hw/ppc/spapr: Allow "spapr-vlan" as NIC model name beside "ibmveth"
[qemu.git] / hw / ppc / spapr.c
blobfba76abee2da334eefa132cf8bbfb90772b901f7
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120 const char *type_ics,
121 int nr_irqs, Error **errp)
123 Error *local_err = NULL;
124 Object *obj;
126 obj = object_new(type_ics);
127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129 &error_abort);
130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131 if (local_err) {
132 goto error;
134 object_property_set_bool(obj, true, "realized", &local_err);
135 if (local_err) {
136 goto error;
139 return ICS_SIMPLE(obj);
141 error:
142 error_propagate(errp, local_err);
143 return NULL;
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
152 return false;
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156 .name = "icp/server",
157 .version_id = 1,
158 .minimum_version_id = 1,
159 .needed = pre_2_10_vmstate_dummy_icp_needed,
160 .fields = (VMStateField[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177 (void *)(uintptr_t) i);
180 static int xics_max_server_number(sPAPRMachineState *spapr)
182 assert(spapr->vsmt);
183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 if (kvm_enabled()) {
191 if (machine_kernel_irqchip_allowed(machine) &&
192 !xics_kvm_init(spapr, errp)) {
193 spapr->icp_type = TYPE_KVM_ICP;
194 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
196 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
198 return;
202 if (!spapr->ics) {
203 xics_spapr_init(spapr);
204 spapr->icp_type = TYPE_ICP;
205 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
206 if (!spapr->ics) {
207 return;
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
213 int smt_threads)
215 int i, ret = 0;
216 uint32_t servers_prop[smt_threads];
217 uint32_t gservers_prop[smt_threads * 2];
218 int index = spapr_get_vcpu_id(cpu);
220 if (cpu->compat_pvr) {
221 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
222 if (ret < 0) {
223 return ret;
227 /* Build interrupt servers and gservers properties */
228 for (i = 0; i < smt_threads; i++) {
229 servers_prop[i] = cpu_to_be32(index + i);
230 /* Hack, direct the group queues back to cpu 0 */
231 gservers_prop[i*2] = cpu_to_be32(index + i);
232 gservers_prop[i*2 + 1] = 0;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235 servers_prop, sizeof(servers_prop));
236 if (ret < 0) {
237 return ret;
239 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240 gservers_prop, sizeof(gservers_prop));
242 return ret;
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
247 int index = spapr_get_vcpu_id(cpu);
248 uint32_t associativity[] = {cpu_to_be32(0x5),
249 cpu_to_be32(0x0),
250 cpu_to_be32(0x0),
251 cpu_to_be32(0x0),
252 cpu_to_be32(cpu->node_id),
253 cpu_to_be32(index)};
255 /* Advertise NUMA via ibm,associativity */
256 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257 sizeof(associativity));
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
262 PowerPCCPU *cpu,
263 void *fdt, int offset,
264 bool legacy_guest)
266 CPUPPCState *env = &cpu->env;
267 uint8_t pa_features_206[] = { 6, 0,
268 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
269 uint8_t pa_features_207[] = { 24, 0,
270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
274 uint8_t pa_features_300[] = { 66, 0,
275 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
276 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
277 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
278 /* 6: DS207 */
279 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
280 /* 16: Vector */
281 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
282 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
283 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
284 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
286 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
287 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
288 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
289 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
290 /* 42: PM, 44: PC RA, 46: SC vec'd */
291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
292 /* 48: SIMD, 50: QP BFP, 52: String */
293 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
294 /* 54: DecFP, 56: DecI, 58: SHA */
295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
296 /* 60: NM atomic, 62: RNG */
297 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
299 uint8_t *pa_features = NULL;
300 size_t pa_size;
302 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
303 pa_features = pa_features_206;
304 pa_size = sizeof(pa_features_206);
306 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
307 pa_features = pa_features_207;
308 pa_size = sizeof(pa_features_207);
310 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
311 pa_features = pa_features_300;
312 pa_size = sizeof(pa_features_300);
314 if (!pa_features) {
315 return;
318 if (env->ci_large_pages) {
320 * Note: we keep CI large pages off by default because a 64K capable
321 * guest provisioned with large pages might otherwise try to map a qemu
322 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
323 * even if that qemu runs on a 4k host.
324 * We dd this bit back here if we are confident this is not an issue
326 pa_features[3] |= 0x20;
328 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
329 pa_features[24] |= 0x80; /* Transactional memory support */
331 if (legacy_guest && pa_size > 40) {
332 /* Workaround for broken kernels that attempt (guest) radix
333 * mode when they can't handle it, if they see the radix bit set
334 * in pa-features. So hide it from them. */
335 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
338 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
343 int ret = 0, offset, cpus_offset;
344 CPUState *cs;
345 char cpu_model[32];
346 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
348 CPU_FOREACH(cs) {
349 PowerPCCPU *cpu = POWERPC_CPU(cs);
350 DeviceClass *dc = DEVICE_GET_CLASS(cs);
351 int index = spapr_get_vcpu_id(cpu);
352 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
354 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
355 continue;
358 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
360 cpus_offset = fdt_path_offset(fdt, "/cpus");
361 if (cpus_offset < 0) {
362 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
363 if (cpus_offset < 0) {
364 return cpus_offset;
367 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
368 if (offset < 0) {
369 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
370 if (offset < 0) {
371 return offset;
375 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
376 pft_size_prop, sizeof(pft_size_prop));
377 if (ret < 0) {
378 return ret;
381 if (nb_numa_nodes > 1) {
382 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
383 if (ret < 0) {
384 return ret;
388 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
389 if (ret < 0) {
390 return ret;
393 spapr_populate_pa_features(spapr, cpu, fdt, offset,
394 spapr->cas_legacy_guest_workaround);
396 return ret;
399 static hwaddr spapr_node0_size(MachineState *machine)
401 if (nb_numa_nodes) {
402 int i;
403 for (i = 0; i < nb_numa_nodes; ++i) {
404 if (numa_info[i].node_mem) {
405 return MIN(pow2floor(numa_info[i].node_mem),
406 machine->ram_size);
410 return machine->ram_size;
413 static void add_str(GString *s, const gchar *s1)
415 g_string_append_len(s, s1, strlen(s1) + 1);
418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
419 hwaddr size)
421 uint32_t associativity[] = {
422 cpu_to_be32(0x4), /* length */
423 cpu_to_be32(0x0), cpu_to_be32(0x0),
424 cpu_to_be32(0x0), cpu_to_be32(nodeid)
426 char mem_name[32];
427 uint64_t mem_reg_property[2];
428 int off;
430 mem_reg_property[0] = cpu_to_be64(start);
431 mem_reg_property[1] = cpu_to_be64(size);
433 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
434 off = fdt_add_subnode(fdt, 0, mem_name);
435 _FDT(off);
436 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
437 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
438 sizeof(mem_reg_property))));
439 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
440 sizeof(associativity))));
441 return off;
444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
446 MachineState *machine = MACHINE(spapr);
447 hwaddr mem_start, node_size;
448 int i, nb_nodes = nb_numa_nodes;
449 NodeInfo *nodes = numa_info;
450 NodeInfo ramnode;
452 /* No NUMA nodes, assume there is just one node with whole RAM */
453 if (!nb_numa_nodes) {
454 nb_nodes = 1;
455 ramnode.node_mem = machine->ram_size;
456 nodes = &ramnode;
459 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
460 if (!nodes[i].node_mem) {
461 continue;
463 if (mem_start >= machine->ram_size) {
464 node_size = 0;
465 } else {
466 node_size = nodes[i].node_mem;
467 if (node_size > machine->ram_size - mem_start) {
468 node_size = machine->ram_size - mem_start;
471 if (!mem_start) {
472 /* spapr_machine_init() checks for rma_size <= node0_size
473 * already */
474 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
475 mem_start += spapr->rma_size;
476 node_size -= spapr->rma_size;
478 for ( ; node_size; ) {
479 hwaddr sizetmp = pow2floor(node_size);
481 /* mem_start != 0 here */
482 if (ctzl(mem_start) < ctzl(sizetmp)) {
483 sizetmp = 1ULL << ctzl(mem_start);
486 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
487 node_size -= sizetmp;
488 mem_start += sizetmp;
492 return 0;
495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
496 sPAPRMachineState *spapr)
498 PowerPCCPU *cpu = POWERPC_CPU(cs);
499 CPUPPCState *env = &cpu->env;
500 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
501 int index = spapr_get_vcpu_id(cpu);
502 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
503 0xffffffff, 0xffffffff};
504 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
505 : SPAPR_TIMEBASE_FREQ;
506 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
507 uint32_t page_sizes_prop[64];
508 size_t page_sizes_prop_size;
509 uint32_t vcpus_per_socket = smp_threads * smp_cores;
510 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
511 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
512 sPAPRDRConnector *drc;
513 int drc_index;
514 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
515 int i;
517 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
518 if (drc) {
519 drc_index = spapr_drc_index(drc);
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
523 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
524 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
526 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
527 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
528 env->dcache_line_size)));
529 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
530 env->dcache_line_size)));
531 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
532 env->icache_line_size)));
533 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
534 env->icache_line_size)));
536 if (pcc->l1_dcache_size) {
537 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
538 pcc->l1_dcache_size)));
539 } else {
540 warn_report("Unknown L1 dcache size for cpu");
542 if (pcc->l1_icache_size) {
543 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
544 pcc->l1_icache_size)));
545 } else {
546 warn_report("Unknown L1 icache size for cpu");
549 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
550 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
551 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
552 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
553 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
554 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
556 if (env->spr_cb[SPR_PURR].oea_read) {
557 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
560 if (env->mmu_model & POWERPC_MMU_1TSEG) {
561 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
562 segs, sizeof(segs))));
565 /* Advertise VSX (vector extensions) if available
566 * 1 == VMX / Altivec available
567 * 2 == VSX available
569 * Only CPUs for which we create core types in spapr_cpu_core.c
570 * are possible, and all of those have VMX */
571 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
573 } else {
574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
577 /* Advertise DFP (Decimal Floating Point) if available
578 * 0 / no property == no DFP
579 * 1 == DFP available */
580 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
581 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
584 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
585 sizeof(page_sizes_prop));
586 if (page_sizes_prop_size) {
587 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
588 page_sizes_prop, page_sizes_prop_size)));
591 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
593 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
594 cs->cpu_index / vcpus_per_socket)));
596 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
597 pft_size_prop, sizeof(pft_size_prop))));
599 if (nb_numa_nodes > 1) {
600 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
603 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
605 if (pcc->radix_page_info) {
606 for (i = 0; i < pcc->radix_page_info->count; i++) {
607 radix_AP_encodings[i] =
608 cpu_to_be32(pcc->radix_page_info->entries[i]);
610 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
611 radix_AP_encodings,
612 pcc->radix_page_info->count *
613 sizeof(radix_AP_encodings[0]))));
617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
619 CPUState *cs;
620 int cpus_offset;
621 char *nodename;
623 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
624 _FDT(cpus_offset);
625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
626 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
629 * We walk the CPUs in reverse order to ensure that CPU DT nodes
630 * created by fdt_add_subnode() end up in the right order in FDT
631 * for the guest kernel the enumerate the CPUs correctly.
633 CPU_FOREACH_REVERSE(cs) {
634 PowerPCCPU *cpu = POWERPC_CPU(cs);
635 int index = spapr_get_vcpu_id(cpu);
636 DeviceClass *dc = DEVICE_GET_CLASS(cs);
637 int offset;
639 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
640 continue;
643 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
644 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
645 g_free(nodename);
646 _FDT(offset);
647 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
654 MemoryDeviceInfoList *info;
656 for (info = list; info; info = info->next) {
657 MemoryDeviceInfo *value = info->value;
659 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
660 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
662 if (pcdimm_info->addr >= addr &&
663 addr < (pcdimm_info->addr + pcdimm_info->size)) {
664 return pcdimm_info->node;
669 return -1;
673 * Adds ibm,dynamic-reconfiguration-memory node.
674 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
675 * of this device tree node.
