tests/vm: update openbsd to release 6.9
[qemu.git] / hw / acpi / nvdimm.c
blobe3d5fe193920565be5d62889fb20c094711332b9
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2.1 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
40 * define Byte Addressable Persistent Memory (PM) Region according to
41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43 static const uint8_t nvdimm_nfit_spa_uuid[] =
44 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
45 0x18, 0xb7, 0x8c, 0xdb);
48 * NVDIMM Firmware Interface Table
49 * @signature: "NFIT"
51 * It provides information that allows OSPM to enumerate NVDIMM present in
52 * the platform and associate system physical address ranges created by the
53 * NVDIMMs.
55 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
57 struct NvdimmNfitHeader {
58 ACPI_TABLE_HEADER_DEF
59 uint32_t reserved;
60 } QEMU_PACKED;
61 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
64 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
65 * Interface Table (NFIT).
69 * System Physical Address Range Structure
71 * It describes the system physical address ranges occupied by NVDIMMs and
72 * the types of the regions.
74 struct NvdimmNfitSpa {
75 uint16_t type;
76 uint16_t length;
77 uint16_t spa_index;
78 uint16_t flags;
79 uint32_t reserved;
80 uint32_t proximity_domain;
81 uint8_t type_guid[16];
82 uint64_t spa_base;
83 uint64_t spa_length;
84 uint64_t mem_attr;
85 } QEMU_PACKED;
86 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
89 * Memory Device to System Physical Address Range Mapping Structure
91 * It enables identifying each NVDIMM region and the corresponding SPA
92 * describing the memory interleave
94 struct NvdimmNfitMemDev {
95 uint16_t type;
96 uint16_t length;
97 uint32_t nfit_handle;
98 uint16_t phys_id;
99 uint16_t region_id;
100 uint16_t spa_index;
101 uint16_t dcr_index;
102 uint64_t region_len;
103 uint64_t region_offset;
104 uint64_t region_dpa;
105 uint16_t interleave_index;
106 uint16_t interleave_ways;
107 uint16_t flags;
108 uint16_t reserved;
109 } QEMU_PACKED;
110 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
112 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
115 * NVDIMM Control Region Structure
117 * It describes the NVDIMM and if applicable, Block Control Window.
119 struct NvdimmNfitControlRegion {
120 uint16_t type;
121 uint16_t length;
122 uint16_t dcr_index;
123 uint16_t vendor_id;
124 uint16_t device_id;
125 uint16_t revision_id;
126 uint16_t sub_vendor_id;
127 uint16_t sub_device_id;
128 uint16_t sub_revision_id;
129 uint8_t reserved[6];
130 uint32_t serial_number;
131 uint16_t fic;
132 uint16_t num_bcw;
133 uint64_t bcw_size;
134 uint64_t cmd_offset;
135 uint64_t cmd_size;
136 uint64_t status_offset;
137 uint64_t status_size;
138 uint16_t flags;
139 uint8_t reserved2[6];
140 } QEMU_PACKED;
141 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
144 * NVDIMM Platform Capabilities Structure
146 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
148 struct NvdimmNfitPlatformCaps {
149 uint16_t type;
150 uint16_t length;
151 uint8_t highest_cap;
152 uint8_t reserved[3];
153 uint32_t capabilities;
154 uint8_t reserved2[4];
155 } QEMU_PACKED;
156 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
159 * Module serial number is a unique number for each device. We use the
160 * slot id of NVDIMM device to generate this number so that each device
161 * associates with a different number.
163 * 0x123456 is a magic number we arbitrarily chose.
165 static uint32_t nvdimm_slot_to_sn(int slot)
167 return 0x123456 + slot;
171 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
172 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
173 * by ACPI device _ADR method.
175 * We generate the handle with the slot id of NVDIMM device and reserve
176 * 0 for NVDIMM root device.
178 static uint32_t nvdimm_slot_to_handle(int slot)
180 return slot + 1;
184 * index uniquely identifies the structure, 0 is reserved which indicates
185 * that the structure is not valid or the associated structure is not
186 * present.
188 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
189 * nfit_dc which are generated by the slot id of NVDIMM device.
