2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-char.h"
21 #include "qemu-timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38 * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK 0x0000001F
41 #define UART_INTR_ROVR 0x00000020
42 #define UART_INTR_FRAME 0x00000040
43 #define UART_INTR_PARE 0x00000080
44 #define UART_INTR_TIMEOUT 0x00000100
45 #define UART_INTR_DMSI 0x00000200
47 #define UART_SR_RACTIVE 0x00000400
48 #define UART_SR_TACTIVE 0x00000800
49 #define UART_SR_FDELT 0x00001000
51 #define UART_CR_RXRST 0x00000001
52 #define UART_CR_TXRST 0x00000002
53 #define UART_CR_RX_EN 0x00000004
54 #define UART_CR_RX_DIS 0x00000008
55 #define UART_CR_TX_EN 0x00000010
56 #define UART_CR_TX_DIS 0x00000020
57 #define UART_CR_RST_TO 0x00000040
58 #define UART_CR_STARTBRK 0x00000080
59 #define UART_CR_STOPBRK 0x00000100
61 #define UART_MR_CLKS 0x00000001
62 #define UART_MR_CHRL 0x00000006
63 #define UART_MR_CHRL_SH 1
64 #define UART_MR_PAR 0x00000038
65 #define UART_MR_PAR_SH 3
66 #define UART_MR_NBSTOP 0x000000C0
67 #define UART_MR_NBSTOP_SH 6
68 #define UART_MR_CHMODE 0x00000300
69 #define UART_MR_CHMODE_SH 8
70 #define UART_MR_UCLKEN 0x00000400
71 #define UART_MR_IRMODE 0x00000800
73 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
84 #define RX_FIFO_SIZE 16
85 #define TX_FIFO_SIZE 16
86 #define UART_INPUT_CLK 50000000
90 #define R_IER (0x08/4)
91 #define R_IDR (0x0C/4)
92 #define R_IMR (0x10/4)
93 #define R_CISR (0x14/4)
94 #define R_BRGR (0x18/4)
95 #define R_RTOR (0x1C/4)
96 #define R_RTRIG (0x20/4)
97 #define R_MCR (0x24/4)
98 #define R_MSR (0x28/4)
100 #define R_TX_RX (0x30/4)
101 #define R_BDIV (0x34/4)
102 #define R_FDEL (0x38/4)
103 #define R_PMIN (0x3C/4)
104 #define R_PWID (0x40/4)
105 #define R_TTRIG (0x44/4)
107 #define R_MAX (R_TTRIG + 1)
113 uint8_t r_fifo
[RX_FIFO_SIZE
];
116 uint64_t char_tx_time
;
117 CharDriverState
*chr
;
119 struct QEMUTimer
*fifo_trigger_handle
;
120 struct QEMUTimer
*tx_time_handle
;
123 static void uart_update_status(UartState
*s
)
125 s
->r
[R_CISR
] |= s
->r
[R_SR
] & UART_SR_TO_CISR_MASK
;
126 qemu_set_irq(s
->irq
, !!(s
->r
[R_IMR
] & s
->r
[R_CISR
]));
129 static void fifo_trigger_update(void *opaque
)
131 UartState
*s
= (UartState
*)opaque
;
133 s
->r
[R_CISR
] |= UART_INTR_TIMEOUT
;
135 uart_update_status(s
);
138 static void uart_tx_redo(UartState
*s
)
140 uint64_t new_tx_time
= qemu_get_clock_ns(vm_clock
);
142 qemu_mod_timer(s
->tx_time_handle
, new_tx_time
+ s
->char_tx_time
);
144 s
->r
[R_SR
] |= UART_SR_INTR_TEMPTY
;
146 uart_update_status(s
);
149 static void uart_tx_write(void *opaque
)
151 UartState
*s
= (UartState
*)opaque
;
156 static void uart_rx_reset(UartState
*s
)
161 s
->r
[R_SR
] |= UART_SR_INTR_REMPTY
;
162 s
->r
[R_SR
] &= ~UART_SR_INTR_RFUL
;
165 static void uart_tx_reset(UartState
*s
)
167 s
->r
[R_SR
] |= UART_SR_INTR_TEMPTY
;
168 s
->r
[R_SR
] &= ~UART_SR_INTR_TFUL
;
171 static void uart_send_breaks(UartState
*s
)
173 int break_enabled
= 1;
175 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_BREAK
,
179 static void uart_parameters_setup(UartState
*s
)
181 QEMUSerialSetParams ssp
;
182 unsigned int baud_rate
, packet_size
;
184 baud_rate
= (s
->r
[R_MR
] & UART_MR_CLKS
) ?
