target/arm: Enable BFloat16 extensions
[qemu.git] / target / arm / cpu.c
blob9cddfd6a442b9b8ee880439268f577b1a3152dfe
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 ARMCPU *cpu = ARM_CPU(cs);
48 CPUARMState *env = &cpu->env;
50 if (is_a64(env)) {
51 env->pc = value;
52 env->thumb = 0;
53 } else {
54 env->regs[15] = value & ~1;
55 env->thumb = value & 1;
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61 const TranslationBlock *tb)
63 ARMCPU *cpu = ARM_CPU(cs);
64 CPUARMState *env = &cpu->env;
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
70 if (is_a64(env)) {
71 env->pc = tb->pc;
72 } else {
73 env->regs[15] = tb->pc;
76 #endif /* CONFIG_TCG */
78 static bool arm_cpu_has_work(CPUState *cs)
80 ARMCPU *cpu = ARM_CPU(cs);
82 return (cpu->power_state != PSCI_OFF)
83 && cs->interrupt_request &
84 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB);
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90 void *opaque)
92 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 entry->hook = hook;
95 entry->opaque = opaque;
97 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101 void *opaque)
103 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 entry->hook = hook;
106 entry->opaque = opaque;
108 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo *ri = value;
115 ARMCPU *cpu = opaque;
117 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118 return;
121 if (ri->resetfn) {
122 ri->resetfn(&cpu->env, ri);
123 return;
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
131 if (!ri->fieldoffset) {
132 return;
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137 } else {
138 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
149 ARMCPRegInfo *ri = value;
150 ARMCPU *cpu = opaque;
151 uint64_t oldvalue, newvalue;
153 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154 return;
157 oldvalue = read_raw_cp_reg(&cpu->env, ri);
158 cp_reg_reset(key, value, opaque);
159 newvalue = read_raw_cp_reg(&cpu->env, ri);
160 assert(oldvalue == newvalue);
163 static void arm_cpu_reset(DeviceState *dev)
165 CPUState *s = CPU(dev);
166 ARMCPU *cpu = ARM_CPU(s);
167 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168 CPUARMState *env = &cpu->env;
170 acc->parent_reset(dev);
172 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189 /* 64 bit CPUs always start in 64 bit mode */
190 env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192 env->pstate = PSTATE_MODE_EL0t;
193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195 /* Enable all PAC keys. */
196 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197 SCTLR_EnDA | SCTLR_EnDB);
198 /* and to the FP/Neon instructions */
199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200 /* and to the SVE instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve, cpu)) {
204 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
207 * Enable TBI0 but not TBI1.
208 * Note that this must match useronly_clean_ptr.
210 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
212 /* Enable MTE */
213 if (cpu_isar_feature(aa64_mte, cpu)) {
214 /* Enable tag access, but leave TCF0 as No Effect (0). */
215 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
217 * Exclude all tags, so that tag 0 is always used.
218 * This corresponds to Linux current->thread.gcr_incl = 0.
220 * Set RRND, so that helper_irg() will generate a seed later.
221 * Here in cpu_reset(), the crypto subsystem has not yet been
222 * initialized.
224 env->cp15.gcr_el1 = 0x1ffff;
226 #else
227 /* Reset into the highest available EL */
228 if (arm_feature(env, ARM_FEATURE_EL3)) {
229 env->pstate = PSTATE_MODE_EL3h;
230 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
231 env->pstate = PSTATE_MODE_EL2h;
232 } else {
233 env->pstate = PSTATE_MODE_EL1h;
235 env->pc = cpu->rvbar;
236 #endif
237 } else {
238 #if defined(CONFIG_USER_ONLY)
239 /* Userspace expects access to cp10 and cp11 for FP/Neon */
240 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
241 #endif
244 #if defined(CONFIG_USER_ONLY)
245 env->uncached_cpsr = ARM_CPU_MODE_USR;
246 /* For user mode we must enable access to coprocessors */
247 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
248 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
249 env->cp15.c15_cpar = 3;
250 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
251 env->cp15.c15_cpar = 1;
253 #else
256 * If the highest available EL is EL2, AArch32 will start in Hyp
257 * mode; otherwise it starts in SVC. Note that if we start in
258 * AArch64 then these values in the uncached_cpsr will be ignored.
260 if (arm_feature(env, ARM_FEATURE_EL2) &&
261 !arm_feature(env, ARM_FEATURE_EL3)) {
262 env->uncached_cpsr = ARM_CPU_MODE_HYP;
263 } else {
264 env->uncached_cpsr = ARM_CPU_MODE_SVC;
266 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
268 if (arm_feature(env, ARM_FEATURE_M)) {
269 uint32_t initial_msp; /* Loaded from 0x0 */
270 uint32_t initial_pc; /* Loaded from 0x4 */
271 uint8_t *rom;
272 uint32_t vecbase;
274 if (cpu_isar_feature(aa32_lob, cpu)) {
276 * LTPSIZE is constant 4 if MVE not implemented, and resets
277 * to an UNKNOWN value if MVE is implemented. We choose to
278 * always reset to 4.
280 env->v7m.ltpsize = 4;
281 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
282 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
283 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
286 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
287 env->v7m.secure = true;
288 } else {
289 /* This bit resets to 0 if security is supported, but 1 if
290 * it is not. The bit is not present in v7M, but we set it
291 * here so we can avoid having to make checks on it conditional
292 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
294 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
296 * Set NSACR to indicate "NS access permitted to everything";
297 * this avoids having to have all the tests of it being
298 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
299 * v8.1M the guest-visible value of NSACR in a CPU without the
300 * Security Extension is 0xcff.
302 env->v7m.nsacr = 0xcff;
305 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
306 * that it resets to 1, so QEMU always does that rather than making
307 * it dependent on CPU model. In v8M it is RES1.
309 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
310 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
311 if (arm_feature(env, ARM_FEATURE_V8)) {
312 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
313 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
314 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
316 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
317 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
318 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
321 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
322 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
323 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
324 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
326 /* Unlike A/R profile, M profile defines the reset LR value */
327 env->regs[14] = 0xffffffff;
329 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
330 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
332 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
333 vecbase = env->v7m.vecbase[env->v7m.secure];
334 rom = rom_ptr_for_as(s->as, vecbase, 8);
335 if (rom) {
336 /* Address zero is covered by ROM which hasn't yet been
337 * copied into physical memory.
339 initial_msp = ldl_p(rom);
340 initial_pc = ldl_p(rom + 4);
341 } else {
342 /* Address zero not covered by a ROM blob, or the ROM blob
343 * is in non-modifiable memory and this is a second reset after
344 * it got copied into memory. In the latter case, rom_ptr
345 * will return a NULL pointer and we should use ldl_phys instead.
