2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "qemu/host-utils.h"
31 #include "exec/softmmu_exec.h"
32 #include "exec/address-spaces.h"
34 static void do_unaligned_access(CPUXtensaState
*env
,
35 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
);
38 #define MMUSUFFIX _mmu
41 #include "exec/softmmu_template.h"
44 #include "exec/softmmu_template.h"
47 #include "exec/softmmu_template.h"
50 #include "exec/softmmu_template.h"
52 static void do_unaligned_access(CPUXtensaState
*env
,
53 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
)
55 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
56 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
57 cpu_restore_state(env
, retaddr
);
58 HELPER(exception_cause_vaddr
)(env
,
59 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
63 void tlb_fill(CPUXtensaState
*env
,
64 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
69 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
70 &paddr
, &page_size
, &access
);
72 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
73 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
77 vaddr
& TARGET_PAGE_MASK
,
78 paddr
& TARGET_PAGE_MASK
,
79 access
, mmu_idx
, page_size
);
81 cpu_restore_state(env
, retaddr
);
82 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
86 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
91 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
92 &paddr
, &page_size
, &access
);
94 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
98 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
100 env
->exception_index
= excp
;
101 if (excp
== EXCP_DEBUG
) {
102 env
->exception_taken
= 0;
107 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
112 if (env
->sregs
[PS
] & PS_EXCM
) {
113 if (env
->config
->ndepc
) {
114 env
->sregs
[DEPC
] = pc
;
116 env
->sregs
[EPC1
] = pc
;
120 env
->sregs
[EPC1
] = pc
;
121 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
124 env
->sregs
[EXCCAUSE
] = cause
;
125 env
->sregs
[PS
] |= PS_EXCM
;
127 HELPER(exception
)(env
, vector
);
130 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
131 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
133 env
->sregs
[EXCVADDR
] = vaddr
;
134 HELPER(exception_cause
)(env
, pc
, cause
);
137 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
139 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
140 HELPER(debug_exception
)(env
, env
->pc
, cause
);
144 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
146 unsigned level
= env
->config
->debug_level
;
149 env
->sregs
[DEBUGCAUSE
] = cause
;
150 env
->sregs
[EPC1
+ level
- 1] = pc
;
151 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
152 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
153 (level
<< PS_INTLEVEL_SHIFT
);
154 HELPER(exception
)(env
, EXC_DEBUG
);
157 uint32_t HELPER(nsa
)(uint32_t v
)
159 if (v
& 0x80000000) {
162 return v
? clz32(v
) - 1 : 31;
165 uint32_t HELPER(nsau
)(uint32_t v
)
167 return v
? clz32(v
) : 32;
170 static void copy_window_from_phys(CPUXtensaState
*env
,
171 uint32_t window
, uint32_t phys
, uint32_t n
)
173 assert(phys
< env
->config
->nareg
);
174 if (phys
+ n
<= env
->config
->nareg
) {
175 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
176 n
* sizeof(uint32_t));
178 uint32_t n1
= env
->config
->nareg
- phys
;
179 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
180 n1
* sizeof(uint32_t));
181 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
182 (n
- n1
) * sizeof(uint32_t));
186 static void copy_phys_from_window(CPUXtensaState
*env
,
187 uint32_t phys
, uint32_t window
, uint32_t n
)
189 assert(phys
< env
->config
->nareg
);
190 if (phys
+ n
<= env
->config
->nareg
) {
191 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
192 n
* sizeof(uint32_t));
194 uint32_t n1
= env
->config
->nareg
- phys
;
195 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
196 n1
* sizeof(uint32_t));
197 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
198 (n
- n1
) * sizeof(uint32_t));
203 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
205 return a
& (env
->config
->nareg
/ 4 - 1);
208 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
210 return 1 << windowbase_bound(a
, env
);
213 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
215 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
218 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
220 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
223 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
225 xtensa_sync_phys_from_window(env
);
226 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
227 xtensa_sync_window_from_phys(env
);
230 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
232 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
235 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
237 rotate_window_abs(env
, v
);
240 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
242 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
243 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
244 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
246 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
248 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
249 rotate_window(env
, callinc
);
250 env
->sregs
[WINDOW_START
] |=
251 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
255 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
257 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
258 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
261 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
269 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
274 m
= windowbase_bound(windowbase
+ n
, env
);
275 rotate_window(env
, n
);
276 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
277 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
278 env
->sregs
[EPC1
] = env
->pc
= pc
;
280 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
281 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
282 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
283 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
285 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
289 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
291 int n
= (env
->regs
[0] >> 30) & 0x3;
293 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
294 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
297 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
299 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
