pc-bios/vof: Adopt meson style Make output
[qemu.git] / target / arm / cpu64.c
blob85e0d1daf1c7d005d92bc7d2b1ac8180e03dff14
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
39 static void aarch64_a35_initfn(Object *obj)
41 ARMCPU *cpu = ARM_CPU(obj);
43 cpu->dtb_compatible = "arm,cortex-a35";
44 set_feature(&cpu->env, ARM_FEATURE_V8);
45 set_feature(&cpu->env, ARM_FEATURE_NEON);
46 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
47 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
48 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
49 set_feature(&cpu->env, ARM_FEATURE_EL2);
50 set_feature(&cpu->env, ARM_FEATURE_EL3);
51 set_feature(&cpu->env, ARM_FEATURE_PMU);
53 /* From B2.2 AArch64 identification registers. */
54 cpu->midr = 0x411fd040;
55 cpu->revidr = 0;
56 cpu->ctr = 0x84448004;
57 cpu->isar.id_pfr0 = 0x00000131;
58 cpu->isar.id_pfr1 = 0x00011011;
59 cpu->isar.id_dfr0 = 0x03010066;
60 cpu->id_afr0 = 0;
61 cpu->isar.id_mmfr0 = 0x10201105;
62 cpu->isar.id_mmfr1 = 0x40000000;
63 cpu->isar.id_mmfr2 = 0x01260000;
64 cpu->isar.id_mmfr3 = 0x02102211;
65 cpu->isar.id_isar0 = 0x02101110;
66 cpu->isar.id_isar1 = 0x13112111;
67 cpu->isar.id_isar2 = 0x21232042;
68 cpu->isar.id_isar3 = 0x01112131;
69 cpu->isar.id_isar4 = 0x00011142;
70 cpu->isar.id_isar5 = 0x00011121;
71 cpu->isar.id_aa64pfr0 = 0x00002222;
72 cpu->isar.id_aa64pfr1 = 0;
73 cpu->isar.id_aa64dfr0 = 0x10305106;
74 cpu->isar.id_aa64dfr1 = 0;
75 cpu->isar.id_aa64isar0 = 0x00011120;
76 cpu->isar.id_aa64isar1 = 0;
77 cpu->isar.id_aa64mmfr0 = 0x00101122;
78 cpu->isar.id_aa64mmfr1 = 0;
79 cpu->clidr = 0x0a200023;
80 cpu->dcz_blocksize = 4;
82 /* From B2.4 AArch64 Virtual Memory control registers */
83 cpu->reset_sctlr = 0x00c50838;
85 /* From B2.10 AArch64 performance monitor registers */
86 cpu->isar.reset_pmcr_el0 = 0x410a3000;
88 /* From B2.29 Cache ID registers */
89 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
90 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
91 cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
93 /* From B3.5 VGIC Type register */
94 cpu->gic_num_lrs = 4;
95 cpu->gic_vpribits = 5;
96 cpu->gic_vprebits = 5;
97 cpu->gic_pribits = 5;
99 /* From C6.4 Debug ID Register */
100 cpu->isar.dbgdidr = 0x3516d000;
101 /* From C6.5 Debug Device ID Register */
102 cpu->isar.dbgdevid = 0x00110f13;
103 /* From C6.6 Debug Device ID Register 1 */
104 cpu->isar.dbgdevid1 = 0x2;
106 /* From Cortex-A35 SIMD and Floating-point Support r1p0 */
107 /* From 3.2 AArch32 register summary */
108 cpu->reset_fpsid = 0x41034043;
110 /* From 2.2 AArch64 register summary */
111 cpu->isar.mvfr0 = 0x10110222;
112 cpu->isar.mvfr1 = 0x12111111;
113 cpu->isar.mvfr2 = 0x00000043;
115 /* These values are the same with A53/A57/A72. */
116 define_cortex_a72_a57_a53_cp_reginfo(cpu);
119 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
122 * If any vector lengths are explicitly enabled with sve<N> properties,
123 * then all other lengths are implicitly disabled. If sve-max-vq is
124 * specified then it is the same as explicitly enabling all lengths
125 * up to and including the specified maximum, which means all larger
126 * lengths will be implicitly disabled. If no sve<N> properties
127 * are enabled and sve-max-vq is not specified, then all lengths not
128 * explicitly disabled will be enabled. Additionally, all power-of-two
129 * vector lengths less than the maximum enabled length will be
130 * automatically enabled and all vector lengths larger than the largest
131 * disabled power-of-two vector length will be automatically disabled.
132 * Errors are generated if the user provided input that interferes with
133 * any of the above. Finally, if SVE is not disabled, then at least one
134 * vector length must be enabled.
136 uint32_t vq_map = cpu->sve_vq.map;
137 uint32_t vq_init = cpu->sve_vq.init;
138 uint32_t vq_supported;
139 uint32_t vq_mask = 0;
140 uint32_t tmp, vq, max_vq = 0;
143 * CPU models specify a set of supported vector lengths which are
144 * enabled by default. Attempting to enable any vector length not set
145 * in the supported bitmap results in an error. When KVM is enabled we
146 * fetch the supported bitmap from the host.
148 if (kvm_enabled()) {
149 if (kvm_arm_sve_supported()) {
150 cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
151 vq_supported = cpu->sve_vq.supported;
152 } else {
153 assert(!cpu_isar_feature(aa64_sve, cpu));
154 vq_supported = 0;
156 } else {
157 vq_supported = cpu->sve_vq.supported;
161 * Process explicit sve<N> properties.
162 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
163 * Check first for any sve<N> enabled.