347 initial_msp = ldl_phys(s->as, vecbase);
348 initial_pc = ldl_phys(s->as, vecbase + 4);
351 env->regs[13] = initial_msp & 0xFFFFFFFC;
352 env->regs[15] = initial_pc & ~1;
353 env->thumb = initial_pc & 1;
356 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
357 * executing as AArch32 then check if highvecs are enabled and
358 * adjust the PC accordingly.
360 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
361 env->regs[15] = 0xFFFF0000;
364 /* M profile requires that reset clears the exclusive monitor;
365 * A profile does not, but clearing it makes more sense than having it
366 * set with an exclusive access on address zero.
368 arm_clear_exclusive(env);
370 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
371 #endif
373 if (arm_feature(env, ARM_FEATURE_PMSA)) {
374 if (cpu->pmsav7_dregion > 0) {
375 if (arm_feature(env, ARM_FEATURE_V8)) {
376 memset(env->pmsav8.rbar[M_REG_NS], 0,
377 sizeof(*env->pmsav8.rbar[M_REG_NS])
378 * cpu->pmsav7_dregion);
379 memset(env->pmsav8.rlar[M_REG_NS], 0,
380 sizeof(*env->pmsav8.rlar[M_REG_NS])
381 * cpu->pmsav7_dregion);
382 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383 memset(env->pmsav8.rbar[M_REG_S], 0,
384 sizeof(*env->pmsav8.rbar[M_REG_S])
385 * cpu->pmsav7_dregion);
386 memset(env->pmsav8.rlar[M_REG_S], 0,
387 sizeof(*env->pmsav8.rlar[M_REG_S])
388 * cpu->pmsav7_dregion);
390 } else if (arm_feature(env, ARM_FEATURE_V7)) {
391 memset(env->pmsav7.drbar, 0,
392 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
393 memset(env->pmsav7.drsr, 0,
394 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
395 memset(env->pmsav7.dracr, 0,
396 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
399 env->pmsav7.rnr[M_REG_NS] = 0;
400 env->pmsav7.rnr[M_REG_S] = 0;
401 env->pmsav8.mair0[M_REG_NS] = 0;
402 env->pmsav8.mair0[M_REG_S] = 0;
403 env->pmsav8.mair1[M_REG_NS] = 0;
404 env->pmsav8.mair1[M_REG_S] = 0;
407 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
408 if (cpu->sau_sregion > 0) {
409 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
410 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
412 env->sau.rnr = 0;
413 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
414 * the Cortex-M33 does.
416 env->sau.ctrl = 0;
419 set_flush_to_zero(1, &env->vfp.standard_fp_status);
420 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
421 set_default_nan_mode(1, &env->vfp.standard_fp_status);
422 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
423 set_float_detect_tininess(float_tininess_before_rounding,
424 &env->vfp.fp_status);
425 set_float_detect_tininess(float_tininess_before_rounding,
426 &env->vfp.standard_fp_status);
427 set_float_detect_tininess(float_tininess_before_rounding,
428 &env->vfp.fp_status_f16);
429 set_float_detect_tininess(float_tininess_before_rounding,
430 &env->vfp.standard_fp_status_f16);
431 #ifndef CONFIG_USER_ONLY
432 if (kvm_enabled()) {
433 kvm_arm_reset_vcpu(cpu);
435 #endif
437 hw_breakpoint_update_all(cpu);
438 hw_watchpoint_update_all(cpu);
439 arm_rebuild_hflags(env);
442 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
443 unsigned int target_el,
444 unsigned int cur_el, bool secure,
445 uint64_t hcr_el2)
447 CPUARMState *env = cs->env_ptr;
448 bool pstate_unmasked;
449 bool unmasked = false;
452 * Don't take exceptions if they target a lower EL.
453 * This check should catch any exceptions that would not be taken
454 * but left pending.
456 if (cur_el > target_el) {
457 return false;
460 switch (excp_idx) {
461 case EXCP_FIQ:
462 pstate_unmasked = !(env->daif & PSTATE_F);
463 break;
465 case EXCP_IRQ:
466 pstate_unmasked = !(env->daif & PSTATE_I);
467 break;
469 case EXCP_VFIQ:
470 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
471 /* VFIQs are only taken when hypervized. */
472 return false;
474 return !(env->daif & PSTATE_F);
475 case EXCP_VIRQ:
476 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
477 /* VIRQs are only taken when hypervized. */
478 return false;
480 return !(env->daif & PSTATE_I);
481 default:
482 g_assert_not_reached();
486 * Use the target EL, current execution state and SCR/HCR settings to
487 * determine whether the corresponding CPSR bit is used to mask the
488 * interrupt.
490 if ((target_el > cur_el) && (target_el != 1)) {
491 /* Exceptions targeting a higher EL may not be maskable */
492 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
494 * 64-bit masking rules are simple: exceptions to EL3
495 * can't be masked, and exceptions to EL2 can only be
496 * masked from Secure state. The HCR and SCR settings
497 * don't affect the masking logic, only the interrupt routing.
499 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
500 unmasked = true;
502 } else {
504 * The old 32-bit-only environment has a more complicated
505 * masking setup. HCR and SCR bits not only affect interrupt
506 * routing but also change the behaviour of masking.
508 bool hcr, scr;
510 switch (excp_idx) {
511 case EXCP_FIQ:
513 * If FIQs are routed to EL3 or EL2 then there are cases where
514 * we override the CPSR.F in determining if the exception is
515 * masked or not. If neither of these are set then we fall back
516 * to the CPSR.F setting otherwise we further assess the state
517 * below.
519 hcr = hcr_el2 & HCR_FMO;
520 scr = (env->cp15.scr_el3 & SCR_FIQ);
523 * When EL3 is 32-bit, the SCR.FW bit controls whether the
524 * CPSR.F bit masks FIQ interrupts when taken in non-secure
525 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
526 * when non-secure but only when FIQs are only routed to EL3.
528 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
529 break;
530 case EXCP_IRQ:
532 * When EL3 execution state is 32-bit, if HCR.IMO is set then
533 * we may override the CPSR.I masking when in non-secure state.
534 * The SCR.IRQ setting has already been taken into consideration
535 * when setting the target EL, so it does not have a further
536 * affect here.
538 hcr = hcr_el2 & HCR_IMO;
539 scr = false;
540 break;
541 default:
542 g_assert_not_reached();
545 if ((scr || hcr) && !secure) {
546 unmasked = true;
552 * The PSTATE bits only mask the interrupt if we have not overriden the
553 * ability above.