677 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
679 MachineState *machine = MACHINE(spapr);
680 int ret, i, offset;
681 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
682 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
683 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
684 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
685 memory_region_size(&spapr->hotplug_memory.mr)) /
686 lmb_size;
687 uint32_t *int_buf, *cur_index, buf_len;
688 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
689 MemoryDeviceInfoList *dimms = NULL;
692 * Don't create the node if there is no hotpluggable memory
694 if (machine->ram_size == machine->maxram_size) {
695 return 0;
699 * Allocate enough buffer size to fit in ibm,dynamic-memory
700 * or ibm,associativity-lookup-arrays
702 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
703 * sizeof(uint32_t);
704 cur_index = int_buf = g_malloc0(buf_len);
706 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
708 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
709 sizeof(prop_lmb_size));
710 if (ret < 0) {
711 goto out;
714 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
715 if (ret < 0) {
716 goto out;
719 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
720 if (ret < 0) {
721 goto out;
724 if (hotplug_lmb_start) {
725 MemoryDeviceInfoList **prev = &dimms;
726 qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
729 /* ibm,dynamic-memory */
730 int_buf[0] = cpu_to_be32(nr_lmbs);
731 cur_index++;
732 for (i = 0; i < nr_lmbs; i++) {
733 uint64_t addr = i * lmb_size;
734 uint32_t *dynamic_memory = cur_index;
736 if (i >= hotplug_lmb_start) {
737 sPAPRDRConnector *drc;
739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
740 g_assert(drc);
742 dynamic_memory[0] = cpu_to_be32(addr >> 32);
743 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
744 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
745 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
746 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
747 if (memory_region_present(get_system_memory(), addr)) {
748 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
749 } else {
750 dynamic_memory[5] = cpu_to_be32(0);
752 } else {
754 * LMB information for RMA, boot time RAM and gap b/n RAM and
755 * hotplug memory region -- all these are marked as reserved
756 * and as having no valid DRC.
758 dynamic_memory[0] = cpu_to_be32(addr >> 32);
759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760 dynamic_memory[2] = cpu_to_be32(0);
761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762 dynamic_memory[4] = cpu_to_be32(-1);
763 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
764 SPAPR_LMB_FLAGS_DRC_INVALID);
767 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
769 qapi_free_MemoryDeviceInfoList(dimms);
770 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
771 if (ret < 0) {
772 goto out;
775 /* ibm,associativity-lookup-arrays */
776 cur_index = int_buf;
777 int_buf[0] = cpu_to_be32(nr_nodes);
778 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
779 cur_index += 2;
780 for (i = 0; i < nr_nodes; i++) {
781 uint32_t associativity[] = {
782 cpu_to_be32(0x0),
783 cpu_to_be32(0x0),
784 cpu_to_be32(0x0),
785 cpu_to_be32(i)
787 memcpy(cur_index, associativity, sizeof(associativity));
788 cur_index += 4;
790 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
791 (cur_index - int_buf) * sizeof(uint32_t));
792 out:
793 g_free(int_buf);
794 return ret;
797 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
798 sPAPROptionVector *ov5_updates)
800 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
801 int ret = 0, offset;
803 /* Generate ibm,dynamic-reconfiguration-memory node if required */
804 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
805 g_assert(smc->dr_lmb_enabled);
806 ret = spapr_populate_drconf_memory(spapr, fdt);
807 if (ret) {
808 goto out;
812 offset = fdt_path_offset(fdt, "/chosen");
813 if (offset < 0) {
814 offset = fdt_add_subnode(fdt, 0, "chosen");
815 if (offset < 0) {
816 return offset;
819 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
820 "ibm,architecture-vec-5");
822 out:
823 return ret;
826 static bool spapr_hotplugged_dev_before_cas(void)
828 Object *drc_container, *obj;
829 ObjectProperty *prop;
830 ObjectPropertyIterator iter;
832 drc_container = container_get(object_get_root(), "/dr-connector");
833 object_property_iter_init(&iter, drc_container);
834 while ((prop = object_property_iter_next(&iter))) {
835 if (!strstart(prop->type, "link<", NULL)) {
836 continue;
838 obj = object_property_get_link(drc_container, prop->name, NULL);
839 if (spapr_drc_needed(obj)) {
840 return true;
843 return false;
846 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
847 target_ulong addr, target_ulong size,
848 sPAPROptionVector *ov5_updates)
850 void *fdt, *fdt_skel;
851 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
853 if (spapr_hotplugged_dev_before_cas()) {
854 return 1;
857 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
858 error_report("SLOF provided an unexpected CAS buffer size "
859 TARGET_FMT_lu " (min: %zu, max: %u)",
860 size, sizeof(hdr), FW_MAX_SIZE);
861 exit(EXIT_FAILURE);
864 size -= sizeof(hdr);
866 /* Create skeleton */
867 fdt_skel = g_malloc0(size);
868 _FDT((fdt_create(fdt_skel, size)));
869 _FDT((fdt_begin_node(fdt_skel, "")));
870 _FDT((fdt_end_node(fdt_skel)));
871 _FDT((fdt_finish(fdt_skel)));
872 fdt = g_malloc0(size);
873 _FDT((fdt_open_into(fdt_skel, fdt, size)));
874 g_free(fdt_skel);
876 /* Fixup cpu nodes */
877 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
879 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
880 return -1;
883 /* Pack resulting tree */
884 _FDT((fdt_pack(fdt)));
886 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
887 trace_spapr_cas_failed(size);
888 return -1;
891 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
892 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
893 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
894 g_free(fdt);
896 return 0;
899 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
901 int rtas;
902 GString *hypertas = g_string_sized_new(256);
903 GString *qemu_hypertas = g_string_sized_new(256);
904 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
905 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
906 memory_region_size(&spapr->hotplug_memory.mr);
907 uint32_t lrdr_capacity[] = {
908 cpu_to_be32(max_hotplug_addr >> 32),
909 cpu_to_be32(max_hotplug_addr & 0xffffffff),
910 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
911 cpu_to_be32(max_cpus / smp_threads),
914 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
916 /* hypertas */
917 add_str(hypertas, "hcall-pft");
918 add_str(hypertas, "hcall-term");
919 add_str(hypertas, "hcall-dabr");
920 add_str(hypertas, "hcall-interrupt");
921 add_str(hypertas, "hcall-tce");
922 add_str(hypertas, "hcall-vio");
923 add_str(hypertas, "hcall-splpar");
924 add_str(hypertas, "hcall-bulk");
925 add_str(hypertas, "hcall-set-mode");
926 add_str(hypertas, "hcall-sprg0");
927 add_str(hypertas, "hcall-copy");
928 add_str(hypertas, "hcall-debug");
929 add_str(qemu_hypertas, "hcall-memop1");
931 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
932 add_str(hypertas, "hcall-multi-tce");
935 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
936 add_str(hypertas, "hcall-hpt-resize");
939 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
940 hypertas->str, hypertas->len));
941 g_string_free(hypertas, TRUE);
942 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
943 qemu_hypertas->str, qemu_hypertas->len));
944 g_string_free(qemu_hypertas, TRUE);
946 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
947 refpoints, sizeof(refpoints)));
949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
950 RTAS_ERROR_LOG_MAX));
951 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
952 RTAS_EVENT_SCAN_RATE));
954 g_assert(msi_nonbroken);
955 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
958 * According to PAPR, rtas ibm,os-term does not guarantee a return
959 * back to the guest cpu.
961 * While an additional ibm,extended-os-term property indicates
962 * that rtas call return will always occur. Set this property.
964 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
966 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
967 lrdr_capacity, sizeof(lrdr_capacity)));
969 spapr_dt_rtas_tokens(fdt, rtas);
972 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
973 * that the guest may request and thus the valid values for bytes 24..26 of
974 * option vector 5: */
975 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
977 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979 char val[2 * 4] = {
980 23, 0x00, /* Xive mode, filled in below. */
981 24, 0x00, /* Hash/Radix, filled in below. */
982 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
983 26, 0x40, /* Radix options: GTSE == yes. */
986 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
987 first_ppc_cpu->compat_pvr)) {
988 /* If we're in a pre POWER9 compat mode then the guest should do hash */
989 val[3] = 0x00; /* Hash */
990 } else if (kvm_enabled()) {
991 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
992 val[3] = 0x80; /* OV5_MMU_BOTH */
993 } else if (kvmppc_has_cap_mmu_radix()) {
994 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
995 } else {
996 val[3] = 0x00; /* Hash */
998 } else {
999 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1000 val[3] = 0xC0;
1002 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1003 val, sizeof(val)));
1006 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1008 MachineState *machine = MACHINE(spapr);
1009 int chosen;
1010 const char *boot_device = machine->boot_order;
1011 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1012 size_t cb = 0;
1013 char *bootlist = get_boot_devices_list(&cb, true);
1015 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1017 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019 spapr->initrd_base));
1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021 spapr->initrd_base + spapr->initrd_size));
1023 if (spapr->kernel_size) {
1024 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1025 cpu_to_be64(spapr->kernel_size) };
1027 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1028 &kprop, sizeof(kprop)));
1029 if (spapr->kernel_le) {
1030 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1033 if (boot_menu) {
1034 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1036 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1040 if (cb && bootlist) {
1041 int i;
1043 for (i = 0; i < cb; i++) {
1044 if (bootlist[i] == '\n') {
1045 bootlist[i] = ' ';
1048 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1051 if (boot_device && strlen(boot_device)) {
1052 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1055 if (!spapr->has_graphics && stdout_path) {
1057 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1058 * kernel. New platforms should only use the "stdout-path" property. Set
1059 * the new property and continue using older property to remain
1060 * compatible with the existing firmware.
1062 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1063 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1066 spapr_dt_ov5_platform_support(fdt, chosen);
1068 g_free(stdout_path);
1069 g_free(bootlist);
1072 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1074 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1075 * KVM to work under pHyp with some guest co-operation */
1076 int hypervisor;
1077 uint8_t hypercall[16];
1079 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1080 /* indicate KVM hypercall interface */
1081 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1082 if (kvmppc_has_cap_fixup_hcalls()) {
1084 * Older KVM versions with older guest kernels were broken
1085 * with the magic page, don't allow the guest to map it.
1087 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1088 sizeof(hypercall))) {
1089 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1090 hypercall, sizeof(hypercall)));
1095 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1096 hwaddr rtas_addr,
1097 hwaddr rtas_size)
1099 MachineState *machine = MACHINE(spapr);
1100 MachineClass *mc = MACHINE_GET_CLASS(machine);
1101 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1102 int ret;
1103 void *fdt;
1104 sPAPRPHBState *phb;
1105 char *buf;
1107 fdt = g_malloc0(FDT_MAX_SIZE);
1108 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1110 /* Root node */
1111 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1112 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1113 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1116 * Add info to guest to indentify which host is it being run on
1117 * and what is the uuid of the guest
1119 if (kvmppc_get_host_model(&buf)) {
1120 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1121 g_free(buf);
1123 if (kvmppc_get_host_serial(&buf)) {
1124 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1125 g_free(buf);
1128 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1130 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131 if (qemu_uuid_set) {
1132 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1134 g_free(buf);
1136 if (qemu_get_vm_name()) {
1137 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138 qemu_get_vm_name()));
1141 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1142 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1144 /* /interrupt controller */
1145 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1147 ret = spapr_populate_memory(spapr, fdt);
1148 if (ret < 0) {
1149 error_report("couldn't setup memory nodes in fdt");
1150 exit(1);
1153 /* /vdevice */
1154 spapr_dt_vdevice(spapr->vio_bus, fdt);
1156 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1157 ret = spapr_rng_populate_dt(fdt);
1158 if (ret < 0) {
1159 error_report("could not set up rng device in the fdt");
1160 exit(1);
1164 QLIST_FOREACH(phb, &spapr->phbs, list) {
1165 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1166 if (ret < 0) {
1167 error_report("couldn't setup PCI devices in fdt");
1168 exit(1);
1172 /* cpus */
1173 spapr_populate_cpus_dt_node(fdt, spapr);
1175 if (smc->dr_lmb_enabled) {
1176 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1179 if (mc->has_hotpluggable_cpus) {
1180 int offset = fdt_path_offset(fdt, "/cpus");
1181 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1182 SPAPR_DR_CONNECTOR_TYPE_CPU);
1183 if (ret < 0) {
1184 error_report("Couldn't set up CPU DR device tree properties");
1185 exit(1);
1189 /* /event-sources */
1190 spapr_dt_events(spapr, fdt);
1192 /* /rtas */
1193 spapr_dt_rtas(spapr, fdt);
1195 /* /chosen */
1196 spapr_dt_chosen(spapr, fdt);
1198 /* /hypervisor */
1199 if (kvm_enabled()) {
1200 spapr_dt_hypervisor(spapr, fdt);
1203 /* Build memory reserve map */
1204 if (spapr->kernel_size) {
1205 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1207 if (spapr->initrd_size) {
1208 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1211 /* ibm,client-architecture-support updates */
1212 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1213 if (ret < 0) {
1214 error_report("couldn't setup CAS properties fdt");
1215 exit(1);
1218 return fdt;
1221 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1223 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1226 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1227 PowerPCCPU *cpu)
1229 CPUPPCState *env = &cpu->env;
1231 /* The TCG path should also be holding the BQL at this point */
1232 g_assert(qemu_mutex_iothread_locked());
1234 if (msr_pr) {
1235 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1236 env->gpr[3] = H_PRIVILEGE;
1237 } else {
1238 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1242 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1244 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246 return spapr->patb_entry;
1249 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1250 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1251 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1252 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1253 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1256 * Get the fd to access the kernel htab, re-opening it if necessary
1258 static int get_htab_fd(sPAPRMachineState *spapr)
1260 Error *local_err = NULL;
1262 if (spapr->htab_fd >= 0) {
1263 return spapr->htab_fd;
1266 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1267 if (spapr->htab_fd < 0) {
1268 error_report_err(local_err);
1271 return spapr->htab_fd;
1274 void close_htab_fd(sPAPRMachineState *spapr)
1276 if (spapr->htab_fd >= 0) {
1277 close(spapr->htab_fd);
1279 spapr->htab_fd = -1;
1282 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1284 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1286 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1289 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1291 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1293 assert(kvm_enabled());
1295 if (!spapr->htab) {
1296 return 0;
1299 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1302 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1303 hwaddr ptex, int n)
1305 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1306 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1308 if (!spapr->htab) {
1310 * HTAB is controlled by KVM. Fetch into temporary buffer
1312 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1313 kvmppc_read_hptes(hptes, ptex, n);
1314 return hptes;
1318 * HTAB is controlled by QEMU. Just point to the internally
1319 * accessible PTEG.
