s390x/kvm: implement floating-interrupt controller device
[qemu.git] / target-xtensa / op_helper.c
blob509ba49d600e07662721a270e364e99a804b6ee8
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "helper.h"
30 #include "qemu/host-utils.h"
31 #include "exec/softmmu_exec.h"
32 #include "exec/address-spaces.h"
34 static void do_unaligned_access(CPUXtensaState *env,
35 target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
37 #define ALIGNED_ONLY
38 #define MMUSUFFIX _mmu
40 #define SHIFT 0
41 #include "exec/softmmu_template.h"
43 #define SHIFT 1
44 #include "exec/softmmu_template.h"
46 #define SHIFT 2
47 #include "exec/softmmu_template.h"
49 #define SHIFT 3
50 #include "exec/softmmu_template.h"
52 static void do_unaligned_access(CPUXtensaState *env,
53 target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
55 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
56 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
57 cpu_restore_state(env, retaddr);
58 HELPER(exception_cause_vaddr)(env,
59 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
63 void tlb_fill(CPUXtensaState *env,
64 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
66 uint32_t paddr;
67 uint32_t page_size;
68 unsigned access;
69 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
70 &paddr, &page_size, &access);
72 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
73 vaddr, is_write, mmu_idx, paddr, ret);
75 if (ret == 0) {
76 tlb_set_page(env,
77 vaddr & TARGET_PAGE_MASK,
78 paddr & TARGET_PAGE_MASK,
79 access, mmu_idx, page_size);
80 } else {
81 cpu_restore_state(env, retaddr);
82 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
86 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
88 uint32_t paddr;
89 uint32_t page_size;
90 unsigned access;
91 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
92 &paddr, &page_size, &access);
93 if (ret == 0) {
94 tb_invalidate_phys_addr(&address_space_memory, paddr);
98 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
100 env->exception_index = excp;
101 if (excp == EXCP_DEBUG) {
102 env->exception_taken = 0;
104 cpu_loop_exit(env);
107 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
109 uint32_t vector;
111 env->pc = pc;
112 if (env->sregs[PS] & PS_EXCM) {
113 if (env->config->ndepc) {
114 env->sregs[DEPC] = pc;
115 } else {
116 env->sregs[EPC1] = pc;
118 vector = EXC_DOUBLE;
119 } else {
120 env->sregs[EPC1] = pc;
121 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
124 env->sregs[EXCCAUSE] = cause;
125 env->sregs[PS] |= PS_EXCM;
127 HELPER(exception)(env, vector);
130 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
131 uint32_t pc, uint32_t cause, uint32_t vaddr)
133 env->sregs[EXCVADDR] = vaddr;
134 HELPER(exception_cause)(env, pc, cause);
137 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
139 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
140 HELPER(debug_exception)(env, env->pc, cause);
144 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
146 unsigned level = env->config->debug_level;
148 env->pc = pc;
149 env->sregs[DEBUGCAUSE] = cause;
150 env->sregs[EPC1 + level - 1] = pc;
151 env->sregs[EPS2 + level - 2] = env->sregs[PS];
152 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
153 (level << PS_INTLEVEL_SHIFT);
154 HELPER(exception)(env, EXC_DEBUG);
157 uint32_t HELPER(nsa)(uint32_t v)
159 if (v & 0x80000000) {
160 v = ~v;
162 return v ? clz32(v) - 1 : 31;
165 uint32_t HELPER(nsau)(uint32_t v)
167 return v ? clz32(v) : 32;
170 static void copy_window_from_phys(CPUXtensaState *env,
171 uint32_t window, uint32_t phys, uint32_t n)
173 assert(phys < env->config->nareg);
174 if (phys + n <= env->config->nareg) {
175 memcpy(env->regs + window, env->phys_regs + phys,
176 n * sizeof(uint32_t));
177 } else {
178 uint32_t n1 = env->config->nareg - phys;
179 memcpy(env->regs + window, env->phys_regs + phys,
180 n1 * sizeof(uint32_t));
181 memcpy(env->regs + window + n1, env->phys_regs,
182 (n - n1) * sizeof(uint32_t));
186 static void copy_phys_from_window(CPUXtensaState *env,
187 uint32_t phys, uint32_t window, uint32_t n)
189 assert(phys < env->config->nareg);
190 if (phys + n <= env->config->nareg) {
191 memcpy(env->phys_regs + phys, env->regs + window,
192 n * sizeof(uint32_t));
193 } else {
194 uint32_t n1 = env->config->nareg - phys;
195 memcpy(env->phys_regs + phys, env->regs + window,
196 n1 * sizeof(uint32_t));
197 memcpy(env->phys_regs, env->regs + window + n1,
198 (n - n1) * sizeof(uint32_t));
203 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
205 return a & (env->config->nareg / 4 - 1);
208 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
210 return 1 << windowbase_bound(a, env);
213 void xtensa_sync_window_from_phys(CPUXtensaState *env)
215 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
218 void xtensa_sync_phys_from_window(CPUXtensaState *env)
220 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
223 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
225 xtensa_sync_phys_from_window(env);
226 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
227 xtensa_sync_window_from_phys(env);
230 static void rotate_window(CPUXtensaState *env, uint32_t delta)
232 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
235 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
237 rotate_window_abs(env, v);
240 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
242 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
243 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