185 UART_INPUT_CLK
/ 8 : UART_INPUT_CLK
;
187 ssp
.speed
= baud_rate
/ (s
->r
[R_BRGR
] * (s
->r
[R_BDIV
] + 1));
190 switch (s
->r
[R_MR
] & UART_MR_PAR
) {
191 case UART_PARITY_EVEN
:
195 case UART_PARITY_ODD
:
204 switch (s
->r
[R_MR
] & UART_MR_CHRL
) {
205 case UART_DATA_BITS_6
:
208 case UART_DATA_BITS_7
:
216 switch (s
->r
[R_MR
] & UART_MR_NBSTOP
) {
217 case UART_STOP_BITS_1
:
225 packet_size
+= ssp
.data_bits
+ ssp
.stop_bits
;
226 s
->char_tx_time
= (get_ticks_per_sec() / ssp
.speed
) * packet_size
;
227 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
230 static int uart_can_receive(void *opaque
)
232 UartState
*s
= (UartState
*)opaque
;
234 return RX_FIFO_SIZE
- s
->rx_count
;
237 static void uart_ctrl_update(UartState
*s
)
239 if (s
->r
[R_CR
] & UART_CR_TXRST
) {
243 if (s
->r
[R_CR
] & UART_CR_RXRST
) {
247 s
->r
[R_CR
] &= ~(UART_CR_TXRST
| UART_CR_RXRST
);
249 if ((s
->r
[R_CR
] & UART_CR_TX_EN
) && !(s
->r
[R_CR
] & UART_CR_TX_DIS
)) {
253 if (s
->r
[R_CR
] & UART_CR_STARTBRK
&& !(s
->r
[R_CR
] & UART_CR_STOPBRK
)) {
258 static void uart_write_rx_fifo(void *opaque
, const uint8_t *buf
, int size
)
260 UartState
*s
= (UartState
*)opaque
;
261 uint64_t new_rx_time
= qemu_get_clock_ns(vm_clock
);
264 if ((s
->r
[R_CR
] & UART_CR_RX_DIS
) || !(s
->r
[R_CR
] & UART_CR_RX_EN
)) {
268 s
->r
[R_SR
] &= ~UART_SR_INTR_REMPTY
;
270 if (s
->rx_count
== RX_FIFO_SIZE
) {
271 s
->r
[R_CISR
] |= UART_INTR_ROVR
;
273 for (i
= 0; i
< size
; i
++) {
274 s
->r_fifo
[s
->rx_wpos
] = buf
[i
];
275 s
->rx_wpos
= (s
->rx_wpos
+ 1) % RX_FIFO_SIZE
;
278 if (s
->rx_count
== RX_FIFO_SIZE
) {
279 s
->r
[R_SR
] |= UART_SR_INTR_RFUL
;
283 if (s
->rx_count
>= s
->r
[R_RTRIG
]) {
284 s
->r
[R_SR
] |= UART_SR_INTR_RTRIG
;
287 qemu_mod_timer(s
->fifo_trigger_handle
, new_rx_time
+
288 (s
->char_tx_time
* 4));
290 uart_update_status(s
);
293 static void uart_write_tx_fifo(UartState
*s
, const uint8_t *buf
, int size
)
295 if ((s
->r
[R_CR
] & UART_CR_TX_DIS
) || !(s
->r
[R_CR
] & UART_CR_TX_EN
)) {
300 size
-= qemu_chr_fe_write(s
->chr
, buf
, size
);
304 static void uart_receive(void *opaque
, const uint8_t *buf
, int size
)
306 UartState
*s
= (UartState
*)opaque
;
307 uint32_t ch_mode
= s
->r
[R_MR
] & UART_MR_CHMODE
;
309 if (ch_mode
== NORMAL_MODE
|| ch_mode
== ECHO_MODE
) {
310 uart_write_rx_fifo(opaque
, buf
, size
);
312 if (ch_mode
== REMOTE_LOOPBACK
|| ch_mode
== ECHO_MODE
) {
313 uart_write_tx_fifo(s
, buf
, size
);
317 static void uart_event(void *opaque
, int event
)
319 UartState
*s
= (UartState
*)opaque
;
322 if (event
== CHR_EVENT_BREAK
) {
323 uart_write_rx_fifo(opaque
, &buf
, 1);
326 uart_update_status(s
);
329 static void uart_read_rx_fifo(UartState
*s
, uint32_t *c
)
331 if ((s
->r
[R_CR
] & UART_CR_RX_DIS
) || !(s
->r
[R_CR
] & UART_CR_RX_EN
)) {
335 s
->r
[R_SR
] &= ~UART_SR_INTR_RFUL
;
339 (RX_FIFO_SIZE
+ s
->rx_wpos
- s
->rx_count
) % RX_FIFO_SIZE
;
340 *c
= s
->r_fifo
[rx_rpos
];
344 s
->r
[R_SR
] |= UART_SR_INTR_REMPTY
;
348 s
->r
[R_SR
] |= UART_SR_INTR_REMPTY
;
351 if (s
->rx_count
< s
->r
[R_RTRIG
]) {
352 s
->r
[R_SR
] &= ~UART_SR_INTR_RTRIG
;
354 uart_update_status(s