1321 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1324 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1325 const ppc_hash_pte64_t *hptes,
1326 hwaddr ptex, int n)
1328 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1330 if (!spapr->htab) {
1331 g_free((void *)hptes);
1334 /* Nothing to do for qemu managed HPT */
1337 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1338 uint64_t pte0, uint64_t pte1)
1340 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1341 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1343 if (!spapr->htab) {
1344 kvmppc_write_hpte(ptex, pte0, pte1);
1345 } else {
1346 stq_p(spapr->htab + offset, pte0);
1347 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1351 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1353 int shift;
1355 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1356 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1357 * that's much more than is needed for Linux guests */
1358 shift = ctz64(pow2ceil(ramsize)) - 7;
1359 shift = MAX(shift, 18); /* Minimum architected size */
1360 shift = MIN(shift, 46); /* Maximum architected size */
1361 return shift;
1364 void spapr_free_hpt(sPAPRMachineState *spapr)
1366 g_free(spapr->htab);
1367 spapr->htab = NULL;
1368 spapr->htab_shift = 0;
1369 close_htab_fd(spapr);
1372 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1373 Error **errp)
1375 long rc;
1377 /* Clean up any HPT info from a previous boot */
1378 spapr_free_hpt(spapr);
1380 rc = kvmppc_reset_htab(shift);
1381 if (rc < 0) {
1382 /* kernel-side HPT needed, but couldn't allocate one */
1383 error_setg_errno(errp, errno,
1384 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1385 shift);
1386 /* This is almost certainly fatal, but if the caller really
1387 * wants to carry on with shift == 0, it's welcome to try */
1388 } else if (rc > 0) {
1389 /* kernel-side HPT allocated */
1390 if (rc != shift) {
1391 error_setg(errp,
1392 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1393 shift, rc);
1396 spapr->htab_shift = shift;
1397 spapr->htab = NULL;
1398 } else {
1399 /* kernel-side HPT not needed, allocate in userspace instead */
1400 size_t size = 1ULL << shift;
1401 int i;
1403 spapr->htab = qemu_memalign(size, size);
1404 if (!spapr->htab) {
1405 error_setg_errno(errp, errno,
1406 "Could not allocate HPT of order %d", shift);
1407 return;
1410 memset(spapr->htab, 0, size);
1411 spapr->htab_shift = shift;
1413 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1414 DIRTY_HPTE(HPTE(spapr->htab, i));
1417 /* We're setting up a hash table, so that means we're not radix */
1418 spapr->patb_entry = 0;
1421 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1423 int hpt_shift;
1425 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1426 || (spapr->cas_reboot
1427 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1428 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1429 } else {
1430 uint64_t current_ram_size;
1432 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1433 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1435 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1437 if (spapr->vrma_adjust) {
1438 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1439 spapr->htab_shift);
1443 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1445 bool matched = false;
1447 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1448 matched = true;
1451 if (!matched) {
1452 error_report("Device %s is not supported by this machine yet.",
1453 qdev_fw_name(DEVICE(sbdev)));
1454 exit(1);
1458 static int spapr_reset_drcs(Object *child, void *opaque)
1460 sPAPRDRConnector *drc =
1461 (sPAPRDRConnector *) object_dynamic_cast(child,
1462 TYPE_SPAPR_DR_CONNECTOR);
1464 if (drc) {
1465 spapr_drc_reset(drc);
1468 return 0;
1471 static void spapr_machine_reset(void)
1473 MachineState *machine = MACHINE(qdev_get_machine());
1474 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1475 PowerPCCPU *first_ppc_cpu;
1476 uint32_t rtas_limit;
1477 hwaddr rtas_addr, fdt_addr;
1478 void *fdt;
1479 int rc;
1481 /* Check for unknown sysbus devices */
1482 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1484 spapr_caps_reset(spapr);
1486 first_ppc_cpu = POWERPC_CPU(first_cpu);
1487 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1488 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1489 spapr->max_compat_pvr)) {
1490 /* If using KVM with radix mode available, VCPUs can be started
1491 * without a HPT because KVM will start them in radix mode.
1492 * Set the GR bit in PATB so that we know there is no HPT. */
1493 spapr->patb_entry = PATBE1_GR;
1494 } else {
1495 spapr_setup_hpt_and_vrma(spapr);
1498 /* if this reset wasn't generated by CAS, we should reset our
1499 * negotiated options and start from scratch */
1500 if (!spapr->cas_reboot) {
1501 spapr_ovec_cleanup(spapr->ov5_cas);
1502 spapr->ov5_cas = spapr_ovec_new();
1504 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1507 qemu_devices_reset();
1509 /* DRC reset may cause a device to be unplugged. This will cause troubles
1510 * if this device is used by another device (eg, a running vhost backend
1511 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1512 * situations, we reset DRCs after all devices have been reset.
1514 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1516 spapr_clear_pending_events(spapr);
1519 * We place the device tree and RTAS just below either the top of the RMA,
1520 * or just below 2GB, whichever is lowere, so that it can be
1521 * processed with 32-bit real mode code if necessary
1523 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1524 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1525 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1527 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1529 spapr_load_rtas(spapr, fdt, rtas_addr);
1531 rc = fdt_pack(fdt);
1533 /* Should only fail if we've built a corrupted tree */
1534 assert(rc == 0);
1536 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1537 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1538 fdt_totalsize(fdt), FDT_MAX_SIZE);
1539 exit(1);
1542 /* Load the fdt */
1543 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1544 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1545 g_free(fdt);
1547 /* Set up the entry state */
1548 first_ppc_cpu->env.gpr[3] = fdt_addr;
1549 first_ppc_cpu->env.gpr[5] = 0;
1550 first_cpu->halted = 0;
1551 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1553 spapr->cas_reboot = false;
1556 static void spapr_create_nvram(sPAPRMachineState *spapr)
1558 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1559 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1561 if (dinfo) {
1562 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1563 &error_fatal);
1566 qdev_init_nofail(dev);
1568 spapr->nvram = (struct sPAPRNVRAM *)dev;
1571 static void spapr_rtc_create(sPAPRMachineState *spapr)
1573 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1574 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1575 &error_fatal);
1576 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1577 &error_fatal);
1578 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1579 "date", &error_fatal);
1582 /* Returns whether we want to use VGA or not */
1583 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1585 switch (vga_interface_type) {
1586 case VGA_NONE:
1587 return false;
1588 case VGA_DEVICE:
1589 return true;
1590 case VGA_STD:
1591 case VGA_VIRTIO:
1592 return pci_vga_init(pci_bus) != NULL;
1593 default:
1594 error_setg(errp,
1595 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1596 return false;
1600 static int spapr_pre_load(void *opaque)
1602 int rc;
1604 rc = spapr_caps_pre_load(opaque);
1605 if (rc) {
1606 return rc;
1609 return 0;
1612 static int spapr_post_load(void *opaque, int version_id)
1614 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1615 int err = 0;
1617 err = spapr_caps_post_migration(spapr);
1618 if (err) {
1619 return err;
1622 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1623 CPUState *cs;
1624 CPU_FOREACH(cs) {
1625 PowerPCCPU *cpu = POWERPC_CPU(cs);
1626 icp_resend(ICP(cpu->intc));
1630 /* In earlier versions, there was no separate qdev for the PAPR
1631 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1632 * So when migrating from those versions, poke the incoming offset
1633 * value into the RTC device */
1634 if (version_id < 3) {
1635 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1638 if (kvm_enabled() && spapr->patb_entry) {
1639 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1640 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1641 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1643 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1644 if (err) {
1645 error_report("Process table config unsupported by the host");
1646 return -EINVAL;
1650 return err;
1653 static int spapr_pre_save(void *opaque)
1655 int rc;
1657 rc = spapr_caps_pre_save(opaque);
1658 if (rc) {
1659 return rc;
1662 return 0;
1665 static bool version_before_3(void *opaque, int version_id)
1667 return version_id < 3;
1670 static bool spapr_pending_events_needed(void *opaque)
1672 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1673 return !QTAILQ_EMPTY(&spapr->pending_events);
1676 static const VMStateDescription vmstate_spapr_event_entry = {
1677 .name = "spapr_event_log_entry",
1678 .version_id = 1,
1679 .minimum_version_id = 1,
1680 .fields = (VMStateField[]) {
1681 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1682 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1683 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1684 NULL, extended_length),
1685 VMSTATE_END_OF_LIST()
1689 static const VMStateDescription vmstate_spapr_pending_events = {
1690 .name = "spapr_pending_events",
1691 .version_id = 1,
1692 .minimum_version_id = 1,
1693 .needed = spapr_pending_events_needed,
1694 .fields = (VMStateField[]) {
1695 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1696 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1697 VMSTATE_END_OF_LIST()
1701 static bool spapr_ov5_cas_needed(void *opaque)
1703 sPAPRMachineState *spapr = opaque;
1704 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1705 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1706 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1707 bool cas_needed;
1709 /* Prior to the introduction of sPAPROptionVector, we had two option
1710 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1711 * Both of these options encode machine topology into the device-tree
1712 * in such a way that the now-booted OS should still be able to interact
1713 * appropriately with QEMU regardless of what options were actually
1714 * negotiatied on the source side.
1716 * As such, we can avoid migrating the CAS-negotiated options if these
1717 * are the only options available on the current machine/platform.
1718 * Since these are the only options available for pseries-2.7 and
1719 * earlier, this allows us to maintain old->new/new->old migration
1720 * compatibility.
1722 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1723 * via default pseries-2.8 machines and explicit command-line parameters.
1724 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1725 * of the actual CAS-negotiated values to continue working properly. For
1726 * example, availability of memory unplug depends on knowing whether
1727 * OV5_HP_EVT was negotiated via CAS.
1729 * Thus, for any cases where the set of available CAS-negotiatable
1730 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1731 * include the CAS-negotiated options in the migration stream.
1733 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1734 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1736 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1737 * the mask itself since in the future it's possible "legacy" bits may be
1738 * removed via machine options, which could generate a false positive
1739 * that breaks migration.
