target/s390x: introduce (test|set)_be_bit
[qemu.git] / target / arm / cpu.c
blob96d1f840301f1033612a74cf9436d0e0a6c19a6e
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 ARMCPU *cpu = ARM_CPU(cs);
41 cpu->env.regs[15] = value;
44 static bool arm_cpu_has_work(CPUState *cs)
46 ARMCPU *cpu = ARM_CPU(cs);
48 return (cpu->power_state != PSCI_OFF)
49 && cs->interrupt_request &
50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52 | CPU_INTERRUPT_EXITTB);
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56 void *opaque)
58 /* We currently only support registering a single hook function */
59 assert(!cpu->el_change_hook);
60 cpu->el_change_hook = hook;
61 cpu->el_change_hook_opaque = opaque;
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 /* Reset a single ARMCPRegInfo register */
67 ARMCPRegInfo *ri = value;
68 ARMCPU *cpu = opaque;
70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71 return;
74 if (ri->resetfn) {
75 ri->resetfn(&cpu->env, ri);
76 return;
79 /* A zero offset is never possible as it would be regs[0]
80 * so we use it to indicate that reset is being handled elsewhere.
81 * This is basically only used for fields in non-core coprocessors
82 * (like the pxa2xx ones).
84 if (!ri->fieldoffset) {
85 return;
88 if (cpreg_field_is_64bit(ri)) {
89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90 } else {
91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
97 /* Purely an assertion check: we've already done reset once,
98 * so now check that running the reset for the cpreg doesn't
99 * change its value. This traps bugs where two different cpregs
100 * both try to reset the same state field but to different values.
102 ARMCPRegInfo *ri = value;
103 ARMCPU *cpu = opaque;
104 uint64_t oldvalue, newvalue;
106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107 return;
110 oldvalue = read_raw_cp_reg(&cpu->env, ri);
111 cp_reg_reset(key, value, opaque);
112 newvalue = read_raw_cp_reg(&cpu->env, ri);
113 assert(oldvalue == newvalue);
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
119 ARMCPU *cpu = ARM_CPU(s);
120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121 CPUARMState *env = &cpu->env;
123 acc->parent_reset(s);
125 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136 s->halted = cpu->start_powered_off;
138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143 /* 64 bit CPUs always start in 64 bit mode */
144 env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146 env->pstate = PSTATE_MODE_EL0t;
147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149 /* and to the FP/Neon instructions */
150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152 /* Reset into the highest available EL */
153 if (arm_feature(env, ARM_FEATURE_EL3)) {
154 env->pstate = PSTATE_MODE_EL3h;
155 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156 env->pstate = PSTATE_MODE_EL2h;
157 } else {
158 env->pstate = PSTATE_MODE_EL1h;
160 env->pc = cpu->rvbar;
161 #endif
162 } else {
163 #if defined(CONFIG_USER_ONLY)
164 /* Userspace expects access to cp10 and cp11 for FP/Neon */
165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
169 #if defined(CONFIG_USER_ONLY)
170 env->uncached_cpsr = ARM_CPU_MODE_USR;
171 /* For user mode we must enable access to coprocessors */
172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174 env->cp15.c15_cpar = 3;
175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176 env->cp15.c15_cpar = 1;
178 #else
179 /* SVC mode with interrupts disabled. */
180 env->uncached_cpsr = ARM_CPU_MODE_SVC;
181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 if (arm_feature(env, ARM_FEATURE_M)) {
184 uint32_t initial_msp; /* Loaded from 0x0 */
185 uint32_t initial_pc; /* Loaded from 0x4 */
186 uint8_t *rom;
188 /* For M profile we store FAULTMASK and PRIMASK in the
189 * PSTATE F and I bits; these are both clear at reset.
191 env->daif &= ~(PSTATE_I | PSTATE_F);
193 /* The reset value of this bit is IMPDEF, but ARM recommends
194 * that it resets to 1, so QEMU always does that rather than making
195 * it dependent on CPU model.
197 env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
199 /* Unlike A/R profile, M profile defines the reset LR value */
200 env->regs[14] = 0xffffffff;
202 /* Load the initial SP and PC from the vector table at address 0 */
203 rom = rom_ptr(0);
204 if (rom) {
205 /* Address zero is covered by ROM which hasn't yet been
206 * copied into physical memory.
208 initial_msp = ldl_p(rom);
209 initial_pc = ldl_p(rom + 4);
210 } else {
211 /* Address zero not covered by a ROM blob, or the ROM blob
212 * is in non-modifiable memory and this is a second reset after
213 * it got copied into memory. In the latter case, rom_ptr
214 * will return a NULL pointer and we should use ldl_phys instead.
216 initial_msp = ldl_phys(s->as, 0);
217 initial_pc = ldl_phys(s->as, 4);
220 env->regs[13] = initial_msp & 0xFFFFFFFC;
221 env->regs[15] = initial_pc & ~1;
222 env->thumb = initial_pc & 1;
225 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
226 * executing as AArch32 then check if highvecs are enabled and
227 * adjust the PC accordingly.
229 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
230 env->regs[15] = 0xFFFF0000;
233 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
234 #endif
235 set_flush_to_zero(1, &env->vfp.standard_fp_status);
236 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
237 set_default_nan_mode(1, &env->vfp.standard_fp_status);
238 set_float_detect_tininess(float_tininess_before_rounding,
239 &env->vfp.fp_status);
240 set_float_detect_tininess(float_tininess_before_rounding,
241 &env->vfp.standard_fp_status);
242 #ifndef CONFIG_USER_ONLY
243 if (kvm_enabled()) {
244 kvm_arm_reset_vcpu(cpu);
246 #endif
248 hw_breakpoint_update_all(cpu);
249 hw_watchpoint_update_all(cpu);
252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
254 CPUClass *cc = CPU_GET_CLASS(cs);
255 CPUARMState *env = cs->env_ptr;
256 uint32_t cur_el = arm_current_el(env);
257 bool secure = arm_is_secure(env);
258 uint32_t target_el;
259 uint32_t excp_idx;
260 bool ret = false;
262 if (interrupt_request & CPU_INTERRUPT_FIQ) {
263 excp_idx = EXCP_FIQ;
264 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
265 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
266 cs->exception_index = excp_idx;
267 env->exception.target_el = target_el;
268 cc->do_interrupt(cs);
269 ret = true;
272 if (interrupt_request & CPU_INTERRUPT_HARD) {
273 excp_idx = EXCP_IRQ;
274 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
275 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
276 cs->exception_index = excp_idx;
277 env->exception.target_el = target_el;
278 cc->do_interrupt(cs);
279 ret = true;
282 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
283 excp_idx = EXCP_VIRQ;
284 target_el = 1;
285 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
286 cs->exception_index = excp_idx;
287 env->exception.target_el = target_el;
288 cc->do_interrupt(cs);
289 ret = true;
292 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
293 excp_idx = EXCP_VFIQ;
294 target_el = 1;
295 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
296 cs->exception_index = excp_idx;
297 env->exception.target_el = target_el;
298 cc->do_interrupt(cs);
299 ret = true;
303 return ret;
306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
307 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
309 CPUClass *cc = CPU_GET_CLASS(cs);
310 ARMCPU *cpu = ARM_CPU(cs);
311 CPUARMState *env = &cpu->env;
312 bool ret = false;
314 /* ARMv7-M interrupt masking works differently than -A or -R.
