block: Accept any target node for transactional blockdev-backup
[qemu.git] / translate-all.c
blobefeba298b9eb12bce524892ceefb056247e9e36a
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/address-spaces.h"
50 #endif
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/timer.h"
57 #include "exec/log.h"
59 //#define DEBUG_TB_INVALIDATE
60 //#define DEBUG_FLUSH
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
66 #undef DEBUG_TB_CHECK
67 #endif
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
74 #ifdef CONFIG_SOFTMMU
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #else
80 unsigned long flags;
81 #endif
82 } PageDesc;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
120 /* code generation context */
121 TCGContext tcg_ctx;
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
128 void tb_lock(void)
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
137 void tb_unlock(void)
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
146 void tb_lock_reset(void)
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
153 #endif
156 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
158 void cpu_gen_init(void)
160 tcg_context_init(&tcg_ctx);
163 /* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
167 int more, byte;
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
177 *p++ = byte;
178 } while (more);
180 return p;
183 /* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185 static target_long decode_sleb128(uint8_t **pp)
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
200 *pp = p;
201 return val;
204 /* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
216 static int encode_search(TranslationBlock *tb, uint8_t *block)
218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
219 uint8_t *p = block;
220 int i, j, n;
222 tb->tc_search = block;
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
247 return p - block;
250 /* The cpu state corresponding to 'searched_pc' is restored. */
251 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
252 uintptr_t searched_pc)
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
256 CPUArchState *env = cpu->env_ptr;
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
259 #ifdef CONFIG_PROFILER
260 int64_t ti = profile_getclock();
261 #endif
263 if (searched_pc < host_pc) {
264 return -1;
267 /* Reconstruct the stored insn data while looking for the point at
268 which the end of the insn exceeds the searched_pc. */
269 for (i = 0; i < num_insns; ++i) {
270 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
271 data[j] += decode_sleb128(&p);
273 host_pc += decode_sleb128(&p);
274 if (host_pc > searched_pc) {
275 goto found;
278 return -1;
280 found:
281 if (tb->cflags & CF_USE_ICOUNT) {
282 assert(use_icount);
283 /* Reset the cycle counter to the start of the block. */
284 cpu->icount_decr.u16.low += num_insns;
285 /* Clear the IO flag. */
286 cpu->can_do_io = 0;
288 cpu->icount_decr.u16.low -= i;
289 restore_state_to_opc(env, tb, data);
291 #ifdef CONFIG_PROFILER
292 tcg_ctx.restore_time += profile_getclock() - ti;
293 tcg_ctx.restore_count++;
294 #endif
295 return 0;
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
300 TranslationBlock *tb;
302 tb = tb_find_pc(retaddr);
303 if (tb) {
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 tb_phys_invalidate(tb, -1);
308 tb_free(tb);
310 return true;
312 return false;
315 void page_size_init(void)
317 /* NOTE: we can always suppose that qemu_host_page_size >=
318 TARGET_PAGE_SIZE */
319 qemu_real_host_page_size = getpagesize();
320 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
321 if (qemu_host_page_size == 0) {
322 qemu_host_page_size = qemu_real_host_page_size;
324 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
325 qemu_host_page_size = TARGET_PAGE_SIZE;
327 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
330 static void page_init(void)
332 page_size_init();
333 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
335 #ifdef HAVE_KINFO_GETVMMAP
336 struct kinfo_vmentry *freep;
337 int i, cnt;
339 freep = kinfo_getvmmap(getpid(), &cnt);
340 if (freep) {
341 mmap_lock();
342 for (i = 0; i < cnt; i++) {
343 unsigned long startaddr, endaddr;
345 startaddr = freep[i].kve_start;
346 endaddr = freep[i].kve_end;
347 if (h2g_valid(startaddr)) {
348 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
350 if (h2g_valid(endaddr)) {
351 endaddr = h2g(endaddr);
352 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
353 } else {
354 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
355 endaddr = ~0ul;
356 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
357 #endif
361 free(freep);
362 mmap_unlock();
364 #else
365 FILE *f;
367 last_brk = (unsigned long)sbrk(0);
369 f = fopen("/compat/linux/proc/self/maps", "r");
370 if (f) {
371 mmap_lock();
373 do {
374 unsigned long startaddr, endaddr;
375 int n;
377 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
379 if (n == 2 && h2g_valid(startaddr)) {
380 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
382 if (h2g_valid(endaddr)) {
383 endaddr = h2g(endaddr);
384 } else {
385 endaddr = ~0ul;
387 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
389 } while (!feof(f));
391 fclose(f);
392 mmap_unlock();
394 #endif
396 #endif
399 /* If alloc=1:
400 * Called with mmap_lock held for user-mode emulation.
402 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
404 PageDesc *pd;
405 void **lp;
406 int i;
408 /* Level 1. Always allocated. */
409 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
411 /* Level 2..N-1. */
412 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
413 void **p = atomic_rcu_read(lp);
415 if (p == NULL) {
416 if (!alloc) {
417 return NULL;
419 p = g_new0(void *, V_L2_SIZE);
420 atomic_rcu_set(lp, p);
423 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
426 pd = atomic_rcu_read(lp);
427 if (pd == NULL) {
428 if (!alloc) {
429 return NULL;
431 pd = g_new0(PageDesc, V_L2_SIZE);
432 atomic_rcu_set(lp, pd);
435 return pd + (index & (V_L2_SIZE - 1));
438 static inline PageDesc *page_find(tb_page_addr_t index)
440 return page_find_alloc(index, 0);
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used. */
446 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
447 region in which the guest needs to run. Revisit this. */
448 #define USE_STATIC_CODE_GEN_BUFFER
449 #endif
451 /* Minimum size of the code gen buffer. This number is randomly chosen,
452 but not so small that we can't have a fair number of TB's live. */
453 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
456 indicated, this is constrained by the range of direct branches on the
457 host cpu, as used by the TCG implementation of goto_tb. */
458 #if defined(__x86_64__)
459 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460 #elif defined(__sparc__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__powerpc64__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__powerpc__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
466 #elif defined(__aarch64__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
468 #elif defined(__arm__)
469 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
470 #elif defined(__s390x__)
471 /* We have a +- 4GB range on the branches; leave some slop. */
472 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
473 #elif defined(__mips__)
474 /* We have a 256MB branch region, but leave room to make sure the
475 main executable is also within that region. */
476 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
477 #else
478 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479 #endif
481 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
484 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
485 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487 static inline size_t size_code_gen_buffer(size_t tb_size)
489 /* Size the buffer. */
490 if (tb_size == 0) {
491 #ifdef USE_STATIC_CODE_GEN_BUFFER
492 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
493 #else
494 /* ??? Needs adjustments. */
495 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
496 static buffer, we could size this on RESERVED_VA, on the text
497 segment size of the executable, or continue to use the default. */
498 tb_size = (unsigned long)(ram_size / 4);
499 #endif
501 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 return tb_size;
510 #ifdef __mips__
511 /* In order to use J and JAL within the code_gen_buffer, we require
512 that the buffer not cross a 256MB boundary. */
513 static inline bool cross_256mb(void *addr, size_t size)
515 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
518 /* We weren't able to allocate a buffer without crossing that boundary,
519 so make do with the larger portion of the buffer that doesn't cross.