1741 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1742 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1744 spapr_ovec_cleanup(ov5_mask);
1745 spapr_ovec_cleanup(ov5_legacy);
1746 spapr_ovec_cleanup(ov5_removed);
1748 return cas_needed;
1751 static const VMStateDescription vmstate_spapr_ov5_cas = {
1752 .name = "spapr_option_vector_ov5_cas",
1753 .version_id = 1,
1754 .minimum_version_id = 1,
1755 .needed = spapr_ov5_cas_needed,
1756 .fields = (VMStateField[]) {
1757 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1758 vmstate_spapr_ovec, sPAPROptionVector),
1759 VMSTATE_END_OF_LIST()
1763 static bool spapr_patb_entry_needed(void *opaque)
1765 sPAPRMachineState *spapr = opaque;
1767 return !!spapr->patb_entry;
1770 static const VMStateDescription vmstate_spapr_patb_entry = {
1771 .name = "spapr_patb_entry",
1772 .version_id = 1,
1773 .minimum_version_id = 1,
1774 .needed = spapr_patb_entry_needed,
1775 .fields = (VMStateField[]) {
1776 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1777 VMSTATE_END_OF_LIST()
1781 static const VMStateDescription vmstate_spapr = {
1782 .name = "spapr",
1783 .version_id = 3,
1784 .minimum_version_id = 1,
1785 .pre_load = spapr_pre_load,
1786 .post_load = spapr_post_load,
1787 .pre_save = spapr_pre_save,
1788 .fields = (VMStateField[]) {
1789 /* used to be @next_irq */
1790 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1792 /* RTC offset */
1793 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1795 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1796 VMSTATE_END_OF_LIST()
1798 .subsections = (const VMStateDescription*[]) {
1799 &vmstate_spapr_ov5_cas,
1800 &vmstate_spapr_patb_entry,
1801 &vmstate_spapr_pending_events,
1802 &vmstate_spapr_cap_htm,
1803 &vmstate_spapr_cap_vsx,
1804 &vmstate_spapr_cap_dfp,
1805 &vmstate_spapr_cap_cfpc,
1806 &vmstate_spapr_cap_sbbc,
1807 &vmstate_spapr_cap_ibs,
1808 NULL
1812 static int htab_save_setup(QEMUFile *f, void *opaque)
1814 sPAPRMachineState *spapr = opaque;
1816 /* "Iteration" header */
1817 if (!spapr->htab_shift) {
1818 qemu_put_be32(f, -1);
1819 } else {
1820 qemu_put_be32(f, spapr->htab_shift);
1823 if (spapr->htab) {
1824 spapr->htab_save_index = 0;
1825 spapr->htab_first_pass = true;
1826 } else {
1827 if (spapr->htab_shift) {
1828 assert(kvm_enabled());
1833 return 0;
1836 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1837 int chunkstart, int n_valid, int n_invalid)
1839 qemu_put_be32(f, chunkstart);
1840 qemu_put_be16(f, n_valid);
1841 qemu_put_be16(f, n_invalid);
1842 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1843 HASH_PTE_SIZE_64 * n_valid);
1846 static void htab_save_end_marker(QEMUFile *f)
1848 qemu_put_be32(f, 0);
1849 qemu_put_be16(f, 0);
1850 qemu_put_be16(f, 0);
1853 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1854 int64_t max_ns)
1856 bool has_timeout = max_ns != -1;
1857 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1858 int index = spapr->htab_save_index;
1859 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1861 assert(spapr->htab_first_pass);
1863 do {
1864 int chunkstart;
1866 /* Consume invalid HPTEs */
1867 while ((index < htabslots)
1868 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1869 CLEAN_HPTE(HPTE(spapr->htab, index));
1870 index++;
1873 /* Consume valid HPTEs */
1874 chunkstart = index;
1875 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1876 && HPTE_VALID(HPTE(spapr->htab, index))) {
1877 CLEAN_HPTE(HPTE(spapr->htab, index));
1878 index++;
1881 if (index > chunkstart) {
1882 int n_valid = index - chunkstart;
1884 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1886 if (has_timeout &&
1887 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1888 break;
1891 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1893 if (index >= htabslots) {
1894 assert(index == htabslots);
1895 index = 0;
1896 spapr->htab_first_pass = false;
1898 spapr->htab_save_index = index;
1901 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1902 int64_t max_ns)
1904 bool final = max_ns < 0;
1905 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1906 int examined = 0, sent = 0;
1907 int index = spapr->htab_save_index;
1908 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1910 assert(!spapr->htab_first_pass);
1912 do {
1913 int chunkstart, invalidstart;
1915 /* Consume non-dirty HPTEs */
1916 while ((index < htabslots)
1917 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1918 index++;
1919 examined++;
1922 chunkstart = index;
1923 /* Consume valid dirty HPTEs */
1924 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1925 && HPTE_DIRTY(HPTE(spapr->htab, index))
1926 && HPTE_VALID(HPTE(spapr->htab, index))) {
1927 CLEAN_HPTE(HPTE(spapr->htab, index));
1928 index++;
1929 examined++;
1932 invalidstart = index;
1933 /* Consume invalid dirty HPTEs */
1934 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1935 && HPTE_DIRTY(HPTE(spapr->htab, index))
1936 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1937 CLEAN_HPTE(HPTE(spapr->htab, index));
1938 index++;
1939 examined++;
1942 if (index > chunkstart) {
1943 int n_valid = invalidstart - chunkstart;
1944 int n_invalid = index - invalidstart;
1946 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1947 sent += index - chunkstart;
1949 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1950 break;
1954 if (examined >= htabslots) {
1955 break;
1958 if (index >= htabslots) {
1959 assert(index == htabslots);
1960 index = 0;
1962 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1964 if (index >= htabslots) {
1965 assert(index == htabslots);
1966 index = 0;
1969 spapr->htab_save_index = index;
1971 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1974 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1975 #define MAX_KVM_BUF_SIZE 2048
1977 static int htab_save_iterate(QEMUFile *f, void *opaque)
1979 sPAPRMachineState *spapr = opaque;
1980 int fd;
1981 int rc = 0;
1983 /* Iteration header */
1984 if (!spapr->htab_shift) {
1985 qemu_put_be32(f, -1);
1986 return 1;
1987 } else {
1988 qemu_put_be32(f, 0);
1991 if (!spapr->htab) {
1992 assert(kvm_enabled());
1994 fd = get_htab_fd(spapr);
1995 if (fd < 0) {
1996 return fd;
1999 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2000 if (rc < 0) {
2001 return rc;
2003 } else if (spapr->htab_first_pass) {
2004 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2005 } else {
2006 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2009 htab_save_end_marker(f);
2011 return rc;
2014 static int htab_save_complete(QEMUFile *f, void *opaque)
2016 sPAPRMachineState *spapr = opaque;
2017 int fd;
2019 /* Iteration header */
2020 if (!spapr->htab_shift) {
2021 qemu_put_be32(f, -1);
2022 return 0;
2023 } else {
2024 qemu_put_be32(f, 0);
2027 if (!spapr->htab) {
2028 int rc;
2030 assert(kvm_enabled());
2032 fd = get_htab_fd(spapr);
2033 if (fd < 0) {
2034 return fd;
2037 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2038 if (rc < 0) {
2039 return rc;
2041 } else {
2042 if (spapr->htab_first_pass) {
2043 htab_save_first_pass(f, spapr, -1);
2045 htab_save_later_pass(f, spapr, -1);
2048 /* End marker */
2049 htab_save_end_marker(f);
2051 return 0;
2054 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2056 sPAPRMachineState *spapr = opaque;
2057 uint32_t section_hdr;
2058 int fd = -1;
2059 Error *local_err = NULL;
2061 if (version_id < 1 || version_id > 1) {
2062 error_report("htab_load() bad version");
2063 return -EINVAL;
2066 section_hdr = qemu_get_be32(f);
2068 if (section_hdr == -1) {
2069 spapr_free_hpt(spapr);
2070 return 0;
2073 if (section_hdr) {
2074 /* First section gives the htab size */
2075 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2076 if (local_err) {
2077 error_report_err(local_err);
2078 return -EINVAL;
2080 return 0;
2083 if (!spapr->htab) {
2084 assert(kvm_enabled());
2086 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2087 if (fd < 0) {
2088 error_report_err(local_err);
2089 return fd;
2093 while (true) {
2094 uint32_t index;
2095 uint16_t n_valid, n_invalid;
2097 index = qemu_get_be32(f);
2098 n_valid = qemu_get_be16(f);
2099 n_invalid = qemu_get_be16(f);
2101 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2102 /* End of Stream */
2103 break;
2106 if ((index + n_valid + n_invalid) >
2107 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2108 /* Bad index in stream */
2109 error_report(
2110 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2111 index, n_valid, n_invalid, spapr->htab_shift);
2112 return -EINVAL;
2115 if (spapr->htab) {
2116 if (n_valid) {
2117 qemu_get_buffer(f, HPTE(spapr->htab, index),
2118 HASH_PTE_SIZE_64 * n_valid);
2120 if (n_invalid) {
2121 memset(HPTE(spapr->htab, index + n_valid), 0,
2122 HASH_PTE_SIZE_64 * n_invalid);
2124 } else {
2125 int rc;
2127 assert(fd >= 0);
2129 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2130 if (rc < 0) {
2131 return rc;
2136 if (!spapr->htab) {
2137 assert(fd >= 0);
2138 close(fd);
2141 return 0;
2144 static void htab_save_cleanup(void *opaque)
2146 sPAPRMachineState *spapr = opaque;
2148 close_htab_fd(spapr);
2151 static SaveVMHandlers savevm_htab_handlers = {
2152 .save_setup = htab_save_setup,
2153 .save_live_iterate = htab_save_iterate,
2154 .save_live_complete_precopy = htab_save_complete,
2155 .save_cleanup = htab_save_cleanup,
2156 .load_state = htab_load,
2159 static void spapr_boot_set(void *opaque, const char *boot_device,
2160 Error **errp)
2162 MachineState *machine = MACHINE(opaque);
2163 machine->boot_order = g_strdup(boot_device);
2166 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2168 MachineState *machine = MACHINE(spapr);
2169 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2170 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2171 int i;
2173 for (i = 0; i < nr_lmbs; i++) {
2174 uint64_t addr;
2176 addr = i * lmb_size + spapr->hotplug_memory.base;
2177 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2178 addr / lmb_size);
2183 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2184 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2185 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2187 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2189 int i;
2191 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2192 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2193 " is not aligned to %llu MiB",
2194 machine->ram_size,
2195 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2196 return;
2199 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2200 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2201 " is not aligned to %llu MiB",
2202 machine->ram_size,
2203 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2204 return;
2207 for (i = 0; i < nb_numa_nodes; i++) {
2208 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2209 error_setg(errp,
2210 "Node %d memory size 0x%" PRIx64
2211 " is not aligned to %llu MiB",
2212 i, numa_info[i].node_mem,
2213 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2214 return;
2219 /* find cpu slot in machine->possible_cpus by core_id */
2220 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2222 int index = id / smp_threads;
2224 if (index >= ms->possible_cpus->len) {
2225 return NULL;
2227 if (idx) {
2228 *idx = index;
2230 return &ms->possible_cpus->cpus[index];
2233 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2235 Error *local_err = NULL;
2236 bool vsmt_user = !!spapr->vsmt;
2237 int kvm_smt = kvmppc_smt_threads();
2238 int ret;
2240 if (!kvm_enabled() && (smp_threads > 1)) {
2241 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2242 "on a pseries machine");
2243 goto out;
2245 if (!is_power_of_2(smp_threads)) {
2246 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2247 "machine because it must be a power of 2", smp_threads);
2248 goto out;
2251 /* Detemine the VSMT mode to use: */
2252 if (vsmt_user) {
2253 if (spapr->vsmt < smp_threads) {
2254 error_setg(&local_err, "Cannot support VSMT mode %d"
2255 " because it must be >= threads/core (%d)",
2256 spapr->vsmt, smp_threads);
2257 goto out;
2259 /* In this case, spapr->vsmt has been set by the command line */
2260 } else {
2262 * Default VSMT value is tricky, because we need it to be as
2263 * consistent as possible (for migration), but this requires
2264 * changing it for at least some existing cases. We pick 8 as
2265 * the value that we'd get with KVM on POWER8, the
2266 * overwhelmingly common case in production systems.