315 * There is no FIQ/IRQ distinction. Instead of I and F bits
316 * masking FIQ and IRQ interrupts, an exception is taken only
317 * if it is higher priority than the current execution priority
318 * (which depends on state like BASEPRI, FAULTMASK and the
319 * currently active exception).
321 if (interrupt_request & CPU_INTERRUPT_HARD
322 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
323 cs->exception_index = EXCP_IRQ;
324 cc->do_interrupt(cs);
325 ret = true;
327 return ret;
329 #endif
331 #ifndef CONFIG_USER_ONLY
332 static void arm_cpu_set_irq(void *opaque, int irq, int level)
334 ARMCPU *cpu = opaque;
335 CPUARMState *env = &cpu->env;
336 CPUState *cs = CPU(cpu);
337 static const int mask[] = {
338 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
339 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
340 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
341 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
344 switch (irq) {
345 case ARM_CPU_VIRQ:
346 case ARM_CPU_VFIQ:
347 assert(arm_feature(env, ARM_FEATURE_EL2));
348 /* fall through */
349 case ARM_CPU_IRQ:
350 case ARM_CPU_FIQ:
351 if (level) {
352 cpu_interrupt(cs, mask[irq]);
353 } else {
354 cpu_reset_interrupt(cs, mask[irq]);
356 break;
357 default:
358 g_assert_not_reached();
362 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
364 #ifdef CONFIG_KVM
365 ARMCPU *cpu = opaque;
366 CPUState *cs = CPU(cpu);
367 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
369 switch (irq) {
370 case ARM_CPU_IRQ:
371 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
372 break;
373 case ARM_CPU_FIQ:
374 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
375 break;
376 default:
377 g_assert_not_reached();
379 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
380 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
381 #endif
384 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
386 ARMCPU *cpu = ARM_CPU(cs);
387 CPUARMState *env = &cpu->env;
389 cpu_synchronize_state(cs);
390 return arm_cpu_data_is_big_endian(env);
393 #endif
395 static inline void set_feature(CPUARMState *env, int feature)
397 env->features |= 1ULL << feature;
400 static inline void unset_feature(CPUARMState *env, int feature)
402 env->features &= ~(1ULL << feature);
405 static int
406 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
408 return print_insn_arm(pc | 1, info);
411 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
412 int length, struct disassemble_info *info)
414 assert(info->read_memory_inner_func);
415 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
417 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
418 assert(info->endian == BFD_ENDIAN_LITTLE);
419 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
420 info);
421 } else {
422 return info->read_memory_inner_func(memaddr, b, length, info);
426 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
428 ARMCPU *ac = ARM_CPU(cpu);
429 CPUARMState *env = &ac->env;
431 if (is_a64(env)) {
432 /* We might not be compiled with the A64 disassembler
433 * because it needs a C++ compiler. Leave print_insn
434 * unset in this case to use the caller default behaviour.
436 #if defined(CONFIG_ARM_A64_DIS)
437 info->print_insn = print_insn_arm_a64;
438 #endif
439 } else if (env->thumb) {
440 info->print_insn = print_insn_thumb1;
441 } else {
442 info->print_insn = print_insn_arm;
444 if (bswap_code(arm_sctlr_b(env))) {
445 #ifdef TARGET_WORDS_BIGENDIAN
446 info->endian = BFD_ENDIAN_LITTLE;
447 #else
448 info->endian = BFD_ENDIAN_BIG;
449 #endif
451 if (info->read_memory_inner_func == NULL) {
452 info->read_memory_inner_func = info->read_memory_func;
453 info->read_memory_func = arm_read_memory_func;
455 info->flags &= ~INSN_ARM_BE32;
456 if (arm_sctlr_b(env)) {
457 info->flags |= INSN_ARM_BE32;
461 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
463 uint32_t Aff1 = idx / clustersz;
464 uint32_t Aff0 = idx % clustersz;
465 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
468 static void arm_cpu_initfn(Object *obj)
470 CPUState *cs = CPU(obj);
471 ARMCPU *cpu = ARM_CPU(obj);
472 static bool inited;
474 cs->env_ptr = &cpu->env;
475 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
476 g_free, g_free);
478 #ifndef CONFIG_USER_ONLY
479 /* Our inbound IRQ and FIQ lines */
480 if (kvm_enabled()) {
481 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
482 * the same interface as non-KVM CPUs.
484 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
485 } else {
486 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
489 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
490 arm_gt_ptimer_cb, cpu);
491 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
492 arm_gt_vtimer_cb, cpu);
493 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
494 arm_gt_htimer_cb, cpu);
495 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
496 arm_gt_stimer_cb, cpu);
497 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
498 ARRAY_SIZE(cpu->gt_timer_outputs));
500 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
501 "gicv3-maintenance-interrupt", 1);
502 #endif
504 /* DTB consumers generally don't in fact care what the 'compatible'
505 * string is, so always provide some string and trust that a hypothetical
506 * picky DTB consumer will also provide a helpful error message.
508 cpu->dtb_compatible = "qemu,unknown";
509 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
510 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
512 if (tcg_enabled()) {
513 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
514 if (!inited) {
515 inited = true;
516 arm_translate_init();
521 static Property arm_cpu_reset_cbar_property =
522 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
524 static Property arm_cpu_reset_hivecs_property =
525 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
527 static Property arm_cpu_rvbar_property =
528 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
530 static Property arm_cpu_has_el2_property =
531 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
533 static Property arm_cpu_has_el3_property =
534 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
536 static Property arm_cpu_cfgend_property =
537 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
539 /* use property name "pmu" to match other archs and virt tools */
540 static Property arm_cpu_has_pmu_property =
541 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
543 static Property arm_cpu_has_mpu_property =
544 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
546 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
547 * because the CPU initfn will have already set cpu->pmsav7_dregion to
548 * the right value for that particular CPU type, and we don't want
549 * to override that with an incorrect constant value.