165 if (vq_map != 0) {
166 max_vq = 32 - clz32(vq_map);
167 vq_mask = MAKE_64BIT_MASK(0, max_vq);
169 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
170 error_setg(errp, "cannot enable sve%d", max_vq * 128);
171 error_append_hint(errp, "sve%d is larger than the maximum vector "
172 "length, sve-max-vq=%d (%d bits)\n",
173 max_vq * 128, cpu->sve_max_vq,
174 cpu->sve_max_vq * 128);
175 return;
178 if (kvm_enabled()) {
180 * For KVM we have to automatically enable all supported unitialized
181 * lengths, even when the smaller lengths are not all powers-of-two.
183 vq_map |= vq_supported & ~vq_init & vq_mask;
184 } else {
185 /* Propagate enabled bits down through required powers-of-two. */
186 vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
188 } else if (cpu->sve_max_vq == 0) {
190 * No explicit bits enabled, and no implicit bits from sve-max-vq.
192 if (!cpu_isar_feature(aa64_sve, cpu)) {
193 /* SVE is disabled and so are all vector lengths. Good. */
194 return;
197 if (kvm_enabled()) {
198 /* Disabling a supported length disables all larger lengths. */
199 tmp = vq_init & vq_supported;
200 } else {
201 /* Disabling a power-of-two disables all larger lengths. */
202 tmp = vq_init & SVE_VQ_POW2_MAP;
204 vq = ctz32(tmp) + 1;
206 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
207 vq_mask = MAKE_64BIT_MASK(0, max_vq);
208 vq_map = vq_supported & ~vq_init & vq_mask;
210 if (max_vq == 0 || vq_map == 0) {
211 error_setg(errp, "cannot disable sve%d", vq * 128);
212 error_append_hint(errp, "Disabling sve%d results in all "
213 "vector lengths being disabled.\n",
214 vq * 128);
215 error_append_hint(errp, "With SVE enabled, at least one "
216 "vector length must be enabled.\n");
217 return;
220 max_vq = 32 - clz32(vq_map);
221 vq_mask = MAKE_64BIT_MASK(0, max_vq);
225 * Process the sve-max-vq property.
226 * Note that we know from the above that no bit above
227 * sve-max-vq is currently set.
229 if (cpu->sve_max_vq != 0) {
230 max_vq = cpu->sve_max_vq;
231 vq_mask = MAKE_64BIT_MASK(0, max_vq);
233 if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
234 error_setg(errp, "cannot disable sve%d", max_vq * 128);
235 error_append_hint(errp, "The maximum vector length must be "
236 "enabled, sve-max-vq=%d (%d bits)\n",
237 max_vq, max_vq * 128);
238 return;
241 /* Set all bits not explicitly set within sve-max-vq. */
242 vq_map |= ~vq_init & vq_mask;
246 * We should know what max-vq is now. Also, as we're done
247 * manipulating sve-vq-map, we ensure any bits above max-vq
248 * are clear, just in case anybody looks.
250 assert(max_vq != 0);
251 assert(vq_mask != 0);
252 vq_map &= vq_mask;
254 /* Ensure the set of lengths matches what is supported. */
255 tmp = vq_map ^ (vq_supported & vq_mask);
256 if (tmp) {
257 vq = 32 - clz32(tmp);
258 if (vq_map & (1 << (vq - 1))) {
259 if (cpu->sve_max_vq) {
260 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
261 error_append_hint(errp, "This CPU does not support "
262 "the vector length %d-bits.\n", vq * 128);
263 error_append_hint(errp, "It may not be possible to use "
264 "sve-max-vq with this CPU. Try "
265 "using only sve<N> properties.\n");
266 } else {
267 error_setg(errp, "cannot enable sve%d", vq * 128);
268 if (vq_supported) {
269 error_append_hint(errp, "This CPU does not support "
270 "the vector length %d-bits.\n", vq * 128);
271 } else {
272 error_append_hint(errp, "SVE not supported by KVM "
273 "on this host\n");
276 return;
277 } else {
278 if (kvm_enabled()) {
279 error_setg(errp, "cannot disable sve%d", vq * 128);
280 error_append_hint(errp, "The KVM host requires all "
281 "supported vector lengths smaller "
282 "than %d bits to also be enabled.\n",
283 max_vq * 128);
284 return;
285 } else {
286 /* Ensure all required powers-of-two are enabled. */
287 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
288 if (tmp) {
289 vq = 32 - clz32(tmp);
290 error_setg(errp, "cannot disable sve%d", vq * 128);
291 error_append_hint(errp, "sve%d is required as it "
292 "is a power-of-two length smaller "
293 "than the maximum, sve%d\n",
294 vq * 128, max_vq * 128);
295 return;
302 * Now that we validated all our vector lengths, the only question
303 * left to answer is if we even want SVE at all.
305 if (!cpu_isar_feature(aa64_sve, cpu)) {
306 error_setg(errp, "cannot enable sve%d", max_vq * 128);
307 error_append_hint(errp, "SVE must be enabled to enable vector "
308 "lengths.\n");
309 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
310 return;
313 /* From now on sve_max_vq is the actual maximum supported length. */
314 cpu->sve_max_vq = max_vq;
315 cpu->sve_vq.map = vq_map;
318 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
319 void *opaque, Error **errp)
321 ARMCPU *cpu = ARM_CPU(obj);
322 uint32_t value;
324 /* All vector lengths are disabled when SVE is off. */
325 if (!cpu_isar_feature(aa64_sve, cpu)) {
326 value = 0;
327 } else {
328 value = cpu->sve_max_vq;
330 visit_type_uint32(v, name, &value, errp);
333 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
334 void *opaque, Error **errp)
336 ARMCPU *cpu = ARM_CPU(obj);
337 uint32_t max_vq;
339 if (!visit_type_uint32(v, name, &max_vq, errp)) {
340 return;
343 if (kvm_enabled() && !kvm_arm_sve_supported()) {
344 error_setg(errp, "cannot set sve-max-vq");
345 error_append_hint(errp, "SVE not supported by KVM on this host\n");
346 return;
349 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
350 error_setg(errp, "unsupported SVE vector length");
351 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
352 ARM_MAX_VQ);
353 return;
356 cpu->sve_max_vq = max_vq;
360 * Note that cpu_arm_{get,set}_vq cannot use the simpler
361 * object_property_add_bool interface because they make use of the
362 * contents of "name" to determine which bit on which to operate.
