vnc: support password expire
[qemu.git] / alpha-dis.c
blob8a2411e4d56d9e6ef90ea4db972a48d79da113bd
1 /* alpha-dis.c -- Disassemble Alpha AXP instructions
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>,
4 patterned after the PPC opcode handling written by Ian Lance Taylor.
6 This file is part of GDB, GAS, and the GNU binutils.
8 GDB, GAS, and the GNU binutils are free software; you can redistribute
9 them and/or modify them under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either version
11 2, or (at your option) any later version.
13 GDB, GAS, and the GNU binutils are distributed in the hope that they
14 will be useful, but WITHOUT ANY WARRANTY; without even the implied
15 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
16 the GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this file; see the file COPYING. If not, see
20 <http://www.gnu.org/licenses/>. */
22 #include <stdio.h>
23 #include "dis-asm.h"
25 /* MAX is redefined below, so remove any previous definition. */
26 #undef MAX
28 /* The opcode table is an array of struct alpha_opcode. */
30 struct alpha_opcode
32 /* The opcode name. */
33 const char *name;
35 /* The opcode itself. Those bits which will be filled in with
36 operands are zeroes. */
37 unsigned opcode;
39 /* The opcode mask. This is used by the disassembler. This is a
40 mask containing ones indicating those bits which must match the
41 opcode field, and zeroes indicating those bits which need not
42 match (and are presumably filled in by operands). */
43 unsigned mask;
45 /* One bit flags for the opcode. These are primarily used to
46 indicate specific processors and environments support the
47 instructions. The defined values are listed below. */
48 unsigned flags;
50 /* An array of operand codes. Each code is an index into the
51 operand table. They appear in the order which the operands must
52 appear in assembly code, and are terminated by a zero. */
53 unsigned char operands[4];
56 /* The table itself is sorted by major opcode number, and is otherwise
57 in the order in which the disassembler should consider
58 instructions. */
59 extern const struct alpha_opcode alpha_opcodes[];
60 extern const unsigned alpha_num_opcodes;
62 /* Values defined for the flags field of a struct alpha_opcode. */
64 /* CPU Availability */
65 #define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
66 #define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
67 #define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
68 #define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
69 #define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
70 #define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
71 #define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
73 #define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
75 /* A macro to extract the major opcode from an instruction. */
76 #define AXP_OP(i) (((i) >> 26) & 0x3F)
78 /* The total number of major opcodes. */
79 #define AXP_NOPS 0x40
82 /* The operands table is an array of struct alpha_operand. */
84 struct alpha_operand
86 /* The number of bits in the operand. */
87 unsigned int bits : 5;
89 /* How far the operand is left shifted in the instruction. */
90 unsigned int shift : 5;
92 /* The default relocation type for this operand. */
93 signed int default_reloc : 16;
95 /* One bit syntax flags. */
96 unsigned int flags : 16;
98 /* Insertion function. This is used by the assembler. To insert an
99 operand value into an instruction, check this field.
101 If it is NULL, execute
102 i |= (op & ((1 << o->bits) - 1)) << o->shift;
103 (i is the instruction which we are filling in, o is a pointer to
104 this structure, and op is the opcode value; this assumes twos
105 complement arithmetic).
107 If this field is not NULL, then simply call it with the
108 instruction and the operand value. It will return the new value
109 of the instruction. If the ERRMSG argument is not NULL, then if
110 the operand value is illegal, *ERRMSG will be set to a warning
111 string (the operand will be inserted in any case). If the
112 operand value is legal, *ERRMSG will be unchanged (most operands
113 can accept any value). */
114 unsigned (*insert) (unsigned instruction, int op,
115 const char **errmsg);
117 /* Extraction function. This is used by the disassembler. To
118 extract this operand type from an instruction, check this field.
120 If it is NULL, compute
121 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
122 if ((o->flags & AXP_OPERAND_SIGNED) != 0
123 && (op & (1 << (o->bits - 1))) != 0)
124 op -= 1 << o->bits;
125 (i is the instruction, o is a pointer to this structure, and op
126 is the result; this assumes twos complement arithmetic).
128 If this field is not NULL, then simply call it with the
129 instruction value. It will return the value of the operand. If
130 the INVALID argument is not NULL, *INVALID will be set to
131 non-zero if this operand type can not actually be extracted from
132 this operand (i.e., the instruction does not match). If the
133 operand is valid, *INVALID will not be changed. */
134 int (*extract) (unsigned instruction, int *invalid);
137 /* Elements in the table are retrieved by indexing with values from
138 the operands field of the alpha_opcodes table. */
140 extern const struct alpha_operand alpha_operands[];
141 extern const unsigned alpha_num_operands;
143 /* Values defined for the flags field of a struct alpha_operand. */
145 /* Mask for selecting the type for typecheck purposes */
146 #define AXP_OPERAND_TYPECHECK_MASK \
147 (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
148 AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
149 AXP_OPERAND_UNSIGNED)
151 /* This operand does not actually exist in the assembler input. This
152 is used to support extended mnemonics, for which two operands fields
153 are identical. The assembler should call the insert function with
154 any op value. The disassembler should call the extract function,
155 ignore the return value, and check the value placed in the invalid
156 argument. */
157 #define AXP_OPERAND_FAKE 01
159 /* The operand should be wrapped in parentheses rather than separated
160 from the previous by a comma. This is used for the load and store
161 instructions which want their operands to look like "Ra,disp(Rb)". */
162 #define AXP_OPERAND_PARENS 02
164 /* Used in combination with PARENS, this suppresses the suppression of
165 the comma. This is used for "jmp Ra,(Rb),hint". */
166 #define AXP_OPERAND_COMMA 04
168 /* This operand names an integer register. */
169 #define AXP_OPERAND_IR 010
171 /* This operand names a floating point register. */
172 #define AXP_OPERAND_FPR 020
174 /* This operand is a relative branch displacement. The disassembler
175 prints these symbolically if possible. */
176 #define AXP_OPERAND_RELATIVE 040
178 /* This operand takes signed values. */
179 #define AXP_OPERAND_SIGNED 0100
181 /* This operand takes unsigned values. This exists primarily so that
182 a flags value of 0 can be treated as end-of-arguments. */
183 #define AXP_OPERAND_UNSIGNED 0200
185 /* Suppress overflow detection on this field. This is used for hints. */
186 #define AXP_OPERAND_NOOVERFLOW 0400
188 /* Mask for optional argument default value. */
189 #define AXP_OPERAND_OPTIONAL_MASK 07000
191 /* This operand defaults to zero. This is used for jump hints. */
192 #define AXP_OPERAND_DEFAULT_ZERO 01000
194 /* This operand should default to the first (real) operand and is used
195 in conjunction with AXP_OPERAND_OPTIONAL. This allows
196 "and $0,3,$0" to be written as "and $0,3", etc. I don't like
197 it, but it's what DEC does. */
198 #define AXP_OPERAND_DEFAULT_FIRST 02000
200 /* Similarly, this operand should default to the second (real) operand.
201 This allows "negl $0" instead of "negl $0,$0". */
202 #define AXP_OPERAND_DEFAULT_SECOND 04000
205 /* Register common names */
207 #define AXP_REG_V0 0
208 #define AXP_REG_T0 1
209 #define AXP_REG_T1 2
210 #define AXP_REG_T2 3
211 #define AXP_REG_T3 4
212 #define AXP_REG_T4 5
213 #define AXP_REG_T5 6
214 #define AXP_REG_T6 7
215 #define AXP_REG_T7 8
216 #define AXP_REG_S0 9
217 #define AXP_REG_S1 10
218 #define AXP_REG_S2 11
219 #define AXP_REG_S3 12
220 #define AXP_REG_S4 13
221 #define AXP_REG_S5 14
222 #define AXP_REG_FP 15
223 #define AXP_REG_A0 16
224 #define AXP_REG_A1 17
225 #define AXP_REG_A2 18
226 #define AXP_REG_A3 19
227 #define AXP_REG_A4 20
228 #define AXP_REG_A5 21
229 #define AXP_REG_T8 22
230 #define AXP_REG_T9 23
231 #define AXP_REG_T10 24
232 #define AXP_REG_T11 25
233 #define AXP_REG_RA 26
234 #define AXP_REG_PV 27
235 #define AXP_REG_T12 27
236 #define AXP_REG_AT 28
237 #define AXP_REG_GP 29
238 #define AXP_REG_SP 30
239 #define AXP_REG_ZERO 31
241 #define bfd_mach_alpha_ev4 0x10
242 #define bfd_mach_alpha_ev5 0x20
243 #define bfd_mach_alpha_ev6 0x30
245 enum bfd_reloc_code_real {
246 BFD_RELOC_23_PCREL_S2,
247 BFD_RELOC_ALPHA_HINT
250 /* This file holds the Alpha AXP opcode table. The opcode table includes
251 almost all of the extended instruction mnemonics. This permits the
252 disassembler to use them, and simplifies the assembler logic, at the
253 cost of increasing the table size. The table is strictly constant
254 data, so the compiler should be able to put it in the text segment.
256 This file also holds the operand table. All knowledge about inserting
257 and extracting operands from instructions is kept in this file.
259 The information for the base instruction set was compiled from the
260 _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
261 version 2.
263 The information for the post-ev5 architecture extensions BWX, CIX and
264 MAX came from version 3 of this same document, which is also available
265 on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
266 /literature/alphahb2.pdf
268 The information for the EV4 PALcode instructions was compiled from
269 _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
270 Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
271 revision dated June 1994.