555 return unmasked || pstate_unmasked;
558 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
560 CPUClass *cc = CPU_GET_CLASS(cs);
561 CPUARMState *env = cs->env_ptr;
562 uint32_t cur_el = arm_current_el(env);
563 bool secure = arm_is_secure(env);
564 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
565 uint32_t target_el;
566 uint32_t excp_idx;
568 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
570 if (interrupt_request & CPU_INTERRUPT_FIQ) {
571 excp_idx = EXCP_FIQ;
572 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
573 if (arm_excp_unmasked(cs, excp_idx, target_el,
574 cur_el, secure, hcr_el2)) {
575 goto found;
578 if (interrupt_request & CPU_INTERRUPT_HARD) {
579 excp_idx = EXCP_IRQ;
580 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
581 if (arm_excp_unmasked(cs, excp_idx, target_el,
582 cur_el, secure, hcr_el2)) {
583 goto found;
586 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
587 excp_idx = EXCP_VIRQ;
588 target_el = 1;
589 if (arm_excp_unmasked(cs, excp_idx, target_el,
590 cur_el, secure, hcr_el2)) {
591 goto found;
594 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
595 excp_idx = EXCP_VFIQ;
596 target_el = 1;
597 if (arm_excp_unmasked(cs, excp_idx, target_el,
598 cur_el, secure, hcr_el2)) {
599 goto found;
602 return false;
604 found:
605 cs->exception_index = excp_idx;
606 env->exception.target_el = target_el;
607 cc->tcg_ops->do_interrupt(cs);
608 return true;
611 void arm_cpu_update_virq(ARMCPU *cpu)
614 * Update the interrupt level for VIRQ, which is the logical OR of
615 * the HCR_EL2.VI bit and the input line level from the GIC.
617 CPUARMState *env = &cpu->env;
618 CPUState *cs = CPU(cpu);
620 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
621 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
623 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
624 if (new_state) {
625 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
626 } else {
627 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
632 void arm_cpu_update_vfiq(ARMCPU *cpu)
635 * Update the interrupt level for VFIQ, which is the logical OR of
636 * the HCR_EL2.VF bit and the input line level from the GIC.
638 CPUARMState *env = &cpu->env;
639 CPUState *cs = CPU(cpu);
641 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
642 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
644 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
645 if (new_state) {
646 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
647 } else {
648 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
653 #ifndef CONFIG_USER_ONLY
654 static void arm_cpu_set_irq(void *opaque, int irq, int level)
656 ARMCPU *cpu = opaque;
657 CPUARMState *env = &cpu->env;
658 CPUState *cs = CPU(cpu);
659 static const int mask[] = {
660 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
661 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
662 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
663 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
666 if (level) {
667 env->irq_line_state |= mask[irq];
668 } else {
669 env->irq_line_state &= ~mask[irq];
672 switch (irq) {
673 case ARM_CPU_VIRQ:
674 assert(arm_feature(env, ARM_FEATURE_EL2));
675 arm_cpu_update_virq(cpu);
676 break;
677 case ARM_CPU_VFIQ:
678 assert(arm_feature(env, ARM_FEATURE_EL2));
679 arm_cpu_update_vfiq(cpu);
680 break;
681 case ARM_CPU_IRQ:
682 case ARM_CPU_FIQ:
683 if (level) {
684 cpu_interrupt(cs, mask[irq]);
685 } else {
686 cpu_reset_interrupt(cs, mask[irq]);
688 break;
689 default:
690 g_assert_not_reached();
694 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
696 #ifdef CONFIG_KVM
697 ARMCPU *cpu = opaque;
698 CPUARMState *env = &cpu->env;
699 CPUState *cs = CPU(cpu);
700 uint32_t linestate_bit;
701 int irq_id;
703 switch (irq) {
704 case ARM_CPU_IRQ:
705 irq_id = KVM_ARM_IRQ_CPU_IRQ;
706 linestate_bit = CPU_INTERRUPT_HARD;
707 break;
708 case ARM_CPU_FIQ:
709 irq_id = KVM_ARM_IRQ_CPU_FIQ;
710 linestate_bit = CPU_INTERRUPT_FIQ;
711 break;
712 default:
713 g_assert_not_reached();
716 if (level) {
717 env->irq_line_state |= linestate_bit;
718 } else {
719 env->irq_line_state &= ~linestate_bit;
721 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
722 #endif
725 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
727 ARMCPU *cpu = ARM_CPU(cs);
728 CPUARMState *env = &cpu->env;
730 cpu_synchronize_state(cs);
731 return arm_cpu_data_is_big_endian(env);
734 #endif
736 static int
737 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
739 return print_insn_arm(pc | 1, info);
742 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
744 ARMCPU *ac = ARM_CPU(cpu);
745 CPUARMState *env = &ac->env;
746 bool sctlr_b;
748 if (is_a64(env)) {
749 /* We might not be compiled with the A64 disassembler
750 * because it needs a C++ compiler. Leave print_insn
751 * unset in this case to use the caller default behaviour.
753 #if defined(CONFIG_ARM_A64_DIS)
754 info->print_insn = print_insn_arm_a64;
755 #endif
756 info->cap_arch = CS_ARCH_ARM64;
757 info->cap_insn_unit = 4;
758 info->cap_insn_split = 4;
759 } else {
760 int cap_mode;
761 if (env->thumb) {
762 info->print_insn = print_insn_thumb1;
763 info->cap_insn_unit = 2;
764 info->cap_insn_split = 4;
765 cap_mode = CS_MODE_THUMB;
766 } else {
767 info->print_insn = print_insn_arm;
768 info->cap_insn_unit = 4;
769 info->cap_insn_split = 4;
770 cap_mode = CS_MODE_ARM;
772 if (arm_feature(env, ARM_FEATURE_V8)) {
773 cap_mode |= CS_MODE_V8;
775 if (arm_feature(env, ARM_FEATURE_M)) {
776 cap_mode |= CS_MODE_MCLASS;
778 info->cap_arch = CS_ARCH_ARM;
779 info->cap_mode = cap_mode;
782 sctlr_b = arm_sctlr_b(env);
783 if (bswap_code(sctlr_b)) {
784 #ifdef TARGET_WORDS_BIGENDIAN
785 info->endian = BFD_ENDIAN_LITTLE;
786 #else
787 info->endian = BFD_ENDIAN_BIG;
788 #endif
790 info->flags &= ~INSN_ARM_BE32;
791 #ifndef CONFIG_USER_ONLY
792 if (sctlr_b) {
793 info->flags |= INSN_ARM_BE32;
795 #endif
798 #ifdef TARGET_AARCH64
800 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
802 ARMCPU *cpu = ARM_CPU(cs);
803 CPUARMState *env = &cpu->env;
804 uint32_t psr = pstate_read(env);
805 int i;
806 int el = arm_current_el(env);
807 const char *ns_status;
809 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810 for (i = 0; i < 32; i++) {
811 if (i == 31) {
812 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813 } else {
814 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815 (i + 2) % 3 ? " " : "\n");