364 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
365 void *opaque, Error **errp)
367 ARMCPU *cpu = ARM_CPU(obj);
368 ARMVQMap *vq_map = opaque;
369 uint32_t vq = atoi(&name[3]) / 128;
370 bool sve = vq_map == &cpu->sve_vq;
371 bool value;
373 /* All vector lengths are disabled when feature is off. */
374 if (sve
375 ? !cpu_isar_feature(aa64_sve, cpu)
376 : !cpu_isar_feature(aa64_sme, cpu)) {
377 value = false;
378 } else {
379 value = extract32(vq_map->map, vq - 1, 1);
381 visit_type_bool(v, name, &value, errp);
384 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
385 void *opaque, Error **errp)
387 ARMVQMap *vq_map = opaque;
388 uint32_t vq = atoi(&name[3]) / 128;
389 bool value;
391 if (!visit_type_bool(v, name, &value, errp)) {
392 return;
395 vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
396 vq_map->init |= 1 << (vq - 1);
399 static bool cpu_arm_get_sve(Object *obj, Error **errp)
401 ARMCPU *cpu = ARM_CPU(obj);
402 return cpu_isar_feature(aa64_sve, cpu);
405 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
407 ARMCPU *cpu = ARM_CPU(obj);
408 uint64_t t;
410 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
411 error_setg(errp, "'sve' feature not supported by KVM on this host");
412 return;
415 t = cpu->isar.id_aa64pfr0;
416 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
417 cpu->isar.id_aa64pfr0 = t;
420 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
422 uint32_t vq_map = cpu->sme_vq.map;
423 uint32_t vq_init = cpu->sme_vq.init;
424 uint32_t vq_supported = cpu->sme_vq.supported;
425 uint32_t vq;
427 if (vq_map == 0) {
428 if (!cpu_isar_feature(aa64_sme, cpu)) {
429 cpu->isar.id_aa64smfr0 = 0;
430 return;
433 /* TODO: KVM will require limitations via SMCR_EL2. */
434 vq_map = vq_supported & ~vq_init;
436 if (vq_map == 0) {
437 vq = ctz32(vq_supported) + 1;
438 error_setg(errp, "cannot disable sme%d", vq * 128);
439 error_append_hint(errp, "All SME vector lengths are disabled.\n");
440 error_append_hint(errp, "With SME enabled, at least one "
441 "vector length must be enabled.\n");
442 return;
444 } else {
445 if (!cpu_isar_feature(aa64_sme, cpu)) {
446 vq = 32 - clz32(vq_map);
447 error_setg(errp, "cannot enable sme%d", vq * 128);
448 error_append_hint(errp, "SME must be enabled to enable "
449 "vector lengths.\n");
450 error_append_hint(errp, "Add sme=on to the CPU property list.\n");
451 return;
453 /* TODO: KVM will require limitations via SMCR_EL2. */
456 cpu->sme_vq.map = vq_map;
459 static bool cpu_arm_get_sme(Object *obj, Error **errp)
461 ARMCPU *cpu = ARM_CPU(obj);
462 return cpu_isar_feature(aa64_sme, cpu);
465 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
467 ARMCPU *cpu = ARM_CPU(obj);
468 uint64_t t;
470 t = cpu->isar.id_aa64pfr1;
471 t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
472 cpu->isar.id_aa64pfr1 = t;
475 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
477 ARMCPU *cpu = ARM_CPU(obj);
478 return cpu_isar_feature(aa64_sme, cpu) &&
479 cpu_isar_feature(aa64_sme_fa64, cpu);
482 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
484 ARMCPU *cpu = ARM_CPU(obj);
485 uint64_t t;
487 t = cpu->isar.id_aa64smfr0;
488 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
489 cpu->isar.id_aa64smfr0 = t;
492 #ifdef CONFIG_USER_ONLY
493 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
494 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
495 const char *name, void *opaque,
496 Error **errp)
498 uint32_t *ptr_default_vq = opaque;
499 int32_t default_len, default_vq, remainder;
501 if (!visit_type_int32(v, name, &default_len, errp)) {
502 return;
505 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
506 if (default_len == -1) {
507 *ptr_default_vq = ARM_MAX_VQ;
508 return;
511 default_vq = default_len / 16;
512 remainder = default_len % 16;
515 * Note that the 512 max comes from include/uapi/asm/sve_context.h
516 * and is the maximum architectural width of ZCR_ELx.LEN.