551 static Property arm_cpu_pmsav7_dregion_property =
552 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
553 pmsav7_dregion,
554 qdev_prop_uint32, uint32_t);
556 static void arm_cpu_post_init(Object *obj)
558 ARMCPU *cpu = ARM_CPU(obj);
560 /* M profile implies PMSA. We have to do this here rather than
561 * in realize with the other feature-implication checks because
562 * we look at the PMSA bit to see if we should add some properties.
564 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
565 set_feature(&cpu->env, ARM_FEATURE_PMSA);
568 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
569 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
570 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
571 &error_abort);
574 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
575 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
576 &error_abort);
579 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
580 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
581 &error_abort);
584 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
585 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
586 * prevent "has_el3" from existing on CPUs which cannot support EL3.
588 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
589 &error_abort);
591 #ifndef CONFIG_USER_ONLY
592 object_property_add_link(obj, "secure-memory",
593 TYPE_MEMORY_REGION,
594 (Object **)&cpu->secure_memory,
595 qdev_prop_allow_set_link_before_realize,
596 OBJ_PROP_LINK_UNREF_ON_RELEASE,
597 &error_abort);
598 #endif
601 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
602 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
603 &error_abort);
606 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
607 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
608 &error_abort);
611 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
612 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
613 &error_abort);
614 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
615 qdev_property_add_static(DEVICE(obj),
616 &arm_cpu_pmsav7_dregion_property,
617 &error_abort);
621 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
622 &error_abort);
625 static void arm_cpu_finalizefn(Object *obj)
627 ARMCPU *cpu = ARM_CPU(obj);
628 g_hash_table_destroy(cpu->cp_regs);
631 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
633 CPUState *cs = CPU(dev);
634 ARMCPU *cpu = ARM_CPU(dev);
635 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
636 CPUARMState *env = &cpu->env;
637 int pagebits;
638 Error *local_err = NULL;
640 cpu_exec_realizefn(cs, &local_err);
641 if (local_err != NULL) {
642 error_propagate(errp, local_err);
643 return;
646 /* Some features automatically imply others: */
647 if (arm_feature(env, ARM_FEATURE_V8)) {
648 set_feature(env, ARM_FEATURE_V7);
649 set_feature(env, ARM_FEATURE_ARM_DIV);
650 set_feature(env, ARM_FEATURE_LPAE);
652 if (arm_feature(env, ARM_FEATURE_V7)) {
653 set_feature(env, ARM_FEATURE_VAPA);
654 set_feature(env, ARM_FEATURE_THUMB2);
655 set_feature(env, ARM_FEATURE_MPIDR);
656 if (!arm_feature(env, ARM_FEATURE_M)) {
657 set_feature(env, ARM_FEATURE_V6K);
658 } else {
659 set_feature(env, ARM_FEATURE_V6);
662 /* Always define VBAR for V7 CPUs even if it doesn't exist in
663 * non-EL3 configs. This is needed by some legacy boards.
665 set_feature(env, ARM_FEATURE_VBAR);
667 if (arm_feature(env, ARM_FEATURE_V6K)) {
668 set_feature(env, ARM_FEATURE_V6);
669 set_feature(env, ARM_FEATURE_MVFR);
671 if (arm_feature(env, ARM_FEATURE_V6)) {
672 set_feature(env, ARM_FEATURE_V5);
673 if (!arm_feature(env, ARM_FEATURE_M)) {
674 set_feature(env, ARM_FEATURE_AUXCR);
677 if (arm_feature(env, ARM_FEATURE_V5)) {
678 set_feature(env, ARM_FEATURE_V4T);
680 if (arm_feature(env, ARM_FEATURE_M)) {
681 set_feature(env, ARM_FEATURE_THUMB_DIV);
683 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
684 set_feature(env, ARM_FEATURE_THUMB_DIV);
686 if (arm_feature(env, ARM_FEATURE_VFP4)) {
687 set_feature(env, ARM_FEATURE_VFP3);
688 set_feature(env, ARM_FEATURE_VFP_FP16);
690 if (arm_feature(env, ARM_FEATURE_VFP3)) {
691 set_feature(env, ARM_FEATURE_VFP);
693 if (arm_feature(env, ARM_FEATURE_LPAE)) {
694 set_feature(env, ARM_FEATURE_V7MP);
695 set_feature(env, ARM_FEATURE_PXN);
697 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
698 set_feature(env, ARM_FEATURE_CBAR);
700 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
701 !arm_feature(env, ARM_FEATURE_M)) {
702 set_feature(env, ARM_FEATURE_THUMB_DSP);
705 if (arm_feature(env, ARM_FEATURE_V7) &&
706 !arm_feature(env, ARM_FEATURE_M) &&
707 !arm_feature(env, ARM_FEATURE_PMSA)) {
708 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
709 * can use 4K pages.
711 pagebits = 12;
712 } else {
713 /* For CPUs which might have tiny 1K pages, or which have an
714 * MPU and might have small region sizes, stick with 1K pages.
716 pagebits = 10;
718 if (!set_preferred_target_page_bits(pagebits)) {
719 /* This can only ever happen for hotplugging a CPU, or if
720 * the board code incorrectly creates a CPU which it has
721 * promised via minimum_page_size that it will not.
723 error_setg(errp, "This CPU requires a smaller page size than the "
724 "system is using");
725 return;
728 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
729 * We don't support setting cluster ID ([16..23]) (known as Aff2
730 * in later ARM ARM versions), or any of the higher affinity level fields,
731 * so these bits always RAZ.
733 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
734 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
735 ARM_DEFAULT_CPUS_PER_CLUSTER);
738 if (cpu->reset_hivecs) {
739 cpu->reset_sctlr |= (1 << 13);
742 if (cpu->cfgend) {
743 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
744 cpu->reset_sctlr |= SCTLR_EE;
745 } else {
746 cpu->reset_sctlr |= SCTLR_B;
750 if (!cpu->has_el3) {
751 /* If the has_el3 CPU property is disabled then we need to disable the
752 * feature.
