_flush(f
, rdma
);
2541 rdma
->error_state
= ret
;
2546 RDMAControlHeader head
;
2548 r
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2549 remaining
-= r
->len
;
2552 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2554 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2557 rdma
->error_state
= ret
;
2567 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2572 if (rdma
->wr_data
[idx
].control_len
) {
2573 DDDPRINTF("RDMA %" PRId64
" of %d bytes already in buffer\n",
2574 rdma
->wr_data
[idx
].control_len
, size
);
2576 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2577 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2578 rdma
->wr_data
[idx
].control_curr
+= len
;
2579 rdma
->wr_data
[idx
].control_len
-= len
;
2586 * QEMUFile interface to the control channel.
2587 * RDMA links don't use bytestreams, so we have to
2588 * return bytes to QEMUFile opportunistically.
2590 static int qemu_rdma_get_buffer(void *opaque
, uint8_t *buf
,
2591 int64_t pos
, int size
)
2593 QEMUFileRDMA
*r
= opaque
;
2594 RDMAContext
*rdma
= r
->rdma
;
2595 RDMAControlHeader head
;
2598 CHECK_ERROR_STATE();
2601 * First, we hold on to the last SEND message we
2602 * were given and dish out the bytes until we run
2605 r
->len
= qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2611 * Once we run out, we block and wait for another
2612 * SEND message to arrive.
2614 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2617 rdma
->error_state
= ret
;
2622 * SEND was received with new bytes, now try again.
2624 return qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2628 * Block until all the outstanding chunks have been delivered by the hardware.
2630 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2634 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2638 while (rdma
->nb_sent
) {
2639 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2641 fprintf(stderr
, "rdma migration: complete polling error!\n");
2646 qemu_rdma_unregister_waiting(rdma
);
2651 static int qemu_rdma_close(void *opaque
)
2653 DPRINTF("Shutting down connection.\n");
2654 QEMUFileRDMA
*r
= opaque
;
2656 qemu_rdma_cleanup(r
->rdma
);
2666 * This means that 'block_offset' is a full virtual address that does not
2667 * belong to a RAMBlock of the virtual machine and instead
2668 * represents a private malloc'd memory area that the caller wishes to
2672 * Offset is an offset to be added to block_offset and used
2673 * to also lookup the corresponding RAMBlock.
2676 * Initiate an transfer this size.
2679 * A 'hint' or 'advice' that means that we wish to speculatively
2680 * and asynchronously unregister this memory. In this case, there is no
2681 * guarantee that the unregister will actually happen, for example,
2682 * if the memory is being actively transmitted. Additionally, the memory
2683 * may be re-registered at any future time if a write within the same
2684 * chunk was requested again, even if you attempted to unregister it
2687 * @size < 0 : TODO, not yet supported
2688 * Unregister the memory NOW. This means that the caller does not
2689 * expect there to be any future RDMA transfers and we just want to clean
2690 * things up. This is used in case the upper layer owns the memory and
2691 * cannot wait for qemu_fclose() to occur.
2693 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2694 * sent. Usually, this will not be more than a few bytes of
2695 * the protocol because most transfers are sent asynchronously.
2697 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2698 ram_addr_t block_offset
, ram_addr_t offset
,
2699 size_t size
, int *bytes_sent
)
2701 QEMUFileRDMA
*rfile
= opaque
;
2702 RDMAContext
*rdma
= rfile
->rdma
;
2705 CHECK_ERROR_STATE();
2711 * Add this page to the current 'chunk'. If the chunk
2712 * is full, or the page doen't belong to the current chunk,
2713 * an actual RDMA write will occur and a new chunk will be formed.
2715 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2717 fprintf(stderr
, "rdma migration: write error! %d\n", ret
);
2722 * We always return 1 bytes because the RDMA
2723 * protocol is completely asynchronous. We do not yet know
2724 * whether an identified chunk is zero or not because we're
2725 * waiting for other pages to potentially be merged with
2726 * the current chunk. So, we have to call qemu_update_position()
2727 * later on when the actual write occurs.
