qemu-timer: do not take the lock in timer_pending
[qemu.git] / migration-rdma.c
blob05a155b93dccc6ab31f640f366f50082e13b60d1
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
113 } while (0);
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
173 * SEND/RECV IB Control Messages.
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
217 * Negotiate RDMA capabilities during connection-setup time.
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
224 static void caps_to_network(RDMACapabilities *cap)
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
230 static void network_to_caps(RDMACapabilities *cap)
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
274 static uint64_t htonll(uint64_t v)
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
288 static void remote_block_to_network(RDMARemoteBlock *rb)
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
296 static void network_to_remote_block(RDMARemoteBlock *rb)
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext {
322 char *host;
323 int port;
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected;
336 /* number of outstanding writes */
337 int nb_sent;
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
348 bool pin_all;
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
372 int error_state;
373 int error_reported;
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination;
388 int total_registrations;
389 int total_writes;
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394 GHashTable *blockmap;
395 } RDMAContext;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA {
401 RDMAContext *rdma;
402 size_t len;
403 void *file;
404 } QEMUFileRDMA;
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED {
411 uint32_t len; /* Total length of data portion */
412 uint32_t type; /* which control command to perform */
413 uint32_t repeat; /* number of commands in data portion of same type */
414 uint32_t padding;
415 } RDMAControlHeader;
417 static void control_to_network(RDMAControlHeader *control)
419 control->type = htonl(control->type);
420 control->len = htonl(control->len);
421 control->repeat = htonl(control->repeat);
424 static void network_to_control(RDMAControlHeader *control)
426 control->type = ntohl(control->type);
427 control->len = ntohl(control->len);
428 control->repeat = ntohl(control->repeat);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED {
438 union QEMU_PACKED {
439 uint64_t current_addr; /* offset into the ramblock of the chunk */
440 uint64_t chunk; /* chunk to lookup if unregistering */
441 } key;
442 uint32_t current_index; /* which ramblock the chunk belongs to */
443 uint32_t padding;
444 uint64_t chunks; /* how many sequential chunks to register */
445 } RDMARegister;
447 static void register_to_network(RDMARegister *reg)
449 reg->key.current_addr = htonll(reg->key.current_addr);
450 reg->current_index = htonl(reg->current_index);
451 reg->chunks = htonll(reg->chunks);
454 static void network_to_register(RDMARegister *reg)
456 reg->key.current_addr = ntohll(reg->key.current_addr);
457 reg->current_index = ntohl(reg->current_index);
458 reg->chunks = ntohll(reg->chunks);
461 typedef struct QEMU_PACKED {
462 uint32_t value; /* if zero, we will madvise() */
463 uint32_t block_idx; /* which ram block index */
464 uint64_t offset; /* where in the remote ramblock this chunk */
465 uint64_t length; /* length of the chunk */
466 } RDMACompress;
468 static void compress_to_network(RDMACompress *comp)
470 comp->value = htonl(comp->value);
471 comp->block_idx = htonl(comp->block_idx);
472 comp->offset = htonll(comp->offset);
473 comp->length = htonll(comp->length);
476 static void network_to_compress(RDMACompress *comp)
478 comp->value = ntohl(comp->value);
479 comp->block_idx = ntohl(comp->block_idx);
480 comp->offset = ntohll(comp->offset);
481 comp->length = ntohll(comp->length);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED {
490 uint32_t rkey;
491 uint32_t padding;
492 uint64_t host_addr;
493 } RDMARegisterResult;
495 static void result_to_network(RDMARegisterResult *result)
497 result->rkey = htonl(result->rkey);
498 result->host_addr = htonll(result->host_addr);
501 static void network_to_result(RDMARegisterResult *result)
503 result->rkey = ntohl(result->rkey);
504 result->host_addr = ntohll(result->host_addr);
507 const char *print_wrid(int wrid);
508 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
509 uint8_t *data, RDMAControlHeader *resp,
510 int *resp_idx,
511 int (*callback)(RDMAContext *rdma));
513 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
519 uint64_t i)
521 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
522 + (i << RDMA_REG_CHUNK_SHIFT));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
528 (1UL << RDMA_REG_CHUNK_SHIFT);
530 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
531 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
534 return result;
537 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
538 ram_addr_t block_offset, uint64_t length)
540 RDMALocalBlocks *local = &rdma->local_ram_blocks;
541 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
542 (void *) block_offset);
543 RDMALocalBlock *old = local->block;
545 assert(block == NULL);
547 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549 if (local->nb_blocks) {
550 int x;
552 for (x = 0; x < local->nb_blocks; x++) {
553 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
554 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
555 &local->block[x]);
557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
558 g_free(old);
561 block = &local->block[local->nb_blocks];
563 block->local_host_addr = host_addr;
564 block->offset = block_offset;
565 block->length = length;
566 block->index = local->nb_blocks;
567 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
568 block->transit_bitmap = bitmap_new(block->nb_chunks);
569 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
570 block->unregister_bitmap = bitmap_new(block->nb_chunks);
571 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
572 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574 block->is_ram_block = local->init ? false : true;
576 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
579 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
580 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
581 block->length, (uint64_t) (block->local_host_addr + block->length),
582 BITS_TO_LONGS(block->nb_chunks) *
583 sizeof(unsigned long) * 8, block->nb_chunks);
585 local->nb_blocks++;
587 return 0;
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr,
596 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610 assert(rdma->blockmap == NULL);
611 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
612 memset(local, 0, sizeof *local);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
614 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
615 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
616 rdma->local_ram_blocks.nb_blocks);
617 local->init = true;
618 return 0;
621 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 RDMALocalBlocks *local = &rdma->local_ram_blocks;
624 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
625 (void *) block_offset);
626 RDMALocalBlock *old = local->block;
627 int x;
629 assert(block);
631 if (block->pmr) {
632 int j;
634 for (j = 0; j < block->nb_chunks; j++) {
635 if (!block->pmr[j]) {
636 continue;
638 ibv_dereg_mr(block->pmr[j]);
639 rdma->total_registrations--;
641 g_free(block->pmr);
642 block->pmr = NULL;
645 if (block->mr) {
646 ibv_dereg_mr(block->mr);
647 rdma->total_registrations--;
648 block->mr = NULL;
651 g_free(block->transit_bitmap);
652 block->transit_bitmap = NULL;
654 g_free(block->unregister_bitmap);
655 block->unregister_bitmap = NULL;
657 g_free(block->remote_keys);
658 block->remote_keys = NULL;
660 for (x = 0; x < local->nb_blocks; x++) {
661 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
664 if (local->nb_blocks > 1) {
666 local->block = g_malloc0(sizeof(RDMALocalBlock) *
667 (local->nb_blocks - 1));
669 if (block->index) {
670 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
673 if (block->index < (local->nb_blocks - 1)) {
674 memcpy(local->block + block->index, old + (block->index + 1),
675 sizeof(RDMALocalBlock) *
676 (local->nb_blocks - (block->index + 1)));
678 } else {
679 assert(block == local->block);
680 local->block = NULL;
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
684 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
685 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
686 block->length, (uint64_t) (block->local_host_addr + block->length),
687 BITS_TO_LONGS(block->nb_chunks) *
688 sizeof(unsigned long) * 8, block->nb_chunks);
690 g_free(old);
692 local->nb_blocks--;
694 if (local->nb_blocks) {
695 for (x = 0; x < local->nb_blocks; x++) {
696 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
697 &local->block[x]);
701 return 0;
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 struct ibv_port_attr port;
712 if (ibv_query_port(verbs, 1, &port)) {
713 fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
714 return;
717 printf("%s RDMA Device opened: kernel name %s "
718 "uverbs device name %s, "
719 "infiniband_verbs class device path %s, "
720 "infiniband class device path %s, "
721 "transport: (%d) %s\n",
722 who,
723 verbs->device->name,
724 verbs->device->dev_name,
725 verbs->device->dev_path,
726 verbs->device->ibdev_path,
727 port.link_layer,
728 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
729 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
730 ? "Ethernet" : "Unknown"));
734 * Put in the log file the RDMA gid addressing information,
735 * useful for folks who have trouble understanding the
736 * RDMA device hierarchy in the kernel.
738 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
740 char sgid[33];
741 char dgid[33];
742 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
743 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
744 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
748 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
749 * We will try the next addrinfo struct, and fail if there are
750 * no other valid addresses to bind against.
752 * If user is listening on '[::]', then we will not have a opened a device
753 * yet and have no way of verifying if the device is RoCE or not.
755 * In this case, the source VM will throw an error for ALL types of
756 * connections (both IPv4 and IPv6) if the destination machine does not have
757 * a regular infiniband network available for use.
759 * The only way to guarantee that an error is thrown for broken kernels is
760 * for the management software to choose a *specific* interface at bind time
761 * and validate what time of hardware it is.
763 * Unfortunately, this puts the user in a fix:
765 * If the source VM connects with an IPv4 address without knowing that the
766 * destination has bound to '[::]' the migration will unconditionally fail
767 * unless the management software is explicitly listening on the the IPv4
768 * address while using a RoCE-based device.
770 * If the source VM connects with an IPv6 address, then we're OK because we can
771 * throw an error on the source (and similarly on the destination).
773 * But in mixed environments, this will be broken for a while until it is fixed
774 * inside linux.
776 * We do provide a *tiny* bit of help in this function: We can list all of the
777 * devices in the system and check to see if all the devices are RoCE or
778 * Infiniband.