754 unset_feature(env, ARM_FEATURE_EL3);
756 /* Disable the security extension feature bits in the processor feature
757 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
759 cpu->id_pfr1 &= ~0xf0;
760 cpu->id_aa64pfr0 &= ~0xf000;
763 if (!cpu->has_el2) {
764 unset_feature(env, ARM_FEATURE_EL2);
767 if (!cpu->has_pmu) {
768 unset_feature(env, ARM_FEATURE_PMU);
769 cpu->id_aa64dfr0 &= ~0xf00;
772 if (!arm_feature(env, ARM_FEATURE_EL2)) {
773 /* Disable the hypervisor feature bits in the processor feature
774 * registers if we don't have EL2. These are id_pfr1[15:12] and
775 * id_aa64pfr0_el1[11:8].
777 cpu->id_aa64pfr0 &= ~0xf00;
778 cpu->id_pfr1 &= ~0xf000;
781 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
782 * to false or by setting pmsav7-dregion to 0.
784 if (!cpu->has_mpu) {
785 cpu->pmsav7_dregion = 0;
787 if (cpu->pmsav7_dregion == 0) {
788 cpu->has_mpu = false;
791 if (arm_feature(env, ARM_FEATURE_PMSA) &&
792 arm_feature(env, ARM_FEATURE_V7)) {
793 uint32_t nr = cpu->pmsav7_dregion;
795 if (nr > 0xff) {
796 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
797 return;
800 if (nr) {
801 env->pmsav7.drbar = g_new0(uint32_t, nr);
802 env->pmsav7.drsr = g_new0(uint32_t, nr);
803 env->pmsav7.dracr = g_new0(uint32_t, nr);
807 if (arm_feature(env, ARM_FEATURE_EL3)) {
808 set_feature(env, ARM_FEATURE_VBAR);
811 register_cp_regs_for_features(cpu);
812 arm_cpu_register_gdb_regs_for_features(cpu);
814 init_cpreg_list(cpu);
816 #ifndef CONFIG_USER_ONLY
817 if (cpu->has_el3) {
818 cs->num_ases = 2;
819 } else {
820 cs->num_ases = 1;
823 if (cpu->has_el3) {
824 AddressSpace *as;
826 if (!cpu->secure_memory) {
827 cpu->secure_memory = cs->memory;
829 as = address_space_init_shareable(cpu->secure_memory,
830 "cpu-secure-memory");
831 cpu_address_space_init(cs, as, ARMASIdx_S);
833 cpu_address_space_init(cs,
834 address_space_init_shareable(cs->memory,
835 "cpu-memory"),
836 ARMASIdx_NS);
837 #endif
839 qemu_init_vcpu(cs);
840 cpu_reset(cs);
842 acc->parent_realize(dev, errp);
845 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
847 ObjectClass *oc;
848 char *typename;
849 char **cpuname;
851 if (!cpu_model) {
852 return NULL;
855 cpuname = g_strsplit(cpu_model, ",", 1);
856 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
857 oc = object_class_by_name(typename);
858 g_strfreev(cpuname);
859 g_free(typename);
860 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
861 object_class_is_abstract(oc)) {
862 return NULL;
864 return oc;
867 /* CPU models. These are not needed for the AArch64 linux-user build. */
868 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
870 static void arm926_initfn(Object *obj)
872 ARMCPU *cpu = ARM_CPU(obj);
874 cpu->dtb_compatible = "arm,arm926";
875 set_feature(&cpu->env, ARM_FEATURE_V5);
876 set_feature(&cpu->env, ARM_FEATURE_VFP);
877 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
878 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
879 cpu->midr = 0x41069265;
880 cpu->reset_fpsid = 0x41011090;
881 cpu->ctr = 0x1dd20d2;
882 cpu->reset_sctlr = 0x00090078;
885 static void arm946_initfn(Object *obj)
887 ARMCPU *cpu = ARM_CPU(obj);
889 cpu->dtb_compatible = "arm,arm946";
890 set_feature(&cpu->env, ARM_FEATURE_V5);
891 set_feature(&cpu->env, ARM_FEATURE_PMSA);
892 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
893 cpu->midr = 0x41059461;
894 cpu->ctr = 0x0f004006;
895 cpu->reset_sctlr = 0x00000078;
898 static void arm1026_initfn(Object *obj)
900 ARMCPU *cpu = ARM_CPU(obj);
902 cpu->dtb_compatible = "arm,arm1026";
903 set_feature(&cpu->env, ARM_FEATURE_V5);
904 set_feature(&cpu->env, ARM_FEATURE_VFP);
905 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
906 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
907 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
908 cpu->midr = 0x4106a262;
909 cpu->reset_fpsid = 0x410110a0;
910 cpu->ctr = 0x1dd20d2;
911 cpu->reset_sctlr = 0x00090078;
912 cpu->reset_auxcr = 1;
914 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
915 ARMCPRegInfo ifar = {
916 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
917 .access = PL1_RW,
918 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
919 .resetvalue = 0
921 define_one_arm_cp_reg(cpu, &ifar);
925 static void arm1136_r2_initfn(Object *obj)
927 ARMCPU *cpu = ARM_CPU(obj);
928 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
929 * older core than plain "arm1136". In particular this does not
930 * have the v6K features.
931 * These ID register values are correct for 1136 but may be wrong
932 * for 1136_r2 (in particular r0p2 does not actually implement most
933 * of the ID registers).