518 if (remainder || default_vq < 1 || default_vq > 512) {
519 ARMCPU *cpu = ARM_CPU(obj);
520 const char *which =
521 (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
523 error_setg(errp, "cannot set %s-default-vector-length", which);
524 if (remainder) {
525 error_append_hint(errp, "Vector length not a multiple of 16\n");
526 } else if (default_vq < 1) {
527 error_append_hint(errp, "Vector length smaller than 16\n");
528 } else {
529 error_append_hint(errp, "Vector length larger than %d\n",
530 512 * 16);
532 return;
535 *ptr_default_vq = default_vq;
538 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
539 const char *name, void *opaque,
540 Error **errp)
542 uint32_t *ptr_default_vq = opaque;
543 int32_t value = *ptr_default_vq * 16;
545 visit_type_int32(v, name, &value, errp);
547 #endif
549 static void aarch64_add_sve_properties(Object *obj)
551 ARMCPU *cpu = ARM_CPU(obj);
552 uint32_t vq;
554 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
556 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
557 char name[8];
558 sprintf(name, "sve%d", vq * 128);
559 object_property_add(obj, name, "bool", cpu_arm_get_vq,
560 cpu_arm_set_vq, NULL, &cpu->sve_vq);
563 #ifdef CONFIG_USER_ONLY
564 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
565 object_property_add(obj, "sve-default-vector-length", "int32",
566 cpu_arm_get_default_vec_len,
567 cpu_arm_set_default_vec_len, NULL,
568 &cpu->sve_default_vq);
569 #endif
572 static void aarch64_add_sme_properties(Object *obj)
574 ARMCPU *cpu = ARM_CPU(obj);
575 uint32_t vq;
577 object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
578 object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
579 cpu_arm_set_sme_fa64);
581 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
582 char name[8];
583 sprintf(name, "sme%d", vq * 128);
584 object_property_add(obj, name, "bool", cpu_arm_get_vq,
585 cpu_arm_set_vq, NULL, &cpu->sme_vq);
588 #ifdef CONFIG_USER_ONLY
589 /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
590 object_property_add(obj, "sme-default-vector-length", "int32",
591 cpu_arm_get_default_vec_len,
592 cpu_arm_set_default_vec_len, NULL,
593 &cpu->sme_default_vq);
594 #endif
597 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
599 int arch_val = 0, impdef_val = 0;
600 uint64_t t;
602 /* Exit early if PAuth is enabled, and fall through to disable it */
603 if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
604 if (!cpu_isar_feature(aa64_pauth, cpu)) {
605 error_setg(errp, "'pauth' feature not supported by %s on this host",
606 kvm_enabled() ? "KVM" : "hvf");
609 return;
612 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
613 if (cpu->prop_pauth) {
614 if (cpu->prop_pauth_impdef) {
615 impdef_val = 1;
616 } else {
617 arch_val = 1;
619 } else if (cpu->prop_pauth_impdef) {
620 error_setg(errp, "cannot enable pauth-impdef without pauth");
621 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
624 t = cpu->isar.id_aa64isar1;
625 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
626 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
627 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
628 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
629 cpu->isar.id_aa64isar1 = t;
632 static Property arm_cpu_pauth_property =
633 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
634 static Property arm_cpu_pauth_impdef_property =
635 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
637 static void aarch64_add_pauth_properties(Object *obj)
639 ARMCPU *cpu = ARM_CPU(obj);
641 /* Default to PAUTH on, with the architected algorithm on TCG. */
642 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
643 if (kvm_enabled() || hvf_enabled()) {
645 * Mirror PAuth support from the probed sysregs back into the
646 * property for KVM or hvf. Is it just a bit backward? Yes it is!
647 * Note that prop_pauth is true whether the host CPU supports the
648 * architected QARMA5 algorithm or the IMPDEF one. We don't
649 * provide the separate pauth-impdef property for KVM or hvf,
650 * only for TCG.
652 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
653 } else {
654 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
658 static Property arm_cpu_lpa2_property =
659 DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
661 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
663 uint64_t t;
666 * We only install the property for tcg -cpu max; this is the
667 * only situation in which the cpu field can be true.
669 if (!cpu->prop_lpa2) {
670 return;
673 t = cpu->isar.id_aa64mmfr0;
674 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */
675 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */
676 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
677 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */
678 cpu->isar.id_aa64mmfr0 = t;
681 static void aarch64_a57_initfn(Object *obj)
683 ARMCPU *cpu = ARM_CPU(obj);
685 cpu->dtb_compatible = "arm,cortex-a57";
686 set_feature(&cpu->env, ARM_FEATURE_V8);
687 set_feature(&cpu->env, ARM_FEATURE_NEON);
688 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
689 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
690 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
691 set_feature(&cpu->env, ARM_FEATURE_EL2);
692 set_feature(&cpu->env, ARM_FEATURE_EL3);
693 set_feature(&cpu->env, ARM_FEATURE_PMU);
694 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
695 cpu->midr = 0x411fd070;
696 cpu->revidr = 0x00000000;
697 cpu->reset_fpsid = 0x41034070;
698 cpu->isar.mvfr0 = 0x10110222;
699 cpu->isar.mvfr1 = 0x12111111;
700 cpu->isar.mvfr2 = 0x00000043;
701 cpu->ctr = 0x8444c004;
702 cpu->reset_sctlr = 0x00c50838;