2733 uint64_t index
, chunk
;
2735 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2737 ret = qemu_rdma_drain_cq(f, rdma);
2739 fprintf(stderr, "rdma: failed to synchronously drain"
2740 " completion queue before unregistration.\n");
2746 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2747 offset
, size
, &index
, &chunk
);
2750 fprintf(stderr
, "ram block search failed\n");
2754 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2757 * TODO: Synchronous, guaranteed unregistration (should not occur during
2758 * fast-path). Otherwise, unregisters will process on the next call to
2759 * qemu_rdma_drain_cq()
2761 qemu_rdma_unregister_waiting(rdma);
2767 * Drain the Completion Queue if possible, but do not block,
2770 * If nothing to poll, the end of the iteration will do this
2771 * again to make sure we don't overflow the request queue.
2774 uint64_t wr_id
, wr_id_in
;
2775 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2777 fprintf(stderr
, "rdma migration: polling error! %d\n", ret
);
2781 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2783 if (wr_id
== RDMA_WRID_NONE
) {
2788 return RAM_SAVE_CONTROL_DELAYED
;
2790 rdma
->error_state
= ret
;
2794 static int qemu_rdma_accept(RDMAContext
*rdma
)
2796 RDMACapabilities cap
;
2797 struct rdma_conn_param conn_param
= {
2798 .responder_resources
= 2,
2799 .private_data
= &cap
,
2800 .private_data_len
= sizeof(cap
),
2802 struct rdma_cm_event
*cm_event
;
2803 struct ibv_context
*verbs
;
2807 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2809 goto err_rdma_dest_wait
;
2812 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2813 rdma_ack_cm_event(cm_event
);
2814 goto err_rdma_dest_wait
;
2817 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2819 network_to_caps(&cap
);
2821 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2822 fprintf(stderr
, "Unknown source RDMA version: %d, bailing...\n",
2824 rdma_ack_cm_event(cm_event
);
2825 goto err_rdma_dest_wait
;
2829 * Respond with only the capabilities this version of QEMU knows about.
2831 cap
.flags
&= known_capabilities
;
2834 * Enable the ones that we do know about.
2835 * Add other checks here as new ones are introduced.
2837 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2838 rdma
->pin_all
= true;
2841 rdma
->cm_id
= cm_event
->id
;
2842 verbs
= cm_event
->id
->verbs
;
2844 rdma_ack_cm_event(cm_event
);
2846 DPRINTF("Memory pin all: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2848 caps_to_network(&cap
);
2850 DPRINTF("verbs context after listen: %p\n", verbs
);
2853 rdma
->verbs
= verbs
;
2854 } else if (rdma
->verbs
!= verbs
) {
2855 fprintf(stderr
, "ibv context not matching %p, %p!\n",
2856 rdma
->verbs
, verbs
);
2857 goto err_rdma_dest_wait
;
2860 qemu_rdma_dump_id("dest_init", verbs
);
2862 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2864 fprintf(stderr
, "rdma migration: error allocating pd and cq!\n");
2865 goto err_rdma_dest_wait
;
2868 ret
= qemu_rdma_alloc_qp(rdma
);
2870 fprintf(stderr
, "rdma migration: error allocating qp!\n");
2871 goto err_rdma_dest_wait
;
2874 ret
= qemu_rdma_init_ram_blocks(rdma
);
2876 fprintf(stderr
, "rdma migration: error initializing ram blocks!\n");
2877 goto err_rdma_dest_wait
;
2880 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2881 ret
= qemu_rdma_reg_control(rdma
, idx
);
2883 fprintf(stderr
, "rdma: error registering %d control!\n", idx
);
2884 goto err_rdma_dest_wait
;
2888 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
, NULL
, NULL
, NULL
);
2890 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
2892 fprintf(stderr
, "rdma_accept returns %d!\n", ret
);
2893 goto err_rdma_dest_wait
;
2896 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2898 fprintf(stderr
, "rdma_accept get_cm_event failed %d!\n", ret
);
2899 goto err_rdma_dest_wait
;
2902 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2903 fprintf(stderr
, "rdma_accept not event established!\n");
2904 rdma_ack_cm_event(cm_event
);
2905 goto err_rdma_dest_wait
;
2908 rdma_ack_cm_event(cm_event
);
2910 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2912 fprintf(stderr
, "rdma migration: error posting second control recv!\n");
2913 goto err_rdma_dest_wait
;
2916 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
2921 rdma
->error_state
= ret
;
2922 qemu_rdma_cleanup(rdma
);
2927 * During each iteration of the migration, we listen for instructions
2928 * by the source VM to perform dynamic page registrations before they
2929 * can perform RDMA operations.