244 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
245 pc, env->sregs[PS]);
246 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
247 } else {
248 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
249 rotate_window(env, callinc);
250 env->sregs[WINDOW_START] |=
251 windowstart_bit(env->sregs[WINDOW_BASE], env);
255 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
257 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
258 uint32_t windowstart = env->sregs[WINDOW_START];
259 uint32_t m, n;
261 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
262 return;
265 for (n = 1; ; ++n) {
266 if (n > w) {
267 return;
269 if (windowstart & windowstart_bit(windowbase + n, env)) {
270 break;
274 m = windowbase_bound(windowbase + n, env);
275 rotate_window(env, n);
276 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
277 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
278 env->sregs[EPC1] = env->pc = pc;
280 if (windowstart & windowstart_bit(m + 1, env)) {
281 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
282 } else if (windowstart & windowstart_bit(m + 2, env)) {
283 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
284 } else {
285 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
289 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
291 int n = (env->regs[0] >> 30) & 0x3;
292 int m = 0;
293 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
294 uint32_t windowstart = env->sregs[WINDOW_START];
295 uint32_t ret_pc = 0;
297 if (windowstart & windowstart_bit(windowbase - 1, env)) {
298 m = 1;
299 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
300 m = 2;
301 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
302 m = 3;
305 if (n == 0 || (m != 0 && m != n) ||
306 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
307 qemu_log("Illegal retw instruction(pc = %08x), "
308 "PS = %08x, m = %d, n = %d\n",
309 pc, env->sregs[PS], m, n);
310 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
311 } else {
312 int owb = windowbase;
314 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
316 rotate_window(env, -n);
317 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
318 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
319 } else {
320 /* window underflow */
321 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
322 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
323 env->sregs[EPC1] = env->pc = pc;
325 if (n == 1) {
326 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
327 } else if (n == 2) {
328 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
329 } else if (n == 3) {
330 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
334 return ret_pc;
337 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
339 rotate_window(env, imm4);
342 void HELPER(restore_owb)(CPUXtensaState *env)
344 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
347 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
349 if ((env->sregs[WINDOW_START] &
350 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
351 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
352 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
353 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
357 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
359 if (env->sregs[LBEG] != v) {
360 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
361 env->sregs[LBEG] = v;
365 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
367 if (env->sregs[LEND] != v) {
368 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
369 env->sregs[LEND] = v;
370 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
374 void HELPER(dump_state)(CPUXtensaState *env)
376 XtensaCPU *cpu = xtensa_env_get_cpu(env);
378 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
381 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
383 CPUState *cpu;
385 env->pc = pc;
386 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
387 (intlevel << PS_INTLEVEL_SHIFT);
388 check_interrupts(env);
389 if (env->pending_irq_level) {
390 cpu_loop_exit(env);
391 return;
394 cpu = CPU(xtensa_env_get_cpu(env));
395 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
396 cpu->halted = 1;
397 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
398 xtensa_rearm_ccompare_timer(env);
400 HELPER(exception)(env, EXCP_HLT);
403 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
405 xtensa_timer_irq(env, id, active);
408 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
410 xtensa_advance_ccount(env, d);
413 void HELPER(check_interrupts)(CPUXtensaState *env)
415 check_interrupts(env);
418 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
420 get_page_addr_code(env, vaddr);
424 * Check vaddr accessibility/cache attributes and raise an exception if
425 * specified by the ATOMCTL SR.
427 * Note: local memory exclusion is not implemented
429 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
431 uint32_t paddr, page_size, access;
432 uint32_t atomctl = env->sregs[ATOMCTL];
433 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
434 xtensa_get_cring(env), &paddr, &page_size, &access);
437 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
438 * see opcode description in the ISA
440 if (rc == 0 &&
441 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
442 rc = STORE_PROHIBITED_CAUSE;
445 if (rc) {
446 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
450 * When data cache is not configured use ATOMCTL bypass field.
451 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
452 * under the Conditional Store Option.