780 * If we detect that we have a *pure* RoCE environment, then we can safely
781 * thrown an error even if the management software has specified '[::]' as the
782 * bind address.
784 * However, if there is are multiple hetergeneous devices, then we cannot make
785 * this assumption and the user just has to be sure they know what they are
786 * doing.
788 * Patches are being reviewed on linux-rdma.
790 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
792 struct ibv_port_attr port_attr;
794 /* This bug only exists in linux, to our knowledge. */
795 #ifdef CONFIG_LINUX
798 * Verbs are only NULL if management has bound to '[::]'.
800 * Let's iterate through all the devices and see if there any pure IB
801 * devices (non-ethernet).
803 * If not, then we can safely proceed with the migration.
804 * Otherwise, there are no guarantees until the bug is fixed in linux.
806 if (!verbs) {
807 int num_devices, x;
808 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
809 bool roce_found = false;
810 bool ib_found = false;
812 for (x = 0; x < num_devices; x++) {
813 verbs = ibv_open_device(dev_list[x]);
815 if (ibv_query_port(verbs, 1, &port_attr)) {
816 ibv_close_device(verbs);
817 ERROR(errp, "Could not query initial IB port");
818 return -EINVAL;
821 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
822 ib_found = true;
823 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
824 roce_found = true;
827 ibv_close_device(verbs);
831 if (roce_found) {
832 if (ib_found) {
833 fprintf(stderr, "WARN: migrations may fail:"
834 " IPv6 over RoCE / iWARP in linux"
835 " is broken. But since you appear to have a"
836 " mixed RoCE / IB environment, be sure to only"
837 " migrate over the IB fabric until the kernel "
838 " fixes the bug.\n");
839 } else {
840 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
841 " and your management software has specified '[::]'"
842 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
843 return -ENONET;
847 return 0;
851 * If we have a verbs context, that means that some other than '[::]' was
852 * used by the management software for binding. In which case we can actually
853 * warn the user about a potential broken kernel;
856 /* IB ports start with 1, not 0 */
857 if (ibv_query_port(verbs, 1, &port_attr)) {
858 ERROR(errp, "Could not query initial IB port");
859 return -EINVAL;
862 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
863 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
864 "(but patches on linux-rdma in progress)");
865 return -ENONET;
868 #endif
870 return 0;
874 * Figure out which RDMA device corresponds to the requested IP hostname
875 * Also create the initial connection manager identifiers for opening
876 * the connection.
878 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
880 int ret;
881 struct rdma_addrinfo *res;
882 char port_str[16];
883 struct rdma_cm_event *cm_event;
884 char ip[40] = "unknown";
885 struct rdma_addrinfo *e;
887 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
888 ERROR(errp, "RDMA hostname has not been set");
889 return -EINVAL;
892 /* create CM channel */
893 rdma->channel = rdma_create_event_channel();
894 if (!rdma->channel) {
895 ERROR(errp, "could not create CM channel");
896 return -EINVAL;
899 /* create CM id */
900 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
901 if (ret) {
902 ERROR(errp, "could not create channel id");
903 goto err_resolve_create_id;
906 snprintf(port_str, 16, "%d", rdma->port);
907 port_str[15] = '\0';
909 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
910 if (ret < 0) {
911 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
912 goto err_resolve_get_addr;
915 for (e = res; e != NULL; e = e->ai_next) {
916 inet_ntop(e->ai_family,
917 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
918 DPRINTF("Trying %s => %s\n", rdma->host, ip);
920 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
921 RDMA_RESOLVE_TIMEOUT_MS);
922 if (!ret) {
923 if (e->ai_family == AF_INET6) {
924 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
925 if (ret) {
926 continue;
929 goto route;
933 ERROR(errp, "could not resolve address %s", rdma->host);
934 goto err_resolve_get_addr;
936 route:
937 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
939 ret = rdma_get_cm_event(rdma->channel, &cm_event);
940 if (ret) {
941 ERROR(errp, "could not perform event_addr_resolved");
942 goto err_resolve_get_addr;
945 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
946 ERROR(errp, "result not equal to event_addr_resolved %s",
947 rdma_event_str(cm_event->event));
948 perror("rdma_resolve_addr");
949 ret = -EINVAL;
950 goto err_resolve_get_addr;
952 rdma_ack_cm_event(cm_event);
954 /* resolve route */
955 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
956 if (ret) {
957 ERROR(errp, "could not resolve rdma route");
958 goto err_resolve_get_addr;
961 ret = rdma_get_cm_event(rdma->channel, &cm_event);
962 if (ret) {
963 ERROR(errp, "could not perform event_route_resolved");
964 goto err_resolve_get_addr;
966 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
967 ERROR(errp, "result not equal to event_route_resolved: %s",
968 rdma_event_str(cm_event->event));
969 rdma_ack_cm_event(cm_event);
970 ret = -EINVAL;
971 goto err_resolve_get_addr;
973 rdma_ack_cm_event(cm_event);
974 rdma->verbs = rdma->cm_id->verbs;
975 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
976 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
977 return 0;
979 err_resolve_get_addr:
980 rdma_destroy_id(rdma->cm_id);
981 rdma->cm_id = NULL;
982 err_resolve_create_id:
983 rdma_destroy_event_channel(rdma->channel);
984 rdma->channel = NULL;
985 return ret;
989 * Create protection domain and completion queues
991 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
993 /* allocate pd */
994 rdma->pd = ibv_alloc_pd(rdma->verbs);
995 if (!rdma->pd) {
996 fprintf(stderr, "failed to allocate protection domain\n");
997 return -1;
1000 /* create completion channel */
1001 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1002 if (!rdma->comp_channel) {
1003 fprintf(stderr, "failed to allocate completion channel\n");
1004 goto err_alloc_pd_cq;
1008 * Completion queue can be filled by both read and write work requests,
1009 * so must reflect the sum of both possible queue sizes.
1011 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1012 NULL, rdma->comp_channel, 0);
1013 if (!rdma->cq) {
1014 fprintf(stderr, "failed to allocate completion queue\n");
1015 goto err_alloc_pd_cq;
1018 return 0;
1020 err_alloc_pd_cq:
1021 if (rdma->pd) {
1022 ibv_dealloc_pd(rdma->pd);
1024 if (rdma->comp_channel) {
1025 ibv_destroy_comp_channel(rdma->comp_channel);
1027 rdma->pd = NULL;
1028 rdma->comp_channel = NULL;
1029 return -1;
1034 * Create queue pairs.
1036 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1038 struct ibv_qp_init_attr attr = { 0 };
1039 int ret;
1041 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1042 attr.cap.max_recv_wr = 3;
1043 attr.cap.max_send_sge = 1;
1044 attr.cap.max_recv_sge = 1;
1045 attr.send_cq = rdma->cq;
1046 attr.recv_cq = rdma->cq;
1047 attr.qp_type = IBV_QPT_RC;
1049 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1050 if (ret) {
1051 return -1;
1054 rdma->qp = rdma->cm_id->qp;
1055 return 0;
1058 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1060 int i;
1061 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1063 for (i = 0; i < local->nb_blocks; i++) {
1064 local->block[i].mr =
1065 ibv_reg_mr(rdma->pd,
1066 local->block[i].local_host_addr,
1067 local->block[i].length,
1068 IBV_ACCESS_LOCAL_WRITE |
1069 IBV_ACCESS_REMOTE_WRITE
1071 if (!local->block[i].mr) {
1072 perror("Failed to register local dest ram block!\n");
1073 break;
1075 rdma->total_registrations++;
1078 if (i >= local->nb_blocks) {
1079 return 0;
1082 for (i--; i >= 0; i--) {
1083 ibv_dereg_mr(local->block[i].mr);
1084 rdma->total_registrations--;
1087 return -1;
1092 * Find the ram block that corresponds to the page requested to be
1093 * transmitted by QEMU.
1095 * Once the block is found, also identify which 'chunk' within that
1096 * block that the page belongs to.
1098 * This search cannot fail or the migration will fail.
1100 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1101 uint64_t block_offset,
1102 uint64_t offset,
1103 uint64_t length,
1104 uint64_t *block_index,
1105 uint64_t *chunk_index)
1107 uint64_t current_addr = block_offset + offset;
1108 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1109 (void *) block_offset);
1110 assert(block);
1111 assert(current_addr >= block->offset);
1112 assert((current_addr + length) <= (block->offset + block->length));
1114 *block_index = block->index;
1115 *chunk_index = ram_chunk_index(block->local_host_addr,
1116 block->local_host_addr + (current_addr - block->offset));
1118 return 0;
1122 * Register a chunk with IB. If the chunk was already registered
1123 * previously, then skip.
1125 * Also return the keys associated with the registration needed
1126 * to perform the actual RDMA operation.
1128 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1129 RDMALocalBlock *block, uint8_t *host_addr,
1130 uint32_t *lkey, uint32_t *rkey, int chunk,
1131 uint8_t *chunk_start, uint8_t *chunk_end)
1133 if (block->mr) {
1134 if (lkey) {
1135 *lkey = block->mr->lkey;
1137 if (rkey) {
1138 *rkey = block->mr->rkey;
1140 return 0;
1143 /* allocate memory to store chunk MRs */
1144 if (!block->pmr) {
1145 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1146 if (!block->pmr) {
1147 return -1;
1152 * If 'rkey', then we're the destination, so grant access to the source.