936 cpu->dtb_compatible = "arm,arm1136";
937 set_feature(&cpu->env, ARM_FEATURE_V6);
938 set_feature(&cpu->env, ARM_FEATURE_VFP);
939 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
940 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
941 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
942 cpu->midr = 0x4107b362;
943 cpu->reset_fpsid = 0x410120b4;
944 cpu->mvfr0 = 0x11111111;
945 cpu->mvfr1 = 0x00000000;
946 cpu->ctr = 0x1dd20d2;
947 cpu->reset_sctlr = 0x00050078;
948 cpu->id_pfr0 = 0x111;
949 cpu->id_pfr1 = 0x1;
950 cpu->id_dfr0 = 0x2;
951 cpu->id_afr0 = 0x3;
952 cpu->id_mmfr0 = 0x01130003;
953 cpu->id_mmfr1 = 0x10030302;
954 cpu->id_mmfr2 = 0x01222110;
955 cpu->id_isar0 = 0x00140011;
956 cpu->id_isar1 = 0x12002111;
957 cpu->id_isar2 = 0x11231111;
958 cpu->id_isar3 = 0x01102131;
959 cpu->id_isar4 = 0x141;
960 cpu->reset_auxcr = 7;
963 static void arm1136_initfn(Object *obj)
965 ARMCPU *cpu = ARM_CPU(obj);
967 cpu->dtb_compatible = "arm,arm1136";
968 set_feature(&cpu->env, ARM_FEATURE_V6K);
969 set_feature(&cpu->env, ARM_FEATURE_V6);
970 set_feature(&cpu->env, ARM_FEATURE_VFP);
971 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
972 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
973 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
974 cpu->midr = 0x4117b363;
975 cpu->reset_fpsid = 0x410120b4;
976 cpu->mvfr0 = 0x11111111;
977 cpu->mvfr1 = 0x00000000;
978 cpu->ctr = 0x1dd20d2;
979 cpu->reset_sctlr = 0x00050078;
980 cpu->id_pfr0 = 0x111;
981 cpu->id_pfr1 = 0x1;
982 cpu->id_dfr0 = 0x2;
983 cpu->id_afr0 = 0x3;
984 cpu->id_mmfr0 = 0x01130003;
985 cpu->id_mmfr1 = 0x10030302;
986 cpu->id_mmfr2 = 0x01222110;
987 cpu->id_isar0 = 0x00140011;
988 cpu->id_isar1 = 0x12002111;
989 cpu->id_isar2 = 0x11231111;
990 cpu->id_isar3 = 0x01102131;
991 cpu->id_isar4 = 0x141;
992 cpu->reset_auxcr = 7;
995 static void arm1176_initfn(Object *obj)
997 ARMCPU *cpu = ARM_CPU(obj);
999 cpu->dtb_compatible = "arm,arm1176";
1000 set_feature(&cpu->env, ARM_FEATURE_V6K);
1001 set_feature(&cpu->env, ARM_FEATURE_VFP);
1002 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1003 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1004 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1005 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1006 set_feature(&cpu->env, ARM_FEATURE_EL3);
1007 cpu->midr = 0x410fb767;
1008 cpu->reset_fpsid = 0x410120b5;
1009 cpu->mvfr0 = 0x11111111;
1010 cpu->mvfr1 = 0x00000000;
1011 cpu->ctr = 0x1dd20d2;
1012 cpu->reset_sctlr = 0x00050078;
1013 cpu->id_pfr0 = 0x111;
1014 cpu->id_pfr1 = 0x11;
1015 cpu->id_dfr0 = 0x33;
1016 cpu->id_afr0 = 0;
1017 cpu->id_mmfr0 = 0x01130003;
1018 cpu->id_mmfr1 = 0x10030302;
1019 cpu->id_mmfr2 = 0x01222100;
1020 cpu->id_isar0 = 0x0140011;
1021 cpu->id_isar1 = 0x12002111;
1022 cpu->id_isar2 = 0x11231121;
1023 cpu->id_isar3 = 0x01102131;
1024 cpu->id_isar4 = 0x01141;
1025 cpu->reset_auxcr = 7;
1028 static void arm11mpcore_initfn(Object *obj)
1030 ARMCPU *cpu = ARM_CPU(obj);
1032 cpu->dtb_compatible = "arm,arm11mpcore";
1033 set_feature(&cpu->env, ARM_FEATURE_V6K);
1034 set_feature(&cpu->env, ARM_FEATURE_VFP);
1035 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1036 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1037 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1038 cpu->midr = 0x410fb022;
1039 cpu->reset_fpsid = 0x410120b4;
1040 cpu->mvfr0 = 0x11111111;
1041 cpu->mvfr1 = 0x00000000;
1042 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1043 cpu->id_pfr0 = 0x111;
1044 cpu->id_pfr1 = 0x1;
1045 cpu->id_dfr0 = 0;
1046 cpu->id_afr0 = 0x2;
1047 cpu->id_mmfr0 = 0x01100103;
1048 cpu->id_mmfr1 = 0x10020302;
1049 cpu->id_mmfr2 = 0x01222000;
1050 cpu->id_isar0 = 0x00100011;
1051 cpu->id_isar1 = 0x12002111;
1052 cpu->id_isar2 = 0x11221011;
1053 cpu->id_isar3 = 0x01102131;
1054 cpu->id_isar4 = 0x141;
1055 cpu->reset_auxcr = 1;
1058 static void cortex_m3_initfn(Object *obj)
1060 ARMCPU *cpu = ARM_CPU(obj);
1061 set_feature(&cpu->env, ARM_FEATURE_V7);
1062 set_feature(&cpu->env, ARM_FEATURE_M);
1063 cpu->midr = 0x410fc231;
1064 cpu->pmsav7_dregion = 8;
1067 static void cortex_m4_initfn(Object *obj)
1069 ARMCPU *cpu = ARM_CPU(obj);
1071 set_feature(&cpu->env, ARM_FEATURE_V7);
1072 set_feature(&cpu->env, ARM_FEATURE_M);
1073 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1074 cpu->midr = 0x410fc240; /* r0p0 */
1075 cpu->pmsav7_dregion = 8;
1077 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1079 CPUClass *cc = CPU_CLASS(oc);
1081 #ifndef CONFIG_USER_ONLY
1082 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1083 #endif
1085 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1088 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1089 /* Dummy the TCM region regs for the moment */
1090 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1091 .access = PL1_RW, .type = ARM_CP_CONST },
1092 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1093 .access = PL1_RW, .type = ARM_CP_CONST },
1094 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1095 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1096 REGINFO_SENTINEL
1099 static void cortex_r5_initfn(Object *obj)
1101 ARMCPU *cpu = ARM_CPU(obj);
1103 set_feature(&cpu->env, ARM_FEATURE_V7);
1104 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1105 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1106 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1107 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1108 cpu->midr = 0x411fc153; /* r1p3 */
1109 cpu->id_pfr0 = 0x0131;
1110 cpu->id_pfr1 = 0x001;
1111 cpu->id_dfr0 = 0x010400;
1112 cpu->id_afr0 = 0x0;
1113 cpu->id_mmfr0 = 0x0210030;
1114 cpu->id_mmfr1 = 0x00000000;
1115 cpu->id_mmfr2 = 0x01200000;
1116 cpu->id_mmfr3 = 0x0211;
1117 cpu->id_isar0 = 0x2101111;
1118 cpu->id_isar1 = 0x13112111;
1119 cpu->id_isar2 = 0x21232141;
1120 cpu->id_isar3 = 0x01112131;
1121 cpu->id_isar4 = 0x0010142;
1122 cpu->id_isar5 = 0x0;
1123 cpu->mp_is_up = true;
1124 cpu->pmsav7_dregion = 16;
1125 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1128 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1129 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1131 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1132 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1133 REGINFO_SENTINEL
1136 static void cortex_a8_initfn(Object *obj)
1138 ARMCPU *cpu = ARM_CPU(obj);
1140 cpu->dtb_compatible = "arm,cortex-a8";
1141 set_feature(&cpu->env, ARM_FEATURE_V7);
1142 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1143 set_feature(&cpu->env, ARM_FEATURE_NEON);
1144 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1145 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1146 set_feature(&cpu->env, ARM_FEATURE_EL3);
1147 cpu->midr = 0x410fc080;
1148 cpu->reset_fpsid = 0x410330c0;
1149 cpu->mvfr0 = 0x11110222;
1150 cpu->mvfr1 = 0x00011111;
1151 cpu->ctr = 0x82048004;