454 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
455 access = PAGE_CACHE_BYPASS;
458 switch (access & PAGE_CACHE_MASK) {
459 case PAGE_CACHE_WB:
460 atomctl >>= 2;
461 /* fall through */
462 case PAGE_CACHE_WT:
463 atomctl >>= 2;
464 /* fall through */
465 case PAGE_CACHE_BYPASS:
466 if ((atomctl & 0x3) == 0) {
467 HELPER(exception_cause_vaddr)(env, pc,
468 LOAD_STORE_ERROR_CAUSE, vaddr);
470 break;
472 case PAGE_CACHE_ISOLATE:
473 HELPER(exception_cause_vaddr)(env, pc,
474 LOAD_STORE_ERROR_CAUSE, vaddr);
475 break;
477 default:
478 break;
482 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
484 v = (v & 0xffffff00) | 0x1;
485 if (v != env->sregs[RASID]) {
486 env->sregs[RASID] = v;
487 tlb_flush(env, 1);
491 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
493 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
495 switch (way) {
496 case 4:
497 return (tlbcfg >> 16) & 0x3;
499 case 5:
500 return (tlbcfg >> 20) & 0x1;
502 case 6:
503 return (tlbcfg >> 24) & 0x1;
505 default:
506 return 0;
511 * Get bit mask for the virtual address bits translated by the TLB way
513 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
515 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
516 bool varway56 = dtlb ?
517 env->config->dtlb.varway56 :
518 env->config->itlb.varway56;
520 switch (way) {
521 case 4:
522 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
524 case 5:
525 if (varway56) {
526 return 0xf8000000 << get_page_size(env, dtlb, way);
527 } else {
528 return 0xf8000000;
531 case 6:
532 if (varway56) {
533 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
534 } else {
535 return 0xf0000000;
538 default:
539 return 0xfffff000;
541 } else {
542 return REGION_PAGE_MASK;
547 * Get bit mask for the 'VPN without index' field.
548 * See ISA, 4.6.5.6, data format for RxTLB0
550 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
552 if (way < 4) {
553 bool is32 = (dtlb ?
554 env->config->dtlb.nrefillentries :
555 env->config->itlb.nrefillentries) == 32;
556 return is32 ? 0xffff8000 : 0xffffc000;
557 } else if (way == 4) {
558 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
559 } else if (way <= 6) {
560 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
561 bool varway56 = dtlb ?
562 env->config->dtlb.varway56 :
563 env->config->itlb.varway56;
565 if (varway56) {
566 return mask << (way == 5 ? 2 : 3);
567 } else {
568 return mask << 1;
570 } else {
571 return 0xfffff000;
576 * Split virtual address into VPN (with index) and entry index
577 * for the given TLB way
579 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
580 uint32_t *vpn, uint32_t wi, uint32_t *ei)
582 bool varway56 = dtlb ?
583 env->config->dtlb.varway56 :
584 env->config->itlb.varway56;
586 if (!dtlb) {
587 wi &= 7;
590 if (wi < 4) {
591 bool is32 = (dtlb ?
592 env->config->dtlb.nrefillentries :
593 env->config->itlb.nrefillentries) == 32;
594 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
595 } else {
596 switch (wi) {
597 case 4:
599 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
600 *ei = (v >> eibase) & 0x3;
602 break;
604 case 5:
605 if (varway56) {
606 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
607 *ei = (v >> eibase) & 0x3;
608 } else {
609 *ei = (v >> 27) & 0x1;
611 break;
613 case 6:
614 if (varway56) {
615 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
616 *ei = (v >> eibase) & 0x7;
617 } else {
618 *ei = (v >> 28) & 0x1;
620 break;
622 default:
623 *ei = 0;
624 break;
627 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
631 * Split TLB address into TLB way, entry index and VPN (with index).