1154 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1156 if (!block->pmr[chunk]) {
1157 uint64_t len = chunk_end - chunk_start;
1159 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1160 len, chunk_start);
1162 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1163 chunk_start, len,
1164 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1165 IBV_ACCESS_REMOTE_WRITE) : 0));
1167 if (!block->pmr[chunk]) {
1168 perror("Failed to register chunk!");
1169 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1170 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1171 " local %" PRIu64 " registrations: %d\n",
1172 block->index, chunk, (uint64_t) chunk_start,
1173 (uint64_t) chunk_end, (uint64_t) host_addr,
1174 (uint64_t) block->local_host_addr,
1175 rdma->total_registrations);
1176 return -1;
1178 rdma->total_registrations++;
1181 if (lkey) {
1182 *lkey = block->pmr[chunk]->lkey;
1184 if (rkey) {
1185 *rkey = block->pmr[chunk]->rkey;
1187 return 0;
1191 * Register (at connection time) the memory used for control
1192 * channel messages.
1194 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1196 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1197 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1198 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1199 if (rdma->wr_data[idx].control_mr) {
1200 rdma->total_registrations++;
1201 return 0;
1203 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1204 return -1;
1207 const char *print_wrid(int wrid)
1209 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1210 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1212 return wrid_desc[wrid];
1216 * RDMA requires memory registration (mlock/pinning), but this is not good for
1217 * overcommitment.
1219 * In preparation for the future where LRU information or workload-specific
1220 * writable writable working set memory access behavior is available to QEMU
1221 * it would be nice to have in place the ability to UN-register/UN-pin
1222 * particular memory regions from the RDMA hardware when it is determine that
1223 * those regions of memory will likely not be accessed again in the near future.
1225 * While we do not yet have such information right now, the following
1226 * compile-time option allows us to perform a non-optimized version of this
1227 * behavior.
1229 * By uncommenting this option, you will cause *all* RDMA transfers to be
1230 * unregistered immediately after the transfer completes on both sides of the
1231 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1233 * This will have a terrible impact on migration performance, so until future
1234 * workload information or LRU information is available, do not attempt to use
1235 * this feature except for basic testing.
1237 //#define RDMA_UNREGISTRATION_EXAMPLE
1240 * Perform a non-optimized memory unregistration after every transfer
1241 * for demonsration purposes, only if pin-all is not requested.
1243 * Potential optimizations:
1244 * 1. Start a new thread to run this function continuously
1245 - for bit clearing
1246 - and for receipt of unregister messages
1247 * 2. Use an LRU.
1248 * 3. Use workload hints.
1250 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1252 while (rdma->unregistrations[rdma->unregister_current]) {
1253 int ret;
1254 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1255 uint64_t chunk =
1256 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1257 uint64_t index =
1258 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1259 RDMALocalBlock *block =
1260 &(rdma->local_ram_blocks.block[index]);
1261 RDMARegister reg = { .current_index = index };
1262 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1264 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1265 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1266 .repeat = 1,
1269 DDPRINTF("Processing unregister for chunk: %" PRIu64
1270 " at position %d\n", chunk, rdma->unregister_current);
1272 rdma->unregistrations[rdma->unregister_current] = 0;
1273 rdma->unregister_current++;
1275 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1276 rdma->unregister_current = 0;
1281 * Unregistration is speculative (because migration is single-threaded
1282 * and we cannot break the protocol's inifinband message ordering).
1283 * Thus, if the memory is currently being used for transmission,
1284 * then abort the attempt to unregister and try again
1285 * later the next time a completion is received for this memory.
1287 clear_bit(chunk, block->unregister_bitmap);
1289 if (test_bit(chunk, block->transit_bitmap)) {
1290 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1291 continue;
1294 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1296 ret = ibv_dereg_mr(block->pmr[chunk]);
1297 block->pmr[chunk] = NULL;
1298 block->remote_keys[chunk] = 0;
1300 if (ret != 0) {
1301 perror("unregistration chunk failed");
1302 return -ret;
1304 rdma->total_registrations--;
1306 reg.key.chunk = chunk;
1307 register_to_network(&reg);
1308 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1309 &resp, NULL, NULL);
1310 if (ret < 0) {
1311 return ret;
1314 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1317 return 0;
1320 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1321 uint64_t chunk)
1323 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1325 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1326 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1328 return result;
1332 * Set bit for unregistration in the next iteration.
1333 * We cannot transmit right here, but will unpin later.
1335 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1336 uint64_t chunk, uint64_t wr_id)
1338 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1339 fprintf(stderr, "rdma migration: queue is full!\n");
1340 } else {
1341 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1343 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1344 DDPRINTF("Appending unregister chunk %" PRIu64
1345 " at position %d\n", chunk, rdma->unregister_next);
1347 rdma->unregistrations[rdma->unregister_next++] =
1348 qemu_rdma_make_wrid(wr_id, index, chunk);
1350 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1351 rdma->unregister_next = 0;
1353 } else {
1354 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1355 chunk);
1361 * Consult the connection manager to see a work request
1362 * (of any kind) has completed.
1363 * Return the work request ID that completed.
1365 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1366 uint32_t *byte_len)
1368 int ret;
1369 struct ibv_wc wc;
1370 uint64_t wr_id;
1372 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1374 if (!ret) {
1375 *wr_id_out = RDMA_WRID_NONE;
1376 return 0;
1379 if (ret < 0) {
1380 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1381 return ret;
1384 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1386 if (wc.status != IBV_WC_SUCCESS) {
1387 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1388 wc.status, ibv_wc_status_str(wc.status));
1389 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1391 return -1;
1394 if (rdma->control_ready_expected &&
1395 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1396 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1397 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1398 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1399 rdma->control_ready_expected = 0;
1402 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1403 uint64_t chunk =
1404 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1405 uint64_t index =
1406 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1407 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1409 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1410 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1411 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1412 block->local_host_addr, (void *)block->remote_host_addr);
1414 clear_bit(chunk, block->transit_bitmap);
1416 if (rdma->nb_sent > 0) {
1417 rdma->nb_sent--;
1420 if (!rdma->pin_all) {
1422 * FYI: If one wanted to signal a specific chunk to be unregistered
1423 * using LRU or workload-specific information, this is the function
1424 * you would call to do so. That chunk would then get asynchronously
1425 * unregistered later.
1427 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1428 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1429 #endif
1431 } else {
1432 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1433 print_wrid(wr_id), wr_id, rdma->nb_sent);
1436 *wr_id_out = wc.wr_id;
1437 if (byte_len) {
1438 *byte_len = wc.byte_len;
1441 return 0;
1445 * Block until the next work request has completed.
1447 * First poll to see if a work request has already completed,
1448 * otherwise block.
1450 * If we encounter completed work requests for IDs other than
1451 * the one we're interested in, then that's generally an error.
1453 * The only exception is actual RDMA Write completions. These
1454 * completions only need to be recorded, but do not actually
1455 * need further processing.
1457 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1458 uint32_t *byte_len)
1460 int num_cq_events = 0, ret = 0;
1461 struct ibv_cq *cq;
1462 void *cq_ctx;
1463 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1465 if (ibv_req_notify_cq(rdma->cq, 0)) {
1466 return -1;
1468 /* poll cq first */
1469 while (wr_id != wrid_requested) {
1470 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1471 if (ret < 0) {
1472 return ret;
1475 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1477 if (wr_id == RDMA_WRID_NONE) {
1478 break;
1480 if (wr_id != wrid_requested) {
1481 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1482 print_wrid(wrid_requested),
1483 wrid_requested, print_wrid(wr_id), wr_id);
1487 if (wr_id == wrid_requested) {
1488 return 0;
1491 while (1) {
1493 * Coroutine doesn't start until process_incoming_migration()
1494 * so don't yield unless we know we're running inside of a coroutine.
1496 if (rdma->migration_started_on_destination) {
1497 yield_until_fd_readable(rdma->comp_channel->fd);
1500 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1501 perror("ibv_get_cq_event");
1502 goto err_block_for_wrid;
1505 num_cq_events++;
1507 if (ibv_req_notify_cq(cq, 0)) {
1508 goto err_block_for_wrid;
1511 while (wr_id != wrid_requested) {
1512 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1513 if (ret < 0) {
1514 goto err_block_for_wrid;
1517 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1519 if (wr_id == RDMA_WRID_NONE) {
1520 break;
1522 if (wr_id != wrid_requested) {
1523 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1524 print_wrid(wrid_requested), wrid_requested,
1525 print_wrid(wr_id), wr_id);
1529 if (wr_id == wrid_requested) {
1530 goto success_block_for_wrid;
1534 success_block_for_wrid:
1535 if (num_cq_events) {
1536 ibv_ack_cq_events(cq, num_cq_events);
1538 return 0;
1540 err_block_for_wrid:
1541 if (num_cq_events) {
1542 ibv_ack_cq_events(cq, num_cq_events);
1544 return ret;
1548 * Post a SEND message work request for the control channel
1549 * containing some data and block until the post completes.
1551 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1552 RDMAControlHeader *head)
1554 int ret = 0;
1555 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1556 struct ibv_send_wr *bad_wr;
1557 struct ibv_sge sge = {
1558 .addr = (uint64_t)(wr->control),
1559 .length = head->len + sizeof(RDMAControlHeader),
1560 .lkey = wr->control_mr->lkey,
1562 struct ibv_send_wr send_wr = {
1563 .wr_id = RDMA_WRID_SEND_CONTROL,
1564 .opcode = IBV_WR_SEND,
1565 .send_flags = IBV_SEND_SIGNALED,
1566 .sg_list = &sge,
1567 .num_sge = 1,
1570 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1573 * We don't actually need to do a memcpy() in here if we used
1574 * the "sge" properly, but since we're only sending control messages
1575 * (not RAM in a performance-critical path), then its OK for now.