703 cpu->isar.id_pfr0 = 0x00000131;
704 cpu->isar.id_pfr1 = 0x00011011;
705 cpu->isar.id_dfr0 = 0x03010066;
706 cpu->id_afr0 = 0x00000000;
707 cpu->isar.id_mmfr0 = 0x10101105;
708 cpu->isar.id_mmfr1 = 0x40000000;
709 cpu->isar.id_mmfr2 = 0x01260000;
710 cpu->isar.id_mmfr3 = 0x02102211;
711 cpu->isar.id_isar0 = 0x02101110;
712 cpu->isar.id_isar1 = 0x13112111;
713 cpu->isar.id_isar2 = 0x21232042;
714 cpu->isar.id_isar3 = 0x01112131;
715 cpu->isar.id_isar4 = 0x00011142;
716 cpu->isar.id_isar5 = 0x00011121;
717 cpu->isar.id_isar6 = 0;
718 cpu->isar.id_aa64pfr0 = 0x00002222;
719 cpu->isar.id_aa64dfr0 = 0x10305106;
720 cpu->isar.id_aa64isar0 = 0x00011120;
721 cpu->isar.id_aa64mmfr0 = 0x00001124;
722 cpu->isar.dbgdidr = 0x3516d000;
723 cpu->isar.dbgdevid = 0x01110f13;
724 cpu->isar.dbgdevid1 = 0x2;
725 cpu->isar.reset_pmcr_el0 = 0x41013000;
726 cpu->clidr = 0x0a200023;
727 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
728 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
729 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
730 cpu->dcz_blocksize = 4; /* 64 bytes */
731 cpu->gic_num_lrs = 4;
732 cpu->gic_vpribits = 5;
733 cpu->gic_vprebits = 5;
734 cpu->gic_pribits = 5;
735 define_cortex_a72_a57_a53_cp_reginfo(cpu);
738 static void aarch64_a53_initfn(Object *obj)
740 ARMCPU *cpu = ARM_CPU(obj);
742 cpu->dtb_compatible = "arm,cortex-a53";
743 set_feature(&cpu->env, ARM_FEATURE_V8);
744 set_feature(&cpu->env, ARM_FEATURE_NEON);
745 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
746 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
747 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
748 set_feature(&cpu->env, ARM_FEATURE_EL2);
749 set_feature(&cpu->env, ARM_FEATURE_EL3);
750 set_feature(&cpu->env, ARM_FEATURE_PMU);
751 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
752 cpu->midr = 0x410fd034;
753 cpu->revidr = 0x00000000;
754 cpu->reset_fpsid = 0x41034070;
755 cpu->isar.mvfr0 = 0x10110222;
756 cpu->isar.mvfr1 = 0x12111111;
757 cpu->isar.mvfr2 = 0x00000043;
758 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
759 cpu->reset_sctlr = 0x00c50838;
760 cpu->isar.id_pfr0 = 0x00000131;
761 cpu->isar.id_pfr1 = 0x00011011;
762 cpu->isar.id_dfr0 = 0x03010066;
763 cpu->id_afr0 = 0x00000000;
764 cpu->isar.id_mmfr0 = 0x10101105;
765 cpu->isar.id_mmfr1 = 0x40000000;
766 cpu->isar.id_mmfr2 = 0x01260000;
767 cpu->isar.id_mmfr3 = 0x02102211;
768 cpu->isar.id_isar0 = 0x02101110;
769 cpu->isar.id_isar1 = 0x13112111;
770 cpu->isar.id_isar2 = 0x21232042;
771 cpu->isar.id_isar3 = 0x01112131;
772 cpu->isar.id_isar4 = 0x00011142;
773 cpu->isar.id_isar5 = 0x00011121;
774 cpu->isar.id_isar6 = 0;
775 cpu->isar.id_aa64pfr0 = 0x00002222;
776 cpu->isar.id_aa64dfr0 = 0x10305106;
777 cpu->isar.id_aa64isar0 = 0x00011120;
778 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
779 cpu->isar.dbgdidr = 0x3516d000;
780 cpu->isar.dbgdevid = 0x00110f13;
781 cpu->isar.dbgdevid1 = 0x1;
782 cpu->isar.reset_pmcr_el0 = 0x41033000;
783 cpu->clidr = 0x0a200023;
784 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
785 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
786 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
787 cpu->dcz_blocksize = 4; /* 64 bytes */
788 cpu->gic_num_lrs = 4;
789 cpu->gic_vpribits = 5;
790 cpu->gic_vprebits = 5;
791 cpu->gic_pribits = 5;
792 define_cortex_a72_a57_a53_cp_reginfo(cpu);
795 static void aarch64_a72_initfn(Object *obj)
797 ARMCPU *cpu = ARM_CPU(obj);
799 cpu->dtb_compatible = "arm,cortex-a72";
800 set_feature(&cpu->env, ARM_FEATURE_V8);
801 set_feature(&cpu->env, ARM_FEATURE_NEON);
802 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
803 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
804 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
805 set_feature(&cpu->env, ARM_FEATURE_EL2);
806 set_feature(&cpu->env, ARM_FEATURE_EL3);
807 set_feature(&cpu->env, ARM_FEATURE_PMU);
808 cpu->midr = 0x410fd083;
809 cpu->revidr = 0x00000000;
810 cpu->reset_fpsid = 0x41034080;
811 cpu->isar.mvfr0 = 0x10110222;
812 cpu->isar.mvfr1 = 0x12111111;
813 cpu->isar.mvfr2 = 0x00000043;
814 cpu->ctr = 0x8444c004;
815 cpu->reset_sctlr = 0x00c50838;
816 cpu->isar.id_pfr0 = 0x00000131;
817 cpu->isar.id_pfr1 = 0x00011011;
818 cpu->isar.id_dfr0 = 0x03010066;
819 cpu->id_afr0 = 0x00000000;
820 cpu->isar.id_mmfr0 = 0x10201105;
821 cpu->isar.id_mmfr1 = 0x40000000;
822 cpu->isar.id_mmfr2 = 0x01260000;
823 cpu->isar.id_mmfr3 = 0x02102211;
824 cpu->isar.id_isar0 = 0x02101110;
825 cpu->isar.id_isar1 = 0x13112111;
826 cpu->isar.id_isar2 = 0x21232042;
827 cpu->isar.id_isar3 = 0x01112131;
828 cpu->isar.id_isar4 = 0x00011142;
829 cpu->isar.id_isar5 = 0x00011121;
830 cpu->isar.id_aa64pfr0 = 0x00002222;
831 cpu->isar.id_aa64dfr0 = 0x10305106;
832 cpu->isar.id_aa64isar0 = 0x00011120;
833 cpu->isar.id_aa64mmfr0 = 0x00001124;
834 cpu->isar.dbgdidr = 0x3516d000;
835 cpu->isar.dbgdevid = 0x01110f13;
836 cpu->isar.dbgdevid1 = 0x2;
837 cpu->isar.reset_pmcr_el0 = 0x41023000;
838 cpu->clidr = 0x0a200023;
839 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
840 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
841 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
842 cpu->dcz_blocksize = 4; /* 64 bytes */
843 cpu->gic_num_lrs = 4;
844 cpu->gic_vpribits = 5;
845 cpu->gic_vprebits = 5;
846 cpu->gic_pribits = 5;
847 define_cortex_a72_a57_a53_cp_reginfo(cpu);
850 static void aarch64_a76_initfn(Object *obj)
852 ARMCPU *cpu = ARM_CPU(obj);
854 cpu->dtb_compatible = "arm,cortex-a76";
855 set_feature(&cpu->env, ARM_FEATURE_V8);
856 set_feature(&cpu->env, ARM_FEATURE_NEON);
857 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