191 static uint16_t nvdimm_slot_to_spa_index(int slot)
193 return (slot + 1) << 1;
196 /* See the comments of nvdimm_slot_to_spa_index(). */
197 static uint32_t nvdimm_slot_to_dcr_index(int slot)
199 return nvdimm_slot_to_spa_index(slot) + 1;
202 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
204 NVDIMMDevice *nvdimm = NULL;
205 GSList *list, *device_list = nvdimm_get_device_list();
207 for (list = device_list; list; list = list->next) {
208 NVDIMMDevice *nvd = list->data;
209 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
210 NULL);
212 if (nvdimm_slot_to_handle(slot) == handle) {
213 nvdimm = nvd;
214 break;
218 g_slist_free(device_list);
219 return nvdimm;
222 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
223 static void
224 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
226 NvdimmNfitSpa *nfit_spa;
227 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
228 NULL);
229 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
230 NULL);
231 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
232 NULL);
233 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
234 NULL);
236 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
238 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
239 Structure */);
240 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
241 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
244 * Control region is strict as all the device info, such as SN, index,
245 * is associated with slot id.
247 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
248 management during hot add/online
249 operation */ |
250 2 /* Data in Proximity Domain field is
251 valid*/);
253 /* NUMA node. */
254 nfit_spa->proximity_domain = cpu_to_le32(node);
255 /* the region reported as PMEM. */
256 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
257 sizeof(nvdimm_nfit_spa_uuid));
259 nfit_spa->spa_base = cpu_to_le64(addr);
260 nfit_spa->spa_length = cpu_to_le64(size);
262 /* It is the PMEM and can be cached as writeback. */
263 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
264 0x8000ULL /* EFI_MEMORY_NV */);
268 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
269 * Structure
271 static void
272 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
274 NvdimmNfitMemDev *nfit_memdev;
275 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
276 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
277 NULL);
278 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
279 NULL);
280 uint32_t handle = nvdimm_slot_to_handle(slot);
282 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
284 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
285 Range Map Structure*/);
286 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
287 nfit_memdev->nfit_handle = cpu_to_le32(handle);
290 * associate memory device with System Physical Address Range
291 * Structure.
293 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
294 /* associate memory device with Control Region Structure. */
295 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
297 /* The memory region on the device. */
298 nfit_memdev->region_len = cpu_to_le64(size);
299 /* The device address starts from 0. */
300 nfit_memdev->region_dpa = cpu_to_le64(0);
302 /* Only one interleave for PMEM. */
303 nfit_memdev->interleave_ways = cpu_to_le16(1);
305 if (nvdimm->unarmed) {
306 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
311 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
313 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
315 NvdimmNfitControlRegion *nfit_dcr;
316 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
317 NULL);
318 uint32_t sn = nvdimm_slot_to_sn(slot);
320 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
322 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
323 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
324 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
326 /* vendor: Intel. */
327 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
328 nfit_dcr->device_id = cpu_to_le16(1);
330 /* The _DSM method is following Intel's DSM specification. */
331 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
332 in ACPI 6.0 is 1. */);
333 nfit_dcr->serial_number = cpu_to_le32(sn);
334 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
335 Byte addressable, no energy backed.
336 See ACPI 6.2, sect 5.2.25.6 and
337 JEDEC Annex L Release 3. */);
341 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
343 static void
344 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
346 NvdimmNfitPlatformCaps *nfit_caps;
348 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
350 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
351 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
352 nfit_caps->highest_cap = 31 - clz32(capabilities);
353 nfit_caps->capabilities = cpu_to_le32(capabilities);
356 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
358 GSList *device_list = nvdimm_get_device_list();
359 GArray *structures = g_array_new(false, true /* clear */, 1);
361 for (; device_list; device_list = device_list->next) {
362 DeviceState *dev = device_list->data;
364 /* build System Physical Address Range Structure. */
365 nvdimm_build_structure_spa(structures, dev);
368 * build Memory Device to System Physical Address Range Mapping
369 * Structure.