);
357 static void uart_write(void *opaque
, target_phys_addr_t offset
,
358 uint64_t value
, unsigned size
)
360 UartState
*s
= (UartState
*)opaque
;
362 DB_PRINT(" offset:%x data:%08x\n", offset
, (unsigned)value
);
365 case R_IER
: /* ier (wts imr) */
366 s
->r
[R_IMR
] |= value
;
368 case R_IDR
: /* idr (wtc imr) */
369 s
->r
[R_IMR
] &= ~value
;
371 case R_IMR
: /* imr (read only) */
373 case R_CISR
: /* cisr (wtc) */
374 s
->r
[R_CISR
] &= ~value
;
376 case R_TX_RX
: /* UARTDR */
377 switch (s
->r
[R_MR
] & UART_MR_CHMODE
) {
379 uart_write_tx_fifo(s
, (uint8_t *) &value
, 1);
382 uart_write_rx_fifo(opaque
, (uint8_t *) &value
, 1);
387 s
->r
[offset
] = value
;
395 uart_parameters_setup(s
);
400 static uint64_t uart_read(void *opaque
, target_phys_addr_t offset
,
403 UartState
*s
= (UartState
*)opaque
;
407 if (offset
>= R_MAX
) {
409 } else if (offset
== R_TX_RX
) {
410 uart_read_rx_fifo(s
, &c
);
416 static const MemoryRegionOps uart_ops
= {
419 .endianness
= DEVICE_NATIVE_ENDIAN
,
422 static void cadence_uart_reset(UartState
*s
)
424 s
->r
[R_CR
] = 0x00000128;
427 s
->r
[R_RTRIG
] = 0x00000020;
428 s
->r
[R_BRGR
] = 0x0000000F;
429 s
->r
[R_TTRIG
] = 0x00000020;
438 static int cadence_uart_init(SysBusDevice
*dev
)
440 UartState
*s
= FROM_SYSBUS(UartState
, dev
);
442 memory_region_init_io(&s
->iomem
, &uart_ops
, s
, "uart", 0x1000);
443 sysbus_init_mmio(dev
, &s
->iomem
);
444 sysbus_init_irq(dev
, &s
->irq
);
446 s
->fifo_trigger_handle
= qemu_new_timer_ns(vm_clock
,
447 (QEMUTimerCB
*)fifo_trigger_update
, s
);
449 s
->tx_time_handle
= qemu_new_timer_ns(vm_clock
,
450 (QEMUTimerCB
*)uart_tx_write
, s
);
452 s
->char_tx_time
= (get_ticks_per_sec() / 9600) * 10;
454 s
->chr
= qemu_char_get_next_serial();
456 cadence_uart_reset(s
);
459 qemu_chr_add_handlers(s
->chr
, uart_can_receive
, uart_receive
,
466 static int cadence_uart_post_load(void *opaque
, int version_id
)
468 UartState
*s
= opaque
;
470 uart_parameters_setup(s
);
471 uart_update_status(s
);
475 static const VMStateDescription vmstate_cadence_uart
= {
476 .name
= "cadence_uart",
478 .minimum_version_id
= 1,
479 .minimum_version_id_old
= 1,
480 .post_load
= cadence_uart_post_load
,
481 .fields
= (VMStateField
[]) {
482 VMSTATE_UINT32_ARRAY(r
, UartState
, R_MAX
),
483 VMSTATE_UINT8_ARRAY(r_fifo
, UartState
, RX_FIFO_SIZE
),
484 VMSTATE_UINT32(rx_count
, UartState
),
485 VMSTATE_UINT32(rx_wpos
, UartState
),
486 VMSTATE_TIMER(fifo_trigger_handle
, UartState
),
487 VMSTATE_TIMER(tx_time_handle
, UartState
),
488 VMSTATE_END_OF_LIST()
492 static void cadence_uart_class_init(ObjectClass
*klass
, void *data
)
494 DeviceClass
*dc
= DEVICE_CLASS(klass
);
495 SysBusDeviceClass
*sdc
= SYS_BUS_DEVICE_CLASS(klass
);
497 sdc
->init
= cadence_uart_init
;
498 dc
->vmsd
= &vmstate_cadence_uart
;
501 static TypeInfo cadence_uart_info
= {
502 .name
= "cadence_uart",
503 .parent
= TYPE_SYS_BUS_DEVICE
,
504 .instance_size
= sizeof(UartState
),
505 .class_init
= cadence_uart_class_init
,
508 static void cadence_uart_register_types(void)
510 type_register_static(&cadence_uart_info
);
513 type_init(cadence_uart_register_types
)