858 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
859 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
860 set_feature(&cpu->env, ARM_FEATURE_EL2);
861 set_feature(&cpu->env, ARM_FEATURE_EL3);
862 set_feature(&cpu->env, ARM_FEATURE_PMU);
864 /* Ordered by B2.4 AArch64 registers by functional group */
865 cpu->clidr = 0x82000023;
866 cpu->ctr = 0x8444C004;
867 cpu->dcz_blocksize = 4;
868 cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
869 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
870 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
871 cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
872 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
873 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
874 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
875 cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
876 cpu->id_afr0 = 0x00000000;
877 cpu->isar.id_dfr0 = 0x04010088;
878 cpu->isar.id_isar0 = 0x02101110;
879 cpu->isar.id_isar1 = 0x13112111;
880 cpu->isar.id_isar2 = 0x21232042;
881 cpu->isar.id_isar3 = 0x01112131;
882 cpu->isar.id_isar4 = 0x00010142;
883 cpu->isar.id_isar5 = 0x01011121;
884 cpu->isar.id_isar6 = 0x00000010;
885 cpu->isar.id_mmfr0 = 0x10201105;
886 cpu->isar.id_mmfr1 = 0x40000000;
887 cpu->isar.id_mmfr2 = 0x01260000;
888 cpu->isar.id_mmfr3 = 0x02122211;
889 cpu->isar.id_mmfr4 = 0x00021110;
890 cpu->isar.id_pfr0 = 0x10010131;
891 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
892 cpu->isar.id_pfr2 = 0x00000011;
893 cpu->midr = 0x414fd0b1; /* r4p1 */
894 cpu->revidr = 0;
896 /* From B2.18 CCSIDR_EL1 */
897 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
898 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
899 cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
901 /* From B2.93 SCTLR_EL3 */
902 cpu->reset_sctlr = 0x30c50838;
904 /* From B4.23 ICH_VTR_EL2 */
905 cpu->gic_num_lrs = 4;
906 cpu->gic_vpribits = 5;
907 cpu->gic_vprebits = 5;
908 cpu->gic_pribits = 5;
910 /* From B5.1 AdvSIMD AArch64 register summary */
911 cpu->isar.mvfr0 = 0x10110222;
912 cpu->isar.mvfr1 = 0x13211111;
913 cpu->isar.mvfr2 = 0x00000043;
915 /* From D5.1 AArch64 PMU register summary */
916 cpu->isar.reset_pmcr_el0 = 0x410b3000;
919 static void aarch64_a64fx_initfn(Object *obj)
921 ARMCPU *cpu = ARM_CPU(obj);
923 cpu->dtb_compatible = "arm,a64fx";
924 set_feature(&cpu->env, ARM_FEATURE_V8);
925 set_feature(&cpu->env, ARM_FEATURE_NEON);
926 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
927 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
928 set_feature(&cpu->env, ARM_FEATURE_EL2);
929 set_feature(&cpu->env, ARM_FEATURE_EL3);
930 set_feature(&cpu->env, ARM_FEATURE_PMU);
931 cpu->midr = 0x461f0010;
932 cpu->revidr = 0x00000000;
933 cpu->ctr = 0x86668006;
934 cpu->reset_sctlr = 0x30000180;
935 cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
936 cpu->isar.id_aa64pfr1 = 0x0000000000000000;
937 cpu->isar.id_aa64dfr0 = 0x0000000010305408;
938 cpu->isar.id_aa64dfr1 = 0x0000000000000000;
939 cpu->id_aa64afr0 = 0x0000000000000000;
940 cpu->id_aa64afr1 = 0x0000000000000000;
941 cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
942 cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
943 cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
944 cpu->isar.id_aa64isar0 = 0x0000000010211120;
945 cpu->isar.id_aa64isar1 = 0x0000000000010001;
946 cpu->isar.id_aa64zfr0 = 0x0000000000000000;
947 cpu->clidr = 0x0000000080000023;
948 cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
949 cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
950 cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
951 cpu->dcz_blocksize = 6; /* 256 bytes */
952 cpu->gic_num_lrs = 4;
953 cpu->gic_vpribits = 5;
954 cpu->gic_vprebits = 5;
955 cpu->gic_pribits = 5;
957 /* The A64FX supports only 128, 256 and 512 bit vector lengths */
958 aarch64_add_sve_properties(obj);
959 cpu->sve_vq.supported = (1 << 0) /* 128bit */
960 | (1 << 1) /* 256bit */
961 | (1 << 3); /* 512bit */
963 cpu->isar.reset_pmcr_el0 = 0x46014040;
965 /* TODO: Add A64FX specific HPC extension registers */
968 static void aarch64_neoverse_n1_initfn(Object *obj)
970 ARMCPU *cpu = ARM_CPU(obj);
972 cpu->dtb_compatible = "arm,neoverse-n1";
973 set_feature(&cpu->env, ARM_FEATURE_V8);
974 set_feature(&cpu->env, ARM_FEATURE_NEON);
975 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
976 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
977 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
978 set_feature(&cpu->env, ARM_FEATURE_EL2);
979 set_feature(&cpu->env, ARM_FEATURE_EL3);
980 set_feature(&cpu->env, ARM_FEATURE_PMU);
982 /* Ordered by B2.4 AArch64 registers by functional group */
983 cpu->clidr = 0x82000023;
984 cpu->ctr = 0x8444c004;
985 cpu->dcz_blocksize = 4;
986 cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
987 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
988 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
989 cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
990 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
991 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
992 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
993 cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
994 cpu->id_afr0 = 0x00000000;
995 cpu->isar.id_dfr0 = 0x04010088;
996 cpu->isar.id_isar0 = 0x02101110;
997 cpu->isar.id_isar1 = 0x13112111;
998 cpu->isar.id_isar2 = 0x21232042;
999 cpu->isar.id_isar3 = 0x01112131;
1000 cpu->isar.id_isar4 = 0x00010142;
1001 cpu->isar.id_isar5 = 0x01011121;
1002 cpu->isar.id_isar6 = 0x00000010;
1003 cpu->isar.id_mmfr0 = 0x10201105;
1004 cpu->isar.id_mmfr1 = 0x40000000;