371 nvdimm_build_structure_memdev(structures, dev);
373 /* build NVDIMM Control Region Structure. */
374 nvdimm_build_structure_dcr(structures, dev);
376 g_slist_free(device_list);
378 if (state->persistence) {
379 nvdimm_build_structure_caps(structures, state->persistence);
382 return structures;
385 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
387 fit_buf->fit = g_array_new(false, true /* clear */, 1);
390 static void nvdimm_build_fit_buffer(NVDIMMState *state)
392 NvdimmFitBuffer *fit_buf = &state->fit_buf;
394 g_array_free(fit_buf->fit, true);
395 fit_buf->fit = nvdimm_build_device_structure(state);
396 fit_buf->dirty = true;
399 void nvdimm_plug(NVDIMMState *state)
401 nvdimm_build_fit_buffer(state);
404 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
405 GArray *table_data, BIOSLinker *linker,
406 const char *oem_id, const char *oem_table_id)
408 NvdimmFitBuffer *fit_buf = &state->fit_buf;
409 unsigned int header;
411 acpi_add_table(table_offsets, table_data);
413 /* NFIT header. */
414 header = table_data->len;
415 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
416 /* NVDIMM device structures. */
417 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
419 build_header(linker, table_data,
420 (void *)(table_data->data + header), "NFIT",
421 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, oem_id,
422 oem_table_id);
425 #define NVDIMM_DSM_MEMORY_SIZE 4096
427 struct NvdimmDsmIn {
428 uint32_t handle;
429 uint32_t revision;
430 uint32_t function;
431 /* the remaining size in the page is used by arg3. */
432 union {
433 uint8_t arg3[4084];
435 } QEMU_PACKED;
436 typedef struct NvdimmDsmIn NvdimmDsmIn;
437 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
439 struct NvdimmDsmOut {
440 /* the size of buffer filled by QEMU. */
441 uint32_t len;
442 uint8_t data[4092];
443 } QEMU_PACKED;
444 typedef struct NvdimmDsmOut NvdimmDsmOut;
445 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
447 struct NvdimmDsmFunc0Out {
448 /* the size of buffer filled by QEMU. */
449 uint32_t len;
450 uint32_t supported_func;
451 } QEMU_PACKED;
452 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
454 struct NvdimmDsmFuncNoPayloadOut {
455 /* the size of buffer filled by QEMU. */
456 uint32_t len;
457 uint32_t func_ret_status;
458 } QEMU_PACKED;
459 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
461 struct NvdimmFuncGetLabelSizeOut {
462 /* the size of buffer filled by QEMU. */
463 uint32_t len;
464 uint32_t func_ret_status; /* return status code. */
465 uint32_t label_size; /* the size of label data area. */
467 * Maximum size of the namespace label data length supported by
468 * the platform in Get/Set Namespace Label Data functions.
470 uint32_t max_xfer;
471 } QEMU_PACKED;
472 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
475 struct NvdimmFuncGetLabelDataIn {
476 uint32_t offset; /* the offset in the namespace label data area. */
477 uint32_t length; /* the size of data is to be read via the function. */
478 } QEMU_PACKED;
479 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
481 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
483 struct NvdimmFuncGetLabelDataOut {
484 /* the size of buffer filled by QEMU. */
485 uint32_t len;
486 uint32_t func_ret_status; /* return status code. */
487 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
488 } QEMU_PACKED;
489 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
490 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
492 struct NvdimmFuncSetLabelDataIn {
493 uint32_t offset; /* the offset in the namespace label data area. */
494 uint32_t length; /* the size of data is to be written via the function. */
495 uint8_t in_buf[]; /* the data written to label data area. */
496 } QEMU_PACKED;
497 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
499 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
501 struct NvdimmFuncReadFITIn {
502 uint32_t offset; /* the offset into FIT buffer. */
503 } QEMU_PACKED;
504 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
505 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
506 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
508 struct NvdimmFuncReadFITOut {
509 /* the size of buffer filled by QEMU. */
510 uint32_t len;
511 uint32_t func_ret_status; /* return status code. */
512 uint8_t fit[]; /* the FIT data. */
513 } QEMU_PACKED;
514 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
515 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
517 static void
518 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
520 NvdimmDsmFunc0Out func0 = {
521 .len = cpu_to_le32(sizeof(func0)),
522 .supported_func = cpu_to_le32(supported_func),
524 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
527 static void
528 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
530 NvdimmDsmFuncNoPayloadOut out = {
531 .len = cpu_to_le32(sizeof(out)),
532 .func_ret_status = cpu_to_le32(func_ret_status),
534 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
537 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
538 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
539 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
540 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
541 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
543 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
545 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
546 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
547 hwaddr dsm_mem_addr)
549 NvdimmFitBuffer *fit_buf = &state->fit_buf;
550 NvdimmFuncReadFITIn *read_fit;
551 NvdimmFuncReadFITOut *read_fit_out;
552 GArray *fit;
553 uint32_t read_len = 0, func_ret_status;
554 int size;
556 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
557 read_fit->offset = le32_to_cpu(read_fit->offset);
559 fit = fit_buf->fit;
561 nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n",