1152 cpu->reset_sctlr = 0x00c50078;
1153 cpu->id_pfr0 = 0x1031;
1154 cpu->id_pfr1 = 0x11;
1155 cpu->id_dfr0 = 0x400;
1156 cpu->id_afr0 = 0;
1157 cpu->id_mmfr0 = 0x31100003;
1158 cpu->id_mmfr1 = 0x20000000;
1159 cpu->id_mmfr2 = 0x01202000;
1160 cpu->id_mmfr3 = 0x11;
1161 cpu->id_isar0 = 0x00101111;
1162 cpu->id_isar1 = 0x12112111;
1163 cpu->id_isar2 = 0x21232031;
1164 cpu->id_isar3 = 0x11112131;
1165 cpu->id_isar4 = 0x00111142;
1166 cpu->dbgdidr = 0x15141000;
1167 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1168 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1169 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1170 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1171 cpu->reset_auxcr = 2;
1172 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1175 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1176 /* power_control should be set to maximum latency. Again,
1177 * default to 0 and set by private hook
1179 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1180 .access = PL1_RW, .resetvalue = 0,
1181 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1182 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1183 .access = PL1_RW, .resetvalue = 0,
1184 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1185 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1186 .access = PL1_RW, .resetvalue = 0,
1187 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1188 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1189 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1190 /* TLB lockdown control */
1191 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1192 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1193 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1194 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1195 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1196 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1197 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1198 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1199 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1200 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1201 REGINFO_SENTINEL
1204 static void cortex_a9_initfn(Object *obj)
1206 ARMCPU *cpu = ARM_CPU(obj);
1208 cpu->dtb_compatible = "arm,cortex-a9";
1209 set_feature(&cpu->env, ARM_FEATURE_V7);
1210 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1211 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1212 set_feature(&cpu->env, ARM_FEATURE_NEON);
1213 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1214 set_feature(&cpu->env, ARM_FEATURE_EL3);
1215 /* Note that A9 supports the MP extensions even for
1216 * A9UP and single-core A9MP (which are both different
1217 * and valid configurations; we don't model A9UP).
1219 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1220 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1221 cpu->midr = 0x410fc090;
1222 cpu->reset_fpsid = 0x41033090;
1223 cpu->mvfr0 = 0x11110222;
1224 cpu->mvfr1 = 0x01111111;
1225 cpu->ctr = 0x80038003;
1226 cpu->reset_sctlr = 0x00c50078;
1227 cpu->id_pfr0 = 0x1031;
1228 cpu->id_pfr1 = 0x11;
1229 cpu->id_dfr0 = 0x000;
1230 cpu->id_afr0 = 0;
1231 cpu->id_mmfr0 = 0x00100103;
1232 cpu->id_mmfr1 = 0x20000000;
1233 cpu->id_mmfr2 = 0x01230000;
1234 cpu->id_mmfr3 = 0x00002111;
1235 cpu->id_isar0 = 0x00101111;
1236 cpu->id_isar1 = 0x13112111;
1237 cpu->id_isar2 = 0x21232041;
1238 cpu->id_isar3 = 0x11112131;
1239 cpu->id_isar4 = 0x00111142;
1240 cpu->dbgdidr = 0x35141000;
1241 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1242 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1243 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1244 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1247 #ifndef CONFIG_USER_ONLY
1248 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1250 /* Linux wants the number of processors from here.
1251 * Might as well set the interrupt-controller bit too.
1253 return ((smp_cpus - 1) << 24) | (1 << 23);
1255 #endif
1257 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1258 #ifndef CONFIG_USER_ONLY
1259 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1260 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1261 .writefn = arm_cp_write_ignore, },
1262 #endif
1263 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1264 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1265 REGINFO_SENTINEL
1268 static void cortex_a7_initfn(Object *obj)
1270 ARMCPU *cpu = ARM_CPU(obj);
1272 cpu->dtb_compatible = "arm,cortex-a7";
1273 set_feature(&cpu->env, ARM_FEATURE_V7);
1274 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1275 set_feature(&cpu->env, ARM_FEATURE_NEON);
1276 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1277 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1278 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1279 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1280 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1281 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1282 set_feature(&cpu->env, ARM_FEATURE_EL3);
1283 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1284 cpu->midr = 0x410fc075;
1285 cpu->reset_fpsid = 0x41023075;
1286 cpu->mvfr0 = 0x10110222;
1287 cpu->mvfr1 = 0x11111111;
1288 cpu->ctr = 0x84448003;
1289 cpu->reset_sctlr = 0x00c50078;
1290 cpu->id_pfr0 = 0x00001131;
1291 cpu->id_pfr1 = 0x00011011;
1292 cpu->id_dfr0 = 0x02010555;
1293 cpu->pmceid0 = 0x00000000;
1294 cpu->pmceid1 = 0x00000000;
1295 cpu->id_afr0 = 0x00000000;
1296 cpu->id_mmfr0 = 0x10101105;
1297 cpu->id_mmfr1 = 0x40000000;
1298 cpu->id_mmfr2 = 0x01240000;
1299 cpu->id_mmfr3 = 0x02102211;
1300 cpu->id_isar0 = 0x01101110;
1301 cpu->id_isar1 = 0x13112111;
1302 cpu->id_isar2 = 0x21232041;
1303 cpu->id_isar3 = 0x11112131;
1304 cpu->id_isar4 = 0x10011142;
1305 cpu->dbgdidr = 0x3515f005;
1306 cpu->clidr = 0x0a200023;
1307 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1308 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1309 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1310 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1313 static void cortex_a15_initfn(Object *obj)
1315 ARMCPU *cpu = ARM_CPU(obj);
1317 cpu->dtb_compatible = "arm,cortex-a15";
1318 set_feature(&cpu->env, ARM_FEATURE_V7);
1319 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1320 set_feature(&cpu->env, ARM_FEATURE_NEON);
1321 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1322 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1323 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1324 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1325 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1326 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1327 set_feature(&cpu->env, ARM_FEATURE_EL3);
1328 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1329 cpu->midr = 0x412fc0f1;
1330 cpu->reset_fpsid = 0x410430f0;