273 The information for the EV5 PALcode instructions was compiled from
274 _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
275 Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
277 /* Local insertion and extraction functions */
279 static unsigned insert_rba (unsigned, int, const char **);
280 static unsigned insert_rca (unsigned, int, const char **);
281 static unsigned insert_za (unsigned, int, const char **);
282 static unsigned insert_zb (unsigned, int, const char **);
283 static unsigned insert_zc (unsigned, int, const char **);
284 static unsigned insert_bdisp (unsigned, int, const char **);
285 static unsigned insert_jhint (unsigned, int, const char **);
286 static unsigned insert_ev6hwjhint (unsigned, int, const char **);
288 static int extract_rba (unsigned, int *);
289 static int extract_rca (unsigned, int *);
290 static int extract_za (unsigned, int *);
291 static int extract_zb (unsigned, int *);
292 static int extract_zc (unsigned, int *);
293 static int extract_bdisp (unsigned, int *);
294 static int extract_jhint (unsigned, int *);
295 static int extract_ev6hwjhint (unsigned, int *);
298 /* The operands table */
300 const struct alpha_operand alpha_operands[] =
302 /* The fields are bits, shift, insert, extract, flags */
303 /* The zero index is used to indicate end-of-list */
304 #define UNUSED 0
305 { 0, 0, 0, 0, 0, 0 },
307 /* The plain integer register fields */
308 #define RA (UNUSED + 1)
309 { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
310 #define RB (RA + 1)
311 { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
312 #define RC (RB + 1)
313 { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
315 /* The plain fp register fields */
316 #define FA (RC + 1)
317 { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
318 #define FB (FA + 1)
319 { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
320 #define FC (FB + 1)
321 { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
323 /* The integer registers when they are ZERO */
324 #define ZA (FC + 1)
325 { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
326 #define ZB (ZA + 1)
327 { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
328 #define ZC (ZB + 1)
329 { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
331 /* The RB field when it needs parentheses */
332 #define PRB (ZC + 1)
333 { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
335 /* The RB field when it needs parentheses _and_ a preceding comma */
336 #define CPRB (PRB + 1)
337 { 5, 16, 0,
338 AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
340 /* The RB field when it must be the same as the RA field */
341 #define RBA (CPRB + 1)
342 { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
344 /* The RC field when it must be the same as the RB field */
345 #define RCA (RBA + 1)
346 { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
348 /* The RC field when it can *default* to RA */
349 #define DRC1 (RCA + 1)
350 { 5, 0, 0,
351 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
353 /* The RC field when it can *default* to RB */
354 #define DRC2 (DRC1 + 1)
355 { 5, 0, 0,
356 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
358 /* The FC field when it can *default* to RA */
359 #define DFC1 (DRC2 + 1)
360 { 5, 0, 0,
361 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
363 /* The FC field when it can *default* to RB */
364 #define DFC2 (DFC1 + 1)
365 { 5, 0, 0,
366 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
368 /* The unsigned 8-bit literal of Operate format insns */
369 #define LIT (DFC2 + 1)
370 { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
372 /* The signed 16-bit displacement of Memory format insns. From here
373 we can't tell what relocation should be used, so don't use a default. */
374 #define MDISP (LIT + 1)
375 { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
377 /* The signed "23-bit" aligned displacement of Branch format insns */
378 #define BDISP (MDISP + 1)
379 { 21, 0, BFD_RELOC_23_PCREL_S2,
380 AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
382 /* The 26-bit PALcode function */
383 #define PALFN (BDISP + 1)
384 { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
386 /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
387 #define JMPHINT (PALFN + 1)
388 { 14, 0, BFD_RELOC_ALPHA_HINT,
389 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
390 insert_jhint, extract_jhint },
392 /* The optional hint to RET/JSR_COROUTINE */
393 #define RETHINT (JMPHINT + 1)
394 { 14, 0, -RETHINT,
395 AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
397 /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
398 #define EV4HWDISP (RETHINT + 1)
399 #define EV6HWDISP (EV4HWDISP)
400 { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
402 /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
403 #define EV4HWINDEX (EV4HWDISP + 1)
404 { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406 /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
407 that occur in DEC PALcode. */
408 #define EV4EXTHWINDEX (EV4HWINDEX + 1)
409 { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
411 /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
412 #define EV5HWDISP (EV4EXTHWINDEX + 1)
413 { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
415 /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
416 #define EV5HWINDEX (EV5HWDISP + 1)
417 { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419 /* The 16-bit combined index/scoreboard mask for the ev6
420 hw_m[ft]pr (pal19/pal1d) insns */
421 #define EV6HWINDEX (EV5HWINDEX + 1)
422 { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
424 /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
425 #define EV6HWJMPHINT (EV6HWINDEX+ 1)
426 { 8, 0, -EV6HWJMPHINT,
427 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
428 insert_ev6hwjhint, extract_ev6hwjhint }
431 const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
433 /* The RB field when it is the same as the RA field in the same insn.
434 This operand is marked fake. The insertion function just copies
435 the RA field into the RB field, and the extraction function just
436 checks that the fields are the same. */
438 /*ARGSUSED*/
439 static unsigned
440 insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
442 return insn | (((insn >> 21) & 0x1f) << 16);
445 static int
446 extract_rba(unsigned insn, int *invalid)
448 if (invalid != (int *) NULL
449 && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
450 *invalid = 1;
451 return 0;
455 /* The same for the RC field */
457 /*ARGSUSED*/
458 static unsigned
459 insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
461 return insn | ((insn >> 21) & 0x1f);
464 static int
465 extract_rca(unsigned insn, int *invalid)
467 if (invalid != (int *) NULL
468 && ((insn >> 21) & 0x1f) != (insn & 0x1f))
469 *invalid = 1;
470 return 0;
474 /* Fake arguments in which the registers must be set to ZERO */
476 /*ARGSUSED*/
477 static unsigned
478 insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
480 return insn | (31 << 21);
483 static int
484 extract_za(unsigned insn, int *invalid)
486 if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
487 *invalid = 1;
488 return 0;
491 /*ARGSUSED*/
492 static unsigned
493 insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
495 return insn | (31 << 16);
498 static int
499 extract_zb(unsigned insn, int *invalid)
501 if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
502 *invalid = 1;
503 return 0;
506 /*ARGSUSED*/
507 static unsigned
508 insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
510 return insn | 31;
513 static int
514 extract_zc(unsigned insn, int *invalid)
516 if (invalid != (int *) NULL && (insn & 0x1f) != 31)
517 *invalid = 1;
518 return 0;
522 /* The displacement field of a Branch format insn. */
524 static unsigned
525 insert_bdisp(unsigned insn, int value, const char **errmsg)
527 if (errmsg != (const char **)NULL && (value & 3))
528 *errmsg = _("branch operand unaligned");
529 return insn | ((value / 4) & 0x1FFFFF);
532 /*ARGSUSED*/
533 static int
534 extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
536 return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
540 /* The hint field of a JMP/JSR insn. */
542 static unsigned
543 insert_jhint(unsigned insn, int value, const char **errmsg)
545 if (errmsg != (const char **)NULL && (value & 3))
546 *errmsg = _("jump hint unaligned");
547 return insn | ((value / 4) & 0x3FFF);
550 /*ARGSUSED*/
551 static int
552 extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
554 return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
557 /* The hint field of an EV6 HW_JMP/JSR insn. */
559 static unsigned
560 insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
562 if (errmsg != (const char **)NULL && (value & 3))
563 *errmsg = _("jump hint unaligned");
564 return insn | ((value / 4) & 0x1FFF);
567 /*ARGSUSED*/
568 static int
569 extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
571 return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
575 /* Macros used to form opcodes */
577 /* The main opcode */
578 #define OP(x) (((x) & 0x3F) << 26)
579 #define OP_MASK 0xFC000000
581 /* Branch format instructions */
582 #define BRA_(oo) OP(oo)
583 #define BRA_MASK OP_MASK
584 #define BRA(oo) BRA_(oo), BRA_MASK
586 /* Floating point format instructions */
587 #define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
588 #define FP_MASK (OP_MASK | 0xFFE0)
589 #define FP(oo,fff) FP_(oo,fff), FP_MASK
591 /* Memory format instructions */
592 #define MEM_(oo) OP(oo)
593 #define MEM_MASK OP_MASK
594 #define MEM(oo) MEM_(oo), MEM_MASK
596 /* Memory/Func Code format instructions */
597 #define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
598 #define MFC_MASK (OP_MASK | 0xFFFF)
599 #define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
601 /* Memory/Branch format instructions */
602 #define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
603 #define MBR_MASK (OP_MASK | 0xC000)
604 #define MBR(oo,h) MBR_(oo,h), MBR_MASK
606 /* Operate format instructions. The OPRL variant specifies a
607 literal second argument. */
608 #define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
609 #define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
610 #define OPR_MASK (OP_MASK | 0x1FE0)
611 #define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
612 #define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
614 /* Generic PALcode format instructions */
615 #define PCD_(oo) OP(oo)
616 #define PCD_MASK OP_MASK
617 #define PCD(oo) PCD_(oo), PCD_MASK
619 /* Specific PALcode instructions */
620 #define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
621 #define SPCD_MASK 0xFFFFFFFF
622 #define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
624 /* Hardware memory (hw_{ld,st}) instructions */
625 #define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
626 #define EV4HWMEM_MASK (OP_MASK | 0xF000)
627 #define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
629 #define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
630 #define EV5HWMEM_MASK (OP_MASK | 0xF800)
631 #define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
633 #define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
634 #define EV6HWMEM_MASK (OP_MASK | 0xF000)
635 #define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
637 #define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
638 #define EV6HWMBR_MASK (OP_MASK | 0xE000)
639 #define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
641 /* Abbreviations for instruction subsets. */
642 #define BASE AXP_OPCODE_BASE
643 #define EV4 AXP_OPCODE_EV4
644 #define EV5 AXP_OPCODE_EV5
645 #define EV6 AXP_OPCODE_EV6
646 #define BWX AXP_OPCODE_BWX
647 #define CIX AXP_OPCODE_CIX
648 #define MAX AXP_OPCODE_MAX
650 /* Common combinations of arguments */
651 #define ARG_NONE { 0 }
652 #define ARG_BRA { RA, BDISP }
653 #define ARG_FBRA { FA, BDISP }
654 #define ARG_FP { FA, FB, DFC1 }
655 #define ARG_FPZ1 { ZA, FB, DFC1 }
656 #define ARG_MEM { RA, MDISP, PRB }
657 #define ARG_FMEM { FA, MDISP, PRB }
658 #define ARG_OPR { RA, RB, DRC1 }
659 #define ARG_OPRL { RA, LIT, DRC1 }
660 #define ARG_OPRZ1 { ZA, RB, DRC1 }
661 #define ARG_OPRLZ1 { ZA, LIT, RC }
662 #define ARG_PCD { PALFN }
663 #define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
664 #define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
665 #define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
666 #define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
668 /* The opcode table.