1577 * The copy makes the RDMAControlHeader simpler to manipulate
1578 * for the time being.
1580 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1581 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1582 control_to_network((void *) wr->control);
1584 if (buf) {
1585 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1589 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1590 return -1;
1593 if (ret < 0) {
1594 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1595 return ret;
1598 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1599 if (ret < 0) {
1600 fprintf(stderr, "rdma migration: send polling control error!\n");
1603 return ret;
1607 * Post a RECV work request in anticipation of some future receipt
1608 * of data on the control channel.
1610 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1612 struct ibv_recv_wr *bad_wr;
1613 struct ibv_sge sge = {
1614 .addr = (uint64_t)(rdma->wr_data[idx].control),
1615 .length = RDMA_CONTROL_MAX_BUFFER,
1616 .lkey = rdma->wr_data[idx].control_mr->lkey,
1619 struct ibv_recv_wr recv_wr = {
1620 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1621 .sg_list = &sge,
1622 .num_sge = 1,
1626 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1627 return -1;
1630 return 0;
1634 * Block and wait for a RECV control channel message to arrive.
1636 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1637 RDMAControlHeader *head, int expecting, int idx)
1639 uint32_t byte_len;
1640 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1641 &byte_len);
1643 if (ret < 0) {
1644 fprintf(stderr, "rdma migration: recv polling control error!\n");
1645 return ret;
1648 network_to_control((void *) rdma->wr_data[idx].control);
1649 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1651 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1653 if (expecting == RDMA_CONTROL_NONE) {
1654 DDDPRINTF("Surprise: got %s (%d)\n",
1655 control_desc[head->type], head->type);
1656 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1657 fprintf(stderr, "Was expecting a %s (%d) control message"
1658 ", but got: %s (%d), length: %d\n",
1659 control_desc[expecting], expecting,
1660 control_desc[head->type], head->type, head->len);
1661 return -EIO;
1663 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1664 fprintf(stderr, "too long length: %d\n", head->len);
1665 return -EINVAL;
1667 if (sizeof(*head) + head->len != byte_len) {
1668 fprintf(stderr, "Malformed length: %d byte_len %d\n",
1669 head->len, byte_len);
1670 return -EINVAL;
1673 return 0;
1677 * When a RECV work request has completed, the work request's
1678 * buffer is pointed at the header.
1680 * This will advance the pointer to the data portion
1681 * of the control message of the work request's buffer that
1682 * was populated after the work request finished.
1684 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1685 RDMAControlHeader *head)
1687 rdma->wr_data[idx].control_len = head->len;
1688 rdma->wr_data[idx].control_curr =
1689 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1693 * This is an 'atomic' high-level operation to deliver a single, unified
1694 * control-channel message.
1696 * Additionally, if the user is expecting some kind of reply to this message,
1697 * they can request a 'resp' response message be filled in by posting an
1698 * additional work request on behalf of the user and waiting for an additional
1699 * completion.
1701 * The extra (optional) response is used during registration to us from having
1702 * to perform an *additional* exchange of message just to provide a response by
1703 * instead piggy-backing on the acknowledgement.
1705 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1706 uint8_t *data, RDMAControlHeader *resp,
1707 int *resp_idx,
1708 int (*callback)(RDMAContext *rdma))
1710 int ret = 0;
1713 * Wait until the dest is ready before attempting to deliver the message
1714 * by waiting for a READY message.
1716 if (rdma->control_ready_expected) {
1717 RDMAControlHeader resp;
1718 ret = qemu_rdma_exchange_get_response(rdma,
1719 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1720 if (ret < 0) {
1721 return ret;
1726 * If the user is expecting a response, post a WR in anticipation of it.
1728 if (resp) {
1729 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1730 if (ret) {
1731 fprintf(stderr, "rdma migration: error posting"
1732 " extra control recv for anticipated result!");
1733 return ret;
1738 * Post a WR to replace the one we just consumed for the READY message.
1740 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1741 if (ret) {
1742 fprintf(stderr, "rdma migration: error posting first control recv!");
1743 return ret;
1747 * Deliver the control message that was requested.
1749 ret = qemu_rdma_post_send_control(rdma, data, head);
1751 if (ret < 0) {
1752 fprintf(stderr, "Failed to send control buffer!\n");
1753 return ret;
1757 * If we're expecting a response, block and wait for it.
1759 if (resp) {
1760 if (callback) {
1761 DDPRINTF("Issuing callback before receiving response...\n");
1762 ret = callback(rdma);
1763 if (ret < 0) {
1764 return ret;
1768 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1769 ret = qemu_rdma_exchange_get_response(rdma, resp,
1770 resp->type, RDMA_WRID_DATA);
1772 if (ret < 0) {
1773 return ret;
1776 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1777 if (resp_idx) {
1778 *resp_idx = RDMA_WRID_DATA;
1780 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1783 rdma->control_ready_expected = 1;
1785 return 0;
1789 * This is an 'atomic' high-level operation to receive a single, unified
1790 * control-channel message.
1792 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1793 int expecting)
1795 RDMAControlHeader ready = {
1796 .len = 0,
1797 .type = RDMA_CONTROL_READY,
1798 .repeat = 1,
1800 int ret;
1803 * Inform the source that we're ready to receive a message.
1805 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1807 if (ret < 0) {
1808 fprintf(stderr, "Failed to send control buffer!\n");
1809 return ret;
1813 * Block and wait for the message.
1815 ret = qemu_rdma_exchange_get_response(rdma, head,
1816 expecting, RDMA_WRID_READY);
1818 if (ret < 0) {
1819 return ret;
1822 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1825 * Post a new RECV work request to replace the one we just consumed.
1827 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1828 if (ret) {
1829 fprintf(stderr, "rdma migration: error posting second control recv!");
1830 return ret;
1833 return 0;
1837 * Write an actual chunk of memory using RDMA.
1839 * If we're using dynamic registration on the dest-side, we have to
1840 * send a registration command first.
1842 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1843 int current_index, uint64_t current_addr,
1844 uint64_t length)
1846 struct ibv_sge sge;
1847 struct ibv_send_wr send_wr = { 0 };
1848 struct ibv_send_wr *bad_wr;
1849 int reg_result_idx, ret, count = 0;
1850 uint64_t chunk, chunks;
1851 uint8_t *chunk_start, *chunk_end;
1852 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1853 RDMARegister reg;
1854 RDMARegisterResult *reg_result;
1855 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1856 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1857 .type = RDMA_CONTROL_REGISTER_REQUEST,
1858 .repeat = 1,
1861 retry:
1862 sge.addr = (uint64_t)(block->local_host_addr +
1863 (current_addr - block->offset));
1864 sge.length = length;
1866 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1867 chunk_start = ram_chunk_start(block, chunk);
1869 if (block->is_ram_block) {
1870 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1872 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1873 chunks--;
1875 } else {
1876 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1878 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1879 chunks--;
1883 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1884 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1886 chunk_end = ram_chunk_end(block, chunk + chunks);
1888 if (!rdma->pin_all) {
1889 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1890 qemu_rdma_unregister_waiting(rdma);
1891 #endif
1894 while (test_bit(chunk, block->transit_bitmap)) {
1895 (void)count;
1896 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1897 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1898 count++, current_index, chunk,
1899 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1901 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1903 if (ret < 0) {
1904 fprintf(stderr, "Failed to Wait for previous write to complete "
1905 "block %d chunk %" PRIu64
1906 " current %" PRIu64 " len %" PRIu64 " %d\n",
1907 current_index, chunk, sge.addr, length, rdma->nb_sent);
1908 return ret;
1912 if (!rdma->pin_all || !block->is_ram_block) {
1913 if (!block->remote_keys[chunk]) {
1915 * This chunk has not yet been registered, so first check to see
1916 * if the entire chunk is zero. If so, tell the other size to
1917 * memset() + madvise() the entire chunk without RDMA.
1920 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1921 && buffer_find_nonzero_offset((void *)sge.addr,
1922 length) == length) {
1923 RDMACompress comp = {
1924 .offset = current_addr,
1925 .value = 0,
1926 .block_idx = current_index,
1927 .length = length,
1930 head.len = sizeof(comp);
1931 head.type = RDMA_CONTROL_COMPRESS;
1933 DDPRINTF("Entire chunk is zero, sending compress: %"
1934 PRIu64 " for %d "
1935 "bytes, index: %d, offset: %" PRId64 "...\n",
1936 chunk, sge.length, current_index, current_addr);
1938 compress_to_network(&comp);
1939 ret = qemu_rdma_exchange_send(rdma, &head,
1940 (uint8_t *) &comp, NULL, NULL, NULL);
1942 if (ret < 0) {
1943 return -EIO;
1946 acct_update_position(f, sge.length, true);
1948 return 1;
1952 * Otherwise, tell other side to register.