819 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821 } else {
822 ns_status = "";
824 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825 psr,
826 psr & PSTATE_N ? 'N' : '-',
827 psr & PSTATE_Z ? 'Z' : '-',
828 psr & PSTATE_C ? 'C' : '-',
829 psr & PSTATE_V ? 'V' : '-',
830 ns_status,
832 psr & PSTATE_SP ? 'h' : 't');
834 if (cpu_isar_feature(aa64_bti, cpu)) {
835 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
837 if (!(flags & CPU_DUMP_FPU)) {
838 qemu_fprintf(f, "\n");
839 return;
841 if (fp_exception_el(env, el) != 0) {
842 qemu_fprintf(f, " FPU disabled\n");
843 return;
845 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
846 vfp_get_fpcr(env), vfp_get_fpsr(env));
848 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849 int j, zcr_len = sve_zcr_len_for_el(env, el);
851 for (i = 0; i <= FFR_PRED_NUM; i++) {
852 bool eol;
853 if (i == FFR_PRED_NUM) {
854 qemu_fprintf(f, "FFR=");
855 /* It's last, so end the line. */
856 eol = true;
857 } else {
858 qemu_fprintf(f, "P%02d=", i);
859 switch (zcr_len) {
860 case 0:
861 eol = i % 8 == 7;
862 break;
863 case 1:
864 eol = i % 6 == 5;
865 break;
866 case 2:
867 case 3:
868 eol = i % 3 == 2;
869 break;
870 default:
871 /* More than one quadword per predicate. */
872 eol = true;
873 break;
876 for (j = zcr_len / 4; j >= 0; j--) {
877 int digits;
878 if (j * 4 + 4 <= zcr_len + 1) {
879 digits = 16;
880 } else {
881 digits = (zcr_len % 4 + 1) * 4;
883 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884 env->vfp.pregs[i].p[j],
885 j ? ":" : eol ? "\n" : " ");
889 for (i = 0; i < 32; i++) {
890 if (zcr_len == 0) {
891 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892 i, env->vfp.zregs[i].d[1],
893 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894 } else if (zcr_len == 1) {
895 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896 ":%016" PRIx64 ":%016" PRIx64 "\n",
897 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899 } else {
900 for (j = zcr_len; j >= 0; j--) {
901 bool odd = (zcr_len - j) % 2 != 0;
902 if (j == zcr_len) {
903 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904 } else if (!odd) {
905 if (j > 0) {
906 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
907 } else {
908 qemu_fprintf(f, " [%x]=", j);
911 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912 env->vfp.zregs[i].d[j * 2 + 1],
913 env->vfp.zregs[i].d[j * 2],
914 odd || j == 0 ? "\n" : ":");
918 } else {
919 for (i = 0; i < 32; i++) {
920 uint64_t *q = aa64_vfp_qreg(env, i);
921 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922 i, q[1], q[0], (i & 1 ? "\n" : " "));
927 #else
929 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
931 g_assert_not_reached();
934 #endif
936 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
938 ARMCPU *cpu = ARM_CPU(cs);
939 CPUARMState *env = &cpu->env;
940 int i;
942 if (is_a64(env)) {
943 aarch64_cpu_dump_state(cs, f, flags);
944 return;
947 for (i = 0; i < 16; i++) {
948 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949 if ((i % 4) == 3) {
950 qemu_fprintf(f, "\n");
951 } else {
952 qemu_fprintf(f, " ");
956 if (arm_feature(env, ARM_FEATURE_M)) {
957 uint32_t xpsr = xpsr_read(env);
958 const char *mode;
959 const char *ns_status = "";
961 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962 ns_status = env->v7m.secure ? "S " : "NS ";
965 if (xpsr & XPSR_EXCP) {
966 mode = "handler";
967 } else {
968 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969 mode = "unpriv-thread";
970 } else {
971 mode = "priv-thread";
975 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976 xpsr,
977 xpsr & XPSR_N ? 'N' : '-',
978 xpsr & XPSR_Z ? 'Z' : '-',
979 xpsr & XPSR_C ? 'C' : '-',
980 xpsr & XPSR_V ? 'V' : '-',
981 xpsr & XPSR_T ? 'T' : 'A',
982 ns_status,
983 mode);
984 } else {
985 uint32_t psr = cpsr_read(env);
986 const char *ns_status = "";
988 if (arm_feature(env, ARM_FEATURE_EL3) &&
989 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
993 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994 psr,
995 psr & CPSR_N ? 'N' : '-',
996 psr & CPSR_Z ? 'Z' : '-',
997 psr & CPSR_C ? 'C' : '-',
998 psr & CPSR_V ? 'V' : '-',
999 psr & CPSR_T ? 'T' : 'A',
1000 ns_status,
1001 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1004 if (flags & CPU_DUMP_FPU) {
1005 int numvfpregs = 0;
1006 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007 numvfpregs = 32;
1008 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009 numvfpregs = 16;
1011 for (i = 0; i < numvfpregs; i++) {
1012 uint64_t v = *aa32_vfp_dreg(env, i);
1013 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014 i * 2, (uint32_t)v,
1015 i * 2 + 1, (uint32_t)(v >> 32),
1016 i, v);
1018 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1022 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024 uint32_t Aff1 = idx / clustersz;
1025 uint32_t Aff0 = idx % clustersz;
1026 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1029 static void cpreg_hashtable_data_destroy(gpointer data)
1032 * Destroy function for cpu->cp_regs hashtable data entries.
1033 * We must free the name string because it was g_strdup()ed in
1034 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035 * from r->name because we know we definitely allocated it.
1037 ARMCPRegInfo *r = data;
1039 g_free((void *)r->name);
1040 g_free(r);
1043 static void arm_cpu_initfn(Object *obj)
1045 ARMCPU *cpu = ARM_CPU(obj);
1047 cpu_set_cpustate_pointers(cpu);
1048 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049 g_free, cpreg_hashtable_data_destroy);
1051 QLIST_INIT(&cpu->pre_el_change_hooks);
1052 QLIST_INIT(&cpu->el_change_hooks);
1054 #ifndef CONFIG_USER_ONLY
1055 /* Our inbound IRQ and FIQ lines */
1056 if (kvm_enabled()) {
1057 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058 * the same interface as non-KVM CPUs.
1060 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061 } else {
1062 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1065 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066 ARRAY_SIZE(cpu->gt_timer_outputs));
1068 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069 "gicv3-maintenance-interrupt", 1);
1070 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071 "pmu-interrupt", 1);
1072 #endif
1074 /* DTB consumers generally don't in fact care what the 'compatible'
1075 * string is, so always provide some string and trust that a hypothetical
1076 * picky DTB consumer will also provide a helpful error message.