2268 spapr->vsmt = MAX(8, smp_threads);
2271 /* KVM: If necessary, set the SMT mode: */
2272 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2273 ret = kvmppc_set_smt_threads(spapr->vsmt);
2274 if (ret) {
2275 /* Looks like KVM isn't able to change VSMT mode */
2276 error_setg(&local_err,
2277 "Failed to set KVM's VSMT mode to %d (errno %d)",
2278 spapr->vsmt, ret);
2279 /* We can live with that if the default one is big enough
2280 * for the number of threads, and a submultiple of the one
2281 * we want. In this case we'll waste some vcpu ids, but
2282 * behaviour will be correct */
2283 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2284 warn_report_err(local_err);
2285 local_err = NULL;
2286 goto out;
2287 } else {
2288 if (!vsmt_user) {
2289 error_append_hint(&local_err,
2290 "On PPC, a VM with %d threads/core"
2291 " on a host with %d threads/core"
2292 " requires the use of VSMT mode %d.\n",
2293 smp_threads, kvm_smt, spapr->vsmt);
2295 kvmppc_hint_smt_possible(&local_err);
2296 goto out;
2300 /* else TCG: nothing to do currently */
2301 out:
2302 error_propagate(errp, local_err);
2305 static void spapr_init_cpus(sPAPRMachineState *spapr)
2307 MachineState *machine = MACHINE(spapr);
2308 MachineClass *mc = MACHINE_GET_CLASS(machine);
2309 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2310 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2311 const CPUArchIdList *possible_cpus;
2312 int boot_cores_nr = smp_cpus / smp_threads;
2313 int i;
2315 possible_cpus = mc->possible_cpu_arch_ids(machine);
2316 if (mc->has_hotpluggable_cpus) {
2317 if (smp_cpus % smp_threads) {
2318 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2319 smp_cpus, smp_threads);
2320 exit(1);
2322 if (max_cpus % smp_threads) {
2323 error_report("max_cpus (%u) must be multiple of threads (%u)",
2324 max_cpus, smp_threads);
2325 exit(1);
2327 } else {
2328 if (max_cpus != smp_cpus) {
2329 error_report("This machine version does not support CPU hotplug");
2330 exit(1);
2332 boot_cores_nr = possible_cpus->len;
2335 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2336 * call xics_max_server_number() or spapr_vcpu_id().
2338 spapr_set_vsmt_mode(spapr, &error_fatal);
2340 if (smc->pre_2_10_has_unused_icps) {
2341 int i;
2343 for (i = 0; i < xics_max_server_number(spapr); i++) {
2344 /* Dummy entries get deregistered when real ICPState objects
2345 * are registered during CPU core hotplug.
2347 pre_2_10_vmstate_register_dummy_icp(i);
2351 for (i = 0; i < possible_cpus->len; i++) {
2352 int core_id = i * smp_threads;
2354 if (mc->has_hotpluggable_cpus) {
2355 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2356 spapr_vcpu_id(spapr, core_id));
2359 if (i < boot_cores_nr) {
2360 Object *core = object_new(type);
2361 int nr_threads = smp_threads;
2363 /* Handle the partially filled core for older machine types */
2364 if ((i + 1) * smp_threads >= smp_cpus) {
2365 nr_threads = smp_cpus - i * smp_threads;
2368 object_property_set_int(core, nr_threads, "nr-threads",
2369 &error_fatal);
2370 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2371 &error_fatal);
2372 object_property_set_bool(core, true, "realized", &error_fatal);
2377 /* pSeries LPAR / sPAPR hardware init */
2378 static void spapr_machine_init(MachineState *machine)
2380 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2381 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2382 const char *kernel_filename = machine->kernel_filename;
2383 const char *initrd_filename = machine->initrd_filename;
2384 PCIHostState *phb;
2385 int i;
2386 MemoryRegion *sysmem = get_system_memory();
2387 MemoryRegion *ram = g_new(MemoryRegion, 1);
2388 MemoryRegion *rma_region;
2389 void *rma = NULL;
2390 hwaddr rma_alloc_size;
2391 hwaddr node0_size = spapr_node0_size(machine);
2392 long load_limit, fw_size;
2393 char *filename;
2394 Error *resize_hpt_err = NULL;
2396 msi_nonbroken = true;
2398 QLIST_INIT(&spapr->phbs);
2399 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2401 /* Check HPT resizing availability */
2402 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2403 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2405 * If the user explicitly requested a mode we should either
2406 * supply it, or fail completely (which we do below). But if
2407 * it's not set explicitly, we reset our mode to something
2408 * that works
2410 if (resize_hpt_err) {
2411 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2412 error_free(resize_hpt_err);
2413 resize_hpt_err = NULL;
2414 } else {
2415 spapr->resize_hpt = smc->resize_hpt_default;
2419 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2421 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2423 * User requested HPT resize, but this host can't supply it. Bail out
2425 error_report_err(resize_hpt_err);
2426 exit(1);
2429 /* Allocate RMA if necessary */
2430 rma_alloc_size = kvmppc_alloc_rma(&rma);
2432 if (rma_alloc_size == -1) {
2433 error_report("Unable to create RMA");
2434 exit(1);
2437 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2438 spapr->rma_size = rma_alloc_size;
2439 } else {
2440 spapr->rma_size = node0_size;
2442 /* With KVM, we don't actually know whether KVM supports an
2443 * unbounded RMA (PR KVM) or is limited by the hash table size
2444 * (HV KVM using VRMA), so we always assume the latter
2446 * In that case, we also limit the initial allocations for RTAS
2447 * etc... to 256M since we have no way to know what the VRMA size
2448 * is going to be as it depends on the size of the hash table
2449 * isn't determined yet.
2451 if (kvm_enabled()) {
2452 spapr->vrma_adjust = 1;
2453 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2456 /* Actually we don't support unbounded RMA anymore since we
2457 * added proper emulation of HV mode. The max we can get is
2458 * 16G which also happens to be what we configure for PAPR
2459 * mode so make sure we don't do anything bigger than that
2461 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2464 if (spapr->rma_size > node0_size) {
2465 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2466 spapr->rma_size);
2467 exit(1);
2470 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2471 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2473 /* Set up Interrupt Controller before we create the VCPUs */
2474 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2476 /* Set up containers for ibm,client-architecture-support negotiated options
2478 spapr->ov5 = spapr_ovec_new();
2479 spapr->ov5_cas = spapr_ovec_new();
2481 if (smc->dr_lmb_enabled) {
2482 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2483 spapr_validate_node_memory(machine, &error_fatal);
2486 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2487 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2488 /* KVM and TCG always allow GTSE with radix... */
2489 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2491 /* ... but not with hash (currently). */
2493 /* advertise support for dedicated HP event source to guests */
2494 if (spapr->use_hotplug_event_source) {
2495 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2498 /* advertise support for HPT resizing */
2499 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2500 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2503 /* init CPUs */
2504 spapr_init_cpus(spapr);
2506 if (kvm_enabled()) {
2507 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2508 kvmppc_enable_logical_ci_hcalls();
2509 kvmppc_enable_set_mode_hcall();
2511 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2512 kvmppc_enable_clear_ref_mod_hcalls();
2515 /* allocate RAM */
2516 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2517 machine->ram_size);
2518 memory_region_add_subregion(sysmem, 0, ram);
2520 if (rma_alloc_size && rma) {
2521 rma_region = g_new(MemoryRegion, 1);
2522 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2523 rma_alloc_size, rma);
2524 vmstate_register_ram_global(rma_region);
2525 memory_region_add_subregion(sysmem, 0, rma_region);
2528 /* initialize hotplug memory address space */
2529 if (machine->ram_size < machine->maxram_size) {
2530 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2532 * Limit the number of hotpluggable memory slots to half the number
2533 * slots that KVM supports, leaving the other half for PCI and other
2534 * devices. However ensure that number of slots doesn't drop below 32.
2536 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2537 SPAPR_MAX_RAM_SLOTS;
2539 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2540 max_memslots = SPAPR_MAX_RAM_SLOTS;
2542 if (machine->ram_slots > max_memslots) {
2543 error_report("Specified number of memory slots %"
2544 PRIu64" exceeds max supported %d",
2545 machine->ram_slots, max_memslots);
2546 exit(1);
2549 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2550 SPAPR_HOTPLUG_MEM_ALIGN);
2551 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2552 "hotplug-memory", hotplug_mem_size);
2553 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2554 &spapr->hotplug_memory.mr);
2557 if (smc->dr_lmb_enabled) {
2558 spapr_create_lmb_dr_connectors(spapr);
2561 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2562 if (!filename) {
2563 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2564 exit(1);
2566 spapr->rtas_size = get_image_size(filename);
2567 if (spapr->rtas_size < 0) {
2568 error_report("Could not get size of LPAR rtas '%s'", filename);
2569 exit(1);
2571 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2572 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2573 error_report("Could not load LPAR rtas '%s'", filename);
2574 exit(1);
2576 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2577 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2578 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2579 exit(1);
2581 g_free(filename);
2583 /* Set up RTAS event infrastructure */
2584 spapr_events_init(spapr);
2586 /* Set up the RTC RTAS interfaces */
2587 spapr_rtc_create(spapr);
2589 /* Set up VIO bus */
2590 spapr->vio_bus = spapr_vio_bus_init();
2592 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2593 if (serial_hds[i]) {
2594 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2598 /* We always have at least the nvram device on VIO */
2599 spapr_create_nvram(spapr);
2601 /* Set up PCI */
2602 spapr_pci_rtas_init();
2604 phb = spapr_create_phb(spapr, 0);
2606 for (i = 0; i < nb_nics; i++) {
2607 NICInfo *nd = &nd_table[i];
2609 if (!nd->model) {
2610 nd->model = g_strdup("spapr-vlan");
2613 if (g_str_equal(nd->model, "spapr-vlan") ||
2614 g_str_equal(nd->model, "ibmveth")) {
2615 spapr_vlan_create(spapr->vio_bus, nd);
2616 } else {
2617 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2621 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2622 spapr_vscsi_create(spapr->vio_bus);
2625 /* Graphics */
2626 if (spapr_vga_init(phb->bus, &error_fatal)) {
2627 spapr->has_graphics = true;
2628 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2631 if (machine->usb) {
2632 if (smc->use_ohci_by_default) {
2633 pci_create_simple(phb->bus, -1, "pci-ohci");
2634 } else {
2635 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2638 if (spapr->has_graphics) {
2639 USBBus *usb_bus = usb_bus_find(-1);
2641 usb_create_simple(usb_bus, "usb-kbd");
2642 usb_create_simple(usb_bus, "usb-mouse");
2646 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2647 error_report(
2648 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2649 MIN_RMA_SLOF);
2650 exit(1);
2653 if (kernel_filename) {
2654 uint64_t lowaddr = 0;
2656 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2657 NULL, NULL, &lowaddr, NULL, 1,
2658 PPC_ELF_MACHINE, 0, 0);
2659 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2660 spapr->kernel_size = load_elf(kernel_filename,
2661 translate_kernel_address, NULL, NULL,
2662 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2663 0, 0);
2664 spapr->kernel_le = spapr->kernel_size > 0;
2666 if (spapr->kernel_size < 0) {
2667 error_report("error loading %s: %s", kernel_filename,
2668 load_elf_strerror(spapr->kernel_size));
2669 exit(1);
2672 /* load initrd */
2673 if (initrd_filename) {
2674 /* Try to locate the initrd in the gap between the kernel
2675 * and the firmware. Add a bit of space just in case
2677 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2678 + 0x1ffff) & ~0xffff;
2679 spapr->initrd_size = load_image_targphys(initrd_filename,
2680 spapr->initrd_base,
2681 load_limit
2682 - spapr->initrd_base);
2683 if (spapr->initrd_size < 0) {
2684 error_report("could not load initial ram disk '%s'",
2685 initrd_filename);
2686 exit(1);
2691 if (bios_name == NULL) {
2692 bios_name = FW_FILE_NAME;
2694 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2695 if (!filename) {
2696 error_report("Could not find LPAR firmware '%s'", bios_name);
2697 exit(1);
2699 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2700 if (fw_size <= 0) {
2701 error_report("Could not load LPAR firmware '%s'", filename);
2702 exit(1);
2704 g_free(filename);
2706 /* FIXME: Should register things through the MachineState's qdev
2707 * interface, this is a legacy from the sPAPREnvironment structure
2708 * which predated MachineState but had a similar function */
2709 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2710 register_savevm_live(NULL, "spapr/htab", -1, 1,
2711 &savevm_htab_handlers, spapr);
2713 qemu_register_boot_set(spapr_boot_set, spapr);
2715 if (kvm_enabled()) {
2716 /* to stop and start vmclock */
2717 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2718 &spapr->tb);
2720 kvmppc_spapr_enable_inkernel_multitce();
2724 static int spapr_kvm_type(const char *vm_type)
2726 if (!vm_type) {
2727 return 0;
2730 if (!strcmp(vm_type, "HV")) {
2731 return 1;
2734 if (!strcmp(vm_type, "PR")) {
2735 return 2;
2738 error_report("Unknown kvm-type specified '%s'", vm_type);
2739 exit(1);
2743 * Implementation of an interface to adjust firmware path
2744 * for the bootindex property handling.