1954 reg.current_index = current_index;
1955 if (block->is_ram_block) {
1956 reg.key.current_addr = current_addr;
1957 } else {
1958 reg.key.chunk = chunk;
1960 reg.chunks = chunks;
1962 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1963 "bytes, index: %d, offset: %" PRId64 "...\n",
1964 chunk, sge.length, current_index, current_addr);
1966 register_to_network(&reg);
1967 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1968 &resp, &reg_result_idx, NULL);
1969 if (ret < 0) {
1970 return ret;
1973 /* try to overlap this single registration with the one we sent. */
1974 if (qemu_rdma_register_and_get_keys(rdma, block,
1975 (uint8_t *) sge.addr,
1976 &sge.lkey, NULL, chunk,
1977 chunk_start, chunk_end)) {
1978 fprintf(stderr, "cannot get lkey!\n");
1979 return -EINVAL;
1982 reg_result = (RDMARegisterResult *)
1983 rdma->wr_data[reg_result_idx].control_curr;
1985 network_to_result(reg_result);
1987 DDPRINTF("Received registration result:"
1988 " my key: %x their key %x, chunk %" PRIu64 "\n",
1989 block->remote_keys[chunk], reg_result->rkey, chunk);
1991 block->remote_keys[chunk] = reg_result->rkey;
1992 block->remote_host_addr = reg_result->host_addr;
1993 } else {
1994 /* already registered before */
1995 if (qemu_rdma_register_and_get_keys(rdma, block,
1996 (uint8_t *)sge.addr,
1997 &sge.lkey, NULL, chunk,
1998 chunk_start, chunk_end)) {
1999 fprintf(stderr, "cannot get lkey!\n");
2000 return -EINVAL;
2004 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2005 } else {
2006 send_wr.wr.rdma.rkey = block->remote_rkey;
2008 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2009 &sge.lkey, NULL, chunk,
2010 chunk_start, chunk_end)) {
2011 fprintf(stderr, "cannot get lkey!\n");
2012 return -EINVAL;
2017 * Encode the ram block index and chunk within this wrid.
2018 * We will use this information at the time of completion
2019 * to figure out which bitmap to check against and then which
2020 * chunk in the bitmap to look for.
2022 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2023 current_index, chunk);
2025 send_wr.opcode = IBV_WR_RDMA_WRITE;
2026 send_wr.send_flags = IBV_SEND_SIGNALED;
2027 send_wr.sg_list = &sge;
2028 send_wr.num_sge = 1;
2029 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2030 (current_addr - block->offset);
2032 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2033 " remote: %lx, bytes %" PRIu32 "\n",
2034 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2035 sge.length);
2038 * ibv_post_send() does not return negative error numbers,
2039 * per the specification they are positive - no idea why.
2041 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2043 if (ret == ENOMEM) {
2044 DDPRINTF("send queue is full. wait a little....\n");
2045 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2046 if (ret < 0) {
2047 fprintf(stderr, "rdma migration: failed to make "
2048 "room in full send queue! %d\n", ret);
2049 return ret;
2052 goto retry;
2054 } else if (ret > 0) {
2055 perror("rdma migration: post rdma write failed");
2056 return -ret;
2059 set_bit(chunk, block->transit_bitmap);
2060 acct_update_position(f, sge.length, false);
2061 rdma->total_writes++;
2063 return 0;
2067 * Push out any unwritten RDMA operations.
2069 * We support sending out multiple chunks at the same time.
2070 * Not all of them need to get signaled in the completion queue.
2072 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2074 int ret;
2076 if (!rdma->current_length) {
2077 return 0;
2080 ret = qemu_rdma_write_one(f, rdma,
2081 rdma->current_index, rdma->current_addr, rdma->current_length);
2083 if (ret < 0) {
2084 return ret;
2087 if (ret == 0) {
2088 rdma->nb_sent++;
2089 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2092 rdma->current_length = 0;
2093 rdma->current_addr = 0;
2095 return 0;
2098 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2099 uint64_t offset, uint64_t len)
2101 RDMALocalBlock *block;
2102 uint8_t *host_addr;
2103 uint8_t *chunk_end;
2105 if (rdma->current_index < 0) {
2106 return 0;
2109 if (rdma->current_chunk < 0) {
2110 return 0;
2113 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2114 host_addr = block->local_host_addr + (offset - block->offset);
2115 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2117 if (rdma->current_length == 0) {
2118 return 0;
2122 * Only merge into chunk sequentially.
2124 if (offset != (rdma->current_addr + rdma->current_length)) {
2125 return 0;
2128 if (offset < block->offset) {
2129 return 0;
2132 if ((offset + len) > (block->offset + block->length)) {
2133 return 0;
2136 if ((host_addr + len) > chunk_end) {
2137 return 0;
2140 return 1;
2144 * We're not actually writing here, but doing three things:
2146 * 1. Identify the chunk the buffer belongs to.
2147 * 2. If the chunk is full or the buffer doesn't belong to the current
2148 * chunk, then start a new chunk and flush() the old chunk.
2149 * 3. To keep the hardware busy, we also group chunks into batches
2150 * and only require that a batch gets acknowledged in the completion
2151 * qeueue instead of each individual chunk.
2153 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2154 uint64_t block_offset, uint64_t offset,
2155 uint64_t len)
2157 uint64_t current_addr = block_offset + offset;
2158 uint64_t index = rdma->current_index;
2159 uint64_t chunk = rdma->current_chunk;
2160 int ret;
2162 /* If we cannot merge it, we flush the current buffer first. */
2163 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2164 ret = qemu_rdma_write_flush(f, rdma);
2165 if (ret) {
2166 return ret;
2168 rdma->current_length = 0;
2169 rdma->current_addr = current_addr;
2171 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2172 offset, len, &index, &chunk);
2173 if (ret) {
2174 fprintf(stderr, "ram block search failed\n");
2175 return ret;
2177 rdma->current_index = index;
2178 rdma->current_chunk = chunk;
2181 /* merge it */
2182 rdma->current_length += len;
2184 /* flush it if buffer is too large */
2185 if (rdma->current_length >= RDMA_MERGE_MAX) {
2186 return qemu_rdma_write_flush(f, rdma);
2189 return 0;
2192 static void qemu_rdma_cleanup(RDMAContext *rdma)
2194 struct rdma_cm_event *cm_event;
2195 int ret, idx;
2197 if (rdma->cm_id) {
2198 if (rdma->error_state) {
2199 RDMAControlHeader head = { .len = 0,
2200 .type = RDMA_CONTROL_ERROR,
2201 .repeat = 1,
2203 fprintf(stderr, "Early error. Sending error.\n");
2204 qemu_rdma_post_send_control(rdma, NULL, &head);
2207 ret = rdma_disconnect(rdma->cm_id);
2208 if (!ret) {
2209 DDPRINTF("waiting for disconnect\n");
2210 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2211 if (!ret) {
2212 rdma_ack_cm_event(cm_event);
2215 DDPRINTF("Disconnected.\n");
2216 rdma->cm_id = NULL;
2219 g_free(rdma->block);
2220 rdma->block = NULL;
2222 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2223 if (rdma->wr_data[idx].control_mr) {
2224 rdma->total_registrations--;
2225 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2227 rdma->wr_data[idx].control_mr = NULL;
2230 if (rdma->local_ram_blocks.block) {
2231 while (rdma->local_ram_blocks.nb_blocks) {
2232 __qemu_rdma_delete_block(rdma,
2233 rdma->local_ram_blocks.block->offset);
2237 if (rdma->qp) {
2238 ibv_destroy_qp(rdma->qp);
2239 rdma->qp = NULL;
2241 if (rdma->cq) {
2242 ibv_destroy_cq(rdma->cq);
2243 rdma->cq = NULL;
2245 if (rdma->comp_channel) {
2246 ibv_destroy_comp_channel(rdma->comp_channel);
2247 rdma->comp_channel = NULL;
2249 if (rdma->pd) {
2250 ibv_dealloc_pd(rdma->pd);
2251 rdma->pd = NULL;
2253 if (rdma->listen_id) {
2254 rdma_destroy_id(rdma->listen_id);
2255 rdma->listen_id = NULL;
2257 if (rdma->cm_id) {
2258 rdma_destroy_id(rdma->cm_id);
2259 rdma->cm_id = NULL;
2261 if (rdma->channel) {
2262 rdma_destroy_event_channel(rdma->channel);
2263 rdma->channel = NULL;
2265 g_free(rdma->host);
2266 rdma->host = NULL;
2270 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2272 int ret, idx;
2273 Error *local_err = NULL, **temp = &local_err;
2276 * Will be validated against destination's actual capabilities
2277 * after the connect() completes.
2279 rdma->pin_all = pin_all;
2281 ret = qemu_rdma_resolve_host(rdma, temp);
2282 if (ret) {
2283 goto err_rdma_source_init;
2286 ret = qemu_rdma_alloc_pd_cq(rdma);
2287 if (ret) {
2288 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2289 " limits may be too low. Please check $ ulimit -a # and "
2290 "search for 'ulimit -l' in the output");
2291 goto err_rdma_source_init;
2294 ret = qemu_rdma_alloc_qp(rdma);
2295 if (ret) {
2296 ERROR(temp, "rdma migration: error allocating qp!");
2297 goto err_rdma_source_init;
2300 ret = qemu_rdma_init_ram_blocks(rdma);
2301 if (ret) {
2302 ERROR(temp, "rdma migration: error initializing ram blocks!");
2303 goto err_rdma_source_init;
2306 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2307 ret = qemu_rdma_reg_control(rdma, idx);
2308 if (ret) {
2309 ERROR(temp, "rdma migration: error registering %d control!",
2310 idx);
2311 goto err_rdma_source_init;
2315 return 0;
2317 err_rdma_source_init:
2318 error_propagate(errp, local_err);
2319 qemu_rdma_cleanup(rdma);
2320 return -1;
2323 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2325 RDMACapabilities cap = {
2326 .version = RDMA_CONTROL_VERSION_CURRENT,
2327 .flags = 0,
2329 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2330 .retry_count = 5,
2331 .private_data = &cap,
2332 .private_data_len = sizeof(cap),
2334 struct rdma_cm_event *cm_event;
2335 int ret;
2338 * Only negotiate the capability with destination if the user
2339 * on the source first requested the capability.