1078 cpu->dtb_compatible = "qemu,unknown";
1079 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1082 if (tcg_enabled()) {
1083 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1087 static Property arm_cpu_gt_cntfrq_property =
1088 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1091 static Property arm_cpu_reset_cbar_property =
1092 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1094 static Property arm_cpu_reset_hivecs_property =
1095 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1097 static Property arm_cpu_rvbar_property =
1098 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1100 #ifndef CONFIG_USER_ONLY
1101 static Property arm_cpu_has_el2_property =
1102 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1104 static Property arm_cpu_has_el3_property =
1105 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106 #endif
1108 static Property arm_cpu_cfgend_property =
1109 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1111 static Property arm_cpu_has_vfp_property =
1112 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1114 static Property arm_cpu_has_neon_property =
1115 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1117 static Property arm_cpu_has_dsp_property =
1118 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1120 static Property arm_cpu_has_mpu_property =
1121 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1123 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125 * the right value for that particular CPU type, and we don't want
1126 * to override that with an incorrect constant value.
1128 static Property arm_cpu_pmsav7_dregion_property =
1129 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130 pmsav7_dregion,
1131 qdev_prop_uint32, uint32_t);
1133 static bool arm_get_pmu(Object *obj, Error **errp)
1135 ARMCPU *cpu = ARM_CPU(obj);
1137 return cpu->has_pmu;
1140 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1142 ARMCPU *cpu = ARM_CPU(obj);
1144 if (value) {
1145 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1146 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147 return;
1149 set_feature(&cpu->env, ARM_FEATURE_PMU);
1150 } else {
1151 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1153 cpu->has_pmu = value;
1156 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1159 * The exact approach to calculating guest ticks is:
1161 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162 * NANOSECONDS_PER_SECOND);
1164 * We don't do that. Rather we intentionally use integer division
1165 * truncation below and in the caller for the conversion of host monotonic
1166 * time to guest ticks to provide the exact inverse for the semantics of
1167 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168 * it loses precision when representing frequencies where
1169 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170 * provide an exact inverse leads to scheduling timers with negative
1171 * periods, which in turn leads to sticky behaviour in the guest.
1173 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174 * cannot become zero.
1176 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1180 void arm_cpu_post_init(Object *obj)
1182 ARMCPU *cpu = ARM_CPU(obj);
1184 /* M profile implies PMSA. We have to do this here rather than
1185 * in realize with the other feature-implication checks because
1186 * we look at the PMSA bit to see if we should add some properties.
1188 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1192 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1194 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1197 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1198 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1201 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1202 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1205 #ifndef CONFIG_USER_ONLY
1206 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1208 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1210 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1212 object_property_add_link(obj, "secure-memory",
1213 TYPE_MEMORY_REGION,
1214 (Object **)&cpu->secure_memory,
1215 qdev_prop_allow_set_link_before_realize,
1216 OBJ_PROP_LINK_STRONG);
1219 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1220 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1222 #endif
1224 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1225 cpu->has_pmu = true;
1226 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1230 * Allow user to turn off VFP and Neon support, but only for TCG --
1231 * KVM does not currently allow us to lie to the guest about its
1232 * ID/feature registers, so the guest always sees what the host has.
1234 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235 ? cpu_isar_feature(aa64_fp_simd, cpu)
1236 : cpu_isar_feature(aa32_vfp, cpu)) {
1237 cpu->has_vfp = true;
1238 if (!kvm_enabled()) {
1239 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1243 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244 cpu->has_neon = true;
1245 if (!kvm_enabled()) {
1246 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1250 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1252 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1255 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1256 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1257 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258 qdev_property_add_static(DEVICE(obj),
1259 &arm_cpu_pmsav7_dregion_property);
1263 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265 qdev_prop_allow_set_link_before_realize,
1266 OBJ_PROP_LINK_STRONG);
1268 * M profile: initial value of the Secure VTOR. We can't just use
1269 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270 * the property to be set after realize.
1272 object_property_add_uint32_ptr(obj, "init-svtor",
1273 &cpu->init_svtor,
1274 OBJ_PROP_FLAG_READWRITE);
1276 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1278 * Initial value of the NS VTOR (for cores without the Security
1279 * extension, this is the only VTOR)
1281 object_property_add_uint32_ptr(obj, "init-nsvtor",
1282 &cpu->init_nsvtor,
1283 OBJ_PROP_FLAG_READWRITE);
1286 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1288 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1289 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1292 if (kvm_enabled()) {
1293 kvm_arm_add_vcpu_properties(obj);
1296 #ifndef CONFIG_USER_ONLY
1297 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1298 cpu_isar_feature(aa64_mte, cpu)) {
1299 object_property_add_link(obj, "tag-memory",
1300 TYPE_MEMORY_REGION,
1301 (Object **)&cpu->tag_memory,
1302 qdev_prop_allow_set_link_before_realize,
1303 OBJ_PROP_LINK_STRONG);
1305 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1306 object_property_add_link(obj, "secure-tag-memory",
1307 TYPE_MEMORY_REGION,
1308 (Object **)&cpu->secure_tag_memory,
1309 qdev_prop_allow_set_link_before_realize,
1310 OBJ_PROP_LINK_STRONG);
1313 #endif
1316 static void arm_cpu_finalizefn(Object *obj)
1318 ARMCPU *cpu = ARM_CPU(obj);
1319 ARMELChangeHook *hook, *next;
1321 g_hash_table_destroy(cpu->cp_regs);
1323 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1324 QLIST_REMOVE(hook, node);
1325 g_free(hook);
1327 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1328 QLIST_REMOVE(hook, node);
1329 g_free(hook);
1331 #ifndef CONFIG_USER_ONLY
1332 if (cpu->pmu_timer) {
1333 timer_free(cpu->pmu_timer);
1335 #endif
1338 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1340 Error *local_err = NULL;
1342 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1343 arm_cpu_sve_finalize(cpu, &local_err);
1344 if (local_err != NULL) {
1345 error_propagate(errp, local_err);
1346 return;
1350 * KVM does not support modifications to this feature.
1351 * We have not registered the cpu properties when KVM
1352 * is in use, so the user will not be able to set them.
1354 if (!kvm_enabled()) {
1355 arm_cpu_pauth_finalize(cpu, &local_err);
1356 if (local_err != NULL) {
1357 error_propagate(errp, local_err);
1358 return;
1363 if (kvm_enabled()) {
1364 kvm_arm_steal_time_finalize(cpu, &local_err);
1365 if (local_err != NULL) {
1366 error_propagate(errp, local_err);
1367 return;
1372 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1374 CPUState *cs = CPU(dev);
1375 ARMCPU *cpu = ARM_CPU(dev);
1376 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1377 CPUARMState *env = &cpu->env;
1378 int pagebits;
1379 Error *local_err = NULL;
1380 bool no_aa32 = false;
1382 /* If we needed to query the host kernel for the CPU features
1383 * then it's possible that might have failed in the initfn, but
1384 * this is the first point where we can report it.