2746 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2747 DeviceState *dev)
2749 #define CAST(type, obj, name) \
2750 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2751 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2752 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2753 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2755 if (d) {
2756 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2757 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2758 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2760 if (spapr) {
2762 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2763 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2764 * in the top 16 bits of the 64-bit LUN
2766 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2767 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2768 (uint64_t)id << 48);
2769 } else if (virtio) {
2771 * We use SRP luns of the form 01000000 | (target << 8) | lun
2772 * in the top 32 bits of the 64-bit LUN
2773 * Note: the quote above is from SLOF and it is wrong,
2774 * the actual binding is:
2775 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2777 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2778 if (d->lun >= 256) {
2779 /* Use the LUN "flat space addressing method" */
2780 id |= 0x4000;
2782 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2783 (uint64_t)id << 32);
2784 } else if (usb) {
2786 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2787 * in the top 32 bits of the 64-bit LUN
2789 unsigned usb_port = atoi(usb->port->path);
2790 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2791 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2792 (uint64_t)id << 32);
2797 * SLOF probes the USB devices, and if it recognizes that the device is a
2798 * storage device, it changes its name to "storage" instead of "usb-host",
2799 * and additionally adds a child node for the SCSI LUN, so the correct
2800 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2802 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2803 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2804 if (usb_host_dev_is_scsi_storage(usbdev)) {
2805 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2809 if (phb) {
2810 /* Replace "pci" with "pci@800000020000000" */
2811 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2814 if (vsc) {
2815 /* Same logic as virtio above */
2816 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2817 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2820 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2821 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2822 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2823 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2826 return NULL;
2829 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2831 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2833 return g_strdup(spapr->kvm_type);
2836 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2838 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2840 g_free(spapr->kvm_type);
2841 spapr->kvm_type = g_strdup(value);
2844 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2846 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2848 return spapr->use_hotplug_event_source;
2851 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2852 Error **errp)
2854 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2856 spapr->use_hotplug_event_source = value;
2859 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2861 return true;
2864 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2866 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2868 switch (spapr->resize_hpt) {
2869 case SPAPR_RESIZE_HPT_DEFAULT:
2870 return g_strdup("default");
2871 case SPAPR_RESIZE_HPT_DISABLED:
2872 return g_strdup("disabled");
2873 case SPAPR_RESIZE_HPT_ENABLED:
2874 return g_strdup("enabled");
2875 case SPAPR_RESIZE_HPT_REQUIRED:
2876 return g_strdup("required");
2878 g_assert_not_reached();
2881 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2883 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2885 if (strcmp(value, "default") == 0) {
2886 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2887 } else if (strcmp(value, "disabled") == 0) {
2888 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2889 } else if (strcmp(value, "enabled") == 0) {
2890 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2891 } else if (strcmp(value, "required") == 0) {
2892 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2893 } else {
2894 error_setg(errp, "Bad value for \"resize-hpt\" property");
2898 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2899 void *opaque, Error **errp)
2901 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2904 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2905 void *opaque, Error **errp)
2907 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2910 static void spapr_instance_init(Object *obj)
2912 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2914 spapr->htab_fd = -1;
2915 spapr->use_hotplug_event_source = true;
2916 object_property_add_str(obj, "kvm-type",
2917 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2918 object_property_set_description(obj, "kvm-type",
2919 "Specifies the KVM virtualization mode (HV, PR)",
2920 NULL);
2921 object_property_add_bool(obj, "modern-hotplug-events",
2922 spapr_get_modern_hotplug_events,
2923 spapr_set_modern_hotplug_events,
2924 NULL);
2925 object_property_set_description(obj, "modern-hotplug-events",
2926 "Use dedicated hotplug event mechanism in"
2927 " place of standard EPOW events when possible"
2928 " (required for memory hot-unplug support)",
2929 NULL);
2931 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2932 "Maximum permitted CPU compatibility mode",
2933 &error_fatal);
2935 object_property_add_str(obj, "resize-hpt",
2936 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2937 object_property_set_description(obj, "resize-hpt",
2938 "Resizing of the Hash Page Table (enabled, disabled, required)",
2939 NULL);
2940 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2941 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2942 object_property_set_description(obj, "vsmt",
2943 "Virtual SMT: KVM behaves as if this were"
2944 " the host's SMT mode", &error_abort);
2945 object_property_add_bool(obj, "vfio-no-msix-emulation",
2946 spapr_get_msix_emulation, NULL, NULL);
2949 static void spapr_machine_finalizefn(Object *obj)
2951 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2953 g_free(spapr->kvm_type);
2956 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2958 cpu_synchronize_state(cs);
2959 ppc_cpu_do_system_reset(cs);
2962 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2964 CPUState *cs;
2966 CPU_FOREACH(cs) {
2967 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2971 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2972 uint32_t node, bool dedicated_hp_event_source,
2973 Error **errp)
2975 sPAPRDRConnector *drc;
2976 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2977 int i, fdt_offset, fdt_size;
2978 void *fdt;
2979 uint64_t addr = addr_start;
2980 bool hotplugged = spapr_drc_hotplugged(dev);
2981 Error *local_err = NULL;
2983 for (i = 0; i < nr_lmbs; i++) {
2984 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2985 addr / SPAPR_MEMORY_BLOCK_SIZE);
2986 g_assert(drc);
2988 fdt = create_device_tree(&fdt_size);
2989 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2990 SPAPR_MEMORY_BLOCK_SIZE);
2992 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2993 if (local_err) {
2994 while (addr > addr_start) {
2995 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2996 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2997 addr / SPAPR_MEMORY_BLOCK_SIZE);
2998 spapr_drc_detach(drc);
3000 g_free(fdt);
3001 error_propagate(errp, local_err);
3002 return;
3004 if (!hotplugged) {
3005 spapr_drc_reset(drc);
3007 addr += SPAPR_MEMORY_BLOCK_SIZE;
3009 /* send hotplug notification to the
3010 * guest only in case of hotplugged memory
3012 if (hotplugged) {
3013 if (dedicated_hp_event_source) {
3014 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3015 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3016 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3017 nr_lmbs,
3018 spapr_drc_index(drc));
3019 } else {
3020 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3021 nr_lmbs);
3026 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3027 uint32_t node, Error **errp)
3029 Error *local_err = NULL;
3030 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3031 PCDIMMDevice *dimm = PC_DIMM(dev);
3032 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3033 MemoryRegion *mr;
3034 uint64_t align, size, addr;
3036 mr = ddc->get_memory_region(dimm, &local_err);
3037 if (local_err) {
3038 goto out;
3040 align = memory_region_get_alignment(mr);
3041 size = memory_region_size(mr);
3043 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3044 if (local_err) {
3045 goto out;
3048 addr = object_property_get_uint(OBJECT(dimm),
3049 PC_DIMM_ADDR_PROP, &local_err);
3050 if (local_err) {
3051 goto out_unplug;
3054 spapr_add_lmbs(dev, addr, size, node,
3055 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3056 &local_err);
3057 if (local_err) {
3058 goto out_unplug;
3061 return;
3063 out_unplug:
3064 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3065 out:
3066 error_propagate(errp, local_err);
3069 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3070 Error **errp)
3072 PCDIMMDevice *dimm = PC_DIMM(dev);
3073 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3074 MemoryRegion *mr;
3075 uint64_t size;
3076 char *mem_dev;
3078 mr = ddc->get_memory_region(dimm, errp);
3079 if (!mr) {
3080 return;
3082 size = memory_region_size(mr);
3084 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3085 error_setg(errp, "Hotplugged memory size must be a multiple of "
3086 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3087 return;
3090 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3091 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3092 error_setg(errp, "Memory backend has bad page size. "
3093 "Use 'memory-backend-file' with correct mem-path.");
3094 goto out;
3097 out:
3098 g_free(mem_dev);
3101 struct sPAPRDIMMState {
3102 PCDIMMDevice *dimm;
3103 uint32_t nr_lmbs;
3104 QTAILQ_ENTRY(sPAPRDIMMState) next;
3107 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3108 PCDIMMDevice *dimm)
3110 sPAPRDIMMState *dimm_state = NULL;
3112 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3113 if (dimm_state->dimm == dimm) {
3114 break;
3117 return dimm_state;
3120 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3121 uint32_t nr_lmbs,
3122 PCDIMMDevice *dimm)
3124 sPAPRDIMMState *ds = NULL;
3127 * If this request is for a DIMM whose removal had failed earlier
3128 * (due to guest's refusal to remove the LMBs), we would have this
3129 * dimm already in the pending_dimm_unplugs list. In that
3130 * case don't add again.
3132 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3133 if (!ds) {
3134 ds = g_malloc0(sizeof(sPAPRDIMMState));
3135 ds->nr_lmbs = nr_lmbs;
3136 ds->dimm = dimm;
3137 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3139 return ds;
3142 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3143 sPAPRDIMMState *dimm_state)
3145 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3146 g_free(dimm_state);
3149 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3150 PCDIMMDevice *dimm)
3152 sPAPRDRConnector *drc;
3153 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3154 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3155 uint64_t size = memory_region_size(mr);
3156 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3157 uint32_t avail_lmbs = 0;
3158 uint64_t addr_start, addr;
3159 int i;
3161 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3162 &error_abort);
3164 addr = addr_start;
3165 for (i = 0; i < nr_lmbs; i++) {
3166 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3167 addr / SPAPR_MEMORY_BLOCK_SIZE);
3168 g_assert(drc);
3169 if (drc->dev) {
3170 avail_lmbs++;
3172 addr += SPAPR_MEMORY_BLOCK_SIZE;
3175 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3178 /* Callback to be called during DRC release. */
3179 void spapr_lmb_release(DeviceState *dev)
3181 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3182 PCDIMMDevice *dimm = PC_DIMM(dev);
3183 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3184 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3185 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3187 /* This information will get lost if a migration occurs
3188 * during the unplug process. In this case recover it. */
3189 if (ds == NULL) {
3190 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3191 g_assert(ds);
3192 /* The DRC being examined by the caller at least must be counted */
3193 g_assert(ds->nr_lmbs);
3196 if (--ds->nr_lmbs) {
3197 return;
3201 * Now that all the LMBs have been removed by the guest, call the
3202 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3204 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3205 object_unparent(OBJECT(dev));
3206 spapr_pending_dimm_unplugs_remove(spapr, ds);
3209 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3210 DeviceState *dev, Error **errp)
3212 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3213 Error *local_err = NULL;
3214 PCDIMMDevice *dimm = PC_DIMM(dev);
3215 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3216 MemoryRegion *mr;
3217 uint32_t nr_lmbs;
3218 uint64_t size, addr_start, addr;
3219 int i;
3220 sPAPRDRConnector *drc;
3222 mr = ddc->get_memory_region(dimm, &local_err);
3223 if (local_err) {
3224 goto out;
3226 size = memory_region_size(mr);
3227 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3229 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3230 &local_err);
3231 if (local_err) {
3232 goto out;
3236 * An existing pending dimm state for this DIMM means that there is an
3237 * unplug operation in progress, waiting for the spapr_lmb_release
3238 * callback to complete the job (BQL can't cover that far). In this case,
3239 * bail out to avoid detaching DRCs that were already released.