2341 if (rdma->pin_all) {
2342 DPRINTF("Server pin-all memory requested.\n");
2343 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2346 caps_to_network(&cap);
2348 ret = rdma_connect(rdma->cm_id, &conn_param);
2349 if (ret) {
2350 perror("rdma_connect");
2351 ERROR(errp, "connecting to destination!");
2352 rdma_destroy_id(rdma->cm_id);
2353 rdma->cm_id = NULL;
2354 goto err_rdma_source_connect;
2357 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2358 if (ret) {
2359 perror("rdma_get_cm_event after rdma_connect");
2360 ERROR(errp, "connecting to destination!");
2361 rdma_ack_cm_event(cm_event);
2362 rdma_destroy_id(rdma->cm_id);
2363 rdma->cm_id = NULL;
2364 goto err_rdma_source_connect;
2367 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2368 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2369 ERROR(errp, "connecting to destination!");
2370 rdma_ack_cm_event(cm_event);
2371 rdma_destroy_id(rdma->cm_id);
2372 rdma->cm_id = NULL;
2373 goto err_rdma_source_connect;
2376 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2377 network_to_caps(&cap);
2380 * Verify that the *requested* capabilities are supported by the destination
2381 * and disable them otherwise.
2383 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2384 ERROR(errp, "Server cannot support pinning all memory. "
2385 "Will register memory dynamically.");
2386 rdma->pin_all = false;
2389 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2391 rdma_ack_cm_event(cm_event);
2393 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2394 if (ret) {
2395 ERROR(errp, "posting second control recv!");
2396 goto err_rdma_source_connect;
2399 rdma->control_ready_expected = 1;
2400 rdma->nb_sent = 0;
2401 return 0;
2403 err_rdma_source_connect:
2404 qemu_rdma_cleanup(rdma);
2405 return -1;
2408 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2410 int ret = -EINVAL, idx;
2411 struct rdma_cm_id *listen_id;
2412 char ip[40] = "unknown";
2413 struct rdma_addrinfo *res;
2414 char port_str[16];
2416 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2417 rdma->wr_data[idx].control_len = 0;
2418 rdma->wr_data[idx].control_curr = NULL;
2421 if (rdma->host == NULL) {
2422 ERROR(errp, "RDMA host is not set!");
2423 rdma->error_state = -EINVAL;
2424 return -1;
2426 /* create CM channel */
2427 rdma->channel = rdma_create_event_channel();
2428 if (!rdma->channel) {
2429 ERROR(errp, "could not create rdma event channel");
2430 rdma->error_state = -EINVAL;
2431 return -1;
2434 /* create CM id */
2435 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2436 if (ret) {
2437 ERROR(errp, "could not create cm_id!");
2438 goto err_dest_init_create_listen_id;
2441 snprintf(port_str, 16, "%d", rdma->port);
2442 port_str[15] = '\0';
2444 if (rdma->host && strcmp("", rdma->host)) {
2445 struct rdma_addrinfo *e;
2447 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2448 if (ret < 0) {
2449 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2450 goto err_dest_init_bind_addr;
2453 for (e = res; e != NULL; e = e->ai_next) {
2454 inet_ntop(e->ai_family,
2455 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2456 DPRINTF("Trying %s => %s\n", rdma->host, ip);
2457 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2458 if (!ret) {
2459 if (e->ai_family == AF_INET6) {
2460 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2461 if (ret) {
2462 continue;
2466 goto listen;
2470 ERROR(errp, "Error: could not rdma_bind_addr!");
2471 goto err_dest_init_bind_addr;
2472 } else {
2473 ERROR(errp, "migration host and port not specified!");
2474 ret = -EINVAL;
2475 goto err_dest_init_bind_addr;
2477 listen:
2479 rdma->listen_id = listen_id;
2480 qemu_rdma_dump_gid("dest_init", listen_id);
2481 return 0;
2483 err_dest_init_bind_addr:
2484 rdma_destroy_id(listen_id);
2485 err_dest_init_create_listen_id:
2486 rdma_destroy_event_channel(rdma->channel);
2487 rdma->channel = NULL;
2488 rdma->error_state = ret;
2489 return ret;
2493 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2495 RDMAContext *rdma = NULL;
2496 InetSocketAddress *addr;
2498 if (host_port) {
2499 rdma = g_malloc0(sizeof(RDMAContext));
2500 memset(rdma, 0, sizeof(RDMAContext));
2501 rdma->current_index = -1;
2502 rdma->current_chunk = -1;
2504 addr = inet_parse(host_port, NULL);
2505 if (addr != NULL) {
2506 rdma->port = atoi(addr->port);
2507 rdma->host = g_strdup(addr->host);
2508 } else {
2509 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2510 g_free(rdma);
2511 return NULL;
2515 return rdma;
2519 * QEMUFile interface to the control channel.
2520 * SEND messages for control only.
2521 * pc.ram is handled with regular RDMA messages.
2523 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2524 int64_t pos, int size)
2526 QEMUFileRDMA *r = opaque;
2527 QEMUFile *f = r->file;
2528 RDMAContext *rdma = r->rdma;
2529 size_t remaining = size;
2530 uint8_t * data = (void *) buf;
2531 int ret;
2533 CHECK_ERROR_STATE();
2536 * Push out any writes that
2537 * we're queued up for pc.ram.
2539 ret = qemu_rdma_write_flush(f, rdma);
2540 if (ret < 0) {
2541 rdma->error_state = ret;
2542 return ret;
2545 while (remaining) {
2546 RDMAControlHeader head;
2548 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2549 remaining -= r->len;
2551 head.len = r->len;
2552 head.type = RDMA_CONTROL_QEMU_FILE;
2554 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2556 if (ret < 0) {
2557 rdma->error_state = ret;
2558 return ret;
2561 data += r->len;
2564 return size;
2567 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2568 int size, int idx)
2570 size_t len = 0;
2572 if (rdma->wr_data[idx].control_len) {
2573 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2574 rdma->wr_data[idx].control_len, size);
2576 len = MIN(size, rdma->wr_data[idx].control_len);
2577 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2578 rdma->wr_data[idx].control_curr += len;
2579 rdma->wr_data[idx].control_len -= len;
2582 return len;
2586 * QEMUFile interface to the control channel.
2587 * RDMA links don't use bytestreams, so we have to
2588 * return bytes to QEMUFile opportunistically.
2590 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2591 int64_t pos, int size)
2593 QEMUFileRDMA *r = opaque;
2594 RDMAContext *rdma = r->rdma;
2595 RDMAControlHeader head;
2596 int ret = 0;
2598 CHECK_ERROR_STATE();
2601 * First, we hold on to the last SEND message we
2602 * were given and dish out the bytes until we run
2603 * out of bytes.
2605 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2606 if (r->len) {
2607 return r->len;
2611 * Once we run out, we block and wait for another
2612 * SEND message to arrive.
2614 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2616 if (ret < 0) {
2617 rdma->error_state = ret;
2618 return ret;
2622 * SEND was received with new bytes, now try again.
2624 return qemu_rdma_fill(r->rdma, buf, size, 0);
2628 * Block until all the outstanding chunks have been delivered by the hardware.
2630 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2632 int ret;
2634 if (qemu_rdma_write_flush(f, rdma) < 0) {
2635 return -EIO;
2638 while (rdma->nb_sent) {
2639 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2640 if (ret < 0) {
2641 fprintf(stderr, "rdma migration: complete polling error!\n");
2642 return -EIO;
2646 qemu_rdma_unregister_waiting(rdma);
2648 return 0;
2651 static int qemu_rdma_close(void *opaque)
2653 DPRINTF("Shutting down connection.\n");
2654 QEMUFileRDMA *r = opaque;
2655 if (r->rdma) {
2656 qemu_rdma_cleanup(r->rdma);
2657 g_free(r->rdma);
2659 g_free(r);
2660 return 0;
2664 * Parameters:
2665 * @offset == 0 :
2666 * This means that 'block_offset' is a full virtual address that does not
2667 * belong to a RAMBlock of the virtual machine and instead
2668 * represents a private malloc'd memory area that the caller wishes to
2669 * transfer.
2671 * @offset != 0 :
2672 * Offset is an offset to be added to block_offset and used
2673 * to also lookup the corresponding RAMBlock.
2675 * @size > 0 :
2676 * Initiate an transfer this size.
2678 * @size == 0 :
2679 * A 'hint' or 'advice' that means that we wish to speculatively
2680 * and asynchronously unregister this memory. In this case, there is no
2681 * guarantee that the unregister will actually happen, for example,
2682 * if the memory is being actively transmitted. Additionally, the memory
2683 * may be re-registered at any future time if a write within the same
2684 * chunk was requested again, even if you attempted to unregister it
2685 * here.
2687 * @size < 0 : TODO, not yet supported
2688 * Unregister the memory NOW. This means that the caller does not
2689 * expect there to be any future RDMA transfers and we just want to clean
2690 * things up. This is used in case the upper layer owns the memory and
2691 * cannot wait for qemu_fclose() to occur.
2693 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2694 * sent. Usually, this will not be more than a few bytes of
2695 * the protocol because most transfers are sent asynchronously.