670 The format of the opcode table is:
672 NAME OPCODE MASK { OPERANDS }
674 NAME is the name of the instruction.
676 OPCODE is the instruction opcode.
678 MASK is the opcode mask; this is used to tell the disassembler
679 which bits in the actual opcode must match OPCODE.
681 OPERANDS is the list of operands.
683 The preceding macros merge the text of the OPCODE and MASK fields.
685 The disassembler reads the table in order and prints the first
686 instruction which matches, so this table is sorted to put more
687 specific instructions before more general instructions.
689 Otherwise, it is sorted by major opcode and minor function code.
691 There are three classes of not-really-instructions in this table:
693 ALIAS is another name for another instruction. Some of
694 these come from the Architecture Handbook, some
695 come from the original gas opcode tables. In all
696 cases, the functionality of the opcode is unchanged.
698 PSEUDO a stylized code form endorsed by Chapter A.4 of the
699 Architecture Handbook.
701 EXTRA a stylized code form found in the original gas tables.
703 And two annotations:
705 EV56 BUT opcodes that are officially introduced as of the ev56,
706 but with defined results on previous implementations.
708 EV56 UNA opcodes that were introduced as of the ev56 with
709 presumably undefined results on previous implementations
710 that were not assigned to a particular extension.
713 const struct alpha_opcode alpha_opcodes[] = {
714 { "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
715 { "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
716 { "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
717 { "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
718 { "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
719 { "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
720 { "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
721 { "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
722 { "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
723 { "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
724 { "call_pal", PCD(0x00), BASE, ARG_PCD },
725 { "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
727 { "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
728 { "lda", MEM(0x08), BASE, ARG_MEM },
729 { "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
730 { "ldah", MEM(0x09), BASE, ARG_MEM },
731 { "ldbu", MEM(0x0A), BWX, ARG_MEM },
732 { "unop", MEM_(0x0B) | (30 << 16),
733 MEM_MASK, BASE, { ZA } }, /* pseudo */
734 { "ldq_u", MEM(0x0B), BASE, ARG_MEM },
735 { "ldwu", MEM(0x0C), BWX, ARG_MEM },
736 { "stw", MEM(0x0D), BWX, ARG_MEM },
737 { "stb", MEM(0x0E), BWX, ARG_MEM },
738 { "stq_u", MEM(0x0F), BASE, ARG_MEM },
740 { "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
741 { "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
742 { "addl", OPR(0x10,0x00), BASE, ARG_OPR },
743 { "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
744 { "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
745 { "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
746 { "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
747 { "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
748 { "subl", OPR(0x10,0x09), BASE, ARG_OPR },
749 { "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
750 { "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
751 { "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
752 { "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
753 { "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
754 { "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
755 { "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
756 { "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
757 { "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
758 { "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
759 { "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
760 { "addq", OPR(0x10,0x20), BASE, ARG_OPR },
761 { "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
762 { "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
763 { "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
764 { "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
765 { "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
766 { "subq", OPR(0x10,0x29), BASE, ARG_OPR },
767 { "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
768 { "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
769 { "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
770 { "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
771 { "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
772 { "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
773 { "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
774 { "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
775 { "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
776 { "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
777 { "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
778 { "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
779 { "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
780 { "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
781 { "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
782 { "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
783 { "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
784 { "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
785 { "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
786 { "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
787 { "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
788 { "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
789 { "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
790 { "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
791 { "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
792 { "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
793 { "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
795 { "and", OPR(0x11,0x00), BASE, ARG_OPR },
796 { "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
797 { "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
798 { "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
799 { "bic", OPR(0x11,0x08), BASE, ARG_OPR },
800 { "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
801 { "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
802 { "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
803 { "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
804 { "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
805 { "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
806 { "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
807 { "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
808 { "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
809 { "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
810 { "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
811 { "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
812 { "bis", OPR(0x11,0x20), BASE, ARG_OPR },
813 { "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
814 { "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
815 { "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
816 { "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
817 { "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
818 { "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
819 { "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
820 { "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
821 { "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
822 { "xor", OPR(0x11,0x40), BASE, ARG_OPR },
823 { "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
824 { "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
825 { "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
826 { "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
827 { "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
828 { "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
829 { "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
830 { "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
831 { "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
832 { "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
833 { "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
834 { "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
835 { "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
836 { "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
837 { "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
838 { "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
839 0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
841 { "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
842 { "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
843 { "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
844 { "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
845 { "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
846 { "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
847 { "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
848 { "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
849 { "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
850 { "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
851 { "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
852 { "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
853 { "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
854 { "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
855 { "extll", OPR(0x12,0x26), BASE, ARG_OPR },
856 { "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
857 { "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
858 { "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
859 { "zap", OPR(0x12,0x30), BASE, ARG_OPR },
860 { "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
861 { "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
862 { "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
863 { "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
864 { "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
865 { "srl", OPR(0x12,0x34), BASE, ARG_OPR },
866 { "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
867 { "extql", OPR(0x12,0x36), BASE, ARG_OPR },
868 { "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
869 { "sll", OPR(0x12,0x39), BASE, ARG_OPR },
870 { "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
871 { "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
872 { "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
873 { "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
874 { "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
875 { "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
876 { "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
877 { "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
878 { "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
879 { "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
880 { "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
881 { "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
882 { "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
883 { "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
884 { "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
885 { "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
