2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2.1 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
40 * define Byte Addressable Persistent Memory (PM) Region according to
41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43 static const uint8_t nvdimm_nfit_spa_uuid
[] =
44 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
45 0x18, 0xb7, 0x8c, 0xdb);
48 * NVDIMM Firmware Interface Table
51 * It provides information that allows OSPM to enumerate NVDIMM present in
52 * the platform and associate system physical address ranges created by the
55 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
57 struct NvdimmNfitHeader
{
61 typedef struct NvdimmNfitHeader NvdimmNfitHeader
;
64 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
65 * Interface Table (NFIT).
69 * System Physical Address Range Structure
71 * It describes the system physical address ranges occupied by NVDIMMs and
72 * the types of the regions.
74 struct NvdimmNfitSpa
{
80 uint32_t proximity_domain
;
81 uint8_t type_guid
[16];
86 typedef struct NvdimmNfitSpa NvdimmNfitSpa
;
89 * Memory Device to System Physical Address Range Mapping Structure
91 * It enables identifying each NVDIMM region and the corresponding SPA
92 * describing the memory interleave
94 struct NvdimmNfitMemDev
{
103 uint64_t region_offset
;
105 uint16_t interleave_index
;
106 uint16_t interleave_ways
;
110 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev
;
112 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
115 * NVDIMM Control Region Structure
117 * It describes the NVDIMM and if applicable, Block Control Window.
119 struct NvdimmNfitControlRegion
{
125 uint16_t revision_id
;
126 uint16_t sub_vendor_id
;
127 uint16_t sub_device_id
;
128 uint16_t sub_revision_id
;
130 uint32_t serial_number
;
136 uint64_t status_offset
;
137 uint64_t status_size
;
139 uint8_t reserved2
[6];
141 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion
;
144 * NVDIMM Platform Capabilities Structure
146 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
148 struct NvdimmNfitPlatformCaps
{
153 uint32_t capabilities
;
154 uint8_t reserved2
[4];
156 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps
;
159 * Module serial number is a unique number for each device. We use the
160 * slot id of NVDIMM device to generate this number so that each device
161 * associates with a different number.
163 * 0x123456 is a magic number we arbitrarily chose.
165 static uint32_t nvdimm_slot_to_sn(int slot
)
167 return 0x123456 + slot
;
171 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
172 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
173 * by ACPI device _ADR method.
175 * We generate the handle with the slot id of NVDIMM device and reserve
176 * 0 for NVDIMM root device.
178 static uint32_t nvdimm_slot_to_handle(int slot
)
184 * index uniquely identifies the structure, 0 is reserved which indicates
185 * that the structure is not valid or the associated structure is not
188 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
189 * nfit_dc which are generated by the slot id of NVDIMM device.
191 static uint16_t nvdimm_slot_to_spa_index(int slot
)
193 return (slot
+ 1) << 1;
196 /* See the comments of nvdimm_slot_to_spa_index(). */
197 static uint32_t nvdimm_slot_to_dcr_index(int slot
)
199 return nvdimm_slot_to_spa_index(slot
) + 1;
202 static NVDIMMDevice
*nvdimm_get_device_by_handle(uint32_t handle
)
204 NVDIMMDevice
*nvdimm
= NULL
;
205 GSList
*list
, *device_list
= nvdimm_get_device_list();
207 for (list
= device_list
; list
; list
= list
->next
) {
208 NVDIMMDevice
*nvd
= list
->data
;
209 int slot
= object_property_get_int(OBJECT(nvd
), PC_DIMM_SLOT_PROP
,
212 if (nvdimm_slot_to_handle(slot
) == handle
) {
218 g_slist_free(device_list
);
222 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
224 nvdimm_build_structure_spa(GArray
*structures
, DeviceState
*dev
)
226 NvdimmNfitSpa
*nfit_spa
;
227 uint64_t addr
= object_property_get_uint(OBJECT(dev
), PC_DIMM_ADDR_PROP
,
229 uint64_t size
= object_property_get_uint(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
231 uint32_t node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
,
233 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
236 nfit_spa
= acpi_data_push(structures
, sizeof(*nfit_spa
));
238 nfit_spa
->type
= cpu_to_le16(0 /* System Physical Address Range
240 nfit_spa
->length
= cpu_to_le16(sizeof(*nfit_spa
));
241 nfit_spa
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
244 * Control region is strict as all the device info, such as SN, index,
245 * is associated with slot id.