2697 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2698 ram_addr_t block_offset, ram_addr_t offset,
2699 size_t size, int *bytes_sent)
2701 QEMUFileRDMA *rfile = opaque;
2702 RDMAContext *rdma = rfile->rdma;
2703 int ret;
2705 CHECK_ERROR_STATE();
2707 qemu_fflush(f);
2709 if (size > 0) {
2711 * Add this page to the current 'chunk'. If the chunk
2712 * is full, or the page doen't belong to the current chunk,
2713 * an actual RDMA write will occur and a new chunk will be formed.
2715 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2716 if (ret < 0) {
2717 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2718 goto err;
2722 * We always return 1 bytes because the RDMA
2723 * protocol is completely asynchronous. We do not yet know
2724 * whether an identified chunk is zero or not because we're
2725 * waiting for other pages to potentially be merged with
2726 * the current chunk. So, we have to call qemu_update_position()
2727 * later on when the actual write occurs.
2729 if (bytes_sent) {
2730 *bytes_sent = 1;
2732 } else {
2733 uint64_t index, chunk;
2735 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2736 if (size < 0) {
2737 ret = qemu_rdma_drain_cq(f, rdma);
2738 if (ret < 0) {
2739 fprintf(stderr, "rdma: failed to synchronously drain"
2740 " completion queue before unregistration.\n");
2741 goto err;
2746 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2747 offset, size, &index, &chunk);
2749 if (ret) {
2750 fprintf(stderr, "ram block search failed\n");
2751 goto err;
2754 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2757 * TODO: Synchronous, guaranteed unregistration (should not occur during
2758 * fast-path). Otherwise, unregisters will process on the next call to
2759 * qemu_rdma_drain_cq()
2760 if (size < 0) {
2761 qemu_rdma_unregister_waiting(rdma);
2767 * Drain the Completion Queue if possible, but do not block,
2768 * just poll.
2770 * If nothing to poll, the end of the iteration will do this
2771 * again to make sure we don't overflow the request queue.
2773 while (1) {
2774 uint64_t wr_id, wr_id_in;
2775 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2776 if (ret < 0) {
2777 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2778 goto err;
2781 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2783 if (wr_id == RDMA_WRID_NONE) {
2784 break;
2788 return RAM_SAVE_CONTROL_DELAYED;
2789 err:
2790 rdma->error_state = ret;
2791 return ret;
2794 static int qemu_rdma_accept(RDMAContext *rdma)
2796 RDMACapabilities cap;
2797 struct rdma_conn_param conn_param = {
2798 .responder_resources = 2,
2799 .private_data = &cap,
2800 .private_data_len = sizeof(cap),
2802 struct rdma_cm_event *cm_event;
2803 struct ibv_context *verbs;
2804 int ret = -EINVAL;
2805 int idx;
2807 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2808 if (ret) {
2809 goto err_rdma_dest_wait;
2812 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2813 rdma_ack_cm_event(cm_event);
2814 goto err_rdma_dest_wait;
2817 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2819 network_to_caps(&cap);
2821 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2822 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2823 cap.version);
2824 rdma_ack_cm_event(cm_event);
2825 goto err_rdma_dest_wait;
2829 * Respond with only the capabilities this version of QEMU knows about.
2831 cap.flags &= known_capabilities;
2834 * Enable the ones that we do know about.
2835 * Add other checks here as new ones are introduced.
2837 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2838 rdma->pin_all = true;
2841 rdma->cm_id = cm_event->id;
2842 verbs = cm_event->id->verbs;
2844 rdma_ack_cm_event(cm_event);
2846 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2848 caps_to_network(&cap);
2850 DPRINTF("verbs context after listen: %p\n", verbs);
2852 if (!rdma->verbs) {
2853 rdma->verbs = verbs;
2854 } else if (rdma->verbs != verbs) {
2855 fprintf(stderr, "ibv context not matching %p, %p!\n",
2856 rdma->verbs, verbs);
2857 goto err_rdma_dest_wait;
2860 qemu_rdma_dump_id("dest_init", verbs);
2862 ret = qemu_rdma_alloc_pd_cq(rdma);
2863 if (ret) {
2864 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2865 goto err_rdma_dest_wait;
2868 ret = qemu_rdma_alloc_qp(rdma);
2869 if (ret) {
2870 fprintf(stderr, "rdma migration: error allocating qp!\n");
2871 goto err_rdma_dest_wait;
2874 ret = qemu_rdma_init_ram_blocks(rdma);
2875 if (ret) {
2876 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2877 goto err_rdma_dest_wait;
2880 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2881 ret = qemu_rdma_reg_control(rdma, idx);
2882 if (ret) {
2883 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2884 goto err_rdma_dest_wait;
2888 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2890 ret = rdma_accept(rdma->cm_id, &conn_param);
2891 if (ret) {
2892 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2893 goto err_rdma_dest_wait;
2896 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2897 if (ret) {
2898 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2899 goto err_rdma_dest_wait;
2902 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2903 fprintf(stderr, "rdma_accept not event established!\n");
2904 rdma_ack_cm_event(cm_event);
2905 goto err_rdma_dest_wait;
2908 rdma_ack_cm_event(cm_event);
2910 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2911 if (ret) {
2912 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2913 goto err_rdma_dest_wait;
2916 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2918 return 0;
2920 err_rdma_dest_wait:
2921 rdma->error_state = ret;
2922 qemu_rdma_cleanup(rdma);
2923 return ret;
2927 * During each iteration of the migration, we listen for instructions
2928 * by the source VM to perform dynamic page registrations before they
2929 * can perform RDMA operations.
2931 * We respond with the 'rkey'.
2933 * Keep doing this until the source tells us to stop.
2935 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2936 uint64_t flags)
2938 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2939 .type = RDMA_CONTROL_REGISTER_RESULT,
2940 .repeat = 0,
2942 RDMAControlHeader unreg_resp = { .len = 0,
2943 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2944 .repeat = 0,
2946 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2947 .repeat = 1 };
2948 QEMUFileRDMA *rfile = opaque;
2949 RDMAContext *rdma = rfile->rdma;
2950 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2951 RDMAControlHeader head;
2952 RDMARegister *reg, *registers;
2953 RDMACompress *comp;
2954 RDMARegisterResult *reg_result;
2955 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2956 RDMALocalBlock *block;
2957 void *host_addr;
2958 int ret = 0;
2959 int idx = 0;
2960 int count = 0;
2961 int i = 0;
2963 CHECK_ERROR_STATE();
2965 do {
2966 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2968 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2970 if (ret < 0) {
2971 break;
2974 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2975 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2976 "Bailing.\n", head.repeat);
2977 ret = -EIO;
2978 break;
2981 switch (head.type) {
2982 case RDMA_CONTROL_COMPRESS:
2983 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2984 network_to_compress(comp);
2986 DDPRINTF("Zapping zero chunk: %" PRId64
2987 " bytes, index %d, offset %" PRId64 "\n",
2988 comp->length, comp->block_idx, comp->offset);
2989 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2991 host_addr = block->local_host_addr +
2992 (comp->offset - block->offset);
2994 ram_handle_compressed(host_addr, comp->value, comp->length);
2995 break;
2997 case RDMA_CONTROL_REGISTER_FINISHED:
2998 DDDPRINTF("Current registrations complete.\n");
2999 goto out;
3001 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3002 DPRINTF("Initial setup info requested.\n");
3004 if (rdma->pin_all) {
3005 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3006 if (ret) {
3007 fprintf(stderr, "rdma migration: error dest "
3008 "registering ram blocks!\n");
3009 goto out;
3014 * Dest uses this to prepare to transmit the RAMBlock descriptions
3015 * to the source VM after connection setup.
3016 * Both sides use the "remote" structure to communicate and update
3017 * their "local" descriptions with what was sent.