886 { "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
887 { "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
888 { "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
889 { "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
890 { "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
891 { "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
892 { "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
894 { "mull", OPR(0x13,0x00), BASE, ARG_OPR },
895 { "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
896 { "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
897 { "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
898 { "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
899 { "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
900 { "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
901 { "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
902 { "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
903 { "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
905 { "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
906 { "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
907 { "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
908 { "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
909 { "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
910 { "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
911 { "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
912 { "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
913 { "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
914 { "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
915 { "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
916 { "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
917 { "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
918 { "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
919 { "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
920 { "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
921 { "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
922 { "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
923 { "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
924 { "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
925 { "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
926 { "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
927 { "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
928 { "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
929 { "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
930 { "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
931 { "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
932 { "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
933 { "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
934 { "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
935 { "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
936 { "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
937 { "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
938 { "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
939 { "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
940 { "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
941 { "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
942 { "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
943 { "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
944 { "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
945 { "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
946 { "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
947 { "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
948 { "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
949 { "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
950 { "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
951 { "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
952 { "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
953 { "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
954 { "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
955 { "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
957 { "addf/c", FP(0x15,0x000), BASE, ARG_FP },
958 { "subf/c", FP(0x15,0x001), BASE, ARG_FP },
959 { "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
960 { "divf/c", FP(0x15,0x003), BASE, ARG_FP },
961 { "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
962 { "addg/c", FP(0x15,0x020), BASE, ARG_FP },
963 { "subg/c", FP(0x15,0x021), BASE, ARG_FP },
964 { "mulg/c", FP(0x15,0x022), BASE, ARG_FP },
965 { "divg/c", FP(0x15,0x023), BASE, ARG_FP },
966 { "cvtgf/c", FP(0x15,0x02C), BASE, ARG_FPZ1 },
967 { "cvtgd/c", FP(0x15,0x02D), BASE, ARG_FPZ1 },
968 { "cvtgq/c", FP(0x15,0x02F), BASE, ARG_FPZ1 },
969 { "cvtqf/c", FP(0x15,0x03C), BASE, ARG_FPZ1 },
970 { "cvtqg/c", FP(0x15,0x03E), BASE, ARG_FPZ1 },
971 { "addf", FP(0x15,0x080), BASE, ARG_FP },
972 { "negf", FP(0x15,0x081), BASE, ARG_FPZ1 }, /* pseudo */
973 { "subf", FP(0x15,0x081), BASE, ARG_FP },
974 { "mulf", FP(0x15,0x082), BASE, ARG_FP },
975 { "divf", FP(0x15,0x083), BASE, ARG_FP },
976 { "cvtdg", FP(0x15,0x09E), BASE, ARG_FPZ1 },
977 { "addg", FP(0x15,0x0A0), BASE, ARG_FP },
978 { "negg", FP(0x15,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
979 { "subg", FP(0x15,0x0A1), BASE, ARG_FP },
980 { "mulg", FP(0x15,0x0A2), BASE, ARG_FP },
981 { "divg", FP(0x15,0x0A3), BASE, ARG_FP },
982 { "cmpgeq", FP(0x15,0x0A5), BASE, ARG_FP },
983 { "cmpglt", FP(0x15,0x0A6), BASE, ARG_FP },
984 { "cmpgle", FP(0x15,0x0A7), BASE, ARG_FP },
985 { "cvtgf", FP(0x15,0x0AC), BASE, ARG_FPZ1 },
986 { "cvtgd", FP(0x15,0x0AD), BASE, ARG_FPZ1 },
987 { "cvtgq", FP(0x15,0x0AF), BASE, ARG_FPZ1 },
988 { "cvtqf", FP(0x15,0x0BC), BASE, ARG_FPZ1 },
989 { "cvtqg", FP(0x15,0x0BE), BASE, ARG_FPZ1 },
990 { "addf/uc", FP(0x15,0x100), BASE, ARG_FP },
991 { "subf/uc", FP(0x15,0x101), BASE, ARG_FP },
992 { "mulf/uc", FP(0x15,0x102), BASE, ARG_FP },
993 { "divf/uc", FP(0x15,0x103), BASE, ARG_FP },
994 { "cvtdg/uc", FP(0x15,0x11E), BASE, ARG_FPZ1 },
995 { "addg/uc", FP(0x15,0x120), BASE, ARG_FP },
996 { "subg/uc", FP(0x15,0x121), BASE, ARG_FP },
997 { "mulg/uc", FP(0x15,0x122), BASE, ARG_FP },
998 { "divg/uc", FP(0x15,0x123), BASE, ARG_FP },
999 { "cvtgf/uc", FP(0x15,0x12C), BASE, ARG_FPZ1 },
1000 { "cvtgd/uc", FP(0x15,0x12D), BASE, ARG_FPZ1 },
1001 { "cvtgq/vc", FP(0x15,0x12F), BASE, ARG_FPZ1 },
1002 { "addf/u", FP(0x15,0x180), BASE, ARG_FP },
1003 { "subf/u", FP(0x15,0x181), BASE, ARG_FP },
1004 { "mulf/u", FP(0x15,0x182), BASE, ARG_FP },
1005 { "divf/u", FP(0x15,0x183), BASE, ARG_FP },
1006 { "cvtdg/u", FP(0x15,0x19E), BASE, ARG_FPZ1 },
1007 { "addg/u", FP(0x15,0x1A0), BASE, ARG_FP },
1008 { "subg/u", FP(0x15,0x1A1), BASE, ARG_FP },
1009 { "mulg/u", FP(0x15,0x1A2), BASE, ARG_FP },
1010 { "divg/u", FP(0x15,0x1A3), BASE, ARG_FP },
1011 { "cvtgf/u", FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1012 { "cvtgd/u", FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1013 { "cvtgq/v", FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1014 { "addf/sc", FP(0x15,0x400), BASE, ARG_FP },
1015 { "subf/sc", FP(0x15,0x401), BASE, ARG_FP },
1016 { "mulf/sc", FP(0x15,0x402), BASE, ARG_FP },
1017 { "divf/sc", FP(0x15,0x403), BASE, ARG_FP },
1018 { "cvtdg/sc", FP(0x15,0x41E), BASE, ARG_FPZ1 },
1019 { "addg/sc", FP(0x15,0x420), BASE, ARG_FP },
1020 { "subg/sc", FP(0x15,0x421), BASE, ARG_FP },
1021 { "mulg/sc", FP(0x15,0x422), BASE, ARG_FP },
1022 { "divg/sc", FP(0x15,0x423), BASE, ARG_FP },
1023 { "cvtgf/sc", FP(0x15,0x42C), BASE, ARG_FPZ1 },
1024 { "cvtgd/sc", FP(0x15,0x42D), BASE, ARG_FPZ1 },
1025 { "cvtgq/sc", FP(0x15,0x42F), BASE, ARG_FPZ1 },
1026 { "addf/s", FP(0x15,0x480), BASE, ARG_FP },
1027 { "negf/s", FP(0x15,0x481), BASE, ARG_FPZ1 }, /* pseudo */
1028 { "subf/s", FP(0x15,0x481), BASE, ARG_FP },
1029 { "mulf/s", FP(0x15,0x482), BASE, ARG_FP },
1030 { "divf/s", FP(0x15,0x483), BASE, ARG_FP },
1031 { "cvtdg/s", FP(0x15,0x49E), BASE, ARG_FPZ1 },
1032 { "addg/s", FP(0x15,0x4A0), BASE, ARG_FP },
1033 { "negg/s", FP(0x15,0x4A1), BASE, ARG_FPZ1 }, /* pseudo */
1034 { "subg/s", FP(0x15,0x4A1), BASE, ARG_FP },
1035 { "mulg/s", FP(0x15,0x4A2), BASE, ARG_FP },
1036 { "divg/s", FP(0x15,0x4A3), BASE, ARG_FP },
1037 { "cmpgeq/s", FP(0x15,0x4A5), BASE, ARG_FP },
1038 { "cmpglt/s", FP(0x15,0x4A6), BASE, ARG_FP },
1039 { "cmpgle/s", FP(0x15,0x4A7), BASE, ARG_FP },
1040 { "cvtgf/s", FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1041 { "cvtgd/s", FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1042 { "cvtgq/s", FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1043 { "addf/suc", FP(0x15,0x500), BASE, ARG_FP },
1044 { "subf/suc", FP(0x15,0x501), BASE, ARG_FP },
1045 { "mulf/suc", FP(0x15,0x502), BASE, ARG_FP },
1046 { "divf/suc", FP(0x15,0x503), BASE, ARG_FP },
1047 { "cvtdg/suc", FP(0x15,0x51E), BASE, ARG_FPZ1 },
1048 { "addg/suc", FP(0x15,0x520), BASE, ARG_FP },
1049 { "subg/suc", FP(0x15,0x521), BASE, ARG_FP },
1050 { "mulg/suc", FP(0x15,0x522), BASE, ARG_FP },
1051 { "divg/suc", FP(0x15,0x523), BASE, ARG_FP },
1052 { "cvtgf/suc", FP(0x15,0x52C), BASE, ARG_FPZ1 },
1053 { "cvtgd/suc", FP(0x15,0x52D), BASE, ARG_FPZ1 },
1054 { "cvtgq/svc", FP(0x15,0x52F), BASE, ARG_FPZ1 },
1055 { "addf/su", FP(0x15,0x580), BASE, ARG_FP },
1056 { "subf/su", FP(0x15,0x581), BASE, ARG_FP },
1057 { "mulf/su", FP(0x15,0x582), BASE, ARG_FP },
1058 { "divf/su", FP(0x15,0x583), BASE, ARG_FP },
1059 { "cvtdg/su", FP(0x15,0x59E), BASE, ARG_FPZ1 },
1060 { "addg/su", FP(0x15,0x5A0), BASE, ARG_FP },
1061 { "subg/su", FP(0x15,0x5A1), BASE, ARG_FP },
1062 { "mulg/su", FP(0x15,0x5A2), BASE, ARG_FP },
1063 { "divg/su", FP(0x15,0x5A3), BASE, ARG_FP },
1064 { "cvtgf/su", FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1065 { "cvtgd/su", FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1066 { "cvtgq/sv", FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1068 { "adds/c", FP(0x16,0x000), BASE, ARG_FP },
1069 { "subs/c", FP(0x16,0x001), BASE, ARG_FP },
1070 { "muls/c", FP(0x16,0x002), BASE, ARG_FP },
1071 { "divs/c", FP(0x16,0x003), BASE, ARG_FP },
1072 { "addt/c", FP(0x16,0x020), BASE, ARG_FP },
1073 { "subt/c", FP(0x16,0x021), BASE, ARG_FP },
1074 { "mult/c", FP(0x16,0x022), BASE, ARG_FP },
1075 { "divt/c", FP(0x16,0x023), BASE, ARG_FP },
1076 { "cvtts/c", FP(0x16,0x02C), BASE, ARG_FPZ1 },
1077 { "cvttq/c", FP(0x16,0x02F), BASE, ARG_FPZ1 },
1078 { "cvtqs/c", FP(0x16,0x03C), BASE, ARG_FPZ1 },
1079 { "cvtqt/c", FP(0x16,0x03E), BASE, ARG_FPZ1 },
1080 { "adds/m", FP(0x16,0x040), BASE, ARG_FP },
1081 { "subs/m", FP(0x16,0x041), BASE, ARG_FP },
1082 { "muls/m", FP(0x16,0x042), BASE, ARG_FP },
1083 { "divs/m", FP(0x16,0x043), BASE, ARG_FP },
1084 { "addt/m", FP(0x16,0x060), BASE, ARG_FP },
1085 { "subt/m", FP(0x16,0x061), BASE, ARG_FP },
1086 { "mult/m", FP(0x16,0x062), BASE, ARG_FP },
1087 { "divt/m", FP(0x16,0x063), BASE, ARG_FP },
1088 { "cvtts/m", FP(0x16,0x06C), BASE, ARG_FPZ1 },
1089 { "cvttq/m", FP(0x16,0x06F), BASE, ARG_FPZ1 },
1090 { "cvtqs/m", FP(0x16,0x07C), BASE, ARG_FPZ1 },
1091 { "cvtqt/m", FP(0x16,0x07E), BASE, ARG_FPZ1 },
1092 { "adds", FP(0x16,0x080), BASE, ARG_FP },
1093 { "negs", FP(0x16,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1094 { "subs", FP(0x16,0x081), BASE, ARG_FP },
1095 { "muls", FP(0x16,0x082), BASE, ARG_FP },
1096 { "divs", FP(0x16,0x083), BASE, ARG_FP },