562 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
564 if (read_fit->offset > fit->len) {
565 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
566 goto exit;
569 /* It is the first time to read FIT. */
570 if (!read_fit->offset) {
571 fit_buf->dirty = false;
572 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
573 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
574 goto exit;
577 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
578 read_len = MIN(fit->len - read_fit->offset,
579 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
581 exit:
582 size = sizeof(NvdimmFuncReadFITOut) + read_len;
583 read_fit_out = g_malloc(size);
585 read_fit_out->len = cpu_to_le32(size);
586 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
587 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
589 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
591 g_free(read_fit_out);
594 static void
595 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
596 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
598 switch (in->function) {
599 case 0x0:
600 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
601 return;
602 case 0x1 /* Read FIT */:
603 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
604 return;
607 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
610 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
613 * function 0 is called to inquire which functions are supported by
614 * OSPM
616 if (!in->function) {
617 nvdimm_dsm_function0(0 /* No function supported other than
618 function 0 */, dsm_mem_addr);
619 return;
622 /* No function except function 0 is supported yet. */
623 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
627 * the max transfer size is the max size transferred by both a
628 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
629 * function.
631 static uint32_t nvdimm_get_max_xfer_label_size(void)
633 uint32_t max_get_size, max_set_size, dsm_memory_size;
635 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
638 * the max data ACPI can read one time which is transferred by
639 * the response of 'Get Namespace Label Data' function.
641 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
644 * the max data ACPI can write one time which is transferred by
645 * 'Set Namespace Label Data' function.
647 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
648 sizeof(NvdimmFuncSetLabelDataIn);
650 return MIN(max_get_size, max_set_size);
654 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
656 * It gets the size of Namespace Label data area and the max data size
657 * that Get/Set Namespace Label Data functions can transfer.
659 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
661 NvdimmFuncGetLabelSizeOut label_size_out = {
662 .len = cpu_to_le32(sizeof(label_size_out)),
664 uint32_t label_size, mxfer;
666 label_size = nvdimm->label_size;
667 mxfer = nvdimm_get_max_xfer_label_size();
669 nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer);
671 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
672 label_size_out.label_size = cpu_to_le32(label_size);
673 label_size_out.max_xfer = cpu_to_le32(mxfer);
675 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
676 sizeof(label_size_out));
679 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
680 uint32_t offset, uint32_t length)
682 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
684 if (offset + length < offset) {
685 nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset,
686 length);
687 return ret;
690 if (nvdimm->label_size < offset + length) {
691 nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n",
692 offset + length, nvdimm->label_size);
693 return ret;
696 if (length > nvdimm_get_max_xfer_label_size()) {
697 nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n",
698 length, nvdimm_get_max_xfer_label_size());
699 return ret;
702 return NVDIMM_DSM_RET_STATUS_SUCCESS;
706 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
708 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
709 hwaddr dsm_mem_addr)
711 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
712 NvdimmFuncGetLabelDataIn *get_label_data;
713 NvdimmFuncGetLabelDataOut *get_label_data_out;
714 uint32_t status;
715 int size;
717 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
718 get_label_data->offset = le32_to_cpu(get_label_data->offset);
719 get_label_data->length = le32_to_cpu(get_label_data->length);
721 nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n",
722 get_label_data->offset, get_label_data->length);
724 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
725 get_label_data->length);
726 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
727 nvdimm_dsm_no_payload(status, dsm_mem_addr);
728 return;
731 size = sizeof(*get_label_data_out) + get_label_data->length;
732 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
733 get_label_data_out = g_malloc(size);
735 get_label_data_out->len = cpu_to_le32(size);
736 get_label_data_out->func_ret_status =
737 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
738 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
739 get_label_data->length, get_label_data->offset);
741 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
742 g_free(get_label_data_out);
746 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
748 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
749 hwaddr dsm_mem_addr)
751 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
752 NvdimmFuncSetLabelDataIn *set_label_data;
753 uint32_t status;
755 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
757 set_label_data->offset = le32_to_cpu(set_label_data->offset);
758 set_label_data->length = le32_to_cpu(set_label_data->length);
760 nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n",
761 set_label_data->offset, set_label_data->length);