2931 * We respond with the 'rkey'.
2933 * Keep doing this until the source tells us to stop.
2935 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
,
2938 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
2939 .type
= RDMA_CONTROL_REGISTER_RESULT
,
2942 RDMAControlHeader unreg_resp
= { .len
= 0,
2943 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
2946 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
2948 QEMUFileRDMA
*rfile
= opaque
;
2949 RDMAContext
*rdma
= rfile
->rdma
;
2950 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
2951 RDMAControlHeader head
;
2952 RDMARegister
*reg
, *registers
;
2954 RDMARegisterResult
*reg_result
;
2955 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
2956 RDMALocalBlock
*block
;
2963 CHECK_ERROR_STATE();
2966 DDDPRINTF("Waiting for next request %" PRIu64
"...\n", flags
);
2968 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
2974 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
2975 fprintf(stderr
, "rdma: Too many requests in this message (%d)."
2976 "Bailing.\n", head
.repeat
);
2981 switch (head
.type
) {
2982 case RDMA_CONTROL_COMPRESS
:
2983 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
2984 network_to_compress(comp
);
2986 DDPRINTF("Zapping zero chunk: %" PRId64
2987 " bytes, index %d, offset %" PRId64
"\n",
2988 comp
->length
, comp
->block_idx
, comp
->offset
);
2989 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
2991 host_addr
= block
->local_host_addr
+
2992 (comp
->offset
- block
->offset
);
2994 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
2997 case RDMA_CONTROL_REGISTER_FINISHED
:
2998 DDDPRINTF("Current registrations complete.\n");
3001 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3002 DPRINTF("Initial setup info requested.\n");
3004 if (rdma
->pin_all
) {
3005 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3007 fprintf(stderr
, "rdma migration: error dest "
3008 "registering ram blocks!\n");
3014 * Dest uses this to prepare to transmit the RAMBlock descriptions
3015 * to the source VM after connection setup.
3016 * Both sides use the "remote" structure to communicate and update
3017 * their "local" descriptions with what was sent.
3019 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3020 rdma
->block
[i
].remote_host_addr
=
3021 (uint64_t)(local
->block
[i
].local_host_addr
);
3023 if (rdma
->pin_all
) {
3024 rdma
->block
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3027 rdma
->block
[i
].offset
= local
->block
[i
].offset
;
3028 rdma
->block
[i
].length
= local
->block
[i
].length
;
3030 remote_block_to_network(&rdma
->block
[i
]);
3033 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3034 * sizeof(RDMARemoteBlock
);
3037 ret
= qemu_rdma_post_send_control(rdma
,
3038 (uint8_t *) rdma
->block
, &blocks
);
3041 fprintf(stderr
, "rdma migration: error sending remote info!\n");
3046 case RDMA_CONTROL_REGISTER_REQUEST
:
3047 DDPRINTF("There are %d registration requests\n", head
.repeat
);
3049 reg_resp
.repeat
= head
.repeat
;
3050 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3052 for (count
= 0; count
< head
.repeat
; count
++) {
3054 uint8_t *chunk_start
, *chunk_end
;
3056 reg
= ®isters
[count
];
3057 network_to_register(reg
);
3059 reg_result
= &results
[count
];
3061 DDPRINTF("Registration request (%d): index %d, current_addr %"
3062 PRIu64
" chunks: %" PRIu64
"\n", count
,
3063 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3065 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3066 if (block
->is_ram_block
) {
3067 host_addr
= (block
->local_host_addr
+
3068 (reg
->key
.current_addr
- block
->offset
));
3069 chunk
= ram_chunk_index(block
->local_host_addr
,
3070 (uint8_t *) host_addr
);
3072 chunk
= reg
->key
.chunk
;
3073 host_addr
= block
->local_host_addr
+
3074 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3076 chunk_start
= ram_chunk_start(block
, chunk
);