1097 { "addt", FP(0x16,0x0A0), BASE, ARG_FP },
1098 { "negt", FP(0x16,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1099 { "subt", FP(0x16,0x0A1), BASE, ARG_FP },
1100 { "mult", FP(0x16,0x0A2), BASE, ARG_FP },
1101 { "divt", FP(0x16,0x0A3), BASE, ARG_FP },
1102 { "cmptun", FP(0x16,0x0A4), BASE, ARG_FP },
1103 { "cmpteq", FP(0x16,0x0A5), BASE, ARG_FP },
1104 { "cmptlt", FP(0x16,0x0A6), BASE, ARG_FP },
1105 { "cmptle", FP(0x16,0x0A7), BASE, ARG_FP },
1106 { "cvtts", FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1107 { "cvttq", FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1108 { "cvtqs", FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1109 { "cvtqt", FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1110 { "adds/d", FP(0x16,0x0C0), BASE, ARG_FP },
1111 { "subs/d", FP(0x16,0x0C1), BASE, ARG_FP },
1112 { "muls/d", FP(0x16,0x0C2), BASE, ARG_FP },
1113 { "divs/d", FP(0x16,0x0C3), BASE, ARG_FP },
1114 { "addt/d", FP(0x16,0x0E0), BASE, ARG_FP },
1115 { "subt/d", FP(0x16,0x0E1), BASE, ARG_FP },
1116 { "mult/d", FP(0x16,0x0E2), BASE, ARG_FP },
1117 { "divt/d", FP(0x16,0x0E3), BASE, ARG_FP },
1118 { "cvtts/d", FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1119 { "cvttq/d", FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1120 { "cvtqs/d", FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1121 { "cvtqt/d", FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1122 { "adds/uc", FP(0x16,0x100), BASE, ARG_FP },
1123 { "subs/uc", FP(0x16,0x101), BASE, ARG_FP },
1124 { "muls/uc", FP(0x16,0x102), BASE, ARG_FP },
1125 { "divs/uc", FP(0x16,0x103), BASE, ARG_FP },
1126 { "addt/uc", FP(0x16,0x120), BASE, ARG_FP },
1127 { "subt/uc", FP(0x16,0x121), BASE, ARG_FP },
1128 { "mult/uc", FP(0x16,0x122), BASE, ARG_FP },
1129 { "divt/uc", FP(0x16,0x123), BASE, ARG_FP },
1130 { "cvtts/uc", FP(0x16,0x12C), BASE, ARG_FPZ1 },
1131 { "cvttq/vc", FP(0x16,0x12F), BASE, ARG_FPZ1 },
1132 { "adds/um", FP(0x16,0x140), BASE, ARG_FP },
1133 { "subs/um", FP(0x16,0x141), BASE, ARG_FP },
1134 { "muls/um", FP(0x16,0x142), BASE, ARG_FP },
1135 { "divs/um", FP(0x16,0x143), BASE, ARG_FP },
1136 { "addt/um", FP(0x16,0x160), BASE, ARG_FP },
1137 { "subt/um", FP(0x16,0x161), BASE, ARG_FP },
1138 { "mult/um", FP(0x16,0x162), BASE, ARG_FP },
1139 { "divt/um", FP(0x16,0x163), BASE, ARG_FP },
1140 { "cvtts/um", FP(0x16,0x16C), BASE, ARG_FPZ1 },
1141 { "cvttq/vm", FP(0x16,0x16F), BASE, ARG_FPZ1 },
1142 { "adds/u", FP(0x16,0x180), BASE, ARG_FP },
1143 { "subs/u", FP(0x16,0x181), BASE, ARG_FP },
1144 { "muls/u", FP(0x16,0x182), BASE, ARG_FP },
1145 { "divs/u", FP(0x16,0x183), BASE, ARG_FP },
1146 { "addt/u", FP(0x16,0x1A0), BASE, ARG_FP },
1147 { "subt/u", FP(0x16,0x1A1), BASE, ARG_FP },
1148 { "mult/u", FP(0x16,0x1A2), BASE, ARG_FP },
1149 { "divt/u", FP(0x16,0x1A3), BASE, ARG_FP },
1150 { "cvtts/u", FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1151 { "cvttq/v", FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1152 { "adds/ud", FP(0x16,0x1C0), BASE, ARG_FP },
1153 { "subs/ud", FP(0x16,0x1C1), BASE, ARG_FP },
1154 { "muls/ud", FP(0x16,0x1C2), BASE, ARG_FP },
1155 { "divs/ud", FP(0x16,0x1C3), BASE, ARG_FP },
1156 { "addt/ud", FP(0x16,0x1E0), BASE, ARG_FP },
1157 { "subt/ud", FP(0x16,0x1E1), BASE, ARG_FP },
1158 { "mult/ud", FP(0x16,0x1E2), BASE, ARG_FP },
1159 { "divt/ud", FP(0x16,0x1E3), BASE, ARG_FP },
1160 { "cvtts/ud", FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1161 { "cvttq/vd", FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1162 { "cvtst", FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1163 { "adds/suc", FP(0x16,0x500), BASE, ARG_FP },
1164 { "subs/suc", FP(0x16,0x501), BASE, ARG_FP },
1165 { "muls/suc", FP(0x16,0x502), BASE, ARG_FP },
1166 { "divs/suc", FP(0x16,0x503), BASE, ARG_FP },
1167 { "addt/suc", FP(0x16,0x520), BASE, ARG_FP },
1168 { "subt/suc", FP(0x16,0x521), BASE, ARG_FP },
1169 { "mult/suc", FP(0x16,0x522), BASE, ARG_FP },
1170 { "divt/suc", FP(0x16,0x523), BASE, ARG_FP },
1171 { "cvtts/suc", FP(0x16,0x52C), BASE, ARG_FPZ1 },
1172 { "cvttq/svc", FP(0x16,0x52F), BASE, ARG_FPZ1 },
1173 { "adds/sum", FP(0x16,0x540), BASE, ARG_FP },
1174 { "subs/sum", FP(0x16,0x541), BASE, ARG_FP },
1175 { "muls/sum", FP(0x16,0x542), BASE, ARG_FP },
1176 { "divs/sum", FP(0x16,0x543), BASE, ARG_FP },
1177 { "addt/sum", FP(0x16,0x560), BASE, ARG_FP },
1178 { "subt/sum", FP(0x16,0x561), BASE, ARG_FP },
1179 { "mult/sum", FP(0x16,0x562), BASE, ARG_FP },
1180 { "divt/sum", FP(0x16,0x563), BASE, ARG_FP },
1181 { "cvtts/sum", FP(0x16,0x56C), BASE, ARG_FPZ1 },
1182 { "cvttq/svm", FP(0x16,0x56F), BASE, ARG_FPZ1 },
1183 { "adds/su", FP(0x16,0x580), BASE, ARG_FP },
1184 { "negs/su", FP(0x16,0x581), BASE, ARG_FPZ1 }, /* pseudo */
1185 { "subs/su", FP(0x16,0x581), BASE, ARG_FP },
1186 { "muls/su", FP(0x16,0x582), BASE, ARG_FP },
1187 { "divs/su", FP(0x16,0x583), BASE, ARG_FP },
1188 { "addt/su", FP(0x16,0x5A0), BASE, ARG_FP },
1189 { "negt/su", FP(0x16,0x5A1), BASE, ARG_FPZ1 }, /* pseudo */
1190 { "subt/su", FP(0x16,0x5A1), BASE, ARG_FP },
1191 { "mult/su", FP(0x16,0x5A2), BASE, ARG_FP },
1192 { "divt/su", FP(0x16,0x5A3), BASE, ARG_FP },
1193 { "cmptun/su", FP(0x16,0x5A4), BASE, ARG_FP },
1194 { "cmpteq/su", FP(0x16,0x5A5), BASE, ARG_FP },
1195 { "cmptlt/su", FP(0x16,0x5A6), BASE, ARG_FP },
1196 { "cmptle/su", FP(0x16,0x5A7), BASE, ARG_FP },
1197 { "cvtts/su", FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1198 { "cvttq/sv", FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1199 { "adds/sud", FP(0x16,0x5C0), BASE, ARG_FP },
1200 { "subs/sud", FP(0x16,0x5C1), BASE, ARG_FP },
1201 { "muls/sud", FP(0x16,0x5C2), BASE, ARG_FP },
1202 { "divs/sud", FP(0x16,0x5C3), BASE, ARG_FP },
1203 { "addt/sud", FP(0x16,0x5E0), BASE, ARG_FP },
1204 { "subt/sud", FP(0x16,0x5E1), BASE, ARG_FP },
1205 { "mult/sud", FP(0x16,0x5E2), BASE, ARG_FP },
1206 { "divt/sud", FP(0x16,0x5E3), BASE, ARG_FP },
1207 { "cvtts/sud", FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1208 { "cvttq/svd", FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1209 { "cvtst/s", FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1210 { "adds/suic", FP(0x16,0x700), BASE, ARG_FP },
1211 { "subs/suic", FP(0x16,0x701), BASE, ARG_FP },
1212 { "muls/suic", FP(0x16,0x702), BASE, ARG_FP },
1213 { "divs/suic", FP(0x16,0x703), BASE, ARG_FP },
1214 { "addt/suic", FP(0x16,0x720), BASE, ARG_FP },
1215 { "subt/suic", FP(0x16,0x721), BASE, ARG_FP },
1216 { "mult/suic", FP(0x16,0x722), BASE, ARG_FP },
1217 { "divt/suic", FP(0x16,0x723), BASE, ARG_FP },
1218 { "cvtts/suic", FP(0x16,0x72C), BASE, ARG_FPZ1 },
1219 { "cvttq/svic", FP(0x16,0x72F), BASE, ARG_FPZ1 },
1220 { "cvtqs/suic", FP(0x16,0x73C), BASE, ARG_FPZ1 },
1221 { "cvtqt/suic", FP(0x16,0x73E), BASE, ARG_FPZ1 },
1222 { "adds/suim", FP(0x16,0x740), BASE, ARG_FP },
1223 { "subs/suim", FP(0x16,0x741), BASE, ARG_FP },
1224 { "muls/suim", FP(0x16,0x742), BASE, ARG_FP },
1225 { "divs/suim", FP(0x16,0x743), BASE, ARG_FP },
1226 { "addt/suim", FP(0x16,0x760), BASE, ARG_FP },
1227 { "subt/suim", FP(0x16,0x761), BASE, ARG_FP },
1228 { "mult/suim", FP(0x16,0x762), BASE, ARG_FP },
1229 { "divt/suim", FP(0x16,0x763), BASE, ARG_FP },
1230 { "cvtts/suim", FP(0x16,0x76C), BASE, ARG_FPZ1 },
1231 { "cvttq/svim", FP(0x16,0x76F), BASE, ARG_FPZ1 },
1232 { "cvtqs/suim", FP(0x16,0x77C), BASE, ARG_FPZ1 },
1233 { "cvtqt/suim", FP(0x16,0x77E), BASE, ARG_FPZ1 },
1234 { "adds/sui", FP(0x16,0x780), BASE, ARG_FP },
1235 { "negs/sui", FP(0x16,0x781), BASE, ARG_FPZ1 }, /* pseudo */
1236 { "subs/sui", FP(0x16,0x781), BASE, ARG_FP },
1237 { "muls/sui", FP(0x16,0x782), BASE, ARG_FP },
1238 { "divs/sui", FP(0x16,0x783), BASE, ARG_FP },
1239 { "addt/sui", FP(0x16,0x7A0), BASE, ARG_FP },
1240 { "negt/sui", FP(0x16,0x7A1), BASE, ARG_FPZ1 }, /* pseudo */
1241 { "subt/sui", FP(0x16,0x7A1), BASE, ARG_FP },
1242 { "mult/sui", FP(0x16,0x7A2), BASE, ARG_FP },
1243 { "divt/sui", FP(0x16,0x7A3), BASE, ARG_FP },
1244 { "cvtts/sui", FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1245 { "cvttq/svi", FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1246 { "cvtqs/sui", FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1247 { "cvtqt/sui", FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1248 { "adds/suid", FP(0x16,0x7C0), BASE, ARG_FP },
1249 { "subs/suid", FP(0x16,0x7C1), BASE, ARG_FP },
1250 { "muls/suid", FP(0x16,0x7C2), BASE, ARG_FP },
1251 { "divs/suid", FP(0x16,0x7C3), BASE, ARG_FP },
1252 { "addt/suid", FP(0x16,0x7E0), BASE, ARG_FP },
1253 { "subt/suid", FP(0x16,0x7E1), BASE, ARG_FP },
1254 { "mult/suid", FP(0x16,0x7E2), BASE, ARG_FP },
1255 { "divt/suid", FP(0x16,0x7E3), BASE, ARG_FP },
1256 { "cvtts/suid", FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1257 { "cvttq/svid", FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1258 { "cvtqs/suid", FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1259 { "cvtqt/suid", FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1261 { "cvtlq", FP(0x17,0x010), BASE, ARG_FPZ1 },
1262 { "fnop", FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1263 { "fclr", FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1264 { "fabs", FP(0x17,0x020), BASE, ARG_FPZ1 }, /* pseudo */
1265 { "fmov", FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1266 { "cpys", FP(0x17,0x020), BASE, ARG_FP },
1267 { "fneg", FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1268 { "cpysn", FP(0x17,0x021), BASE, ARG_FP },
1269 { "cpyse", FP(0x17,0x022), BASE, ARG_FP },
1270 { "mt_fpcr", FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1271 { "mf_fpcr", FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1272 { "fcmoveq", FP(0x17,0x02A), BASE, ARG_FP },
1273 { "fcmovne", FP(0x17,0x02B), BASE, ARG_FP },
1274 { "fcmovlt", FP(0x17,0x02C), BASE, ARG_FP },
1275 { "fcmovge", FP(0x17,0x02D), BASE, ARG_FP },
1276 { "fcmovle", FP(0x17,0x02E), BASE, ARG_FP },
1277 { "fcmovgt", FP(0x17,0x02F), BASE, ARG_FP },
1278 { "cvtql", FP(0x17,0x030), BASE, ARG_FPZ1 },
1279 { "cvtql/v", FP(0x17,0x130), BASE, ARG_FPZ1 },
1280 { "cvtql/sv", FP(0x17,0x530), BASE, ARG_FPZ1 },
1282 { "trapb", MFC(0x18,0x0000), BASE, ARG_NONE },
1283 { "draint", MFC(0x18,0x0000), BASE, ARG_NONE }, /* alias */
1284 { "excb", MFC(0x18,0x0400), BASE, ARG_NONE },
1285 { "mb", MFC(0x18,0x4000), BASE, ARG_NONE },
1286 { "wmb", MFC(0x18,0x4400), BASE, ARG_NONE },
1287 { "fetch", MFC(0x18,0x8000), BASE, { ZA, PRB } },
1288 { "fetch_m", MFC(0x18,0xA000), BASE, { ZA, PRB } },
1289 { "rpcc", MFC(0x18,0xC000), BASE, { RA } },
1290 { "rc", MFC(0x18,0xE000), BASE, { RA } },
1291 { "ecb", MFC(0x18,0xE800), BASE, { ZA, PRB } }, /* ev56 una */
1292 { "rs", MFC(0x18,0xF000), BASE, { RA } },
1293 { "wh64", MFC(0x18,0xF800), BASE, { ZA, PRB } }, /* ev56 una */
1294 { "wh64en", MFC(0x18,0xFC00), BASE, { ZA, PRB } }, /* ev7 una */
1296 { "hw_mfpr", OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1297 { "hw_mfpr", OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1298 { "hw_mfpr", OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1299 { "hw_mfpr/i", OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1300 { "hw_mfpr/a", OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1301 { "hw_mfpr/ai", OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1302 { "hw_mfpr/p", OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1303 { "hw_mfpr/pi", OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1304 { "hw_mfpr/pa", OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1305 { "hw_mfpr/pai", OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1306 { "pal19", PCD(0x19), BASE, ARG_PCD },