763 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
764 set_label_data->length);
765 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
766 nvdimm_dsm_no_payload(status, dsm_mem_addr);
767 return;
770 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
771 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
773 nvc->write_label_data(nvdimm, set_label_data->in_buf,
774 set_label_data->length, set_label_data->offset);
775 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
778 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
780 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
782 /* See the comments in nvdimm_dsm_root(). */
783 if (!in->function) {
784 uint32_t supported_func = 0;
786 if (nvdimm && nvdimm->label_size) {
787 supported_func |= 0x1 /* Bit 0 indicates whether there is
788 support for any functions other
789 than function 0. */ |
790 1 << 4 /* Get Namespace Label Size */ |
791 1 << 5 /* Get Namespace Label Data */ |
792 1 << 6 /* Set Namespace Label Data */;
794 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
795 return;
798 if (!nvdimm) {
799 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
800 dsm_mem_addr);
801 return;
804 /* Encode DSM function according to DSM Spec Rev1. */
805 switch (in->function) {
806 case 4 /* Get Namespace Label Size */:
807 if (nvdimm->label_size) {
808 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
809 return;
811 break;
812 case 5 /* Get Namespace Label Data */:
813 if (nvdimm->label_size) {
814 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
815 return;
817 break;
818 case 0x6 /* Set Namespace Label Data */:
819 if (nvdimm->label_size) {
820 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
821 return;
823 break;
826 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
829 static uint64_t
830 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
832 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
833 return 0;
836 static void
837 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
839 NVDIMMState *state = opaque;
840 NvdimmDsmIn *in;
841 hwaddr dsm_mem_addr = val;
843 nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr);
846 * The DSM memory is mapped to guest address space so an evil guest
847 * can change its content while we are doing DSM emulation. Avoid
848 * this by copying DSM memory to QEMU local memory.
850 in = g_new(NvdimmDsmIn, 1);
851 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
853 in->revision = le32_to_cpu(in->revision);
854 in->function = le32_to_cpu(in->function);
855 in->handle = le32_to_cpu(in->handle);
857 nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision,
858 in->handle, in->function);
860 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
861 nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n",
862 in->revision, 0x1);
863 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
864 goto exit;
867 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
868 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
869 goto exit;
872 /* Handle 0 is reserved for NVDIMM Root Device. */
873 if (!in->handle) {
874 nvdimm_dsm_root(in, dsm_mem_addr);
875 goto exit;
878 nvdimm_dsm_device(in, dsm_mem_addr);
880 exit:
881 g_free(in);
884 static const MemoryRegionOps nvdimm_dsm_ops = {
885 .read = nvdimm_dsm_read,
886 .write = nvdimm_dsm_write,
887 .endianness = DEVICE_LITTLE_ENDIAN,
888 .valid = {
889 .min_access_size = 4,
890 .max_access_size = 4,
894 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
896 if (dev->hotplugged) {
897 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
901 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
902 struct AcpiGenericAddress dsm_io,
903 FWCfgState *fw_cfg, Object *owner)
905 state->dsm_io = dsm_io;
906 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
907 "nvdimm-acpi-io", dsm_io.bit_width >> 3);
908 memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
910 state->dsm_mem = g_array_new(false, true /* clear */, 1);
911 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
912 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
913 state->dsm_mem->len);
915 nvdimm_init_fit_buffer(&state->fit_buf);
918 #define NVDIMM_COMMON_DSM "NCAL"
919 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
921 #define NVDIMM_DSM_MEMORY "NRAM"
922 #define NVDIMM_DSM_IOPORT "NPIO"
924 #define NVDIMM_DSM_NOTIFY "NTFI"
925 #define NVDIMM_DSM_HANDLE "HDLE"
926 #define NVDIMM_DSM_REVISION "REVS"
927 #define NVDIMM_DSM_FUNCTION "FUNC"
928 #define NVDIMM_DSM_ARG3 "FARG"
930 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
931 #define NVDIMM_DSM_OUT_BUF "ODAT"
933 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
935 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
937 static void nvdimm_build_common_dsm(Aml *dev,
938 NVDIMMState *nvdimm_state)
940 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
941 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
942 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
943 Aml *whilectx, *offset;
944 uint8_t byte_list[1];
945 AmlRegionSpace rs;
947 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
948 uuid = aml_arg(0);
949 function = aml_arg(2);
950 handle = aml_arg(4);
951 dsm_mem = aml_local(6);
952 dsm_out_buf = aml_local(7);
954 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
956 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
957 rs = AML_SYSTEM_IO;
958 } else {
959 rs = AML_SYSTEM_MEMORY;
962 /* map DSM memory and IO into ACPI namespace. */
963 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
964 aml_int(nvdimm_state->dsm_io.address),
965 nvdimm_state->dsm_io.bit_width >> 3));
966 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
967 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
970 * DSM notifier:
971 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
972 * emulate the access.