301 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
305 if (n
== 0 || (m
!= 0 && m
!= n
) ||
306 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
307 qemu_log("Illegal retw instruction(pc = %08x), "
308 "PS = %08x, m = %d, n = %d\n",
309 pc
, env
->sregs
[PS
], m
, n
);
310 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
312 int owb
= windowbase
;
314 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
316 rotate_window(env
, -n
);
317 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
318 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
320 /* window underflow */
321 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
322 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
323 env
->sregs
[EPC1
] = env
->pc
= pc
;
326 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
328 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
330 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
337 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
339 rotate_window(env
, imm4
);
342 void HELPER(restore_owb
)(CPUXtensaState
*env
)
344 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
347 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
349 if ((env
->sregs
[WINDOW_START
] &
350 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
351 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
352 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
353 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
357 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
359 if (env
->sregs
[LBEG
] != v
) {
360 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
361 env
->sregs
[LBEG
] = v
;
365 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
367 if (env
->sregs
[LEND
] != v
) {
368 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
369 env
->sregs
[LEND
] = v
;
370 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
374 void HELPER(dump_state
)(CPUXtensaState
*env
)
376 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
378 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
381 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
386 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
387 (intlevel
<< PS_INTLEVEL_SHIFT
);
388 check_interrupts(env
);
389 if (env
->pending_irq_level
) {
394 cpu
= CPU(xtensa_env_get_cpu(env
));
395 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
397 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
398 xtensa_rearm_ccompare_timer(env
);
400 HELPER(exception
)(env
, EXCP_HLT
);
403 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
405 xtensa_timer_irq(env
, id
, active
);
408 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
410 xtensa_advance_ccount(env
, d
);
413 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
415 check_interrupts(env
);
418 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
420 get_page_addr_code(env
, vaddr
);
424 * Check vaddr accessibility/cache attributes and raise an exception if
425 * specified by the ATOMCTL SR.
427 * Note: local memory exclusion is not implemented
429 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
431 uint32_t paddr
, page_size
, access
;
432 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
433 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
434 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
437 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
438 * see opcode description in the ISA
441 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
442 rc
= STORE_PROHIBITED_CAUSE
;
446 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
450 * When data cache is not configured use ATOMCTL bypass field.
451 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
452 * under the Conditional Store Option.
454 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
455 access
= PAGE_CACHE_BYPASS
;
458 switch (access
& PAGE_CACHE_MASK
) {
465 case PAGE_CACHE_BYPASS
:
466 if ((atomctl
& 0x3) == 0) {
467 HELPER(exception_cause_vaddr
)(env
, pc
,
468 LOAD_STORE_ERROR_CAUSE
, vaddr
);
472 case PAGE_CACHE_ISOLATE
:
473 HELPER(exception_cause_vaddr
)(env
, pc
,
474 LOAD_STORE_ERROR_CAUSE
, vaddr
);
482 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
484 v
= (v
& 0xffffff00) | 0x1;
485 if (v
!= env
->sregs
[RASID
]) {
486 env
->sregs
[RASID
] = v
;
491 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
493 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
497 return (tlbcfg
>> 16) & 0x3;
500 return (tlbcfg
>> 20) & 0x1;
503 return (tlbcfg
>> 24) & 0x1;
511 * Get bit mask for the virtual address bits translated by the TLB way
513 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
515 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
516 bool varway56
= dtlb
?
517 env
->config
->dtlb
.varway56
:
518 env
->config
->itlb
.varway56
;
522 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
526 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
533 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
542 return REGION_PAGE_MASK
;
547 * Get bit mask for the 'VPN without index' field.
548 * See ISA, 4.6.5.6, data format for RxTLB0
550 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
554 env
->config
->dtlb
.nrefillentries
:
555 env
->config
->itlb
.nrefillentries
) == 32;
556 return is32
? 0xffff8000 : 0xffffc000;
557 } else if (way
== 4) {
558 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
559 } else if (way
<= 6) {
560 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
561 bool varway56
= dtlb
?
562 env
->config
->dtlb
.varway56
:
563 env
->config
->itlb
.varway56
;
566 return mask
<< (way
== 5 ? 2 : 3);
576 * Split virtual address into VPN (with index) and entry index
577 * for the given TLB way
579 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
580 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
582 bool varway56
= dtlb
?
583 env
->config
->dtlb
.varway56
:
584 env
->config
->itlb
.varway56
;
592 env
->config
->dtlb
.nrefillentries
:
593 env
->config
->itlb
.nrefillentries
) == 32;
594 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
599 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
600 *ei
= (v
>> eibase
) & 0x3;
606 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
607 *ei
= (v
>> eibase
) & 0x3;
609 *ei
= (v
>> 27) & 0x1;
615 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
616 *ei
= (v
>> eibase
) & 0x7;
618 *ei
= (v
>> 28) & 0x1;
627 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
631 * Split TLB address into TLB way, entry index and VPN (with index).