520 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
521 static inline void *split_cross_256mb(void *buf1, size_t size1)
523 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
524 size_t size2 = buf1 + size1 - buf2;
526 size1 = buf2 - buf1;
527 if (size1 < size2) {
528 size1 = size2;
529 buf1 = buf2;
532 tcg_ctx.code_gen_buffer_size = size1;
533 return buf1;
535 #endif
537 #ifdef USE_STATIC_CODE_GEN_BUFFER
538 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
539 __attribute__((aligned(CODE_GEN_ALIGN)));
541 # ifdef _WIN32
542 static inline void do_protect(void *addr, long size, int prot)
544 DWORD old_protect;
545 VirtualProtect(addr, size, prot, &old_protect);
548 static inline void map_exec(void *addr, long size)
550 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553 static inline void map_none(void *addr, long size)
555 do_protect(addr, size, PAGE_NOACCESS);
557 # else
558 static inline void do_protect(void *addr, long size, int prot)
560 uintptr_t start, end;
562 start = (uintptr_t)addr;
563 start &= qemu_real_host_page_mask;
565 end = (uintptr_t)addr + size;
566 end = ROUND_UP(end, qemu_real_host_page_size);
568 mprotect((void *)start, end - start, prot);
571 static inline void map_exec(void *addr, long size)
573 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576 static inline void map_none(void *addr, long size)
578 do_protect(addr, size, PROT_NONE);
580 # endif /* WIN32 */
582 static inline void *alloc_code_gen_buffer(void)
584 void *buf = static_code_gen_buffer;
585 size_t full_size, size;
587 /* The size of the buffer, rounded down to end on a page boundary. */
588 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
589 & qemu_real_host_page_mask) - (uintptr_t)buf;
591 /* Reserve a guard page. */
592 size = full_size - qemu_real_host_page_size;
594 /* Honor a command-line option limiting the size of the buffer. */
595 if (size > tcg_ctx.code_gen_buffer_size) {
596 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
599 tcg_ctx.code_gen_buffer_size = size;
601 #ifdef __mips__
602 if (cross_256mb(buf, size)) {
603 buf = split_cross_256mb(buf, size);
604 size = tcg_ctx.code_gen_buffer_size;
606 #endif
608 map_exec(buf, size);
609 map_none(buf + size, qemu_real_host_page_size);
610 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
612 return buf;
614 #elif defined(_WIN32)
615 static inline void *alloc_code_gen_buffer(void)
617 size_t size = tcg_ctx.code_gen_buffer_size;
618 void *buf1, *buf2;
620 /* Perform the allocation in two steps, so that the guard page
621 is reserved but uncommitted. */
622 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
623 MEM_RESERVE, PAGE_NOACCESS);
624 if (buf1 != NULL) {
625 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
626 assert(buf1 == buf2);
629 return buf1;
631 #else
632 static inline void *alloc_code_gen_buffer(void)
634 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
635 uintptr_t start = 0;
636 size_t size = tcg_ctx.code_gen_buffer_size;
637 void *buf;
639 /* Constrain the position of the buffer based on the host cpu.
640 Note that these addresses are chosen in concert with the
641 addresses assigned in the relevant linker script file. */
642 # if defined(__PIE__) || defined(__PIC__)
643 /* Don't bother setting a preferred location if we're building
644 a position-independent executable. We're more likely to get
645 an address near the main executable if we let the kernel
646 choose the address. */
647 # elif defined(__x86_64__) && defined(MAP_32BIT)
648 /* Force the memory down into low memory with the executable.