632 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
634 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
635 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
637 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
638 *wi = v & (dtlb ? 0xf : 0x7);
639 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
640 } else {
641 *vpn = v & REGION_PAGE_MASK;
642 *wi = 0;
643 *ei = (v >> 29) & 0x7;
647 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
648 uint32_t v, bool dtlb, uint32_t *pwi)
650 uint32_t vpn;
651 uint32_t wi;
652 uint32_t ei;
654 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
655 if (pwi) {
656 *pwi = wi;
658 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
661 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
663 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
664 uint32_t wi;
665 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
666 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
667 } else {
668 return v & REGION_PAGE_MASK;
672 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
674 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
675 return entry->paddr | entry->attr;
678 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
680 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
681 uint32_t wi;
682 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
683 if (entry->variable && entry->asid) {
684 tlb_flush_page(env, entry->vaddr);
685 entry->asid = 0;
690 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
692 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
693 uint32_t wi;
694 uint32_t ei;
695 uint8_t ring;
696 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
698 switch (res) {
699 case 0:
700 if (ring >= xtensa_get_ring(env)) {
701 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
703 break;
705 case INST_TLB_MULTI_HIT_CAUSE:
706 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
707 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
708 break;
710 return 0;
711 } else {
712 return (v & REGION_PAGE_MASK) | 0x1;
716 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
717 xtensa_tlb_entry *entry, bool dtlb,
718 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
720 entry->vaddr = vpn;
721 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
722 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
723 entry->attr = pte & 0xf;
726 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
727 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
729 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
731 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
732 if (entry->variable) {
733 if (entry->asid) {
734 tlb_flush_page(env, entry->vaddr);
736 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
737 tlb_flush_page(env, entry->vaddr);
738 } else {
739 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
740 __func__, dtlb, wi, ei);
742 } else {
743 tlb_flush_page(env, entry->vaddr);
744 if (xtensa_option_enabled(env->config,
745 XTENSA_OPTION_REGION_TRANSLATION)) {
746 entry->paddr = pte & REGION_PAGE_MASK;
748 entry->attr = pte & 0xf;
752 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
754 uint32_t vpn;
755 uint32_t wi;
756 uint32_t ei;
757 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
758 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
762 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
764 uint32_t change = v ^ env->sregs[IBREAKENABLE];
765 unsigned i;
767 for (i = 0; i < env->config->nibreak; ++i) {
768 if (change & (1 << i)) {
769 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
772 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
775 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
777 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
778 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
779 tb_invalidate_virtual_addr(env, v);
781 env->sregs[IBREAKA + i] = v;
784 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
785 uint32_t dbreakc)
787 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
788 uint32_t mask = dbreakc | ~DBREAKC_MASK;
790 if (env->cpu_watchpoint[i]) {
791 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
793 if (dbreakc & DBREAKC_SB) {
794 flags |= BP_MEM_WRITE;
796 if (dbreakc & DBREAKC_LB) {
797 flags |= BP_MEM_READ;
799 /* contiguous mask after inversion is one less than some power of 2 */
800 if ((~mask + 1) & ~mask) {
801 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
802 /* cut mask after the first zero bit */
803 mask = 0xffffffff << (32 - clo32(mask));
805 if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
806 flags, &env->cpu_watchpoint[i])) {
807 env->cpu_watchpoint[i] = NULL;
808 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
809 dbreaka & mask, ~mask + 1);
813 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
815 uint32_t dbreakc = env->sregs[DBREAKC + i];
817 if ((dbreakc & DBREAKC_SB_LB) &&
818 env->sregs[DBREAKA + i] != v) {
819 set_dbreak(env, i, v, dbreakc);
821 env->sregs[DBREAKA + i] = v;
824 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
826 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
827 if (v & DBREAKC_SB_LB) {
828 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
829 } else {
830 if (env->cpu_watchpoint[i]) {
831 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
832 env->cpu_watchpoint[i] = NULL;
836 env->sregs[DBREAKC + i] = v;
839 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
841 static const int rounding_mode[] = {
842 float_round_nearest_even,
843 float_round_to_zero,
844 float_round_up,
845 float_round_down,
848 env->uregs[FCR] = v & 0xfffff07f;
849 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
852 float32 HELPER(abs_s)(float32 v)
854 return float32_abs(v);
857 float32 HELPER(neg_s)(float32 v)
859 return float32_chs(v);
862 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
864 return float32_add(a, b, &env->fp_status);
867 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
869 return float32_sub(a, b, &env->fp_status);
872 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
874 return float32_mul(a, b, &env->fp_status);
877 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
879 return float32_muladd(b, c, a, 0,
880 &env->fp_status);
883 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
885 return float32_muladd(b, c, a, float_muladd_negate_product,
886 &env->fp_status);
889 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
891 float_status fp_status = {0};
893 set_float_rounding_mode(rounding_mode, &fp_status);
894 return float32_to_int32(
895 float32_scalbn(v, scale, &fp_status), &fp_status);
898 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
900 float_status fp_status = {0};
901 float32 res;
903 set_float_rounding_mode(rounding_mode, &fp_status);
905 res = float32_scalbn(v, scale, &fp_status);
907 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
908 return float32_to_int32(res, &fp_status);
909 } else {
910 return float32_to_uint32(res, &fp_status);
914 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
916 return float32_scalbn(int32_to_float32(v, &env->fp_status),
917 (int32_t)scale, &env->fp_status);
920 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
922 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
923 (int32_t)scale, &env->fp_status);
926 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
928 if (v) {
929 env->sregs[BR] |= br;
930 } else {
931 env->sregs[BR] &= ~br;
935 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
937 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
940 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
942 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
945 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
947 int v = float32_compare_quiet(a, b, &env->fp_status);
948 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
951 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
953 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
956 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
958 int v = float32_compare_quiet(a, b, &env->fp_status);
959 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
962 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
964 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
967 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
969 int v = float32_compare_quiet(a, b, &env->fp_status);
970 set_br(env, v != float_relation_greater, br);