1005 cpu->isar.id_mmfr2 = 0x01260000;
1006 cpu->isar.id_mmfr3 = 0x02122211;
1007 cpu->isar.id_mmfr4 = 0x00021110;
1008 cpu->isar.id_pfr0 = 0x10010131;
1009 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
1010 cpu->isar.id_pfr2 = 0x00000011;
1011 cpu->midr = 0x414fd0c1; /* r4p1 */
1012 cpu->revidr = 0;
1014 /* From B2.23 CCSIDR_EL1 */
1015 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
1016 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
1017 cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
1019 /* From B2.98 SCTLR_EL3 */
1020 cpu->reset_sctlr = 0x30c50838;
1022 /* From B4.23 ICH_VTR_EL2 */
1023 cpu->gic_num_lrs = 4;
1024 cpu->gic_vpribits = 5;
1025 cpu->gic_vprebits = 5;
1026 cpu->gic_pribits = 5;
1028 /* From B5.1 AdvSIMD AArch64 register summary */
1029 cpu->isar.mvfr0 = 0x10110222;
1030 cpu->isar.mvfr1 = 0x13211111;
1031 cpu->isar.mvfr2 = 0x00000043;
1033 /* From D5.1 AArch64 PMU register summary */
1034 cpu->isar.reset_pmcr_el0 = 0x410c3000;
1037 static void aarch64_host_initfn(Object *obj)
1039 #if defined(CONFIG_KVM)
1040 ARMCPU *cpu = ARM_CPU(obj);
1041 kvm_arm_set_cpu_features_from_host(cpu);
1042 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1043 aarch64_add_sve_properties(obj);
1044 aarch64_add_pauth_properties(obj);
1046 #elif defined(CONFIG_HVF)
1047 ARMCPU *cpu = ARM_CPU(obj);
1048 hvf_arm_set_cpu_features_from_host(cpu);
1049 aarch64_add_pauth_properties(obj);
1050 #else
1051 g_assert_not_reached();
1052 #endif
1055 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1056 * otherwise, a CPU with as many features enabled as our emulation supports.
1057 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
1058 * this only needs to handle 64 bits.
1060 static void aarch64_max_initfn(Object *obj)
1062 ARMCPU *cpu = ARM_CPU(obj);
1063 uint64_t t;
1064 uint32_t u;
1066 if (kvm_enabled() || hvf_enabled()) {
1067 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
1068 aarch64_host_initfn(obj);
1069 return;
1072 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
1074 aarch64_a57_initfn(obj);
1077 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
1078 * one and try to apply errata workarounds or use impdef features we
1079 * don't provide.
1080 * An IMPLEMENTER field of 0 means "reserved for software use";
1081 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
1082 * to see which features are present";
1083 * the VARIANT, PARTNUM and REVISION fields are all implementation
1084 * defined and we choose to define PARTNUM just in case guest
1085 * code needs to distinguish this QEMU CPU from other software
1086 * implementations, though this shouldn't be needed.
1088 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
1089 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
1090 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
1091 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
1092 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
1093 cpu->midr = t;
1096 * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
1097 * are zero.
1099 u = cpu->clidr;
1100 u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
1101 u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
1102 cpu->clidr = u;
1104 t = cpu->isar.id_aa64isar0;
1105 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
1106 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
1107 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
1108 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
1109 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
1110 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
1111 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
1112 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
1113 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
1114 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
1115 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
1116 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
1117 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
1118 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
1119 cpu->isar.id_aa64isar0 = t;
1121 t = cpu->isar.id_aa64isar1;
1122 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
1123 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
1124 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
1125 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
1126 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
1127 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
1128 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
1129 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
1130 t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
1131 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
1132 cpu->isar.id_aa64isar1 = t;
1134 t = cpu->isar.id_aa64pfr0;
1135 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
1136 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
1137 t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1138 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1139 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
1140 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
1141 t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
1142 t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
1143 cpu->isar.id_aa64pfr0 = t;
1145 t = cpu->isar.id_aa64pfr1;
1146 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
1147 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
1149 * Begin with full support for MTE. This will be downgraded to MTE=0
1150 * during realize if the board provides no tag memory, much like
1151 * we do for EL2 with the virtualization=on property.