649 Leave the choice of exact location with the kernel. */
650 flags |= MAP_32BIT;
651 /* Cannot expect to map more than 800MB in low memory. */
652 if (size > 800u * 1024 * 1024) {
653 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
655 # elif defined(__sparc__)
656 start = 0x40000000ul;
657 # elif defined(__s390x__)
658 start = 0x90000000ul;
659 # elif defined(__mips__)
660 # if _MIPS_SIM == _ABI64
661 start = 0x128000000ul;
662 # else
663 start = 0x08000000ul;
664 # endif
665 # endif
667 buf = mmap((void *)start, size + qemu_real_host_page_size,
668 PROT_NONE, flags, -1, 0);
669 if (buf == MAP_FAILED) {
670 return NULL;
673 #ifdef __mips__
674 if (cross_256mb(buf, size)) {
675 /* Try again, with the original still mapped, to avoid re-acquiring
676 that 256mb crossing. This time don't specify an address. */
677 size_t size2;
678 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
679 PROT_NONE, flags, -1, 0);
680 switch (buf2 != MAP_FAILED) {
681 case 1:
682 if (!cross_256mb(buf2, size)) {
683 /* Success! Use the new buffer. */
684 munmap(buf, size + qemu_real_host_page_size);
685 break;
687 /* Failure. Work with what we had. */
688 munmap(buf2, size + qemu_real_host_page_size);
689 /* fallthru */
690 default:
691 /* Split the original buffer. Free the smaller half. */
692 buf2 = split_cross_256mb(buf, size);
693 size2 = tcg_ctx.code_gen_buffer_size;
694 if (buf == buf2) {
695 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
696 } else {
697 munmap(buf, size - size2);
699 size = size2;
700 break;
702 buf = buf2;
704 #endif
706 /* Make the final buffer accessible. The guard page at the end
707 will remain inaccessible with PROT_NONE. */
708 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
710 /* Request large pages for the buffer. */
711 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
713 return buf;
715 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
717 static inline void code_gen_alloc(size_t tb_size)
719 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
720 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
721 if (tcg_ctx.code_gen_buffer == NULL) {
722 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
723 exit(1);
726 /* Estimate a good size for the number of TBs we can support. We
727 still haven't deducted the prologue from the buffer size here,
728 but that's minimal and won't affect the estimate much. */
729 tcg_ctx.code_gen_max_blocks
730 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
731 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
733 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 static void tb_htable_init(void)
738 unsigned int mode = QHT_MODE_AUTO_RESIZE;
740 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
743 /* Must be called before using the QEMU cpus. 'tb_size' is the size
744 (in bytes) allocated to the translation buffer. Zero means default
745 size. */
746 void tcg_exec_init(unsigned long tb_size)
748 cpu_gen_init();
749 page_init();
750 tb_htable_init();
751 code_gen_alloc(tb_size);
752 #if defined(CONFIG_SOFTMMU)
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756 #endif
759 bool tcg_enabled(void)
761 return tcg_ctx.code_gen_buffer != NULL;
764 /* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766 static TranslationBlock *tb_alloc(target_ulong pc)
768 TranslationBlock *tb;
770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 return NULL;
773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
779 void tb_free(TranslationBlock *tb)
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
787 tcg_ctx.tb_ctx.nb_tbs--;
791 static inline void invalidate_page_bitmap(PageDesc *p)
793 #ifdef CONFIG_SOFTMMU
794 g_free(p->code_bitmap);
795 p->code_bitmap = NULL;
796 p->code_write_count = 0;
797 #endif
800 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
801 static void page_flush_tb_1(int level, void **lp)
803 int i;
805 if (*lp == NULL) {
806 return;
808 if (level == 0) {
809 PageDesc *pd = *lp;
811 for (i = 0; i < V_L2_SIZE; ++i) {
812 pd[i].first_tb = NULL;
813 invalidate_page_bitmap(pd + i);
815 } else {
816 void **pp = *lp;
818 for (i = 0; i < V_L2_SIZE; ++i) {
819 page_flush_tb_1(level - 1, pp + i);
824 static void page_flush_tb(void)
826 int i;
828 for (i = 0; i < V_L1_SIZE; i++) {
829 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
833 /* flush all the translation blocks */
834 /* XXX: tb_flush is currently not thread safe */
835 void tb_flush(CPUState *cpu)
837 #if defined(DEBUG_FLUSH)
838 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
839 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
840 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
841 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
842 tcg_ctx.tb_ctx.nb_tbs : 0);
843 #endif
844 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
845 > tcg_ctx.code_gen_buffer_size) {
846 cpu_abort(cpu, "Internal error: code buffer overflow\n");
848 tcg_ctx.tb_ctx.nb_tbs = 0;
850 CPU_FOREACH(cpu) {
851 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
852 cpu->tb_flushed = true;
855 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
856 page_flush_tb();
858 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
859 /* XXX: flush processor icache at this point if cache flush is
860 expensive */
861 tcg_ctx.tb_ctx.tb_flush_count++;
864 #ifdef DEBUG_TB_CHECK
866 static void
867 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
869 TranslationBlock *tb = p;
870 target_ulong addr = *(target_ulong *)userp;
872 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
873 printf("ERROR invalidate: address=" TARGET_FMT_lx
874 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
878 static void tb_invalidate_check(target_ulong address)
880 address &= TARGET_PAGE_MASK;
881 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
884 static void
885 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
887 TranslationBlock *tb = p;
888 int flags1, flags2;
890 flags1 = page_get_flags(tb->pc);
891 flags2 = page_get_flags(tb->pc + tb->size - 1);
892 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
893 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
894 (long)tb->pc, tb->size, flags1, flags2);
898 /* verify that all the pages have correct rights for code */
899 static void tb_page_check(void)
901 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
904 #endif
906 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
908 TranslationBlock *tb1;
909 unsigned int n1;
911 for (;;) {
912 tb1 = *ptb;
913 n1 = (uintptr_t)tb1 & 3;
914 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
915 if (tb1 == tb) {
916 *ptb = tb1->page_next[n1];
917 break;
919 ptb = &tb1->page_next[n1];
923 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
924 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
926 TranslationBlock *tb1;
927 uintptr_t *ptb, ntb;
928 unsigned int n1;
930 ptb = &tb->jmp_list_next[n];
931 if (*ptb) {
932 /* find tb(n) in circular list */
933 for (;;) {
934 ntb = *ptb;
935 n1 = ntb & 3;
936 tb1 = (TranslationBlock *)(ntb & ~3);
937 if (n1 == n && tb1 == tb) {
938 break;
940 if (n1 == 2) {
941 ptb = &tb1->jmp_list_first;
942 } else {
943 ptb = &tb1->jmp_list_next[n1];
946 /* now we can suppress tb(n) from the list */
947 *ptb = tb->jmp_list_next[n];
949 tb->jmp_list_next[n] = (uintptr_t)NULL;
953 /* reset the jump entry 'n' of a TB so that it is not chained to
954 another TB */
955 static inline void tb_reset_jump(TranslationBlock *tb, int n)
957 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
958 tb_set_jmp_target(tb, n, addr);
961 /* remove any jumps to the TB */
962 static inline void tb_jmp_unlink(TranslationBlock *tb)
964 TranslationBlock *tb1;
965 uintptr_t *ptb, ntb;
966 unsigned int n1;
968 ptb = &tb->jmp_list_first;
969 for (;;) {
970 ntb = *ptb;
971 n1 = ntb & 3;
972 tb1 = (TranslationBlock *)(ntb & ~3);
973 if (n1 == 2) {
974 break;
976 tb_reset_jump(tb1, n1);
977 *ptb = tb1->jmp_list_next[n1];
978 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
982 /* invalidate one TB */
983 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
985 CPUState *cpu;
986 PageDesc *p;
987 uint32_t h;
988 tb_page_addr_t phys_pc;
990 /* remove the TB from the hash list */
991 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
992 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
993 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
995 /* remove the TB from the page list */
996 if (tb->page_addr[0] != page_addr) {
997 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
998 tb_page_remove(&p->first_tb, tb);
999 invalidate_page_bitmap(p);
1001 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1002 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1003 tb_page_remove(&p->first_tb, tb);
1004 invalidate_page_bitmap(p);
1007 /* remove the TB from the hash list */
1008 h = tb_jmp_cache_hash_func(tb->pc);
1009 CPU_FOREACH(cpu) {
1010 if (cpu->tb_jmp_cache[h] == tb) {
1011 cpu->tb_jmp_cache[h] = NULL;
1015 /* suppress this TB from the two jump lists */
1016 tb_remove_from_jmp_list(tb, 0);
1017 tb_remove_from_jmp_list(tb, 1);
1019 /* suppress any remaining jumps to this TB */
1020 tb_jmp_unlink(tb);
1022 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1025 #ifdef CONFIG_SOFTMMU
1026 static void build_page_bitmap(PageDesc *p)
1028 int n, tb_start, tb_end;
1029 TranslationBlock *tb;
1031 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1033 tb = p->first_tb;
1034 while (tb != NULL) {
1035 n = (uintptr_t)tb & 3;
1036 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1037 /* NOTE: this is subtle as a TB may span two physical pages */
1038 if (n == 0) {
1039 /* NOTE: tb_end may be after the end of the page, but
1040 it is not a problem */
1041 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1042 tb_end = tb_start + tb->size;
1043 if (tb_end > TARGET_PAGE_SIZE) {
1044 tb_end = TARGET_PAGE_SIZE;
1046 } else {
1047 tb_start = 0;
1048 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1050 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1051 tb = tb->page_next[n];
1054 #endif
1056 /* add the tb in the target page and protect it if necessary
1058 * Called with mmap_lock held for user-mode emulation.