3241 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3242 error_setg(&local_err,
3243 "Memory unplug already in progress for device %s",
3244 dev->id);
3245 goto out;
3248 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3250 addr = addr_start;
3251 for (i = 0; i < nr_lmbs; i++) {
3252 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3253 addr / SPAPR_MEMORY_BLOCK_SIZE);
3254 g_assert(drc);
3256 spapr_drc_detach(drc);
3257 addr += SPAPR_MEMORY_BLOCK_SIZE;
3260 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3261 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3262 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3263 nr_lmbs, spapr_drc_index(drc));
3264 out:
3265 error_propagate(errp, local_err);
3268 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3269 sPAPRMachineState *spapr)
3271 PowerPCCPU *cpu = POWERPC_CPU(cs);
3272 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3273 int id = spapr_get_vcpu_id(cpu);
3274 void *fdt;
3275 int offset, fdt_size;
3276 char *nodename;
3278 fdt = create_device_tree(&fdt_size);
3279 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3280 offset = fdt_add_subnode(fdt, 0, nodename);
3282 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3283 g_free(nodename);
3285 *fdt_offset = offset;
3286 return fdt;
3289 /* Callback to be called during DRC release. */
3290 void spapr_core_release(DeviceState *dev)
3292 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3293 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3294 CPUCore *cc = CPU_CORE(dev);
3295 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3297 if (smc->pre_2_10_has_unused_icps) {
3298 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3299 int i;
3301 for (i = 0; i < cc->nr_threads; i++) {
3302 CPUState *cs = CPU(sc->threads[i]);
3304 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3308 assert(core_slot);
3309 core_slot->cpu = NULL;
3310 object_unparent(OBJECT(dev));
3313 static
3314 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3315 Error **errp)
3317 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3318 int index;
3319 sPAPRDRConnector *drc;
3320 CPUCore *cc = CPU_CORE(dev);
3322 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3323 error_setg(errp, "Unable to find CPU core with core-id: %d",
3324 cc->core_id);
3325 return;
3327 if (index == 0) {
3328 error_setg(errp, "Boot CPU core may not be unplugged");
3329 return;
3332 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3333 spapr_vcpu_id(spapr, cc->core_id));
3334 g_assert(drc);
3336 spapr_drc_detach(drc);
3338 spapr_hotplug_req_remove_by_index(drc);
3341 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3342 Error **errp)
3344 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3345 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3346 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3347 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3348 CPUCore *cc = CPU_CORE(dev);
3349 CPUState *cs = CPU(core->threads[0]);
3350 sPAPRDRConnector *drc;
3351 Error *local_err = NULL;
3352 CPUArchId *core_slot;
3353 int index;
3354 bool hotplugged = spapr_drc_hotplugged(dev);
3356 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3357 if (!core_slot) {
3358 error_setg(errp, "Unable to find CPU core with core-id: %d",
3359 cc->core_id);
3360 return;
3362 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3363 spapr_vcpu_id(spapr, cc->core_id));
3365 g_assert(drc || !mc->has_hotpluggable_cpus);
3367 if (drc) {
3368 void *fdt;
3369 int fdt_offset;
3371 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3373 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3374 if (local_err) {
3375 g_free(fdt);
3376 error_propagate(errp, local_err);
3377 return;
3380 if (hotplugged) {
3382 * Send hotplug notification interrupt to the guest only
3383 * in case of hotplugged CPUs.
3385 spapr_hotplug_req_add_by_index(drc);
3386 } else {
3387 spapr_drc_reset(drc);
3391 core_slot->cpu = OBJECT(dev);
3393 if (smc->pre_2_10_has_unused_icps) {
3394 int i;
3396 for (i = 0; i < cc->nr_threads; i++) {
3397 cs = CPU(core->threads[i]);
3398 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3403 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3404 Error **errp)
3406 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3407 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3408 Error *local_err = NULL;
3409 CPUCore *cc = CPU_CORE(dev);
3410 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3411 const char *type = object_get_typename(OBJECT(dev));
3412 CPUArchId *core_slot;
3413 int index;
3415 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3416 error_setg(&local_err, "CPU hotplug not supported for this machine");
3417 goto out;
3420 if (strcmp(base_core_type, type)) {
3421 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3422 goto out;
3425 if (cc->core_id % smp_threads) {
3426 error_setg(&local_err, "invalid core id %d", cc->core_id);
3427 goto out;
3431 * In general we should have homogeneous threads-per-core, but old
3432 * (pre hotplug support) machine types allow the last core to have
3433 * reduced threads as a compatibility hack for when we allowed
3434 * total vcpus not a multiple of threads-per-core.
3436 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3437 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3438 cc->nr_threads, smp_threads);
3439 goto out;
3442 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3443 if (!core_slot) {
3444 error_setg(&local_err, "core id %d out of range", cc->core_id);
3445 goto out;
3448 if (core_slot->cpu) {
3449 error_setg(&local_err, "core %d already populated", cc->core_id);
3450 goto out;
3453 numa_cpu_pre_plug(core_slot, dev, &local_err);
3455 out:
3456 error_propagate(errp, local_err);
3459 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3460 DeviceState *dev, Error **errp)
3462 MachineState *ms = MACHINE(hotplug_dev);
3463 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3465 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3466 int node;
3468 if (!smc->dr_lmb_enabled) {
3469 error_setg(errp, "Memory hotplug not supported for this machine");
3470 return;
3472 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3473 if (*errp) {
3474 return;
3476 if (node < 0 || node >= MAX_NODES) {
3477 error_setg(errp, "Invaild node %d", node);
3478 return;
3482 * Currently PowerPC kernel doesn't allow hot-adding memory to
3483 * memory-less node, but instead will silently add the memory
3484 * to the first node that has some memory. This causes two
3485 * unexpected behaviours for the user.
3487 * - Memory gets hotplugged to a different node than what the user
3488 * specified.
3489 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3490 * to memory-less node, a reboot will set things accordingly
3491 * and the previously hotplugged memory now ends in the right node.
3492 * This appears as if some memory moved from one node to another.
3494 * So until kernel starts supporting memory hotplug to memory-less
3495 * nodes, just prevent such attempts upfront in QEMU.
3497 if (nb_numa_nodes && !numa_info[node].node_mem) {
3498 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3499 node);
3500 return;
3503 spapr_memory_plug(hotplug_dev, dev, node, errp);
3504 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3505 spapr_core_plug(hotplug_dev, dev, errp);
3509 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3510 DeviceState *dev, Error **errp)
3512 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3513 MachineClass *mc = MACHINE_GET_CLASS(sms);
3515 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3516 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3517 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3518 } else {
3519 /* NOTE: this means there is a window after guest reset, prior to
3520 * CAS negotiation, where unplug requests will fail due to the
3521 * capability not being detected yet. This is a bit different than
3522 * the case with PCI unplug, where the events will be queued and
3523 * eventually handled by the guest after boot
3525 error_setg(errp, "Memory hot unplug not supported for this guest");
3527 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3528 if (!mc->has_hotpluggable_cpus) {
3529 error_setg(errp, "CPU hot unplug not supported on this machine");
3530 return;
3532 spapr_core_unplug_request(hotplug_dev, dev, errp);
3536 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3537 DeviceState *dev, Error **errp)
3539 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3540 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3541 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3542 spapr_core_pre_plug(hotplug_dev, dev, errp);
3546 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3547 DeviceState *dev)
3549 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3550 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3551 return HOTPLUG_HANDLER(machine);
3553 return NULL;
3556 static CpuInstanceProperties
3557 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3559 CPUArchId *core_slot;
3560 MachineClass *mc = MACHINE_GET_CLASS(machine);
3562 /* make sure possible_cpu are intialized */
3563 mc->possible_cpu_arch_ids(machine);
3564 /* get CPU core slot containing thread that matches cpu_index */
3565 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3566 assert(core_slot);
3567 return core_slot->props;
3570 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3572 return idx / smp_cores % nb_numa_nodes;
3575 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3577 int i;
3578 const char *core_type;
3579 int spapr_max_cores = max_cpus / smp_threads;
3580 MachineClass *mc = MACHINE_GET_CLASS(machine);
3582 if (!mc->has_hotpluggable_cpus) {
3583 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3585 if (machine->possible_cpus) {
3586 assert(machine->possible_cpus->len == spapr_max_cores);
3587 return machine->possible_cpus;
3590 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3591 if (!core_type) {
3592 error_report("Unable to find sPAPR CPU Core definition");
3593 exit(1);
3596 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3597 sizeof(CPUArchId) * spapr_max_cores);
3598 machine->possible_cpus->len = spapr_max_cores;
3599 for (i = 0; i < machine->possible_cpus->len; i++) {
3600 int core_id = i * smp_threads;
3602 machine->possible_cpus->cpus[i].type = core_type;
3603 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3604 machine->possible_cpus->cpus[i].arch_id = core_id;
3605 machine->possible_cpus->cpus[i].props.has_core_id = true;
3606 machine->possible_cpus->cpus[i].props.core_id = core_id;
3608 return machine->possible_cpus;
3611 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3612 uint64_t *buid, hwaddr *pio,
3613 hwaddr *mmio32, hwaddr *mmio64,
3614 unsigned n_dma, uint32_t *liobns, Error **errp)
3617 * New-style PHB window placement.
3619 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3620 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3621 * windows.
3623 * Some guest kernels can't work with MMIO windows above 1<<46
3624 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3626 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3627 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3628 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3629 * 1TiB 64-bit MMIO windows for each PHB.
3631 const uint64_t base_buid = 0x800000020000000ULL;
3632 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3633 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3634 int i;
3636 /* Sanity check natural alignments */
3637 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3638 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3639 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3640 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3641 /* Sanity check bounds */
3642 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3643 SPAPR_PCI_MEM32_WIN_SIZE);
3644 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3645 SPAPR_PCI_MEM64_WIN_SIZE);
3647 if (index >= SPAPR_MAX_PHBS) {
3648 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3649 SPAPR_MAX_PHBS - 1);
3650 return;
3653 *buid = base_buid + index;
3654 for (i = 0; i < n_dma; ++i) {
3655 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3658 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3659 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3660 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3663 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3665 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3667 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3670 static void spapr_ics_resend(XICSFabric *dev)
3672 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3674 ics_resend(spapr->ics);
3677 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3679 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3681 return cpu ? ICP(cpu->intc) : NULL;
3684 #define ICS_IRQ_FREE(ics, srcno) \
3685 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3687 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3689 int first, i;
3691 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3692 if (num > (ics->nr_irqs - first)) {
3693 return -1;
3695 for (i = first; i < first + num; ++i) {
3696 if (!ICS_IRQ_FREE(ics, i)) {
3697 break;
3700 if (i == (first + num)) {
3701 return first;
3705 return -1;
3709 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3711 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3713 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3716 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3717 Error **errp)
3719 ICSState *ics = spapr->ics;
3720 int irq;
3722 if (!ics) {
3723 return -1;
3725 if (irq_hint) {
3726 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3727 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3728 return -1;
3730 irq = irq_hint;
3731 } else {
3732 irq = ics_find_free_block(ics, 1, 1);
3733 if (irq < 0) {
3734 error_setg(errp, "can't allocate IRQ: no IRQ left");
3735 return -1;
3737 irq += ics->offset;
3740 spapr_irq_set_lsi(spapr, irq, lsi);
3741 trace_spapr_irq_alloc(irq);
3743 return irq;
3747 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3748 * the block. If align==true, aligns the first IRQ number to num.
3750 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3751 bool align, Error **errp)
3753 ICSState *ics = spapr->ics;
3754 int i, first = -1;
3756 if (!ics) {
3757 return -1;
3761 * MSIMesage::data is used for storing VIRQ so
3762 * it has to be aligned to num to support multiple
3763 * MSI vectors. MSI-X is not affected by this.
3764 * The hint is used for the first IRQ, the rest should
3765 * be allocated continuously.