974 * It is the IO port so that accessing them will cause VM-exit, the
975 * control will be transferred to QEMU.
977 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
978 AML_PRESERVE);
979 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
980 nvdimm_state->dsm_io.bit_width));
981 aml_append(method, field);
984 * DSM input:
985 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
986 * happens on NVDIMM Root Device.
987 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
988 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
989 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
990 * containing function-specific arguments.
992 * They are RAM mapping on host so that these accesses never cause
993 * VM-EXIT.
995 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
996 AML_PRESERVE);
997 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
998 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
999 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
1000 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
1001 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
1002 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1003 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1004 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1005 aml_append(method, field);
1008 * DSM output:
1009 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1010 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1012 * Since the page is reused by both input and out, the input data
1013 * will be lost after storing new result into ODAT so we should fetch
1014 * all the input data before writing the result.
1016 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1017 AML_PRESERVE);
1018 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1019 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1020 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1021 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1022 aml_append(method, field);
1025 * do not support any method if DSM memory address has not been
1026 * patched.
1028 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1030 expected_uuid = aml_local(0);
1032 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1033 aml_append(ifctx, aml_store(
1034 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1035 /* UUID for NVDIMM Root Device */, expected_uuid));
1036 aml_append(method, ifctx);
1037 elsectx = aml_else();
1038 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1039 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1040 /* UUID for QEMU internal use */), expected_uuid));
1041 aml_append(elsectx, ifctx);
1042 elsectx2 = aml_else();
1043 aml_append(elsectx2, aml_store(
1044 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1045 /* UUID for NVDIMM Devices */, expected_uuid));
1046 aml_append(elsectx, elsectx2);
1047 aml_append(method, elsectx);
1049 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1051 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1054 * function 0 is called to inquire what functions are supported by
1055 * OSPM
1057 ifctx = aml_if(aml_equal(function, aml_int(0)));
1058 byte_list[0] = 0 /* No function Supported */;
1059 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1060 aml_append(unsupport, ifctx);
1062 /* No function is supported yet. */
1063 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1064 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1065 aml_append(method, unsupport);
1068 * The HDLE indicates the DSM function is issued from which device,
1069 * it reserves 0 for root device and is the handle for NVDIMM devices.
1070 * See the comments in nvdimm_slot_to_handle().
1072 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1073 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1074 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1077 * The fourth parameter (Arg3) of _DSM is a package which contains
1078 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1079 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1080 * in the DSM Spec.
1082 pckg = aml_arg(3);
1083 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1084 aml_int(4 /* Package */)) /* It is a Package? */,
1085 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1086 NULL));
1088 pckg_index = aml_local(2);
1089 pckg_buf = aml_local(3);
1090 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1091 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1092 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1093 aml_append(method, ifctx);
1096 * tell QEMU about the real address of DSM memory, then QEMU
1097 * gets the control and fills the result in DSM memory.