1060 static inline void tb_alloc_page(TranslationBlock *tb,
1061 unsigned int n, tb_page_addr_t page_addr)
1063 PageDesc *p;
1064 #ifndef CONFIG_USER_ONLY
1065 bool page_already_protected;
1066 #endif
1068 tb->page_addr[n] = page_addr;
1069 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1070 tb->page_next[n] = p->first_tb;
1071 #ifndef CONFIG_USER_ONLY
1072 page_already_protected = p->first_tb != NULL;
1073 #endif
1074 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1075 invalidate_page_bitmap(p);
1077 #if defined(CONFIG_USER_ONLY)
1078 if (p->flags & PAGE_WRITE) {
1079 target_ulong addr;
1080 PageDesc *p2;
1081 int prot;
1083 /* force the host page as non writable (writes will have a
1084 page fault + mprotect overhead) */
1085 page_addr &= qemu_host_page_mask;
1086 prot = 0;
1087 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1088 addr += TARGET_PAGE_SIZE) {
1090 p2 = page_find(addr >> TARGET_PAGE_BITS);
1091 if (!p2) {
1092 continue;
1094 prot |= p2->flags;
1095 p2->flags &= ~PAGE_WRITE;
1097 mprotect(g2h(page_addr), qemu_host_page_size,
1098 (prot & PAGE_BITS) & ~PAGE_WRITE);
1099 #ifdef DEBUG_TB_INVALIDATE
1100 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1101 page_addr);
1102 #endif
1104 #else
1105 /* if some code is already present, then the pages are already
1106 protected. So we handle the case where only the first TB is
1107 allocated in a physical page */
1108 if (!page_already_protected) {
1109 tlb_protect_code(page_addr);
1111 #endif
1114 /* add a new TB and link it to the physical page tables. phys_page2 is
1115 * (-1) to indicate that only one page contains the TB.
1117 * Called with mmap_lock held for user-mode emulation.
1119 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1120 tb_page_addr_t phys_page2)
1122 uint32_t h;
1124 /* add in the hash table */
1125 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1126 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1128 /* add in the page list */
1129 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1130 if (phys_page2 != -1) {
1131 tb_alloc_page(tb, 1, phys_page2);
1132 } else {
1133 tb->page_addr[1] = -1;
1136 #ifdef DEBUG_TB_CHECK
1137 tb_page_check();
1138 #endif
1141 /* Called with mmap_lock held for user mode emulation. */
1142 TranslationBlock *tb_gen_code(CPUState *cpu,
1143 target_ulong pc, target_ulong cs_base,
1144 uint32_t flags, int cflags)
1146 CPUArchState *env = cpu->env_ptr;
1147 TranslationBlock *tb;
1148 tb_page_addr_t phys_pc, phys_page2;
1149 target_ulong virt_page2;
1150 tcg_insn_unit *gen_code_buf;
1151 int gen_code_size, search_size;
1152 #ifdef CONFIG_PROFILER
1153 int64_t ti;
1154 #endif
1156 phys_pc = get_page_addr_code(env, pc);
1157 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1158 cflags |= CF_USE_ICOUNT;
1161 tb = tb_alloc(pc);
1162 if (unlikely(!tb)) {
1163 buffer_overflow:
1164 /* flush must be done */
1165 tb_flush(cpu);
1166 /* cannot fail at this point */
1167 tb = tb_alloc(pc);
1168 assert(tb != NULL);
1171 gen_code_buf = tcg_ctx.code_gen_ptr;
1172 tb->tc_ptr = gen_code_buf;
1173 tb->cs_base = cs_base;
1174 tb->flags = flags;
1175 tb->cflags = cflags;
1177 #ifdef CONFIG_PROFILER
1178 tcg_ctx.tb_count1++; /* includes aborted translations because of
1179 exceptions */
1180 ti = profile_getclock();
1181 #endif
1183 tcg_func_start(&tcg_ctx);
1185 tcg_ctx.cpu = ENV_GET_CPU(env);
1186 gen_intermediate_code(env, tb);
1187 tcg_ctx.cpu = NULL;
1189 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1191 /* generate machine code */
1192 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1193 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1194 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1195 #ifdef USE_DIRECT_JUMP
1196 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1197 tcg_ctx.tb_jmp_target_addr = NULL;
1198 #else
1199 tcg_ctx.tb_jmp_insn_offset = NULL;
1200 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1201 #endif
1203 #ifdef CONFIG_PROFILER
1204 tcg_ctx.tb_count++;
1205 tcg_ctx.interm_time += profile_getclock() - ti;
1206 tcg_ctx.code_time -= profile_getclock();
1207 #endif
1209 /* ??? Overflow could be handled better here. In particular, we
1210 don't need to re-do gen_intermediate_code, nor should we re-do
1211 the tcg optimization currently hidden inside tcg_gen_code. All
1212 that should be required is to flush the TBs, allocate a new TB,
1213 re-initialize it per above, and re-do the actual code generation. */
1214 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1215 if (unlikely(gen_code_size < 0)) {
1216 goto buffer_overflow;
1218 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1219 if (unlikely(search_size < 0)) {
1220 goto buffer_overflow;
1223 #ifdef CONFIG_PROFILER
1224 tcg_ctx.code_time += profile_getclock();
1225 tcg_ctx.code_in_len += tb->size;
1226 tcg_ctx.code_out_len += gen_code_size;
1227 tcg_ctx.search_out_len += search_size;
1228 #endif
1230 #ifdef DEBUG_DISAS
1231 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1232 qemu_log_in_addr_range(tb->pc)) {
1233 qemu_log("OUT: [size=%d]\n", gen_code_size);
1234 log_disas(tb->tc_ptr, gen_code_size);
1235 qemu_log("\n");
1236 qemu_log_flush();
1238 #endif
1240 tcg_ctx.code_gen_ptr = (void *)
1241 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1242 CODE_GEN_ALIGN);
1244 /* init jump list */
1245 assert(((uintptr_t)tb & 3) == 0);
1246 tb->jmp_list_first = (uintptr_t)tb | 2;
1247 tb->jmp_list_next[0] = (uintptr_t)NULL;
1248 tb->jmp_list_next[1] = (uintptr_t)NULL;
1250 /* init original jump addresses wich has been set during tcg_gen_code() */