3019 for (i = 0; i < local->nb_blocks; i++) {
3020 rdma->block[i].remote_host_addr =
3021 (uint64_t)(local->block[i].local_host_addr);
3023 if (rdma->pin_all) {
3024 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3027 rdma->block[i].offset = local->block[i].offset;
3028 rdma->block[i].length = local->block[i].length;
3030 remote_block_to_network(&rdma->block[i]);
3033 blocks.len = rdma->local_ram_blocks.nb_blocks
3034 * sizeof(RDMARemoteBlock);
3037 ret = qemu_rdma_post_send_control(rdma,
3038 (uint8_t *) rdma->block, &blocks);
3040 if (ret < 0) {
3041 fprintf(stderr, "rdma migration: error sending remote info!\n");
3042 goto out;
3045 break;
3046 case RDMA_CONTROL_REGISTER_REQUEST:
3047 DDPRINTF("There are %d registration requests\n", head.repeat);
3049 reg_resp.repeat = head.repeat;
3050 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3052 for (count = 0; count < head.repeat; count++) {
3053 uint64_t chunk;
3054 uint8_t *chunk_start, *chunk_end;
3056 reg = &registers[count];
3057 network_to_register(reg);
3059 reg_result = &results[count];
3061 DDPRINTF("Registration request (%d): index %d, current_addr %"
3062 PRIu64 " chunks: %" PRIu64 "\n", count,
3063 reg->current_index, reg->key.current_addr, reg->chunks);
3065 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3066 if (block->is_ram_block) {
3067 host_addr = (block->local_host_addr +
3068 (reg->key.current_addr - block->offset));
3069 chunk = ram_chunk_index(block->local_host_addr,
3070 (uint8_t *) host_addr);
3071 } else {
3072 chunk = reg->key.chunk;
3073 host_addr = block->local_host_addr +
3074 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3076 chunk_start = ram_chunk_start(block, chunk);
3077 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3078 if (qemu_rdma_register_and_get_keys(rdma, block,
3079 (uint8_t *)host_addr, NULL, &reg_result->rkey,
3080 chunk, chunk_start, chunk_end)) {
3081 fprintf(stderr, "cannot get rkey!\n");
3082 ret = -EINVAL;
3083 goto out;
3086 reg_result->host_addr = (uint64_t) block->local_host_addr;
3088 DDPRINTF("Registered rkey for this request: %x\n",
3089 reg_result->rkey);
3091 result_to_network(reg_result);
3094 ret = qemu_rdma_post_send_control(rdma,
3095 (uint8_t *) results, &reg_resp);
3097 if (ret < 0) {
3098 fprintf(stderr, "Failed to send control buffer!\n");
3099 goto out;
3101 break;
3102 case RDMA_CONTROL_UNREGISTER_REQUEST:
3103 DDPRINTF("There are %d unregistration requests\n", head.repeat);
3104 unreg_resp.repeat = head.repeat;
3105 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3107 for (count = 0; count < head.repeat; count++) {
3108 reg = &registers[count];
3109 network_to_register(reg);
3111 DDPRINTF("Unregistration request (%d): "
3112 " index %d, chunk %" PRIu64 "\n",
3113 count, reg->current_index, reg->key.chunk);
3115 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3117 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3118 block->pmr[reg->key.chunk] = NULL;
3120 if (ret != 0) {
3121 perror("rdma unregistration chunk failed");
3122 ret = -ret;
3123 goto out;
3126 rdma->total_registrations--;
3128 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3129 reg->key.chunk);
3132 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3134 if (ret < 0) {
3135 fprintf(stderr, "Failed to send control buffer!\n");
3136 goto out;
3138 break;
3139 case RDMA_CONTROL_REGISTER_RESULT:
3140 fprintf(stderr, "Invalid RESULT message at dest.\n");
3141 ret = -EIO;
3142 goto out;
3143 default:
3144 fprintf(stderr, "Unknown control message %s\n",
3145 control_desc[head.type]);
3146 ret = -EIO;
3147 goto out;
3149 } while (1);
3150 out:
3151 if (ret < 0) {
3152 rdma->error_state = ret;
3154 return ret;
3157 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3158 uint64_t flags)
3160 QEMUFileRDMA *rfile = opaque;
3161 RDMAContext *rdma = rfile->rdma;
3163 CHECK_ERROR_STATE();
3165 DDDPRINTF("start section: %" PRIu64 "\n", flags);
3166 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3167 qemu_fflush(f);
3169 return 0;
3173 * Inform dest that dynamic registrations are done for now.
3174 * First, flush writes, if any.
3176 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3177 uint64_t flags)
3179 Error *local_err = NULL, **errp = &local_err;
3180 QEMUFileRDMA *rfile = opaque;
3181 RDMAContext *rdma = rfile->rdma;
3182 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3183 int ret = 0;
3185 CHECK_ERROR_STATE();
3187 qemu_fflush(f);
3188 ret = qemu_rdma_drain_cq(f, rdma);
3190 if (ret < 0) {
3191 goto err;
3194 if (flags == RAM_CONTROL_SETUP) {
3195 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3196 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3197 int reg_result_idx, i, j, nb_remote_blocks;
3199 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3200 DPRINTF("Sending registration setup for ram blocks...\n");
3203 * Make sure that we parallelize the pinning on both sides.
3204 * For very large guests, doing this serially takes a really
3205 * long time, so we have to 'interleave' the pinning locally
3206 * with the control messages by performing the pinning on this
3207 * side before we receive the control response from the other
3208 * side that the pinning has completed.
3210 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3211 &reg_result_idx, rdma->pin_all ?
3212 qemu_rdma_reg_whole_ram_blocks : NULL);
3213 if (ret < 0) {
3214 ERROR(errp, "receiving remote info!");
3215 return ret;
3218 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3221 * The protocol uses two different sets of rkeys (mutually exclusive):
3222 * 1. One key to represent the virtual address of the entire ram block.
3223 * (dynamic chunk registration disabled - pin everything with one rkey.)
3224 * 2. One to represent individual chunks within a ram block.
3225 * (dynamic chunk registration enabled - pin individual chunks.)
3227 * Once the capability is successfully negotiated, the destination transmits
3228 * the keys to use (or sends them later) including the virtual addresses
3229 * and then propagates the remote ram block descriptions to his local copy.
3232 if (local->nb_blocks != nb_remote_blocks) {
3233 ERROR(errp, "ram blocks mismatch #1! "
3234 "Your QEMU command line parameters are probably "
3235 "not identical on both the source and destination.");
3236 return -EINVAL;
3239 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3240 memcpy(rdma->block,
3241 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3242 for (i = 0; i < nb_remote_blocks; i++) {
3243 network_to_remote_block(&rdma->block[i]);
3245 /* search local ram blocks */
3246 for (j = 0; j < local->nb_blocks; j++) {
3247 if (rdma->block[i].offset != local->block[j].offset) {
3248 continue;
3251 if (rdma->block[i].length != local->block[j].length) {
3252 ERROR(errp, "ram blocks mismatch #2! "
3253 "Your QEMU command line parameters are probably "
3254 "not identical on both the source and destination.");
3255 return -EINVAL;
3257 local->block[j].remote_host_addr =
3258 rdma->block[i].remote_host_addr;
3259 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3260 break;
3263 if (j >= local->nb_blocks) {
3264 ERROR(errp, "ram blocks mismatch #3! "
3265 "Your QEMU command line parameters are probably "
3266 "not identical on both the source and destination.");
3267 return -EINVAL;
3272 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3274 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3275 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3277 if (ret < 0) {
3278 goto err;
3281 return 0;
3282 err:
3283 rdma->error_state = ret;
3284 return ret;
3287 static int qemu_rdma_get_fd(void *opaque)
3289 QEMUFileRDMA *rfile = opaque;
3290 RDMAContext *rdma = rfile->rdma;
3292 return rdma->comp_channel->fd;
3295 const QEMUFileOps rdma_read_ops = {
3296 .get_buffer = qemu_rdma_get_buffer,
3297 .get_fd = qemu_rdma_get_fd,
3298 .close = qemu_rdma_close,
3299 .hook_ram_load = qemu_rdma_registration_handle,
3302 const QEMUFileOps rdma_write_ops = {
3303 .put_buffer = qemu_rdma_put_buffer,
3304 .close = qemu_rdma_close,
3305 .before_ram_iterate = qemu_rdma_registration_start,
3306 .after_ram_iterate = qemu_rdma_registration_stop,
3307 .save_page = qemu_rdma_save_page,
3310 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3312 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3314 if (qemu_file_mode_is_not_valid(mode)) {
3315 return NULL;
3318 r->rdma = rdma;
3320 if (mode[0] == 'w') {
3321 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3322 } else {
3323 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3326 return r->file;
3329 static void rdma_accept_incoming_migration(void *opaque)
3331 RDMAContext *rdma = opaque;
3332 int ret;
3333 QEMUFile *f;
3334 Error *local_err = NULL, **errp = &local_err;
3336 DPRINTF("Accepting rdma connection...\n");
3337 ret = qemu_rdma_accept(rdma);
3339 if (ret) {
3340 ERROR(errp, "RDMA Migration initialization failed!");
3341 return;
3344 DPRINTF("Accepted migration\n");
3346 f = qemu_fopen_rdma(rdma, "rb");
3347 if (f == NULL) {
3348 ERROR(errp, "could not qemu_fopen_rdma!");
3349 qemu_rdma_cleanup(rdma);
3350 return;
3353 rdma->migration_started_on_destination = 1;
3354 process_incoming_migration(f);
3357 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3359 int ret;
3360 RDMAContext *rdma;
3361 Error *local_err = NULL;
3363 DPRINTF("Starting RDMA-based incoming migration\n");
3364 rdma = qemu_rdma_data_init(host_port, &local_err);
3366 if (rdma == NULL) {
3367 goto err;
3370 ret = qemu_rdma_dest_init(rdma, &local_err);
3372 if (ret) {
3373 goto err;
3376 DPRINTF("qemu_rdma_dest_init success\n");
3378 ret = rdma_listen(rdma->listen_id, 5);
3380 if (ret) {
3381 ERROR(errp, "listening on socket!");
3382 goto err;
3385 DPRINTF("rdma_listen success\n");
3387 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3388 rdma_accept_incoming_migration, NULL,
3389 (void *)(intptr_t) rdma);
3390 return;
3391 err:
3392 error_propagate(errp, local_err);
3393 g_free(rdma);
3396 void rdma_start_outgoing_migration(void *opaque,
3397 const char *host_port, Error **errp)
3399 MigrationState *s = opaque;
3400 Error *local_err = NULL, **temp = &local_err;
3401 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3402 int ret = 0;
3404 if (rdma == NULL) {
3405 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3406 goto err;
3409 ret = qemu_rdma_source_init(rdma, &local_err,
3410 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3412 if (ret) {
3413 goto err;
3416 DPRINTF("qemu_rdma_source_init success\n");
3417 ret = qemu_rdma_connect(rdma, &local_err);
3419 if (ret) {
3420 goto err;
3423 DPRINTF("qemu_rdma_source_connect success\n");
3425 s->file = qemu_fopen_rdma(rdma, "wb");
3426 migrate_fd_connect(s);
3427 return;
3428 err:
3429 error_propagate(errp, local_err);
3430 g_free(rdma);
3431 migrate_fd_error(s);