1386 if (cpu->host_cpu_probe_failed) {
1387 if (!kvm_enabled()) {
1388 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1389 } else {
1390 error_setg(errp, "Failed to retrieve host CPU features");
1392 return;
1395 #ifndef CONFIG_USER_ONLY
1396 /* The NVIC and M-profile CPU are two halves of a single piece of
1397 * hardware; trying to use one without the other is a command line
1398 * error and will result in segfaults if not caught here.
1400 if (arm_feature(env, ARM_FEATURE_M)) {
1401 if (!env->nvic) {
1402 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1403 return;
1405 } else {
1406 if (env->nvic) {
1407 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1408 return;
1413 uint64_t scale;
1415 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1416 if (!cpu->gt_cntfrq_hz) {
1417 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1418 cpu->gt_cntfrq_hz);
1419 return;
1421 scale = gt_cntfrq_period_ns(cpu);
1422 } else {
1423 scale = GTIMER_SCALE;
1426 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1427 arm_gt_ptimer_cb, cpu);
1428 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1429 arm_gt_vtimer_cb, cpu);
1430 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1431 arm_gt_htimer_cb, cpu);
1432 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1433 arm_gt_stimer_cb, cpu);
1434 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1435 arm_gt_hvtimer_cb, cpu);
1437 #endif
1439 cpu_exec_realizefn(cs, &local_err);
1440 if (local_err != NULL) {
1441 error_propagate(errp, local_err);
1442 return;
1445 arm_cpu_finalize_features(cpu, &local_err);
1446 if (local_err != NULL) {
1447 error_propagate(errp, local_err);
1448 return;
1451 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1452 cpu->has_vfp != cpu->has_neon) {
1454 * This is an architectural requirement for AArch64; AArch32 is
1455 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1457 error_setg(errp,
1458 "AArch64 CPUs must have both VFP and Neon or neither");
1459 return;
1462 if (!cpu->has_vfp) {
1463 uint64_t t;
1464 uint32_t u;
1466 t = cpu->isar.id_aa64isar1;
1467 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1468 cpu->isar.id_aa64isar1 = t;
1470 t = cpu->isar.id_aa64pfr0;
1471 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1472 cpu->isar.id_aa64pfr0 = t;
1474 u = cpu->isar.id_isar6;
1475 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1476 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1477 cpu->isar.id_isar6 = u;
1479 u = cpu->isar.mvfr0;
1480 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1481 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1482 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1483 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1484 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1485 if (!arm_feature(env, ARM_FEATURE_M)) {
1486 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1487 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1489 cpu->isar.mvfr0 = u;
1491 u = cpu->isar.mvfr1;
1492 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1493 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1494 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1495 if (arm_feature(env, ARM_FEATURE_M)) {
1496 u = FIELD_DP32(u, MVFR1, FP16, 0);
1498 cpu->isar.mvfr1 = u;
1500 u = cpu->isar.mvfr2;
1501 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1502 cpu->isar.mvfr2 = u;
1505 if (!cpu->has_neon) {
1506 uint64_t t;
1507 uint32_t u;
1509 unset_feature(env, ARM_FEATURE_NEON);
1511 t = cpu->isar.id_aa64isar0;
1512 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1513 cpu->isar.id_aa64isar0 = t;
1515 t = cpu->isar.id_aa64isar1;
1516 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1517 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1518 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1519 cpu->isar.id_aa64isar1 = t;
1521 t = cpu->isar.id_aa64pfr0;
1522 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1523 cpu->isar.id_aa64pfr0 = t;
1525 u = cpu->isar.id_isar5;
1526 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1527 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1528 cpu->isar.id_isar5 = u;
1530 u = cpu->isar.id_isar6;
1531 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1532 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1533 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1534 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1535 cpu->isar.id_isar6 = u;
1537 if (!arm_feature(env, ARM_FEATURE_M)) {
1538 u = cpu->isar.mvfr1;
1539 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1540 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1541 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1542 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1543 cpu->isar.mvfr1 = u;
1545 u = cpu->isar.mvfr2;
1546 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1547 cpu->isar.mvfr2 = u;
1551 if (!cpu->has_neon && !cpu->has_vfp) {
1552 uint64_t t;
1553 uint32_t u;
1555 t = cpu->isar.id_aa64isar0;
1556 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1557 cpu->isar.id_aa64isar0 = t;
1559 t = cpu->isar.id_aa64isar1;
1560 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1561 cpu->isar.id_aa64isar1 = t;
1563 u = cpu->isar.mvfr0;
1564 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1565 cpu->isar.mvfr0 = u;
1567 /* Despite the name, this field covers both VFP and Neon */
1568 u = cpu->isar.mvfr1;
1569 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1570 cpu->isar.mvfr1 = u;
1573 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1574 uint32_t u;
1576 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1578 u = cpu->isar.id_isar1;
1579 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1580 cpu->isar.id_isar1 = u;
1582 u = cpu->isar.id_isar2;
1583 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1584 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1585 cpu->isar.id_isar2 = u;
1587 u = cpu->isar.id_isar3;
1588 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1589 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1590 cpu->isar.id_isar3 = u;
1593 /* Some features automatically imply others: */
1594 if (arm_feature(env, ARM_FEATURE_V8)) {
1595 if (arm_feature(env, ARM_FEATURE_M)) {
1596 set_feature(env, ARM_FEATURE_V7);
1597 } else {
1598 set_feature(env, ARM_FEATURE_V7VE);
1603 * There exist AArch64 cpus without AArch32 support. When KVM
1604 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1605 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1606 * As a general principle, we also do not make ID register
1607 * consistency checks anywhere unless using TCG, because only
1608 * for TCG would a consistency-check failure be a QEMU bug.
1610 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1611 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1614 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1615 /* v7 Virtualization Extensions. In real hardware this implies
1616 * EL2 and also the presence of the Security Extensions.
1617 * For QEMU, for backwards-compatibility we implement some
1618 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1619 * include the various other features that V7VE implies.
1620 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1621 * Security Extensions is ARM_FEATURE_EL3.
1623 assert(!tcg_enabled() || no_aa32 ||
1624 cpu_isar_feature(aa32_arm_div, cpu));
1625 set_feature(env, ARM_FEATURE_LPAE);
1626 set_feature(env, ARM_FEATURE_V7);
1628 if (arm_feature(env, ARM_FEATURE_V7)) {
1629 set_feature(env, ARM_FEATURE_VAPA);
1630 set_feature(env, ARM_FEATURE_THUMB2);
1631 set_feature(env, ARM_FEATURE_MPIDR);
1632 if (!arm_feature(env, ARM_FEATURE_M)) {
1633 set_feature(env, ARM_FEATURE_V6K);
1634 } else {
1635 set_feature(env, ARM_FEATURE_V6);
1638 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1639 * non-EL3 configs. This is needed by some legacy boards.