1331 cpu->mvfr0 = 0x10110222;
1332 cpu->mvfr1 = 0x11111111;
1333 cpu->ctr = 0x8444c004;
1334 cpu->reset_sctlr = 0x00c50078;
1335 cpu->id_pfr0 = 0x00001131;
1336 cpu->id_pfr1 = 0x00011011;
1337 cpu->id_dfr0 = 0x02010555;
1338 cpu->pmceid0 = 0x0000000;
1339 cpu->pmceid1 = 0x00000000;
1340 cpu->id_afr0 = 0x00000000;
1341 cpu->id_mmfr0 = 0x10201105;
1342 cpu->id_mmfr1 = 0x20000000;
1343 cpu->id_mmfr2 = 0x01240000;
1344 cpu->id_mmfr3 = 0x02102211;
1345 cpu->id_isar0 = 0x02101110;
1346 cpu->id_isar1 = 0x13112111;
1347 cpu->id_isar2 = 0x21232041;
1348 cpu->id_isar3 = 0x11112131;
1349 cpu->id_isar4 = 0x10011142;
1350 cpu->dbgdidr = 0x3515f021;
1351 cpu->clidr = 0x0a200023;
1352 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1353 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1354 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1355 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1358 static void ti925t_initfn(Object *obj)
1360 ARMCPU *cpu = ARM_CPU(obj);
1361 set_feature(&cpu->env, ARM_FEATURE_V4T);
1362 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1363 cpu->midr = ARM_CPUID_TI925T;
1364 cpu->ctr = 0x5109149;
1365 cpu->reset_sctlr = 0x00000070;
1368 static void sa1100_initfn(Object *obj)
1370 ARMCPU *cpu = ARM_CPU(obj);
1372 cpu->dtb_compatible = "intel,sa1100";
1373 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1374 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1375 cpu->midr = 0x4401A11B;
1376 cpu->reset_sctlr = 0x00000070;
1379 static void sa1110_initfn(Object *obj)
1381 ARMCPU *cpu = ARM_CPU(obj);
1382 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1383 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1384 cpu->midr = 0x6901B119;
1385 cpu->reset_sctlr = 0x00000070;
1388 static void pxa250_initfn(Object *obj)
1390 ARMCPU *cpu = ARM_CPU(obj);
1392 cpu->dtb_compatible = "marvell,xscale";
1393 set_feature(&cpu->env, ARM_FEATURE_V5);
1394 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1395 cpu->midr = 0x69052100;
1396 cpu->ctr = 0xd172172;
1397 cpu->reset_sctlr = 0x00000078;
1400 static void pxa255_initfn(Object *obj)
1402 ARMCPU *cpu = ARM_CPU(obj);
1404 cpu->dtb_compatible = "marvell,xscale";
1405 set_feature(&cpu->env, ARM_FEATURE_V5);
1406 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1407 cpu->midr = 0x69052d00;
1408 cpu->ctr = 0xd172172;
1409 cpu->reset_sctlr = 0x00000078;
1412 static void pxa260_initfn(Object *obj)
1414 ARMCPU *cpu = ARM_CPU(obj);
1416 cpu->dtb_compatible = "marvell,xscale";
1417 set_feature(&cpu->env, ARM_FEATURE_V5);
1418 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1419 cpu->midr = 0x69052903;
1420 cpu->ctr = 0xd172172;
1421 cpu->reset_sctlr = 0x00000078;
1424 static void pxa261_initfn(Object *obj)
1426 ARMCPU *cpu = ARM_CPU(obj);
1428 cpu->dtb_compatible = "marvell,xscale";
1429 set_feature(&cpu->env, ARM_FEATURE_V5);
1430 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1431 cpu->midr = 0x69052d05;
1432 cpu->ctr = 0xd172172;
1433 cpu->reset_sctlr = 0x00000078;
1436 static void pxa262_initfn(Object *obj)
1438 ARMCPU *cpu = ARM_CPU(obj);
1440 cpu->dtb_compatible = "marvell,xscale";
1441 set_feature(&cpu->env, ARM_FEATURE_V5);
1442 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1443 cpu->midr = 0x69052d06;
1444 cpu->ctr = 0xd172172;
1445 cpu->reset_sctlr = 0x00000078;
1448 static void pxa270a0_initfn(Object *obj)
1450 ARMCPU *cpu = ARM_CPU(obj);
1452 cpu->dtb_compatible = "marvell,xscale";
1453 set_feature(&cpu->env, ARM_FEATURE_V5);
1454 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1455 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1456 cpu->midr = 0x69054110;
1457 cpu->ctr = 0xd172172;
1458 cpu->reset_sctlr = 0x00000078;
1461 static void pxa270a1_initfn(Object *obj)
1463 ARMCPU *cpu = ARM_CPU(obj);
1465 cpu->dtb_compatible = "marvell,xscale";
1466 set_feature(&cpu->env, ARM_FEATURE_V5);
1467 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1468 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1469 cpu->midr = 0x69054111;
1470 cpu->ctr = 0xd172172;
1471 cpu->reset_sctlr = 0x00000078;
1474 static void pxa270b0_initfn(Object *obj)
1476 ARMCPU *cpu = ARM_CPU(obj);
1478 cpu->dtb_compatible = "marvell,xscale";
1479 set_feature(&cpu->env, ARM_FEATURE_V5);
1480 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1481 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1482 cpu->midr = 0x69054112;
1483 cpu->ctr = 0xd172172;
1484 cpu->reset_sctlr = 0x00000078;
1487 static void pxa270b1_initfn(Object *obj)
1489 ARMCPU *cpu = ARM_CPU(obj);
1491 cpu->dtb_compatible = "marvell,xscale";
1492 set_feature(&cpu->env, ARM_FEATURE_V5);
1493 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1494 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1495 cpu->midr = 0x69054113;
1496 cpu->ctr = 0xd172172;
1497 cpu->reset_sctlr = 0x00000078;
1500 static void pxa270c0_initfn(Object *obj)
1502 ARMCPU *cpu = ARM_CPU(obj);
1504 cpu->dtb_compatible = "marvell,xscale";
1505 set_feature(&cpu->env, ARM_FEATURE_V5);
1506 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1507 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1508 cpu->midr = 0x69054114;
1509 cpu->ctr = 0xd172172;
1510 cpu->reset_sctlr = 0x00000078;
1513 static void pxa270c5_initfn(Object *obj)
1515 ARMCPU *cpu = ARM_CPU(obj);
1517 cpu->dtb_compatible = "marvell,xscale";
1518 set_feature(&cpu->env, ARM_FEATURE_V5);
1519 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1520 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1521 cpu->midr = 0x69054117;
1522 cpu->ctr = 0xd172172;
1523 cpu->reset_sctlr = 0x00000078;
1526 #ifdef CONFIG_USER_ONLY
1527 static void arm_any_initfn(Object *obj)
1529 ARMCPU *cpu = ARM_CPU(obj);
1530 set_feature(&cpu->env, ARM_FEATURE_V8);
1531 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1532 set_feature(&cpu->env, ARM_FEATURE_NEON);
1533 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1534 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1535 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1536 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1537 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1538 set_feature(&cpu->env, ARM_FEATURE_CRC);
1539 cpu->midr = 0xffffffff;
1541 #endif
1543 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1545 typedef struct ARMCPUInfo {
1546 const char *name;
1547 void (*initfn)(Object *obj);
1548 void (*class_init)(ObjectClass *oc, void *data);
1549 } ARMCPUInfo;
1551 static const ARMCPUInfo arm_cpus[] = {
1552 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1553 { .name = "arm926", .initfn = arm926_initfn },
1554 { .name = "arm946", .initfn = arm946_initfn },
1555 { .name = "arm1026", .initfn = arm1026_initfn },
1556 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1557 * older core than plain "arm1136". In particular this does not
1558 * have the v6K features.