1251 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1252 tb_reset_jump(tb, 0);
1254 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1255 tb_reset_jump(tb, 1);
1258 /* check next page if needed */
1259 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1260 phys_page2 = -1;
1261 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1262 phys_page2 = get_page_addr_code(env, virt_page2);
1264 /* As long as consistency of the TB stuff is provided by tb_lock in user
1265 * mode and is implicit in single-threaded softmmu emulation, no explicit
1266 * memory barrier is required before tb_link_page() makes the TB visible
1267 * through the physical hash table and physical page list.
1269 tb_link_page(tb, phys_pc, phys_page2);
1270 return tb;
1274 * Invalidate all TBs which intersect with the target physical address range
1275 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1276 * 'is_cpu_write_access' should be true if called from a real cpu write
1277 * access: the virtual CPU will exit the current TB if code is modified inside
1278 * this TB.
1280 * Called with mmap_lock held for user-mode emulation
1282 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1284 while (start < end) {
1285 tb_invalidate_phys_page_range(start, end, 0);
1286 start &= TARGET_PAGE_MASK;
1287 start += TARGET_PAGE_SIZE;
1292 * Invalidate all TBs which intersect with the target physical address range
1293 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1294 * 'is_cpu_write_access' should be true if called from a real cpu write
1295 * access: the virtual CPU will exit the current TB if code is modified inside
1296 * this TB.
1298 * Called with mmap_lock held for user-mode emulation
1300 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1301 int is_cpu_write_access)
1303 TranslationBlock *tb, *tb_next;
1304 #if defined(TARGET_HAS_PRECISE_SMC)
1305 CPUState *cpu = current_cpu;
1306 CPUArchState *env = NULL;
1307 #endif
1308 tb_page_addr_t tb_start, tb_end;
1309 PageDesc *p;
1310 int n;
1311 #ifdef TARGET_HAS_PRECISE_SMC
1312 int current_tb_not_found = is_cpu_write_access;
1313 TranslationBlock *current_tb = NULL;
1314 int current_tb_modified = 0;
1315 target_ulong current_pc = 0;
1316 target_ulong current_cs_base = 0;
1317 uint32_t current_flags = 0;
1318 #endif /* TARGET_HAS_PRECISE_SMC */
1320 p = page_find(start >> TARGET_PAGE_BITS);
1321 if (!p) {
1322 return;
1324 #if defined(TARGET_HAS_PRECISE_SMC)
1325 if (cpu != NULL) {
1326 env = cpu->env_ptr;
1328 #endif
1330 /* we remove all the TBs in the range [start, end[ */
1331 /* XXX: see if in some cases it could be faster to invalidate all
1332 the code */
1333 tb = p->first_tb;
1334 while (tb != NULL) {
1335 n = (uintptr_t)tb & 3;
1336 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1337 tb_next = tb->page_next[n];
1338 /* NOTE: this is subtle as a TB may span two physical pages */
1339 if (n == 0) {
1340 /* NOTE: tb_end may be after the end of the page, but
1341 it is not a problem */
1342 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1343 tb_end = tb_start + tb->size;
1344 } else {
1345 tb_start = tb->page_addr[1];
1346 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1348 if (!(tb_end <= start || tb_start >= end)) {
1349 #ifdef TARGET_HAS_PRECISE_SMC
1350 if (current_tb_not_found) {
1351 current_tb_not_found = 0;
1352 current_tb = NULL;
1353 if (cpu->mem_io_pc) {
1354 /* now we have a real cpu fault */
1355 current_tb = tb_find_pc(cpu->mem_io_pc);
1358 if (current_tb == tb &&
1359 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1360 /* If we are modifying the current TB, we must stop
1361 its execution. We could be more precise by checking
1362 that the modification is after the current PC, but it
1363 would require a specialized function to partially
1364 restore the CPU state */
1366 current_tb_modified = 1;
1367 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1368 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1369 &current_flags);
1371 #endif /* TARGET_HAS_PRECISE_SMC */
1372 tb_phys_invalidate(tb, -1);
1374 tb = tb_next;
1376 #if !defined(CONFIG_USER_ONLY)
1377 /* if no code remaining, no need to continue to use slow writes */
1378 if (!p->first_tb) {
1379 invalidate_page_bitmap(p);
1380 tlb_unprotect_code(start);
1382 #endif
1383 #ifdef TARGET_HAS_PRECISE_SMC
1384 if (current_tb_modified) {
1385 /* we generate a block containing just the instruction
1386 modifying the memory. It will ensure that it cannot modify
1387 itself */
1388 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1389 cpu_loop_exit_noexc(cpu);
1391 #endif
1394 #ifdef CONFIG_SOFTMMU
1395 /* len must be <= 8 and start must be a multiple of len */
1396 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1398 PageDesc *p;
1400 #if 0
1401 if (1) {
1402 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1403 cpu_single_env->mem_io_vaddr, len,
1404 cpu_single_env->eip,
1405 cpu_single_env->eip +
1406 (intptr_t)cpu_single_env->segs[R_CS].base);
1408 #endif
1409 p = page_find(start >> TARGET_PAGE_BITS);
1410 if (!p) {
1411 return;
1413 if (!p->code_bitmap &&
1414 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1415 /* build code bitmap */
1416 build_page_bitmap(p);
1418 if (p->code_bitmap) {
1419 unsigned int nr;
1420 unsigned long b;
1422 nr = start & ~TARGET_PAGE_MASK;
1423 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1424 if (b & ((1 << len) - 1)) {
1425 goto do_invalidate;
1427 } else {
1428 do_invalidate:
1429 tb_invalidate_phys_page_range(start, start + len, 1);
1432 #else
1433 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1434 * host PC of the faulting store instruction that caused this invalidate.