1099 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1101 dsm_out_buf_size = aml_local(1);
1102 /* RLEN is not included in the payload returned to guest. */
1103 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1104 aml_int(4), dsm_out_buf_size));
1107 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1108 * the Buffer Field <= to the size of an Integer (in bits), it will
1109 * be treated as an integer. Moreover, the integer size depends on
1110 * DSDT tables revision number. If revision number is < 2, integer
1111 * size is 32 bits, otherwise it is 64 bits.
1112 * Because of this CreateField() canot be used if RLEN < Integer Size.
1114 * Also please note that APCI ASL operator SizeOf() doesn't support
1115 * Integer and there isn't any other way to figure out the Integer
1116 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1117 * build dsm_out_buf byte by byte.
1119 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1120 offset = aml_local(2);
1121 aml_append(ifctx, aml_store(aml_int(0), offset));
1122 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1123 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1125 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1126 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1127 aml_append(whilectx, aml_store(aml_derefof(aml_index(
1128 aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1129 aml_index(aml_name("TBUF"), aml_int(0))));
1130 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1131 dsm_out_buf));
1132 aml_append(whilectx, aml_increment(offset));
1133 aml_append(ifctx, whilectx);
1135 aml_append(ifctx, aml_return(dsm_out_buf));
1136 aml_append(method, ifctx);
1138 /* If RLEN >= Integer size, just use CreateField() operator */
1139 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1140 dsm_out_buf_size));
1141 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1142 aml_int(0), dsm_out_buf_size, "OBUF"));
1143 aml_append(method, aml_return(aml_name("OBUF")));
1145 aml_append(dev, method);
1148 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1150 Aml *method;
1152 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1153 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1154 aml_arg(1), aml_arg(2), aml_arg(3),
1155 aml_int(handle))));
1156 aml_append(dev, method);
1159 static void nvdimm_build_fit(Aml *dev)
1161 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1162 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1164 buf = aml_local(0);
1165 buf_size = aml_local(1);
1166 fit = aml_local(2);
1168 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1170 /* build helper function, RFIT. */
1171 method = aml_method("RFIT", 1, AML_SERIALIZED);
1172 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1174 /* prepare input package. */
1175 pkg = aml_package(1);
1176 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1177 aml_append(pkg, aml_name("OFST"));
1179 /* call Read_FIT function. */
1180 call_result = aml_call5(NVDIMM_COMMON_DSM,
1181 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1182 aml_int(1) /* Revision 1 */,
1183 aml_int(0x1) /* Read FIT */,
1184 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1185 aml_append(method, aml_store(call_result, buf));
1187 /* handle _DSM result. */
1188 aml_append(method, aml_create_dword_field(buf,
1189 aml_int(0) /* offset at byte 0 */, "STAU"));
1191 aml_append(method, aml_store(aml_name("STAU"),
1192 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1194 /* if something is wrong during _DSM. */
1195 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1196 aml_name("STAU"));
1197 ifctx = aml_if(aml_lnot(ifcond));
1198 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1199 aml_append(method, ifctx);
1201 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1202 aml_append(method, aml_subtract(buf_size,
1203 aml_int(4) /* the size of "STAU" */,
1204 buf_size));
1206 /* if we read the end of fit. */
1207 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1208 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1209 aml_append(method, ifctx);
1211 aml_append(method, aml_create_field(buf,
1212 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1213 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1214 aml_append(method, aml_return(aml_name("BUFF")));
1215 aml_append(dev, method);
1217 /* build _FIT. */
1218 method = aml_method("_FIT", 0, AML_SERIALIZED);
1219 offset = aml_local(3);
1221 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1222 aml_append(method, aml_store(aml_int(0), offset));
1224 whilectx = aml_while(aml_int(1));
1225 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1226 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1229 * if fit buffer was changed during RFIT, read from the beginning
1230 * again.