1641 set_feature(env, ARM_FEATURE_VBAR);
1643 if (arm_feature(env, ARM_FEATURE_V6K)) {
1644 set_feature(env, ARM_FEATURE_V6);
1645 set_feature(env, ARM_FEATURE_MVFR);
1647 if (arm_feature(env, ARM_FEATURE_V6)) {
1648 set_feature(env, ARM_FEATURE_V5);
1649 if (!arm_feature(env, ARM_FEATURE_M)) {
1650 assert(!tcg_enabled() || no_aa32 ||
1651 cpu_isar_feature(aa32_jazelle, cpu));
1652 set_feature(env, ARM_FEATURE_AUXCR);
1655 if (arm_feature(env, ARM_FEATURE_V5)) {
1656 set_feature(env, ARM_FEATURE_V4T);
1658 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1659 set_feature(env, ARM_FEATURE_V7MP);
1661 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1662 set_feature(env, ARM_FEATURE_CBAR);
1664 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1665 !arm_feature(env, ARM_FEATURE_M)) {
1666 set_feature(env, ARM_FEATURE_THUMB_DSP);
1670 * We rely on no XScale CPU having VFP so we can use the same bits in the
1671 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1673 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1674 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1675 !arm_feature(env, ARM_FEATURE_XSCALE));
1677 if (arm_feature(env, ARM_FEATURE_V7) &&
1678 !arm_feature(env, ARM_FEATURE_M) &&
1679 !arm_feature(env, ARM_FEATURE_PMSA)) {
1680 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1681 * can use 4K pages.
1683 pagebits = 12;
1684 } else {
1685 /* For CPUs which might have tiny 1K pages, or which have an
1686 * MPU and might have small region sizes, stick with 1K pages.
1688 pagebits = 10;
1690 if (!set_preferred_target_page_bits(pagebits)) {
1691 /* This can only ever happen for hotplugging a CPU, or if
1692 * the board code incorrectly creates a CPU which it has
1693 * promised via minimum_page_size that it will not.
1695 error_setg(errp, "This CPU requires a smaller page size than the "
1696 "system is using");
1697 return;
1700 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1701 * We don't support setting cluster ID ([16..23]) (known as Aff2
1702 * in later ARM ARM versions), or any of the higher affinity level fields,
1703 * so these bits always RAZ.
1705 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1706 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1707 ARM_DEFAULT_CPUS_PER_CLUSTER);
1710 if (cpu->reset_hivecs) {
1711 cpu->reset_sctlr |= (1 << 13);
1714 if (cpu->cfgend) {
1715 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1716 cpu->reset_sctlr |= SCTLR_EE;
1717 } else {
1718 cpu->reset_sctlr |= SCTLR_B;
1722 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1723 /* If the has_el3 CPU property is disabled then we need to disable the
1724 * feature.
1726 unset_feature(env, ARM_FEATURE_EL3);
1728 /* Disable the security extension feature bits in the processor feature
1729 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1731 cpu->isar.id_pfr1 &= ~0xf0;
1732 cpu->isar.id_aa64pfr0 &= ~0xf000;
1735 if (!cpu->has_el2) {
1736 unset_feature(env, ARM_FEATURE_EL2);
1739 if (!cpu->has_pmu) {
1740 unset_feature(env, ARM_FEATURE_PMU);
1742 if (arm_feature(env, ARM_FEATURE_PMU)) {
1743 pmu_init(cpu);
1745 if (!kvm_enabled()) {
1746 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1747 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1750 #ifndef CONFIG_USER_ONLY
1751 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1752 cpu);
1753 #endif
1754 } else {
1755 cpu->isar.id_aa64dfr0 =
1756 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1757 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1758 cpu->pmceid0 = 0;
1759 cpu->pmceid1 = 0;
1762 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1763 /* Disable the hypervisor feature bits in the processor feature
1764 * registers if we don't have EL2. These are id_pfr1[15:12] and
1765 * id_aa64pfr0_el1[11:8].
1767 cpu->isar.id_aa64pfr0 &= ~0xf00;
1768 cpu->isar.id_pfr1 &= ~0xf000;
1771 #ifndef CONFIG_USER_ONLY
1772 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1774 * Disable the MTE feature bits if we do not have tag-memory
1775 * provided by the machine.
1777 cpu->isar.id_aa64pfr1 =
1778 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1780 #endif
1782 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1783 * to false or by setting pmsav7-dregion to 0.
1785 if (!cpu->has_mpu) {
1786 cpu->pmsav7_dregion = 0;
1788 if (cpu->pmsav7_dregion == 0) {
1789 cpu->has_mpu = false;
1792 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1793 arm_feature(env, ARM_FEATURE_V7)) {
1794 uint32_t nr = cpu->pmsav7_dregion;
1796 if (nr > 0xff) {
1797 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1798 return;
1801 if (nr) {
1802 if (arm_feature(env, ARM_FEATURE_V8)) {
1803 /* PMSAv8 */
1804 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1805 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1806 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1807 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1808 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1810 } else {
1811 env->pmsav7.drbar = g_new0(uint32_t, nr);
1812 env->pmsav7.drsr = g_new0(uint32_t, nr);
1813 env->pmsav7.dracr = g_new0(uint32_t, nr);
1818 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1819 uint32_t nr = cpu->sau_sregion;
1821 if (nr > 0xff) {
1822 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1823 return;
1826 if (nr) {
1827 env->sau.rbar = g_new0(uint32_t, nr);
1828 env->sau.rlar = g_new0(uint32_t, nr);
1832 if (arm_feature(env, ARM_FEATURE_EL3)) {
1833 set_feature(env, ARM_FEATURE_VBAR);
1836 register_cp_regs_for_features(cpu);
1837 arm_cpu_register_gdb_regs_for_features(cpu);
1839 init_cpreg_list(cpu);
1841 #ifndef CONFIG_USER_ONLY
1842 MachineState *ms = MACHINE(qdev_get_machine());
1843 unsigned int smp_cpus = ms->smp.cpus;
1844 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1847 * We must set cs->num_ases to the final value before
1848 * the first call to cpu_address_space_init.
1850 if (cpu->tag_memory != NULL) {
1851 cs->num_ases = 3 + has_secure;
1852 } else {
1853 cs->num_ases = 1 + has_secure;
1856 if (has_secure) {
1857 if (!cpu->secure_memory) {
1858 cpu->secure_memory = cs->memory;
1860 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1861 cpu->secure_memory);
1864 if (cpu->tag_memory != NULL) {
1865 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1866 cpu->tag_memory);
1867 if (has_secure) {
1868 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1869 cpu->secure_tag_memory);
1873 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1875 /* No core_count specified, default to smp_cpus. */
1876 if (cpu->core_count == -1) {
1877 cpu->core_count = smp_cpus;
1879 #endif
1881 if (tcg_enabled()) {
1882 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1885 * We only support DCZ blocklen that fits on one page.