1435 * Returns true if the caller needs to abort execution of the current
1436 * TB (because it was modified by this store and the guest CPU has
1437 * precise-SMC semantics).
1439 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1441 TranslationBlock *tb;
1442 PageDesc *p;
1443 int n;
1444 #ifdef TARGET_HAS_PRECISE_SMC
1445 TranslationBlock *current_tb = NULL;
1446 CPUState *cpu = current_cpu;
1447 CPUArchState *env = NULL;
1448 int current_tb_modified = 0;
1449 target_ulong current_pc = 0;
1450 target_ulong current_cs_base = 0;
1451 uint32_t current_flags = 0;
1452 #endif
1454 addr &= TARGET_PAGE_MASK;
1455 p = page_find(addr >> TARGET_PAGE_BITS);
1456 if (!p) {
1457 return false;
1459 tb = p->first_tb;
1460 #ifdef TARGET_HAS_PRECISE_SMC
1461 if (tb && pc != 0) {
1462 current_tb = tb_find_pc(pc);
1464 if (cpu != NULL) {
1465 env = cpu->env_ptr;
1467 #endif
1468 while (tb != NULL) {
1469 n = (uintptr_t)tb & 3;
1470 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1471 #ifdef TARGET_HAS_PRECISE_SMC
1472 if (current_tb == tb &&
1473 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1474 /* If we are modifying the current TB, we must stop
1475 its execution. We could be more precise by checking
1476 that the modification is after the current PC, but it
1477 would require a specialized function to partially
1478 restore the CPU state */
1480 current_tb_modified = 1;
1481 cpu_restore_state_from_tb(cpu, current_tb, pc);
1482 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1483 &current_flags);
1485 #endif /* TARGET_HAS_PRECISE_SMC */
1486 tb_phys_invalidate(tb, addr);
1487 tb = tb->page_next[n];
1489 p->first_tb = NULL;
1490 #ifdef TARGET_HAS_PRECISE_SMC
1491 if (current_tb_modified) {
1492 /* we generate a block containing just the instruction
1493 modifying the memory. It will ensure that it cannot modify
1494 itself */
1495 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1496 return true;
1498 #endif
1499 return false;
1501 #endif
1503 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1504 tb[1].tc_ptr. Return NULL if not found */
1505 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1507 int m_min, m_max, m;
1508 uintptr_t v;
1509 TranslationBlock *tb;
1511 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1512 return NULL;
1514 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1515 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1516 return NULL;
1518 /* binary search (cf Knuth) */
1519 m_min = 0;
1520 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1521 while (m_min <= m_max) {
1522 m = (m_min + m_max) >> 1;
1523 tb = &tcg_ctx.tb_ctx.tbs[m];
1524 v = (uintptr_t)tb->tc_ptr;
1525 if (v == tc_ptr) {
1526 return tb;
1527 } else if (tc_ptr < v) {
1528 m_max = m - 1;
1529 } else {
1530 m_min = m + 1;
1533 return &tcg_ctx.tb_ctx.tbs[m_max];
1536 #if !defined(CONFIG_USER_ONLY)
1537 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1539 ram_addr_t ram_addr;
1540 MemoryRegion *mr;
1541 hwaddr l = 1;
1543 rcu_read_lock();
1544 mr = address_space_translate(as, addr, &addr, &l, false);
1545 if (!(memory_region_is_ram(mr)
1546 || memory_region_is_romd(mr))) {
1547 rcu_read_unlock();
1548 return;
1550 ram_addr = memory_region_get_ram_addr(mr) + addr;
1551 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1552 rcu_read_unlock();
1554 #endif /* !defined(CONFIG_USER_ONLY) */
1556 void tb_check_watchpoint(CPUState *cpu)
1558 TranslationBlock *tb;
1560 tb = tb_find_pc(cpu->mem_io_pc);
1561 if (tb) {
1562 /* We can use retranslation to find the PC. */
1563 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1564 tb_phys_invalidate(tb, -1);
1565 } else {
1566 /* The exception probably happened in a helper. The CPU state should
1567 have been saved before calling it. Fetch the PC from there. */
1568 CPUArchState *env = cpu->env_ptr;
1569 target_ulong pc, cs_base;
1570 tb_page_addr_t addr;
1571 uint32_t flags;
1573 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1574 addr = get_page_addr_code(env, pc);
1575 tb_invalidate_phys_range(addr, addr + 1);
1579 #ifndef CONFIG_USER_ONLY
1580 /* in deterministic execution mode, instructions doing device I/Os
1581 must be at the end of the TB */
1582 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1584 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1585 CPUArchState *env = cpu->env_ptr;
1586 #endif
1587 TranslationBlock *tb;
1588 uint32_t n, cflags;
1589 target_ulong pc, cs_base;
1590 uint32_t flags;
1592 tb = tb_find_pc(retaddr);
1593 if (!tb) {
1594 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1595 (void *)retaddr);
1597 n = cpu->icount_decr.u16.low + tb->icount;
1598 cpu_restore_state_from_tb(cpu, tb, retaddr);
1599 /* Calculate how many instructions had been executed before the fault
1600 occurred. */
1601 n = n - cpu->icount_decr.u16.low;
1602 /* Generate a new TB ending on the I/O insn. */
1603 n++;
1604 /* On MIPS and SH, delay slot instructions can only be restarted if
1605 they were already the first instruction in the TB. If this is not
1606 the first instruction in a TB then re-execute the preceding
1607 branch. */
1608 #if defined(TARGET_MIPS)
1609 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1610 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1611 cpu->icount_decr.u16.low++;
1612 env->hflags &= ~MIPS_HFLAG_BMASK;
1614 #elif defined(TARGET_SH4)
1615 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1616 && n > 1) {
1617 env->pc -= 2;
1618 cpu->icount_decr.u16.low++;
1619 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1621 #endif
1622 /* This should never happen. */
1623 if (n > CF_COUNT_MASK) {
1624 cpu_abort(cpu, "TB too big during recompile");
1627 cflags = n | CF_LAST_IO;
1628 pc = tb->pc;
1629 cs_base = tb->cs_base;
1630 flags = tb->flags;
1631 tb_phys_invalidate(tb, -1);
1632 if (tb->cflags & CF_NOCACHE) {
1633 if (tb->orig_tb) {
1634 /* Invalidate original TB if this TB was generated in
1635 * cpu_exec_nocache() */
1636 tb_phys_invalidate(tb->orig_tb, -1);
1638 tb_free(tb);
1640 /* FIXME: In theory this could raise an exception. In practice
1641 we have already translated the block once so it's probably ok. */
1642 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1643 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1644 the first in the TB) then we end up generating a whole new TB and
1645 repeating the fault, which is horribly inefficient.