1308 { "jmp", MBR_(0x1A,0), MBR_MASK | 0x3FFF, /* pseudo */
1309 BASE, { ZA, CPRB } },
1310 { "jmp", MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1311 { "jsr", MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1312 { "ret", MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1313 0xFFFFFFFF, BASE, { 0 } },
1314 { "ret", MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1315 { "jcr", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1316 { "jsr_coroutine", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1318 { "hw_ldl", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1319 { "hw_ldl", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1320 { "hw_ldl", EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1321 { "hw_ldl/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1322 { "hw_ldl/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1323 { "hw_ldl/a", EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1324 { "hw_ldl/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1325 { "hw_ldl/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1326 { "hw_ldl/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1327 { "hw_ldl/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1328 { "hw_ldl/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1329 { "hw_ldl/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1330 { "hw_ldl/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1331 { "hw_ldl/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1332 { "hw_ldl/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1333 { "hw_ldl/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1334 { "hw_ldl/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1335 { "hw_ldl/p", EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1336 { "hw_ldl/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1337 { "hw_ldl/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1338 { "hw_ldl/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1339 { "hw_ldl/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1340 { "hw_ldl/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1341 { "hw_ldl/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1342 { "hw_ldl/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1343 { "hw_ldl/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1344 { "hw_ldl/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1345 { "hw_ldl/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1346 { "hw_ldl/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1347 { "hw_ldl/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1348 { "hw_ldl/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1349 { "hw_ldl/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1350 { "hw_ldl/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1351 { "hw_ldl/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1352 { "hw_ldl/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1353 { "hw_ldl/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1354 { "hw_ldl/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1355 { "hw_ldl/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1356 { "hw_ldl/v", EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1357 { "hw_ldl/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1358 { "hw_ldl/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1359 { "hw_ldl/w", EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1360 { "hw_ldl/wa", EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1361 { "hw_ldl/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1362 { "hw_ldl/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1363 { "hw_ldl/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1364 { "hw_ldl_l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1365 { "hw_ldl_l/a", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1366 { "hw_ldl_l/av", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1367 { "hw_ldl_l/aw", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1368 { "hw_ldl_l/awv", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1369 { "hw_ldl_l/p", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1370 { "hw_ldl_l/p", EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1371 { "hw_ldl_l/pa", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1372 { "hw_ldl_l/pav", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1373 { "hw_ldl_l/paw", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1374 { "hw_ldl_l/pawv", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1375 { "hw_ldl_l/pv", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1376 { "hw_ldl_l/pw", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1377 { "hw_ldl_l/pwv", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1378 { "hw_ldl_l/v", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1379 { "hw_ldl_l/w", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1380 { "hw_ldl_l/wv", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1381 { "hw_ldq", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1382 { "hw_ldq", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1383 { "hw_ldq", EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1384 { "hw_ldq/a", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1385 { "hw_ldq/a", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1386 { "hw_ldq/a", EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1387 { "hw_ldq/al", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1388 { "hw_ldq/ar", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1389 { "hw_ldq/av", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1390 { "hw_ldq/avl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1391 { "hw_ldq/aw", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1392 { "hw_ldq/awl", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1393 { "hw_ldq/awv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1394 { "hw_ldq/awvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1395 { "hw_ldq/l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1396 { "hw_ldq/p", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1397 { "hw_ldq/p", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1398 { "hw_ldq/p", EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1399 { "hw_ldq/pa", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1400 { "hw_ldq/pa", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1401 { "hw_ldq/pal", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1402 { "hw_ldq/par", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1403 { "hw_ldq/pav", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1404 { "hw_ldq/pavl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1405 { "hw_ldq/paw", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1406 { "hw_ldq/pawl", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1407 { "hw_ldq/pawv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1408 { "hw_ldq/pawvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1409 { "hw_ldq/pl", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1410 { "hw_ldq/pr", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1411 { "hw_ldq/pv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1412 { "hw_ldq/pvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1413 { "hw_ldq/pw", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1414 { "hw_ldq/pwl", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1415 { "hw_ldq/pwv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1416 { "hw_ldq/pwvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1417 { "hw_ldq/r", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1418 { "hw_ldq/v", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1419 { "hw_ldq/v", EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1420 { "hw_ldq/vl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1421 { "hw_ldq/w", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1422 { "hw_ldq/w", EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1423 { "hw_ldq/wa", EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1424 { "hw_ldq/wl", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1425 { "hw_ldq/wv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1426 { "hw_ldq/wvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1427 { "hw_ldq_l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1428 { "hw_ldq_l/a", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1429 { "hw_ldq_l/av", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1430 { "hw_ldq_l/aw", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1431 { "hw_ldq_l/awv", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1432 { "hw_ldq_l/p", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1433 { "hw_ldq_l/p", EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1434 { "hw_ldq_l/pa", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1435 { "hw_ldq_l/pav", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1436 { "hw_ldq_l/paw", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1437 { "hw_ldq_l/pawv", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1438 { "hw_ldq_l/pv", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1439 { "hw_ldq_l/pw", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1440 { "hw_ldq_l/pwv", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1441 { "hw_ldq_l/v", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1442 { "hw_ldq_l/w", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1443 { "hw_ldq_l/wv", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1444 { "hw_ld", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1445 { "hw_ld", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1446 { "hw_ld/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1447 { "hw_ld/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1448 { "hw_ld/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1449 { "hw_ld/aq", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1450 { "hw_ld/aq", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1451 { "hw_ld/aql", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1452 { "hw_ld/aqv", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1453 { "hw_ld/aqvl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1454 { "hw_ld/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1455 { "hw_ld/arq", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1456 { "hw_ld/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1457 { "hw_ld/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1458 { "hw_ld/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1459 { "hw_ld/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1460 { "hw_ld/awq", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1461 { "hw_ld/awql", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1462 { "hw_ld/awqv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1463 { "hw_ld/awqvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1464 { "hw_ld/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1465 { "hw_ld/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1466 { "hw_ld/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1467 { "hw_ld/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1468 { "hw_ld/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1469 { "hw_ld/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1470 { "hw_ld/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1471 { "hw_ld/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1472 { "hw_ld/paq", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1473 { "hw_ld/paq", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1474 { "hw_ld/paql", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1475 { "hw_ld/paqv", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1476 { "hw_ld/paqvl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1477 { "hw_ld/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1478 { "hw_ld/parq", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1479 { "hw_ld/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1480 { "hw_ld/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1481 { "hw_ld/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1482 { "hw_ld/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1483 { "hw_ld/pawq", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1484 { "hw_ld/pawql", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1485 { "hw_ld/pawqv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1486 { "hw_ld/pawqvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1487 { "hw_ld/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1488 { "hw_ld/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1489 { "hw_ld/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1490 { "hw_ld/pq", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1491 { "hw_ld/pq", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1492 { "hw_ld/pql", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1493 { "hw_ld/pqv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1494 { "hw_ld/pqvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1495 { "hw_ld/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1496 { "hw_ld/prq", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1497 { "hw_ld/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1498 { "hw_ld/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1499 { "hw_ld/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1500 { "hw_ld/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1501 { "hw_ld/pwq", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1502 { "hw_ld/pwql", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1503 { "hw_ld/pwqv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1504 { "hw_ld/pwqvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1505 { "hw_ld/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1506 { "hw_ld/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1507 { "hw_ld/q", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1508 { "hw_ld/q", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1509 { "hw_ld/ql", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1510 { "hw_ld/qv", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1511 { "hw_ld/qvl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1512 { "hw_ld/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1513 { "hw_ld/rq", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1514 { "hw_ld/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1515 { "hw_ld/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1516 { "hw_ld/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1517 { "hw_ld/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1518 { "hw_ld/wq", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1519 { "hw_ld/wql", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1520 { "hw_ld/wqv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1521 { "hw_ld/wqvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1522 { "hw_ld/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1523 { "hw_ld/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1524 { "pal1b", PCD(0x1B), BASE, ARG_PCD },
1526 { "sextb", OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1527 { "sextw", OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1528 { "ctpop", OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1529 { "perr", OPR(0x1C, 0x31), MAX, ARG_OPR },
1530 { "ctlz", OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1531 { "cttz", OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1532 { "unpkbw", OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1533 { "unpkbl", OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1534 { "pkwb", OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1535 { "pklb", OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1536 { "minsb8", OPR(0x1C, 0x38), MAX, ARG_OPR },
1537 { "minsb8", OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1538 { "minsw4", OPR(0x1C, 0x39), MAX, ARG_OPR },
1539 { "minsw4", OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1540 { "minub8", OPR(0x1C, 0x3A), MAX, ARG_OPR },
1541 { "minub8", OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1542 { "minuw4", OPR(0x1C, 0x3B), MAX, ARG_OPR },
1543 { "minuw4", OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1544 { "maxub8", OPR(0x1C, 0x3C), MAX, ARG_OPR },
1545 { "maxub8", OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1546 { "maxuw4", OPR(0x1C, 0x3D), MAX, ARG_OPR },
1547 { "maxuw4", OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1548 { "maxsb8", OPR(0x1C, 0x3E), MAX, ARG_OPR },
1549 { "maxsb8", OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1550 { "maxsw4", OPR(0x1C, 0x3F), MAX, ARG_OPR },
1551 { "maxsw4", OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1552 { "ftoit", FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1553 { "ftois", FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1555 { "hw_mtpr", OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1556 { "hw_mtpr", OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1557 { "hw_mtpr", OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1558 { "hw_mtpr/i", OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1559 { "hw_mtpr/a", OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1560 { "hw_mtpr/ai", OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1561 { "hw_mtpr/p", OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1562 { "hw_mtpr/pi", OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1563 { "hw_mtpr/pa", OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1564 { "hw_mtpr/pai", OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1565 { "pal1d", PCD(0x1D), BASE, ARG_PCD },
1567 { "hw_rei", SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1568 { "hw_rei_stall", SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1569 { "hw_jmp", EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1570 { "hw_jsr", EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571 { "hw_ret", EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1572 { "hw_jcr", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1573 { "hw_coroutine", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1574 { "hw_jmp/stall", EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1575 { "hw_jsr/stall", EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1576 { "hw_ret/stall", EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1577 { "hw_jcr/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1578 { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1579 { "pal1e", PCD(0x1E), BASE, ARG_PCD },
1581 { "hw_stl", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1582 { "hw_stl", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1583 { "hw_stl", EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1584 { "hw_stl/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1585 { "hw_stl/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1586 { "hw_stl/a", EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1587 { "hw_stl/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1588 { "hw_stl/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1589 { "hw_stl/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1590 { "hw_stl/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1591 { "hw_stl/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1592 { "hw_stl/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1593 { "hw_stl/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1594 { "hw_stl/p", EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1595 { "hw_stl/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1596 { "hw_stl/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1597 { "hw_stl/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1598 { "hw_stl/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1599 { "hw_stl/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1600 { "hw_stl/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1601 { "hw_stl/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1602 { "hw_stl/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1603 { "hw_stl/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1604 { "hw_stl/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1605 { "hw_stl/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1606 { "hw_stl/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1607 { "hw_stl_c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1608 { "hw_stl_c/a", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1609 { "hw_stl_c/av", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1610 { "hw_stl_c/p", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1611 { "hw_stl_c/p", EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1612 { "hw_stl_c/pa", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1613 { "hw_stl_c/pav", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1614 { "hw_stl_c/pv", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1615 { "hw_stl_c/v", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1616 { "hw_stq", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1617 { "hw_stq", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1618 { "hw_stq", EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1619 { "hw_stq/a", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1620 { "hw_stq/a", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1621 { "hw_stq/a", EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1622 { "hw_stq/ac", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1623 { "hw_stq/ar", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1624 { "hw_stq/av", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1625 { "hw_stq/avc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1626 { "hw_stq/c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1627 { "hw_stq/p", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1628 { "hw_stq/p", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1629 { "hw_stq/p", EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1630 { "hw_stq/pa", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1631 { "hw_stq/pa", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1632 { "hw_stq/pac", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1633 { "hw_stq/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1634 { "hw_stq/par", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1635 { "hw_stq/pav", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1636 { "hw_stq/pavc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1637 { "hw_stq/pc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1638 { "hw_stq/pr", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1639 { "hw_stq/pv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1640 { "hw_stq/pvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1641 { "hw_stq/r", EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1642 { "hw_stq/v", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1643 { "hw_stq/vc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1644 { "hw_stq_c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1645 { "hw_stq_c/a", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1646 { "hw_stq_c/av", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1647 { "hw_stq_c/p", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1648 { "hw_stq_c/p", EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1649 { "hw_stq_c/pa", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1650 { "hw_stq_c/pav", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1651 { "hw_stq_c/pv", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1652 { "hw_stq_c/v", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1653 { "hw_st", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1654 { "hw_st", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1655 { "hw_st/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1656 { "hw_st/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1657 { "hw_st/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1658 { "hw_st/aq", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1659 { "hw_st/aq", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1660 { "hw_st/aqc", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1661 { "hw_st/aqv", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1662 { "hw_st/aqvc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1663 { "hw_st/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1664 { "hw_st/arq", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1665 { "hw_st/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1666 { "hw_st/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1667 { "hw_st/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1668 { "hw_st/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1669 { "hw_st/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1670 { "hw_st/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1671 { "hw_st/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1672 { "hw_st/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1673 { "hw_st/paq", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1674 { "hw_st/paq", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1675 { "hw_st/paqc", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1676 { "hw_st/paqv", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1677 { "hw_st/paqvc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1678 { "hw_st/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1679 { "hw_st/parq", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1680 { "hw_st/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1681 { "hw_st/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1682 { "hw_st/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1683 { "hw_st/pq", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1684 { "hw_st/pq", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1685 { "hw_st/pqc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1686 { "hw_st/pqv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1687 { "hw_st/pqvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1688 { "hw_st/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1689 { "hw_st/prq", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1690 { "hw_st/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1691 { "hw_st/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1692 { "hw_st/q", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1693 { "hw_st/q", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1694 { "hw_st/qc", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1695 { "hw_st/qv", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1696 { "hw_st/qvc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1697 { "hw_st/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1698 { "hw_st/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1699 { "hw_st/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1700 { "pal1f", PCD(0x1F), BASE, ARG_PCD },
1702 { "ldf", MEM(0x20), BASE, ARG_FMEM },
1703 { "ldg", MEM(0x21), BASE, ARG_FMEM },
1704 { "lds", MEM(0x22), BASE, ARG_FMEM },
1705 { "ldt", MEM(0x23), BASE, ARG_FMEM },
1706 { "stf", MEM(0x24), BASE, ARG_FMEM },
1707 { "stg", MEM(0x25), BASE, ARG_FMEM },
1708 { "sts", MEM(0x26), BASE, ARG_FMEM },
1709 { "stt", MEM(0x27), BASE, ARG_FMEM },
1711 { "ldl", MEM(0x28), BASE, ARG_MEM },
1712 { "ldq", MEM(0x29), BASE, ARG_MEM },
1713 { "ldl_l", MEM(0x2A), BASE, ARG_MEM },
1714 { "ldq_l", MEM(0x2B), BASE, ARG_MEM },
1715 { "stl", MEM(0x2C), BASE, ARG_MEM },
1716 { "stq", MEM(0x2D), BASE, ARG_MEM },
1717 { "stl_c", MEM(0x2E), BASE, ARG_MEM },
1718 { "stq_c", MEM(0x2F), BASE, ARG_MEM },
1720 { "br", BRA(0x30), BASE, { ZA, BDISP } }, /* pseudo */
1721 { "br", BRA(0x30), BASE, ARG_BRA },
1722 { "fbeq", BRA(0x31), BASE, ARG_FBRA },
1723 { "fblt", BRA(0x32), BASE, ARG_FBRA },
1724 { "fble", BRA(0x33), BASE, ARG_FBRA },
1725 { "bsr", BRA(0x34), BASE, ARG_BRA },
1726 { "fbne", BRA(0x35), BASE, ARG_FBRA },
1727 { "fbge", BRA(0x36), BASE, ARG_FBRA },
1728 { "fbgt", BRA(0x37), BASE, ARG_FBRA },
1729 { "blbc", BRA(0x38), BASE, ARG_BRA },
1730 { "beq", BRA(0x39), BASE, ARG_BRA },
1731 { "blt", BRA(0x3A), BASE, ARG_BRA },
1732 { "ble", BRA(0x3B), BASE, ARG_BRA },
1733 { "blbs", BRA(0x3C), BASE, ARG_BRA },
1734 { "bne", BRA(0x3D), BASE, ARG_BRA },
1735 { "bge", BRA(0x3E), BASE, ARG_BRA },
1736 { "bgt", BRA(0x3F), BASE, ARG_BRA },
1739 const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1741 /* OSF register names. */
1743 static const char * const osf_regnames[64] = {
1744 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1745 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1746 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1747 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1748 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1749 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1750 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1751 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1754 /* VMS register names. */
1756 static const char * const vms_regnames[64] = {
1757 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1758 "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1759 "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1760 "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1761 "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1762 "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1763 "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1764 "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1767 /* Disassemble Alpha instructions. */
1770 print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1772 static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1773 const char * const * regnames;
1774 const struct alpha_opcode *opcode, *opcode_end;
1775 const unsigned char *opindex;
1776 unsigned insn, op, isa_mask;
1777 int need_comma;
1779 /* Initialize the majorop table the first time through */
1780 if (!opcode_index[0])
1782 opcode = alpha_opcodes;
1783 opcode_end = opcode + alpha_num_opcodes;
1785 for (op = 0; op < AXP_NOPS; ++op)
1787 opcode_index[op] = opcode;
1788 while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1789 ++opcode;
1791 opcode_index[op] = opcode;
1794 if (info->flavour == bfd_target_evax_flavour)
1795 regnames = vms_regnames;
1796 else
1797 regnames = osf_regnames;
1799 isa_mask = AXP_OPCODE_NOPAL;
1800 switch (info->mach)
1802 case bfd_mach_alpha_ev4:
1803 isa_mask |= AXP_OPCODE_EV4;
1804 break;
1805 case bfd_mach_alpha_ev5:
1806 isa_mask |= AXP_OPCODE_EV5;
1807 break;
1808 case bfd_mach_alpha_ev6:
1809 isa_mask |= AXP_OPCODE_EV6;
1810 break;
1813 /* Read the insn into a host word */
1815 bfd_byte buffer[4];
1816 int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1817 if (status != 0)
1819 (*info->memory_error_func) (status, memaddr, info);
1820 return -1;
1822 insn = bfd_getl32 (buffer);
1825 /* Get the major opcode of the instruction. */
1826 op = AXP_OP (insn);
1828 /* Find the first match in the opcode table. */
1829 opcode_end = opcode_index[op + 1];
1830 for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1832 if ((insn ^ opcode->opcode) & opcode->mask)
1833 continue;
1835 if (!(opcode->flags & isa_mask))
1836 continue;
1838 /* Make two passes over the operands. First see if any of them
1839 have extraction functions, and, if they do, make sure the
1840 instruction is valid. */
1842 int invalid = 0;
1843 for (opindex = opcode->operands; *opindex != 0; opindex++)
1845 const struct alpha_operand *operand = alpha_operands + *opindex;
1846 if (operand->extract)
1847 (*operand->extract) (insn, &invalid);
1849 if (invalid)
1850 continue;
1853 /* The instruction is valid. */
1854 goto found;
1857 /* No instruction found */
1858 (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1860 return 4;
1862 found:
1863 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1864 if (opcode->operands[0] != 0)
1865 (*info->fprintf_func) (info->stream, "\t");
1867 /* Now extract and print the operands. */
1868 need_comma = 0;
1869 for (opindex = opcode->operands; *opindex != 0; opindex++)
1871 const struct alpha_operand *operand = alpha_operands + *opindex;
1872 int value;
1874 /* Operands that are marked FAKE are simply ignored. We
1875 already made sure that the extract function considered
1876 the instruction to be valid. */
1877 if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1878 continue;
1880 /* Extract the value from the instruction. */
1881 if (operand->extract)
1882 value = (*operand->extract) (insn, (int *) NULL);
1883 else
1885 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1886 if (operand->flags & AXP_OPERAND_SIGNED)
1888 int signbit = 1 << (operand->bits - 1);
1889 value = (value ^ signbit) - signbit;
1893 if (need_comma &&
1894 ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1895 != AXP_OPERAND_PARENS))
1897 (*info->fprintf_func) (info->stream, ",");
1899 if (operand->flags & AXP_OPERAND_PARENS)
1900 (*info->fprintf_func) (info->stream, "(");
1902 /* Print the operand as directed by the flags. */
1903 if (operand->flags & AXP_OPERAND_IR)
1904 (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1905 else if (operand->flags & AXP_OPERAND_FPR)
1906 (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1907 else if (operand->flags & AXP_OPERAND_RELATIVE)
1908 (*info->print_address_func) (memaddr + 4 + value, info);
1909 else if (operand->flags & AXP_OPERAND_SIGNED)
1910 (*info->fprintf_func) (info->stream, "%d", value);
1911 else
1912 (*info->fprintf_func) (info->stream, "%#x", value);
1914 if (operand->flags & AXP_OPERAND_PARENS)
1915 (*info->fprintf_func) (info->stream, ")");
1916 need_comma = 1;
1919 return 4;