632 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
634 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
635 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
637 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
638 *wi
= v
& (dtlb
? 0xf : 0x7);
639 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
641 *vpn
= v
& REGION_PAGE_MASK
;
643 *ei
= (v
>> 29) & 0x7;
647 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
648 uint32_t v
, bool dtlb
, uint32_t *pwi
)
654 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
658 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
661 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
663 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
665 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
666 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
668 return v
& REGION_PAGE_MASK
;
672 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
674 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
675 return entry
->paddr
| entry
->attr
;
678 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
680 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
682 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
683 if (entry
->variable
&& entry
->asid
) {
684 tlb_flush_page(env
, entry
->vaddr
);
690 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
692 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
696 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
700 if (ring
>= xtensa_get_ring(env
)) {
701 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
705 case INST_TLB_MULTI_HIT_CAUSE
:
706 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
707 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
712 return (v
& REGION_PAGE_MASK
) | 0x1;
716 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
717 xtensa_tlb_entry
*entry
, bool dtlb
,
718 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
721 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
722 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
723 entry
->attr
= pte
& 0xf;
726 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
727 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
729 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
731 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
732 if (entry
->variable
) {
734 tlb_flush_page(env
, entry
->vaddr
);
736 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
737 tlb_flush_page(env
, entry
->vaddr
);
739 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
740 __func__
, dtlb
, wi
, ei
);
743 tlb_flush_page(env
, entry
->vaddr
);
744 if (xtensa_option_enabled(env
->config
,
745 XTENSA_OPTION_REGION_TRANSLATION
)) {
746 entry
->paddr
= pte
& REGION_PAGE_MASK
;
748 entry
->attr
= pte
& 0xf;
752 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
757 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
758 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
762 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
764 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
767 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
768 if (change
& (1 << i
)) {
769 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
772 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
775 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
777 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
778 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
779 tb_invalidate_virtual_addr(env
, v
);
781 env
->sregs
[IBREAKA
+ i
] = v
;
784 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
787 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
788 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
790 if (env
->cpu_watchpoint
[i
]) {
791 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
793 if (dbreakc
& DBREAKC_SB
) {
794 flags
|= BP_MEM_WRITE
;
796 if (dbreakc
& DBREAKC_LB
) {
797 flags
|= BP_MEM_READ
;
799 /* contiguous mask after inversion is one less than some power of 2 */
800 if ((~mask
+ 1) & ~mask
) {
801 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
802 /* cut mask after the first zero bit */
803 mask
= 0xffffffff << (32 - clo32(mask
));
805 if (cpu_watchpoint_insert(env
, dbreaka
& mask
, ~mask
+ 1,
806 flags
, &env
->cpu_watchpoint
[i
])) {
807 env
->cpu_watchpoint
[i
] = NULL
;
808 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
809 dbreaka
& mask
, ~mask
+ 1);
813 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
815 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
817 if ((dbreakc
& DBREAKC_SB_LB
) &&
818 env
->sregs
[DBREAKA
+ i
] != v
) {
819 set_dbreak(env
, i
, v
, dbreakc
);
821 env
->sregs
[DBREAKA
+ i
] = v
;
824 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
826 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
827 if (v
& DBREAKC_SB_LB
) {
828 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
830 if (env
->cpu_watchpoint
[i
]) {
831 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
832 env
->cpu_watchpoint
[i
] = NULL
;
836 env
->sregs
[DBREAKC
+ i
] = v
;
839 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
841 static const int rounding_mode
[] = {
842 float_round_nearest_even
,
848 env
->uregs
[FCR
] = v
& 0xfffff07f;
849 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
852 float32
HELPER(abs_s
)(float32 v
)
854 return float32_abs(v
);
857 float32
HELPER(neg_s
)(float32 v
)
859 return float32_chs(v
);
862 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
864 return float32_add(a
, b
, &env
->fp_status
);
867 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
869 return float32_sub(a
, b
, &env
->fp_status
);
872 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
874 return float32_mul(a
, b
, &env
->fp_status
);
877 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
879 return float32_muladd(b
, c
, a
, 0,
883 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
885 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
889 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
891 float_status fp_status
= {0};
893 set_float_rounding_mode(rounding_mode
, &fp_status
);
894 return float32_to_int32(
895 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
898 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
900 float_status fp_status
= {0};
903 set_float_rounding_mode(rounding_mode
, &fp_status
);
905 res
= float32_scalbn(v
, scale
, &fp_status
);
907 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
908 return float32_to_int32(res
, &fp_status
);
910 return float32_to_uint32(res
, &fp_status
);
914 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
916 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
917 (int32_t)scale
, &env
->fp_status
);
920 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
922 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
923 (int32_t)scale
, &env
->fp_status
);
926 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
929 env
->sregs
[BR
] |= br
;
931 env
->sregs
[BR
] &= ~br
;
935 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
937 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
940 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
942 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
945 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
947 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
948 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
951 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
953 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
956 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
958 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
959 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
962 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
964 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
967 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
969 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
970 set_br(env
, v
!= float_relation_greater
, br
);