1646 Better would be to execute just this insn uncached, or generate a
1647 second new TB. */
1648 cpu_loop_exit_noexc(cpu);
1651 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1653 unsigned int i;
1655 /* Discard jump cache entries for any tb which might potentially
1656 overlap the flushed page. */
1657 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1658 memset(&cpu->tb_jmp_cache[i], 0,
1659 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1661 i = tb_jmp_cache_hash_page(addr);
1662 memset(&cpu->tb_jmp_cache[i], 0,
1663 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1666 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1667 struct qht_stats hst)
1669 uint32_t hgram_opts;
1670 size_t hgram_bins;
1671 char *hgram;
1673 if (!hst.head_buckets) {
1674 return;
1676 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1677 hst.used_head_buckets, hst.head_buckets,
1678 (double)hst.used_head_buckets / hst.head_buckets * 100);
1680 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1681 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1682 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1683 hgram_opts |= QDIST_PR_NODECIMAL;
1685 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1686 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1687 qdist_avg(&hst.occupancy) * 100, hgram);
1688 g_free(hgram);
1690 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1691 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1692 if (hgram_bins > 10) {
1693 hgram_bins = 10;
1694 } else {
1695 hgram_bins = 0;
1696 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1698 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1699 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1700 qdist_avg(&hst.chain), hgram);
1701 g_free(hgram);
1704 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1706 int i, target_code_size, max_target_code_size;
1707 int direct_jmp_count, direct_jmp2_count, cross_page;
1708 TranslationBlock *tb;
1709 struct qht_stats hst;
1711 target_code_size = 0;
1712 max_target_code_size = 0;
1713 cross_page = 0;
1714 direct_jmp_count = 0;
1715 direct_jmp2_count = 0;
1716 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1717 tb = &tcg_ctx.tb_ctx.tbs[i];
1718 target_code_size += tb->size;
1719 if (tb->size > max_target_code_size) {
1720 max_target_code_size = tb->size;
1722 if (tb->page_addr[1] != -1) {
1723 cross_page++;
1725 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1726 direct_jmp_count++;
1727 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1728 direct_jmp2_count++;
1732 /* XXX: avoid using doubles ? */
1733 cpu_fprintf(f, "Translation buffer state:\n");
1734 cpu_fprintf(f, "gen code size %td/%zd\n",
1735 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1736 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1737 cpu_fprintf(f, "TB count %d/%d\n",
1738 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1739 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1740 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1741 tcg_ctx.tb_ctx.nb_tbs : 0,
1742 max_target_code_size);
1743 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1744 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1745 tcg_ctx.code_gen_buffer) /
1746 tcg_ctx.tb_ctx.nb_tbs : 0,
1747 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1748 tcg_ctx.code_gen_buffer) /
1749 target_code_size : 0);
1750 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1751 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1752 tcg_ctx.tb_ctx.nb_tbs : 0);
1753 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1754 direct_jmp_count,
1755 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1756 tcg_ctx.tb_ctx.nb_tbs : 0,
1757 direct_jmp2_count,
1758 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1759 tcg_ctx.tb_ctx.nb_tbs : 0);
1761 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1762 print_qht_statistics(f, cpu_fprintf, hst);
1763 qht_statistics_destroy(&hst);
1765 cpu_fprintf(f, "\nStatistics:\n");
1766 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1767 cpu_fprintf(f, "TB invalidate count %d\n",
1768 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1769 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1770 tcg_dump_info(f, cpu_fprintf);
1773 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1775 tcg_dump_op_count(f, cpu_fprintf);
1778 #else /* CONFIG_USER_ONLY */
1780 void cpu_interrupt(CPUState *cpu, int mask)
1782 cpu->interrupt_request |= mask;
1783 cpu->tcg_exit_req = 1;
1787 * Walks guest process memory "regions" one by one
1788 * and calls callback function 'fn' for each region.