3077 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3078 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3079 (uint8_t *)host_addr
, NULL
, ®_result
->rkey
,
3080 chunk
, chunk_start
, chunk_end
)) {
3081 fprintf(stderr
, "cannot get rkey!\n");
3086 reg_result
->host_addr
= (uint64_t) block
->local_host_addr
;
3088 DDPRINTF("Registered rkey for this request: %x\n",
3091 result_to_network(reg_result
);
3094 ret
= qemu_rdma_post_send_control(rdma
,
3095 (uint8_t *) results
, ®_resp
);
3098 fprintf(stderr
, "Failed to send control buffer!\n");
3102 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3103 DDPRINTF("There are %d unregistration requests\n", head
.repeat
);
3104 unreg_resp
.repeat
= head
.repeat
;
3105 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3107 for (count
= 0; count
< head
.repeat
; count
++) {
3108 reg
= ®isters
[count
];
3109 network_to_register(reg
);
3111 DDPRINTF("Unregistration request (%d): "
3112 " index %d, chunk %" PRIu64
"\n",
3113 count
, reg
->current_index
, reg
->key
.chunk
);
3115 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3117 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3118 block
->pmr
[reg
->key
.chunk
] = NULL
;
3121 perror("rdma unregistration chunk failed");
3126 rdma
->total_registrations
--;
3128 DDPRINTF("Unregistered chunk %" PRIu64
" successfully.\n",
3132 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3135 fprintf(stderr
, "Failed to send control buffer!\n");
3139 case RDMA_CONTROL_REGISTER_RESULT
:
3140 fprintf(stderr
, "Invalid RESULT message at dest.\n");
3144 fprintf(stderr
, "Unknown control message %s\n",
3145 control_desc
[head
.type
]);
3152 rdma
->error_state
= ret
;
3157 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3160 QEMUFileRDMA
*rfile
= opaque
;
3161 RDMAContext
*rdma
= rfile
->rdma
;
3163 CHECK_ERROR_STATE();
3165 DDDPRINTF("start section: %" PRIu64
"\n", flags
);
3166 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3173 * Inform dest that dynamic registrations are done for now.
3174 * First, flush writes, if any.
3176 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3179 Error
*local_err
= NULL
, **errp
= &local_err
;
3180 QEMUFileRDMA
*rfile
= opaque
;
3181 RDMAContext
*rdma
= rfile
->rdma
;
3182 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3185 CHECK_ERROR_STATE();
3188 ret
= qemu_rdma_drain_cq(f
, rdma
);
3194 if (flags
== RAM_CONTROL_SETUP
) {
3195 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3196 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3197 int reg_result_idx
, i
, j
, nb_remote_blocks
;
3199 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3200 DPRINTF("Sending registration setup for ram blocks...\n");
3203 * Make sure that we parallelize the pinning on both sides.
3204 * For very large guests, doing this serially takes a really
3205 * long time, so we have to 'interleave' the pinning locally
3206 * with the control messages by performing the pinning on this
3207 * side before we receive the control response from the other
3208 * side that the pinning has completed.
3210 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3211 ®_result_idx
, rdma
->pin_all
?
3212 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3214 ERROR(errp
, "receiving remote info!");
3218 nb_remote_blocks
= resp
.len
/ sizeof(RDMARemoteBlock
);
3221 * The protocol uses two different sets of rkeys (mutually exclusive):
3222 * 1. One key to represent the virtual address of the entire ram block.
3223 * (dynamic chunk registration disabled - pin everything with one rkey.)
3224 * 2. One to represent individual chunks within a ram block.
3225 * (dynamic chunk registration enabled - pin individual chunks.)
3227 * Once the capability is successfully negotiated, the destination transmits
3228 * the keys to use (or sends them later) including the virtual addresses
3229 * and then propagates the remote ram block descriptions to his local copy.