3767 if (align) {
3768 assert((num == 1) || (num == 2) || (num == 4) ||
3769 (num == 8) || (num == 16) || (num == 32));
3770 first = ics_find_free_block(ics, num, num);
3771 } else {
3772 first = ics_find_free_block(ics, num, 1);
3774 if (first < 0) {
3775 error_setg(errp, "can't find a free %d-IRQ block", num);
3776 return -1;
3779 first += ics->offset;
3780 for (i = first; i < first + num; ++i) {
3781 spapr_irq_set_lsi(spapr, i, lsi);
3784 trace_spapr_irq_alloc_block(first, num, lsi, align);
3786 return first;
3789 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3791 ICSState *ics = spapr->ics;
3792 int srcno = irq - ics->offset;
3793 int i;
3795 if (ics_valid_irq(ics, irq)) {
3796 trace_spapr_irq_free(0, irq, num);
3797 for (i = srcno; i < srcno + num; ++i) {
3798 if (ICS_IRQ_FREE(ics, i)) {
3799 trace_spapr_irq_free_warn(0, i + ics->offset);
3801 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3806 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3808 ICSState *ics = spapr->ics;
3810 if (ics_valid_irq(ics, irq)) {
3811 return ics->qirqs[irq - ics->offset];
3814 return NULL;
3817 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3818 Monitor *mon)
3820 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3821 CPUState *cs;
3823 CPU_FOREACH(cs) {
3824 PowerPCCPU *cpu = POWERPC_CPU(cs);
3826 icp_pic_print_info(ICP(cpu->intc), mon);
3829 ics_pic_print_info(spapr->ics, mon);
3832 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3834 return cpu->vcpu_id;
3837 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3839 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3840 int vcpu_id;
3842 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3844 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3845 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3846 error_append_hint(errp, "Adjust the number of cpus to %d "
3847 "or try to raise the number of threads per core\n",
3848 vcpu_id * smp_threads / spapr->vsmt);
3849 return;
3852 cpu->vcpu_id = vcpu_id;
3855 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3857 CPUState *cs;
3859 CPU_FOREACH(cs) {
3860 PowerPCCPU *cpu = POWERPC_CPU(cs);
3862 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3863 return cpu;
3867 return NULL;
3870 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3872 MachineClass *mc = MACHINE_CLASS(oc);
3873 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3874 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3875 NMIClass *nc = NMI_CLASS(oc);
3876 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3877 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3878 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3879 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3881 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3884 * We set up the default / latest behaviour here. The class_init
3885 * functions for the specific versioned machine types can override
3886 * these details for backwards compatibility
3888 mc->init = spapr_machine_init;
3889 mc->reset = spapr_machine_reset;
3890 mc->block_default_type = IF_SCSI;
3891 mc->max_cpus = 1024;
3892 mc->no_parallel = 1;
3893 mc->default_boot_order = "";
3894 mc->default_ram_size = 512 * M_BYTE;
3895 mc->kvm_type = spapr_kvm_type;
3896 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3897 mc->pci_allow_0_address = true;
3898 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3899 hc->pre_plug = spapr_machine_device_pre_plug;
3900 hc->plug = spapr_machine_device_plug;
3901 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3902 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3903 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3904 hc->unplug_request = spapr_machine_device_unplug_request;
3906 smc->dr_lmb_enabled = true;
3907 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3908 mc->has_hotpluggable_cpus = true;
3909 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3910 fwc->get_dev_path = spapr_get_fw_dev_path;
3911 nc->nmi_monitor_handler = spapr_nmi;
3912 smc->phb_placement = spapr_phb_placement;
3913 vhc->hypercall = emulate_spapr_hypercall;
3914 vhc->hpt_mask = spapr_hpt_mask;
3915 vhc->map_hptes = spapr_map_hptes;
3916 vhc->unmap_hptes = spapr_unmap_hptes;
3917 vhc->store_hpte = spapr_store_hpte;
3918 vhc->get_patbe = spapr_get_patbe;
3919 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3920 xic->ics_get = spapr_ics_get;
3921 xic->ics_resend = spapr_ics_resend;
3922 xic->icp_get = spapr_icp_get;
3923 ispc->print_info = spapr_pic_print_info;
3924 /* Force NUMA node memory size to be a multiple of
3925 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3926 * in which LMBs are represented and hot-added
3928 mc->numa_mem_align_shift = 28;
3930 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3931 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3932 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3933 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3934 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3935 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3936 spapr_caps_add_properties(smc, &error_abort);
3939 static const TypeInfo spapr_machine_info = {
3940 .name = TYPE_SPAPR_MACHINE,
3941 .parent = TYPE_MACHINE,
3942 .abstract = true,
3943 .instance_size = sizeof(sPAPRMachineState),
3944 .instance_init = spapr_instance_init,
3945 .instance_finalize = spapr_machine_finalizefn,
3946 .class_size = sizeof(sPAPRMachineClass),
3947 .class_init = spapr_machine_class_init,
3948 .interfaces = (InterfaceInfo[]) {
3949 { TYPE_FW_PATH_PROVIDER },
3950 { TYPE_NMI },
3951 { TYPE_HOTPLUG_HANDLER },
3952 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3953 { TYPE_XICS_FABRIC },
3954 { TYPE_INTERRUPT_STATS_PROVIDER },
3959 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3960 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3961 void *data) \
3963 MachineClass *mc = MACHINE_CLASS(oc); \
3964 spapr_machine_##suffix##_class_options(mc); \
3965 if (latest) { \
3966 mc->alias = "pseries"; \
3967 mc->is_default = 1; \
3970 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3972 MachineState *machine = MACHINE(obj); \
3973 spapr_machine_##suffix##_instance_options(machine); \
3975 static const TypeInfo spapr_machine_##suffix##_info = { \
3976 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3977 .parent = TYPE_SPAPR_MACHINE, \
3978 .class_init = spapr_machine_##suffix##_class_init, \
3979 .instance_init = spapr_machine_##suffix##_instance_init, \
3980 }; \
3981 static void spapr_machine_register_##suffix(void) \
3983 type_register(&spapr_machine_##suffix##_info); \
3985 type_init(spapr_machine_register_##suffix)
3988 * pseries-2.12
3990 static void spapr_machine_2_12_instance_options(MachineState *machine)
3994 static void spapr_machine_2_12_class_options(MachineClass *mc)
3996 /* Defaults for the latest behaviour inherited from the base class */
3999 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
4001 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4003 spapr_machine_2_12_instance_options(machine);
4006 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4008 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4010 spapr_machine_2_12_class_options(mc);
4011 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4012 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4013 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4016 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4019 * pseries-2.11
4021 #define SPAPR_COMPAT_2_11 \
4022 HW_COMPAT_2_11
4024 static void spapr_machine_2_11_instance_options(MachineState *machine)
4026 spapr_machine_2_12_instance_options(machine);
4029 static void spapr_machine_2_11_class_options(MachineClass *mc)
4031 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4033 spapr_machine_2_12_class_options(mc);
4034 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4035 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4038 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4041 * pseries-2.10
4043 #define SPAPR_COMPAT_2_10 \
4044 HW_COMPAT_2_10
4046 static void spapr_machine_2_10_instance_options(MachineState *machine)
4048 spapr_machine_2_11_instance_options(machine);
4051 static void spapr_machine_2_10_class_options(MachineClass *mc)
4053 spapr_machine_2_11_class_options(mc);
4054 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4057 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4060 * pseries-2.9
4062 #define SPAPR_COMPAT_2_9 \
4063 HW_COMPAT_2_9 \
4065 .driver = TYPE_POWERPC_CPU, \
4066 .property = "pre-2.10-migration", \
4067 .value = "on", \
4068 }, \
4070 static void spapr_machine_2_9_instance_options(MachineState *machine)
4072 spapr_machine_2_10_instance_options(machine);
4075 static void spapr_machine_2_9_class_options(MachineClass *mc)
4077 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4079 spapr_machine_2_10_class_options(mc);
4080 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4081 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4082 smc->pre_2_10_has_unused_icps = true;
4083 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4086 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4089 * pseries-2.8
4091 #define SPAPR_COMPAT_2_8 \
4092 HW_COMPAT_2_8 \
4094 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4095 .property = "pcie-extended-configuration-space", \
4096 .value = "off", \
4099 static void spapr_machine_2_8_instance_options(MachineState *machine)
4101 spapr_machine_2_9_instance_options(machine);
4104 static void spapr_machine_2_8_class_options(MachineClass *mc)
4106 spapr_machine_2_9_class_options(mc);
4107 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4108 mc->numa_mem_align_shift = 23;
4111 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4114 * pseries-2.7
4116 #define SPAPR_COMPAT_2_7 \
4117 HW_COMPAT_2_7 \
4119 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4120 .property = "mem_win_size", \
4121 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4122 }, \
4124 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4125 .property = "mem64_win_size", \
4126 .value = "0", \
4127 }, \
4129 .driver = TYPE_POWERPC_CPU, \
4130 .property = "pre-2.8-migration", \
4131 .value = "on", \
4132 }, \
4134 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4135 .property = "pre-2.8-migration", \
4136 .value = "on", \
4139 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4140 uint64_t *buid, hwaddr *pio,
4141 hwaddr *mmio32, hwaddr *mmio64,
4142 unsigned n_dma, uint32_t *liobns, Error **errp)
4144 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4145 const uint64_t base_buid = 0x800000020000000ULL;
4146 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4147 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4148 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4149 const uint32_t max_index = 255;
4150 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4152 uint64_t ram_top = MACHINE(spapr)->ram_size;
4153 hwaddr phb0_base, phb_base;
4154 int i;
4156 /* Do we have hotpluggable memory? */
4157 if (MACHINE(spapr)->maxram_size > ram_top) {
4158 /* Can't just use maxram_size, because there may be an
4159 * alignment gap between normal and hotpluggable memory
4160 * regions */
4161 ram_top = spapr->hotplug_memory.base +
4162 memory_region_size(&spapr->hotplug_memory.mr);
4165 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4167 if (index > max_index) {
4168 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4169 max_index);
4170 return;
4173 *buid = base_buid + index;
4174 for (i = 0; i < n_dma; ++i) {
4175 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4178 phb_base = phb0_base + index * phb_spacing;
4179 *pio = phb_base + pio_offset;
4180 *mmio32 = phb_base + mmio_offset;
4182 * We don't set the 64-bit MMIO window, relying on the PHB's
4183 * fallback behaviour of automatically splitting a large "32-bit"
4184 * window into contiguous 32-bit and 64-bit windows
4188 static void spapr_machine_2_7_instance_options(MachineState *machine)
4190 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4192 spapr_machine_2_8_instance_options(machine);
4193 spapr->use_hotplug_event_source = false;
4196 static void spapr_machine_2_7_class_options(MachineClass *mc)
4198 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4200 spapr_machine_2_8_class_options(mc);
4201 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4202 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4203 smc->phb_placement = phb_placement_2_7;
4206 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4209 * pseries-2.6
4211 #define SPAPR_COMPAT_2_6 \
4212 HW_COMPAT_2_6 \
4214 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4215 .property = "ddw",\
4216 .value = stringify(off),\
4219 static void spapr_machine_2_6_instance_options(MachineState *machine)
4221 spapr_machine_2_7_instance_options(machine);
4224 static void spapr_machine_2_6_class_options(MachineClass *mc)
4226 spapr_machine_2_7_class_options(mc);
4227 mc->has_hotpluggable_cpus = false;
4228 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4231 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4234 * pseries-2.5
4236 #define SPAPR_COMPAT_2_5 \
4237 HW_COMPAT_2_5 \
4239 .driver = "spapr-vlan", \
4240 .property = "use-rx-buffer-pools", \
4241 .value = "off", \
4244 static void spapr_machine_2_5_instance_options(MachineState *machine)
4246 spapr_machine_2_6_instance_options(machine);
4249 static void spapr_machine_2_5_class_options(MachineClass *mc)
4251 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4253 spapr_machine_2_6_class_options(mc);
4254 smc->use_ohci_by_default = true;
4255 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4258 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4261 * pseries-2.4
4263 #define SPAPR_COMPAT_2_4 \
4264 HW_COMPAT_2_4
4266 static void spapr_machine_2_4_instance_options(MachineState *machine)
4268 spapr_machine_2_5_instance_options(machine);
4271 static void spapr_machine_2_4_class_options(MachineClass *mc)
4273 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4275 spapr_machine_2_5_class_options(mc);
4276 smc->dr_lmb_enabled = false;
4277 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4280 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4283 * pseries-2.3
4285 #define SPAPR_COMPAT_2_3 \
4286 HW_COMPAT_2_3 \
4288 .driver = "spapr-pci-host-bridge",\
4289 .property = "dynamic-reconfiguration",\
4290 .value = "off",\
4293 static void spapr_machine_2_3_instance_options(MachineState *machine)
4295 spapr_machine_2_4_instance_options(machine);
4298 static void spapr_machine_2_3_class_options(MachineClass *mc)
4300 spapr_machine_2_4_class_options(mc);
4301 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4303 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4306 * pseries-2.2
4309 #define SPAPR_COMPAT_2_2 \
4310 HW_COMPAT_2_2 \
4312 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4313 .property = "mem_win_size",\
4314 .value = "0x20000000",\
4317 static void spapr_machine_2_2_instance_options(MachineState *machine)
4319 spapr_machine_2_3_instance_options(machine);
4320 machine->suppress_vmdesc = true;
4323 static void spapr_machine_2_2_class_options(MachineClass *mc)
4325 spapr_machine_2_3_class_options(mc);
4326 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4328 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4331 * pseries-2.1
4333 #define SPAPR_COMPAT_2_1 \
4334 HW_COMPAT_2_1
4336 static void spapr_machine_2_1_instance_options(MachineState *machine)
4338 spapr_machine_2_2_instance_options(machine);
4341 static void spapr_machine_2_1_class_options(MachineClass *mc)
4343 spapr_machine_2_2_class_options(mc);
4344 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4346 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4348 static void spapr_machine_register_types(void)
4350 type_register_static(&spapr_machine_info);
4353 type_init(spapr_machine_register_types)