1153 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
1154 t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1155 t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */
1156 t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1157 cpu->isar.id_aa64pfr1 = t;
1159 t = cpu->isar.id_aa64mmfr0;
1160 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1161 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
1162 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1163 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1164 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
1165 cpu->isar.id_aa64mmfr0 = t;
1167 t = cpu->isar.id_aa64mmfr1;
1168 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1169 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
1170 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */
1171 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
1172 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */
1173 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
1174 t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */
1175 t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */
1176 cpu->isar.id_aa64mmfr1 = t;
1178 t = cpu->isar.id_aa64mmfr2;
1179 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
1180 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
1181 t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
1182 t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
1183 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
1184 t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
1185 t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
1186 t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
1187 t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
1188 cpu->isar.id_aa64mmfr2 = t;
1190 t = cpu->isar.id_aa64zfr0;
1191 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1192 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
1193 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
1194 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
1195 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
1196 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
1197 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
1198 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
1199 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
1200 cpu->isar.id_aa64zfr0 = t;
1202 t = cpu->isar.id_aa64dfr0;
1203 t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
1204 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */
1205 cpu->isar.id_aa64dfr0 = t;
1207 t = cpu->isar.id_aa64smfr0;
1208 t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */
1209 t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */
1210 t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */
1211 t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */
1212 t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */
1213 t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1214 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */
1215 cpu->isar.id_aa64smfr0 = t;
1217 /* Replicate the same data to the 32-bit id registers. */
1218 aa32_max_features(cpu);
1220 #ifdef CONFIG_USER_ONLY
1222 * For usermode -cpu max we can use a larger and more efficient DCZ
1223 * blocksize since we don't have to follow what the hardware does.
1225 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1226 cpu->dcz_blocksize = 7; /* 512 bytes */
1227 #endif
1229 cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1230 cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1232 aarch64_add_pauth_properties(obj);
1233 aarch64_add_sve_properties(obj);
1234 aarch64_add_sme_properties(obj);
1235 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1236 cpu_max_set_sve_max_vq, NULL, NULL);
1237 qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1240 static const ARMCPUInfo aarch64_cpus[] = {
1241 { .name = "cortex-a35", .initfn = aarch64_a35_initfn },
1242 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
1243 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
1244 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
1245 { .name = "cortex-a76", .initfn = aarch64_a76_initfn },
1246 { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
1247 { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
1248 { .name = "max", .initfn = aarch64_max_initfn },
1249 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1250 { .name = "host", .initfn = aarch64_host_initfn },
1251 #endif
1254 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1256 ARMCPU *cpu = ARM_CPU(obj);
1258 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1261 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1263 ARMCPU *cpu = ARM_CPU(obj);
1265 /* At this time, this property is only allowed if KVM is enabled. This
1266 * restriction allows us to avoid fixing up functionality that assumes a
1267 * uniform execution state like do_interrupt.
1269 if (value == false) {
1270 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1271 error_setg(errp, "'aarch64' feature cannot be disabled "
1272 "unless KVM is enabled and 32-bit EL1 "
1273 "is supported");
1274 return;
1276 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1277 } else {
1278 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1282 static void aarch64_cpu_finalizefn(Object *obj)
1286 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1288 return g_strdup("aarch64");
1291 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1293 CPUClass *cc = CPU_CLASS(oc);
1295 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1296 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1297 cc->gdb_num_core_regs = 34;
1298 cc->gdb_core_xml_file = "aarch64-core.xml";
1299 cc->gdb_arch_name = aarch64_gdb_arch_name;
1301 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1302 aarch64_cpu_set_aarch64);
1303 object_class_property_set_description(oc, "aarch64",
1304 "Set on/off to enable/disable aarch64 "
1305 "execution state ");
1308 static void aarch64_cpu_instance_init(Object *obj)
1310 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1312 acc->info->initfn(obj);
1313 arm_cpu_post_init(obj);
1316 static void cpu_register_class_init(ObjectClass *oc, void *data)
1318 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1320 acc->info = data;
1323 void aarch64_cpu_register(const ARMCPUInfo *info)
1325 TypeInfo type_info = {
1326 .parent = TYPE_AARCH64_CPU,
1327 .instance_size = sizeof(ARMCPU),
1328 .instance_init = aarch64_cpu_instance_init,
1329 .class_size = sizeof(ARMCPUClass),
1330 .class_init = info->class_init ?: cpu_register_class_init,
1331 .class_data = (void *)info,
1334 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1335 type_register(&type_info);
1336 g_free((void *)type_info.name);
1339 static const TypeInfo aarch64_cpu_type_info = {
1340 .name = TYPE_AARCH64_CPU,
1341 .parent = TYPE_ARM_CPU,
1342 .instance_size = sizeof(ARMCPU),
1343 .instance_finalize = aarch64_cpu_finalizefn,
1344 .abstract = true,
1345 .class_size = sizeof(AArch64CPUClass),
1346 .class_init = aarch64_cpu_class_init,
1349 static void aarch64_cpu_register_types(void)
1351 size_t i;
1353 type_register_static(&aarch64_cpu_type_info);
1355 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1356 aarch64_cpu_register(&aarch64_cpus[i]);
1360 type_init(aarch64_cpu_register_types)