1790 struct walk_memory_regions_data {
1791 walk_memory_regions_fn fn;
1792 void *priv;
1793 target_ulong start;
1794 int prot;
1797 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1798 target_ulong end, int new_prot)
1800 if (data->start != -1u) {
1801 int rc = data->fn(data->priv, data->start, end, data->prot);
1802 if (rc != 0) {
1803 return rc;
1807 data->start = (new_prot ? end : -1u);
1808 data->prot = new_prot;
1810 return 0;
1813 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1814 target_ulong base, int level, void **lp)
1816 target_ulong pa;
1817 int i, rc;
1819 if (*lp == NULL) {
1820 return walk_memory_regions_end(data, base, 0);
1823 if (level == 0) {
1824 PageDesc *pd = *lp;
1826 for (i = 0; i < V_L2_SIZE; ++i) {
1827 int prot = pd[i].flags;
1829 pa = base | (i << TARGET_PAGE_BITS);
1830 if (prot != data->prot) {
1831 rc = walk_memory_regions_end(data, pa, prot);
1832 if (rc != 0) {
1833 return rc;
1837 } else {
1838 void **pp = *lp;
1840 for (i = 0; i < V_L2_SIZE; ++i) {
1841 pa = base | ((target_ulong)i <<
1842 (TARGET_PAGE_BITS + V_L2_BITS * level));
1843 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1844 if (rc != 0) {
1845 return rc;
1850 return 0;
1853 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1855 struct walk_memory_regions_data data;
1856 uintptr_t i;
1858 data.fn = fn;
1859 data.priv = priv;
1860 data.start = -1u;
1861 data.prot = 0;
1863 for (i = 0; i < V_L1_SIZE; i++) {
1864 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1865 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1866 if (rc != 0) {
1867 return rc;
1871 return walk_memory_regions_end(&data, 0, 0);
1874 static int dump_region(void *priv, target_ulong start,
1875 target_ulong end, unsigned long prot)
1877 FILE *f = (FILE *)priv;
1879 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1880 " "TARGET_FMT_lx" %c%c%c\n",
1881 start, end, end - start,
1882 ((prot & PAGE_READ) ? 'r' : '-'),
1883 ((prot & PAGE_WRITE) ? 'w' : '-'),
1884 ((prot & PAGE_EXEC) ? 'x' : '-'));
1886 return 0;
1889 /* dump memory mappings */
1890 void page_dump(FILE *f)
1892 const int length = sizeof(target_ulong) * 2;
1893 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1894 length, "start", length, "end", length, "size", "prot");
1895 walk_memory_regions(f, dump_region);
1898 int page_get_flags(target_ulong address)
1900 PageDesc *p;
1902 p = page_find(address >> TARGET_PAGE_BITS);
1903 if (!p) {
1904 return 0;
1906 return p->flags;
1909 /* Modify the flags of a page and invalidate the code if necessary.
1910 The flag PAGE_WRITE_ORG is positioned automatically depending
1911 on PAGE_WRITE. The mmap_lock should already be held. */
1912 void page_set_flags(target_ulong start, target_ulong end, int flags)
1914 target_ulong addr, len;
1916 /* This function should never be called with addresses outside the
1917 guest address space. If this assert fires, it probably indicates
1918 a missing call to h2g_valid. */
1919 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1920 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1921 #endif
1922 assert(start < end);
1924 start = start & TARGET_PAGE_MASK;
1925 end = TARGET_PAGE_ALIGN(end);
1927 if (flags & PAGE_WRITE) {
1928 flags |= PAGE_WRITE_ORG;
1931 for (addr = start, len = end - start;
1932 len != 0;
1933 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1934 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1936 /* If the write protection bit is set, then we invalidate
1937 the code inside. */
1938 if (!(p->flags & PAGE_WRITE) &&
1939 (flags & PAGE_WRITE) &&
1940 p->first_tb) {
1941 tb_invalidate_phys_page(addr, 0);
1943 p->flags = flags;
1947 int page_check_range(target_ulong start, target_ulong len, int flags)
1949 PageDesc *p;
1950 target_ulong end;
1951 target_ulong addr;
1953 /* This function should never be called with addresses outside the
1954 guest address space. If this assert fires, it probably indicates
1955 a missing call to h2g_valid. */
1956 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1957 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1958 #endif
1960 if (len == 0) {
1961 return 0;
1963 if (start + len - 1 < start) {
1964 /* We've wrapped around. */
1965 return -1;
1968 /* must do before we loose bits in the next step */
1969 end = TARGET_PAGE_ALIGN(start + len);
1970 start = start & TARGET_PAGE_MASK;
1972 for (addr = start, len = end - start;
1973 len != 0;
1974 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1975 p = page_find(addr >> TARGET_PAGE_BITS);
1976 if (!p) {
1977 return -1;
1979 if (!(p->flags & PAGE_VALID)) {
1980 return -1;
1983 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1984 return -1;
1986 if (flags & PAGE_WRITE) {
1987 if (!(p->flags & PAGE_WRITE_ORG)) {
1988 return -1;
1990 /* unprotect the page if it was put read-only because it
1991 contains translated code */
1992 if (!(p->flags & PAGE_WRITE)) {
1993 if (!page_unprotect(addr, 0)) {
1994 return -1;
1999 return 0;
2002 /* called from signal handler: invalidate the code and unprotect the
2003 * page. Return 0 if the fault was not handled, 1 if it was handled,
2004 * and 2 if it was handled but the caller must cause the TB to be
2005 * immediately exited. (We can only return 2 if the 'pc' argument is
2006 * non-zero.)
2008 int page_unprotect(target_ulong address, uintptr_t pc)
2010 unsigned int prot;
2011 bool current_tb_invalidated;
2012 PageDesc *p;
2013 target_ulong host_start, host_end, addr;
2015 /* Technically this isn't safe inside a signal handler. However we
2016 know this only ever happens in a synchronous SEGV handler, so in
2017 practice it seems to be ok. */
2018 mmap_lock();
2020 p = page_find(address >> TARGET_PAGE_BITS);
2021 if (!p) {
2022 mmap_unlock();
2023 return 0;
2026 /* if the page was really writable, then we change its
2027 protection back to writable */
2028 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2029 host_start = address & qemu_host_page_mask;
2030 host_end = host_start + qemu_host_page_size;
2032 prot = 0;
2033 current_tb_invalidated = false;
2034 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2035 p = page_find(addr >> TARGET_PAGE_BITS);
2036 p->flags |= PAGE_WRITE;
2037 prot |= p->flags;
2039 /* and since the content will be modified, we must invalidate
2040 the corresponding translated code. */
2041 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2042 #ifdef DEBUG_TB_CHECK
2043 tb_invalidate_check(addr);
2044 #endif
2046 mprotect((void *)g2h(host_start), qemu_host_page_size,
2047 prot & PAGE_BITS);
2049 mmap_unlock();
2050 /* If current TB was invalidated return to main loop */
2051 return current_tb_invalidated ? 2 : 1;
2053 mmap_unlock();
2054 return 0;
2056 #endif /* CONFIG_USER_ONLY */