1887 * Architectually this is always true. However TARGET_PAGE_SIZE
1888 * is variable and, for compatibility with -machine virt-2.7,
1889 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1890 * But even then, while the largest architectural DCZ blocklen
1891 * is 2KiB, no cpu actually uses such a large blocklen.
1893 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1896 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1897 * both nibbles of each byte storing tag data may be written at once.
1898 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1900 if (cpu_isar_feature(aa64_mte, cpu)) {
1901 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1905 qemu_init_vcpu(cs);
1906 cpu_reset(cs);
1908 acc->parent_realize(dev, errp);
1911 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1913 ObjectClass *oc;
1914 char *typename;
1915 char **cpuname;
1916 const char *cpunamestr;
1918 cpuname = g_strsplit(cpu_model, ",", 1);
1919 cpunamestr = cpuname[0];
1920 #ifdef CONFIG_USER_ONLY
1921 /* For backwards compatibility usermode emulation allows "-cpu any",
1922 * which has the same semantics as "-cpu max".
1924 if (!strcmp(cpunamestr, "any")) {
1925 cpunamestr = "max";
1927 #endif
1928 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1929 oc = object_class_by_name(typename);
1930 g_strfreev(cpuname);
1931 g_free(typename);
1932 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1933 object_class_is_abstract(oc)) {
1934 return NULL;
1936 return oc;
1939 static Property arm_cpu_properties[] = {
1940 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1941 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1942 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1943 mp_affinity, ARM64_AFFINITY_INVALID),
1944 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1945 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1946 DEFINE_PROP_END_OF_LIST()
1949 static gchar *arm_gdb_arch_name(CPUState *cs)
1951 ARMCPU *cpu = ARM_CPU(cs);
1952 CPUARMState *env = &cpu->env;
1954 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1955 return g_strdup("iwmmxt");
1957 return g_strdup("arm");
1960 #ifndef CONFIG_USER_ONLY
1961 #include "hw/core/sysemu-cpu-ops.h"
1963 static const struct SysemuCPUOps arm_sysemu_ops = {
1964 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1965 .asidx_from_attrs = arm_asidx_from_attrs,
1966 .write_elf32_note = arm_cpu_write_elf32_note,
1967 .write_elf64_note = arm_cpu_write_elf64_note,
1968 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1969 .legacy_vmsd = &vmstate_arm_cpu,
1971 #endif
1973 #ifdef CONFIG_TCG
1974 static const struct TCGCPUOps arm_tcg_ops = {
1975 .initialize = arm_translate_init,
1976 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1977 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1978 .tlb_fill = arm_cpu_tlb_fill,
1979 .debug_excp_handler = arm_debug_excp_handler,
1981 #if !defined(CONFIG_USER_ONLY)
1982 .do_interrupt = arm_cpu_do_interrupt,
1983 .do_transaction_failed = arm_cpu_do_transaction_failed,
1984 .do_unaligned_access = arm_cpu_do_unaligned_access,
1985 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1986 .debug_check_watchpoint = arm_debug_check_watchpoint,
1987 #endif /* !CONFIG_USER_ONLY */
1989 #endif /* CONFIG_TCG */
1991 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1993 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1994 CPUClass *cc = CPU_CLASS(acc);
1995 DeviceClass *dc = DEVICE_CLASS(oc);
1997 device_class_set_parent_realize(dc, arm_cpu_realizefn,
1998 &acc->parent_realize);
2000 device_class_set_props(dc, arm_cpu_properties);
2001 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2003 cc->class_by_name = arm_cpu_class_by_name;
2004 cc->has_work = arm_cpu_has_work;
2005 cc->dump_state = arm_cpu_dump_state;
2006 cc->set_pc = arm_cpu_set_pc;
2007 cc->gdb_read_register = arm_cpu_gdb_read_register;
2008 cc->gdb_write_register = arm_cpu_gdb_write_register;
2009 #ifndef CONFIG_USER_ONLY
2010 cc->sysemu_ops = &arm_sysemu_ops;
2011 #endif
2012 cc->gdb_num_core_regs = 26;
2013 cc->gdb_core_xml_file = "arm-core.xml";
2014 cc->gdb_arch_name = arm_gdb_arch_name;
2015 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2016 cc->gdb_stop_before_watchpoint = true;
2017 cc->disas_set_info = arm_disas_set_info;
2019 #ifdef CONFIG_TCG
2020 cc->tcg_ops = &arm_tcg_ops;
2021 #endif /* CONFIG_TCG */
2024 #ifdef CONFIG_KVM
2025 static void arm_host_initfn(Object *obj)
2027 ARMCPU *cpu = ARM_CPU(obj);
2029 kvm_arm_set_cpu_features_from_host(cpu);
2030 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2031 aarch64_add_sve_properties(obj);
2033 arm_cpu_post_init(obj);
2036 static const TypeInfo host_arm_cpu_type_info = {
2037 .name = TYPE_ARM_HOST_CPU,
2038 .parent = TYPE_AARCH64_CPU,
2039 .instance_init = arm_host_initfn,
2042 #endif
2044 static void arm_cpu_instance_init(Object *obj)
2046 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2048 acc->info->initfn(obj);
2049 arm_cpu_post_init(obj);
2052 static void cpu_register_class_init(ObjectClass *oc, void *data)
2054 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2056 acc->info = data;
2059 void arm_cpu_register(const ARMCPUInfo *info)
2061 TypeInfo type_info = {
2062 .parent = TYPE_ARM_CPU,
2063 .instance_size = sizeof(ARMCPU),
2064 .instance_align = __alignof__(ARMCPU),
2065 .instance_init = arm_cpu_instance_init,
2066 .class_size = sizeof(ARMCPUClass),
2067 .class_init = info->class_init ?: cpu_register_class_init,
2068 .class_data = (void *)info,
2071 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2072 type_register(&type_info);
2073 g_free((void *)type_info.name);
2076 static const TypeInfo arm_cpu_type_info = {
2077 .name = TYPE_ARM_CPU,
2078 .parent = TYPE_CPU,
2079 .instance_size = sizeof(ARMCPU),
2080 .instance_align = __alignof__(ARMCPU),
2081 .instance_init = arm_cpu_initfn,
2082 .instance_finalize = arm_cpu_finalizefn,
2083 .abstract = true,
2084 .class_size = sizeof(ARMCPUClass),
2085 .class_init = arm_cpu_class_init,
2088 static void arm_cpu_register_types(void)
2090 type_register_static(&arm_cpu_type_info);
2092 #ifdef CONFIG_KVM
2093 type_register_static(&host_arm_cpu_type_info);
2094 #endif
2097 type_init(arm_cpu_register_types)