1560 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1561 { .name = "arm1136", .initfn = arm1136_initfn },
1562 { .name = "arm1176", .initfn = arm1176_initfn },
1563 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1564 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1565 .class_init = arm_v7m_class_init },
1566 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1567 .class_init = arm_v7m_class_init },
1568 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1569 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1570 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1571 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1572 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1573 { .name = "ti925t", .initfn = ti925t_initfn },
1574 { .name = "sa1100", .initfn = sa1100_initfn },
1575 { .name = "sa1110", .initfn = sa1110_initfn },
1576 { .name = "pxa250", .initfn = pxa250_initfn },
1577 { .name = "pxa255", .initfn = pxa255_initfn },
1578 { .name = "pxa260", .initfn = pxa260_initfn },
1579 { .name = "pxa261", .initfn = pxa261_initfn },
1580 { .name = "pxa262", .initfn = pxa262_initfn },
1581 /* "pxa270" is an alias for "pxa270-a0" */
1582 { .name = "pxa270", .initfn = pxa270a0_initfn },
1583 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1584 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1585 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1586 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1587 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1588 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1589 #ifdef CONFIG_USER_ONLY
1590 { .name = "any", .initfn = arm_any_initfn },
1591 #endif
1592 #endif
1593 { .name = NULL }
1596 static Property arm_cpu_properties[] = {
1597 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1598 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1599 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1600 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1601 mp_affinity, ARM64_AFFINITY_INVALID),
1602 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1603 DEFINE_PROP_END_OF_LIST()
1606 #ifdef CONFIG_USER_ONLY
1607 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1608 int mmu_idx)
1610 ARMCPU *cpu = ARM_CPU(cs);
1611 CPUARMState *env = &cpu->env;
1613 env->exception.vaddress = address;
1614 if (rw == 2) {
1615 cs->exception_index = EXCP_PREFETCH_ABORT;
1616 } else {
1617 cs->exception_index = EXCP_DATA_ABORT;
1619 return 1;
1621 #endif
1623 static gchar *arm_gdb_arch_name(CPUState *cs)
1625 ARMCPU *cpu = ARM_CPU(cs);
1626 CPUARMState *env = &cpu->env;
1628 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1629 return g_strdup("iwmmxt");
1631 return g_strdup("arm");
1634 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1636 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1637 CPUClass *cc = CPU_CLASS(acc);
1638 DeviceClass *dc = DEVICE_CLASS(oc);
1640 acc->parent_realize = dc->realize;
1641 dc->realize = arm_cpu_realizefn;
1642 dc->props = arm_cpu_properties;
1644 acc->parent_reset = cc->reset;
1645 cc->reset = arm_cpu_reset;
1647 cc->class_by_name = arm_cpu_class_by_name;
1648 cc->has_work = arm_cpu_has_work;
1649 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1650 cc->dump_state = arm_cpu_dump_state;
1651 cc->set_pc = arm_cpu_set_pc;
1652 cc->gdb_read_register = arm_cpu_gdb_read_register;
1653 cc->gdb_write_register = arm_cpu_gdb_write_register;
1654 #ifdef CONFIG_USER_ONLY
1655 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1656 #else
1657 cc->do_interrupt = arm_cpu_do_interrupt;
1658 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1659 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1660 cc->asidx_from_attrs = arm_asidx_from_attrs;
1661 cc->vmsd = &vmstate_arm_cpu;
1662 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1663 cc->write_elf64_note = arm_cpu_write_elf64_note;
1664 cc->write_elf32_note = arm_cpu_write_elf32_note;
1665 #endif
1666 cc->gdb_num_core_regs = 26;
1667 cc->gdb_core_xml_file = "arm-core.xml";
1668 cc->gdb_arch_name = arm_gdb_arch_name;
1669 cc->gdb_stop_before_watchpoint = true;
1670 cc->debug_excp_handler = arm_debug_excp_handler;
1671 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1672 #if !defined(CONFIG_USER_ONLY)
1673 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1674 #endif
1676 cc->disas_set_info = arm_disas_set_info;
1679 static void cpu_register(const ARMCPUInfo *info)
1681 TypeInfo type_info = {
1682 .parent = TYPE_ARM_CPU,
1683 .instance_size = sizeof(ARMCPU),
1684 .instance_init = info->initfn,
1685 .class_size = sizeof(ARMCPUClass),
1686 .class_init = info->class_init,
1689 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1690 type_register(&type_info);
1691 g_free((void *)type_info.name);
1694 static const TypeInfo arm_cpu_type_info = {
1695 .name = TYPE_ARM_CPU,
1696 .parent = TYPE_CPU,
1697 .instance_size = sizeof(ARMCPU),
1698 .instance_init = arm_cpu_initfn,
1699 .instance_post_init = arm_cpu_post_init,
1700 .instance_finalize = arm_cpu_finalizefn,
1701 .abstract = true,
1702 .class_size = sizeof(ARMCPUClass),
1703 .class_init = arm_cpu_class_init,
1706 static void arm_cpu_register_types(void)
1708 const ARMCPUInfo *info = arm_cpus;
1710 type_register_static(&arm_cpu_type_info);
1712 while (info->name) {
1713 cpu_register(info);
1714 info++;
1718 type_init(arm_cpu_register_types)