1232 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1233 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1234 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1235 aml_append(ifctx, aml_store(aml_int(0), offset));
1236 aml_append(whilectx, ifctx);
1238 elsectx = aml_else();
1240 /* finish fit read if no data is read out. */
1241 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1242 aml_append(ifctx, aml_return(fit));
1243 aml_append(elsectx, ifctx);
1245 /* update the offset. */
1246 aml_append(elsectx, aml_add(offset, buf_size, offset));
1247 /* append the data we read out to the fit buffer. */
1248 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1249 aml_append(whilectx, elsectx);
1250 aml_append(method, whilectx);
1252 aml_append(dev, method);
1255 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1257 uint32_t slot;
1259 for (slot = 0; slot < ram_slots; slot++) {
1260 uint32_t handle = nvdimm_slot_to_handle(slot);
1261 Aml *nvdimm_dev;
1263 nvdimm_dev = aml_device("NV%02X", slot);
1266 * ACPI 6.0: 9.20 NVDIMM Devices:
1268 * _ADR object that is used to supply OSPM with unique address
1269 * of the NVDIMM device. This is done by returning the NFIT Device
1270 * handle that is used to identify the associated entries in ACPI
1271 * table NFIT or _FIT.
1273 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1275 nvdimm_build_device_dsm(nvdimm_dev, handle);
1276 aml_append(root_dev, nvdimm_dev);
1280 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1281 BIOSLinker *linker,
1282 NVDIMMState *nvdimm_state,
1283 uint32_t ram_slots, const char *oem_id)
1285 Aml *ssdt, *sb_scope, *dev;
1286 int mem_addr_offset, nvdimm_ssdt;
1288 acpi_add_table(table_offsets, table_data);
1290 ssdt = init_aml_allocator();
1291 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1293 sb_scope = aml_scope("\\_SB");
1295 dev = aml_device("NVDR");
1298 * ACPI 6.0: 9.20 NVDIMM Devices:
1300 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1301 * NVDIMM interface device. Platform firmware is required to contain one
1302 * such device in _SB scope if NVDIMMs support is exposed by platform to
1303 * OSPM.
1304 * For each NVDIMM present or intended to be supported by platform,
1305 * platform firmware also exposes an ACPI Namespace Device under the
1306 * root device.
1308 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1310 nvdimm_build_common_dsm(dev, nvdimm_state);
1312 /* 0 is reserved for root device. */
1313 nvdimm_build_device_dsm(dev, 0);
1314 nvdimm_build_fit(dev);
1316 nvdimm_build_nvdimm_devices(dev, ram_slots);
1318 aml_append(sb_scope, dev);
1319 aml_append(ssdt, sb_scope);
1321 nvdimm_ssdt = table_data->len;
1323 /* copy AML table into ACPI tables blob and patch header there */
1324 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1325 mem_addr_offset = build_append_named_dword(table_data,
1326 NVDIMM_ACPI_MEM_ADDR);
1328 bios_linker_loader_alloc(linker,
1329 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1330 sizeof(NvdimmDsmIn), false /* high memory */);
1331 bios_linker_loader_add_pointer(linker,
1332 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1333 NVDIMM_DSM_MEM_FILE, 0);
1334 build_header(linker, table_data,
1335 (void *)(table_data->data + nvdimm_ssdt),
1336 "SSDT", table_data->len - nvdimm_ssdt, 1, oem_id, "NVDIMM");
1337 free_aml_allocator();
1340 void nvdimm_build_srat(GArray *table_data)
1342 GSList *device_list = nvdimm_get_device_list();
1344 for (; device_list; device_list = device_list->next) {
1345 AcpiSratMemoryAffinity *numamem = NULL;
1346 DeviceState *dev = device_list->data;
1347 Object *obj = OBJECT(dev);
1348 uint64_t addr, size;
1349 int node;
1351 node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1352 addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1353 size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1355 numamem = acpi_data_push(table_data, sizeof *numamem);
1356 build_srat_memory(numamem, addr, size, node,
1357 MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1359 g_slist_free(device_list);
1362 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1363 BIOSLinker *linker, NVDIMMState *state,
1364 uint32_t ram_slots, const char *oem_id,
1365 const char *oem_table_id)
1367 GSList *device_list;
1369 /* no nvdimm device can be plugged. */
1370 if (!ram_slots) {
1371 return;
1374 nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1375 ram_slots, oem_id);
1377 device_list = nvdimm_get_device_list();
1378 /* no NVDIMM device is plugged. */
1379 if (!device_list) {
1380 return;
1383 nvdimm_build_nfit(state, table_offsets, table_data, linker,
1384 oem_id, oem_table_id);
1385 g_slist_free(device_list);