3232 if (local
->nb_blocks
!= nb_remote_blocks
) {
3233 ERROR(errp
, "ram blocks mismatch #1! "
3234 "Your QEMU command line parameters are probably "
3235 "not identical on both the source and destination.");
3239 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3241 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3242 for (i
= 0; i
< nb_remote_blocks
; i
++) {
3243 network_to_remote_block(&rdma
->block
[i
]);
3245 /* search local ram blocks */
3246 for (j
= 0; j
< local
->nb_blocks
; j
++) {
3247 if (rdma
->block
[i
].offset
!= local
->block
[j
].offset
) {
3251 if (rdma
->block
[i
].length
!= local
->block
[j
].length
) {
3252 ERROR(errp
, "ram blocks mismatch #2! "
3253 "Your QEMU command line parameters are probably "
3254 "not identical on both the source and destination.");
3257 local
->block
[j
].remote_host_addr
=
3258 rdma
->block
[i
].remote_host_addr
;
3259 local
->block
[j
].remote_rkey
= rdma
->block
[i
].remote_rkey
;
3263 if (j
>= local
->nb_blocks
) {
3264 ERROR(errp
, "ram blocks mismatch #3! "
3265 "Your QEMU command line parameters are probably "
3266 "not identical on both the source and destination.");
3272 DDDPRINTF("Sending registration finish %" PRIu64
"...\n", flags
);
3274 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3275 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3283 rdma
->error_state
= ret
;
3287 static int qemu_rdma_get_fd(void *opaque
)
3289 QEMUFileRDMA
*rfile
= opaque
;
3290 RDMAContext
*rdma
= rfile
->rdma
;
3292 return rdma
->comp_channel
->fd
;
3295 const QEMUFileOps rdma_read_ops
= {
3296 .get_buffer
= qemu_rdma_get_buffer
,
3297 .get_fd
= qemu_rdma_get_fd
,
3298 .close
= qemu_rdma_close
,
3299 .hook_ram_load
= qemu_rdma_registration_handle
,
3302 const QEMUFileOps rdma_write_ops
= {
3303 .put_buffer
= qemu_rdma_put_buffer
,
3304 .close
= qemu_rdma_close
,
3305 .before_ram_iterate
= qemu_rdma_registration_start
,
3306 .after_ram_iterate
= qemu_rdma_registration_stop
,
3307 .save_page
= qemu_rdma_save_page
,
3310 static void *qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3312 QEMUFileRDMA
*r
= g_malloc0(sizeof(QEMUFileRDMA
));
3314 if (qemu_file_mode_is_not_valid(mode
)) {
3320 if (mode
[0] == 'w') {
3321 r
->file
= qemu_fopen_ops(r
, &rdma_write_ops
);
3323 r
->file
= qemu_fopen_ops(r
, &rdma_read_ops
);
3329 static void rdma_accept_incoming_migration(void *opaque
)
3331 RDMAContext
*rdma
= opaque
;
3334 Error
*local_err
= NULL
, **errp
= &local_err
;
3336 DPRINTF("Accepting rdma connection...\n");
3337 ret
= qemu_rdma_accept(rdma
);
3340 ERROR(errp
, "RDMA Migration initialization failed!");
3344 DPRINTF("Accepted migration\n");
3346 f
= qemu_fopen_rdma(rdma
, "rb");
3348 ERROR(errp
, "could not qemu_fopen_rdma!");
3349 qemu_rdma_cleanup(rdma
);
3353 rdma
->migration_started_on_destination
= 1;
3354 process_incoming_migration(f
);
3357 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3361 Error
*local_err
= NULL
;
3363 DPRINTF("Starting RDMA-based incoming migration\n");
3364 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3370 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3376 DPRINTF("qemu_rdma_dest_init success\n");
3378 ret
= rdma_listen(rdma
->listen_id
, 5);
3381 ERROR(errp
, "listening on socket!");
3385 DPRINTF("rdma_listen success\n");
3387 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
,
3388 rdma_accept_incoming_migration
, NULL
,
3389 (void *)(intptr_t) rdma
);
3392 error_propagate(errp
, local_err
);
3396 void rdma_start_outgoing_migration(void *opaque
,
3397 const char *host_port
, Error
**errp
)
3399 MigrationState
*s
= opaque
;
3400 Error
*local_err
= NULL
, **temp
= &local_err
;
3401 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3405 ERROR(temp
, "Failed to initialize RDMA data structures! %d", ret
);
3409 ret
= qemu_rdma_source_init(rdma
, &local_err
,
3410 s
->enabled_capabilities
[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL
]);
3416 DPRINTF("qemu_rdma_source_init success\n");
3417 ret
= qemu_rdma_connect(rdma
, &local_err
);
3423 DPRINTF("qemu_rdma_source_connect success\n");
3425 s
->file
= qemu_fopen_rdma(rdma
, "wb");
3426 migrate_fd_connect(s
);
3429 error_propagate(errp
, local_err
);
3431 migrate_fd_error(s
);