247 nfit_spa
->flags
= cpu_to_le16(1 /* Control region is strictly for
248 management during hot add/online
250 2 /* Data in Proximity Domain field is
254 nfit_spa
->proximity_domain
= cpu_to_le32(node
);
255 /* the region reported as PMEM. */
256 memcpy(nfit_spa
->type_guid
, nvdimm_nfit_spa_uuid
,
257 sizeof(nvdimm_nfit_spa_uuid
));
259 nfit_spa
->spa_base
= cpu_to_le64(addr
);
260 nfit_spa
->spa_length
= cpu_to_le64(size
);
262 /* It is the PMEM and can be cached as writeback. */
263 nfit_spa
->mem_attr
= cpu_to_le64(0x8ULL
/* EFI_MEMORY_WB */ |
264 0x8000ULL
/* EFI_MEMORY_NV */);
268 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
272 nvdimm_build_structure_memdev(GArray
*structures
, DeviceState
*dev
)
274 NvdimmNfitMemDev
*nfit_memdev
;
275 NVDIMMDevice
*nvdimm
= NVDIMM(OBJECT(dev
));
276 uint64_t size
= object_property_get_uint(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
278 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
280 uint32_t handle
= nvdimm_slot_to_handle(slot
);
282 nfit_memdev
= acpi_data_push(structures
, sizeof(*nfit_memdev
));
284 nfit_memdev
->type
= cpu_to_le16(1 /* Memory Device to System Address
285 Range Map Structure*/);
286 nfit_memdev
->length
= cpu_to_le16(sizeof(*nfit_memdev
));
287 nfit_memdev
->nfit_handle
= cpu_to_le32(handle
);
290 * associate memory device with System Physical Address Range
293 nfit_memdev
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
294 /* associate memory device with Control Region Structure. */
295 nfit_memdev
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
297 /* The memory region on the device. */
298 nfit_memdev
->region_len
= cpu_to_le64(size
);
299 /* The device address starts from 0. */
300 nfit_memdev
->region_dpa
= cpu_to_le64(0);
302 /* Only one interleave for PMEM. */
303 nfit_memdev
->interleave_ways
= cpu_to_le16(1);
305 if (nvdimm
->unarmed
) {
306 nfit_memdev
->flags
|= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED
);
311 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
313 static void nvdimm_build_structure_dcr(GArray
*structures
, DeviceState
*dev
)
315 NvdimmNfitControlRegion
*nfit_dcr
;
316 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
318 uint32_t sn
= nvdimm_slot_to_sn(slot
);
320 nfit_dcr
= acpi_data_push(structures
, sizeof(*nfit_dcr
));
322 nfit_dcr
->type
= cpu_to_le16(4 /* NVDIMM Control Region Structure */);
323 nfit_dcr
->length
= cpu_to_le16(sizeof(*nfit_dcr
));
324 nfit_dcr
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
327 nfit_dcr
->vendor_id
= cpu_to_le16(0x8086);
328 nfit_dcr
->device_id
= cpu_to_le16(1);
330 /* The _DSM method is following Intel's DSM specification. */
331 nfit_dcr
->revision_id
= cpu_to_le16(1 /* Current Revision supported
332 in ACPI 6.0 is 1. */);
333 nfit_dcr
->serial_number
= cpu_to_le32(sn
);
334 nfit_dcr
->fic
= cpu_to_le16(0x301 /* Format Interface Code:
335 Byte addressable, no energy backed.
336 See ACPI 6.2, sect 5.2.25.6 and
337 JEDEC Annex L Release 3. */);
341 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
344 nvdimm_build_structure_caps(GArray
*structures
, uint32_t capabilities
)
346 NvdimmNfitPlatformCaps
*nfit_caps
;
348 nfit_caps
= acpi_data_push(structures
, sizeof(*nfit_caps
));
350 nfit_caps
->type
= cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
351 nfit_caps
->length
= cpu_to_le16(sizeof(*nfit_caps
));
352 nfit_caps
->highest_cap
= 31 - clz32(capabilities
);
353 nfit_caps
->capabilities
= cpu_to_le32(capabilities
);
356 static GArray
*nvdimm_build_device_structure(NVDIMMState
*state
)
358 GSList
*device_list
= nvdimm_get_device_list();
359 GArray
*structures
= g_array_new(false, true /* clear */, 1);
361 for (; device_list
; device_list
= device_list
->next
) {
362 DeviceState
*dev
= device_list
->data
;
364 /* build System Physical Address Range Structure. */
365 nvdimm_build_structure_spa(structures
, dev
);
368 * build Memory Device to System Physical Address Range Mapping
371 nvdimm_build_structure_memdev(structures
, dev
);
373 /* build NVDIMM Control Region Structure. */
374 nvdimm_build_structure_dcr(structures
, dev
);
376 g_slist_free(device_list
);
378 if (state
->persistence
) {
379 nvdimm_build_structure_caps(structures
, state
->persistence
);
385 static void nvdimm_init_fit_buffer(NvdimmFitBuffer
*fit_buf
)
387 fit_buf
->fit
= g_array_new(false, true /* clear */, 1);
390 static void nvdimm_build_fit_buffer(NVDIMMState
*state
)
392 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
394 g_array_free(fit_buf
->fit
, true);
395 fit_buf
->fit
= nvdimm_build_device_structure(state
);
396 fit_buf
->dirty
= true;
399 void nvdimm_plug(NVDIMMState
*state
)
401 nvdimm_build_fit_buffer(state
);
404 static void nvdimm_build_nfit(NVDIMMState
*state
, GArray
*table_offsets
,
405 GArray
*table_data
, BIOSLinker
*linker
,
406 const char *oem_id
, const char *oem_table_id
)
408 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
411 acpi_add_table(table_offsets
, table_data
);
414 header
= table_data
->len
;
415 acpi_data_push(table_data
, sizeof(NvdimmNfitHeader
));
416 /* NVDIMM device structures. */
417 g_array_append_vals(table_data
, fit_buf
->fit
->data
, fit_buf
->fit
->len
);
419 build_header(linker
, table_data
,
420 (void *)(table_data
->data
+ header
), "NFIT",
421 sizeof(NvdimmNfitHeader
) + fit_buf
->fit
->len
, 1, oem_id
,
425 #define NVDIMM_DSM_MEMORY_SIZE 4096
431 /* the remaining size in the page is used by arg3. */
436 typedef struct NvdimmDsmIn NvdimmDsmIn
;
437 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn
) != NVDIMM_DSM_MEMORY_SIZE
);
439 struct NvdimmDsmOut
{
440 /* the size of buffer filled by QEMU. */
444 typedef struct NvdimmDsmOut NvdimmDsmOut
;
445 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut
) != NVDIMM_DSM_MEMORY_SIZE
);
447 struct NvdimmDsmFunc0Out
{
448 /* the size of buffer filled by QEMU. */
450 uint32_t supported_func
;
452 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out
;
454 struct NvdimmDsmFuncNoPayloadOut
{
455 /* the size of buffer filled by QEMU. */
457 uint32_t func_ret_status
;
459 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut
;
461 struct NvdimmFuncGetLabelSizeOut
{
462 /* the size of buffer filled by QEMU. */
464 uint32_t func_ret_status
; /* return status code. */
465 uint32_t label_size
; /* the size of label data area. */
467 * Maximum size of the namespace label data length supported by
468 * the platform in Get/Set Namespace Label Data functions.
472 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut
;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut
) > NVDIMM_DSM_MEMORY_SIZE
);
475 struct NvdimmFuncGetLabelDataIn
{
476 uint32_t offset
; /* the offset in the namespace label data area. */
477 uint32_t length
; /* the size of data is to be read via the function. */
479 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn
;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn
) +
481 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
483 struct NvdimmFuncGetLabelDataOut
{
484 /* the size of buffer filled by QEMU. */
486 uint32_t func_ret_status
; /* return status code. */
487 uint8_t out_buf
[]; /* the data got via Get Namesapce Label function. */
489 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut
;
490 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut
) > NVDIMM_DSM_MEMORY_SIZE
);
492 struct NvdimmFuncSetLabelDataIn
{
493 uint32_t offset
; /* the offset in the namespace label data area. */
494 uint32_t length
; /* the size of data is to be written via the function. */
495 uint8_t in_buf
[]; /* the data written to label data area. */
497 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn
;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn
) +
499 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
501 struct NvdimmFuncReadFITIn
{
502 uint32_t offset
; /* the offset into FIT buffer. */
504 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn
;
505 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn
) +
506 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
508 struct NvdimmFuncReadFITOut
{
509 /* the size of buffer filled by QEMU. */
511 uint32_t func_ret_status
; /* return status code. */
512 uint8_t fit
[]; /* the FIT data. */
514 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut
;
515 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut
) > NVDIMM_DSM_MEMORY_SIZE
);
518 nvdimm_dsm_function0(uint32_t supported_func
, hwaddr dsm_mem_addr
)
520 NvdimmDsmFunc0Out func0
= {
521 .len
= cpu_to_le32(sizeof(func0
)),
522 .supported_func
= cpu_to_le32(supported_func
),
524 cpu_physical_memory_write(dsm_mem_addr
, &func0
, sizeof(func0
));
528 nvdimm_dsm_no_payload(uint32_t func_ret_status
, hwaddr dsm_mem_addr
)
530 NvdimmDsmFuncNoPayloadOut out
= {
531 .len
= cpu_to_le32(sizeof(out
)),
532 .func_ret_status
= cpu_to_le32(func_ret_status
),
534 cpu_physical_memory_write(dsm_mem_addr
, &out
, sizeof(out
));
537 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
538 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
539 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
540 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
541 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
543 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
545 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
546 static void nvdimm_dsm_func_read_fit(NVDIMMState
*state
, NvdimmDsmIn
*in
,
549 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
550 NvdimmFuncReadFITIn
*read_fit
;
551 NvdimmFuncReadFITOut
*read_fit_out
;
553 uint32_t read_len
= 0, func_ret_status
;
556 read_fit
= (NvdimmFuncReadFITIn
*)in
->arg3
;
557 read_fit
->offset
= le32_to_cpu(read_fit
->offset
);
561 nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n",
562 read_fit
->offset
, fit
->len
, fit_buf
->dirty
? "Yes" : "No");
564 if (read_fit
->offset
> fit
->len
) {
565 func_ret_status
= NVDIMM_DSM_RET_STATUS_INVALID
;
569 /* It is the first time to read FIT. */
570 if (!read_fit
->offset
) {
571 fit_buf
->dirty
= false;
572 } else if (fit_buf
->dirty
) { /* FIT has been changed during RFIT. */
573 func_ret_status
= NVDIMM_DSM_RET_STATUS_FIT_CHANGED
;
577 func_ret_status
= NVDIMM_DSM_RET_STATUS_SUCCESS
;
578 read_len
= MIN(fit
->len
- read_fit
->offset
,
579 NVDIMM_DSM_MEMORY_SIZE
- sizeof(NvdimmFuncReadFITOut
));
582 size
= sizeof(NvdimmFuncReadFITOut
) + read_len
;
583 read_fit_out
= g_malloc(size
);
585 read_fit_out
->len
= cpu_to_le32(size
);
586 read_fit_out
->func_ret_status
= cpu_to_le32(func_ret_status
);
587 memcpy(read_fit_out
->fit
, fit
->data
+ read_fit
->offset
, read_len
);
589 cpu_physical_memory_write(dsm_mem_addr
, read_fit_out
, size
);
591 g_free(read_fit_out
);
595 nvdimm_dsm_handle_reserved_root_method(NVDIMMState
*state
,
596 NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
598 switch (in
->function
) {
600 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr
);
602 case 0x1 /* Read FIT */:
603 nvdimm_dsm_func_read_fit(state
, in
, dsm_mem_addr
);
607 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
610 static void nvdimm_dsm_root(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
613 * function 0 is called to inquire which functions are supported by
617 nvdimm_dsm_function0(0 /* No function supported other than
618 function 0 */, dsm_mem_addr
);
622 /* No function except function 0 is supported yet. */
623 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
627 * the max transfer size is the max size transferred by both a
628 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
631 static uint32_t nvdimm_get_max_xfer_label_size(void)
633 uint32_t max_get_size
, max_set_size
, dsm_memory_size
;
635 dsm_memory_size
= NVDIMM_DSM_MEMORY_SIZE
;
638 * the max data ACPI can read one time which is transferred by
639 * the response of 'Get Namespace Label Data' function.
641 max_get_size
= dsm_memory_size
- sizeof(NvdimmFuncGetLabelDataOut
);
644 * the max data ACPI can write one time which is transferred by
645 * 'Set Namespace Label Data' function.
647 max_set_size
= dsm_memory_size
- offsetof(NvdimmDsmIn
, arg3
) -
648 sizeof(NvdimmFuncSetLabelDataIn
);
650 return MIN(max_get_size
, max_set_size
);
654 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
656 * It gets the size of Namespace Label data area and the max data size
657 * that Get/Set Namespace Label Data functions can transfer.
659 static void nvdimm_dsm_label_size(NVDIMMDevice
*nvdimm
, hwaddr dsm_mem_addr
)
661 NvdimmFuncGetLabelSizeOut label_size_out
= {
662 .len
= cpu_to_le32(sizeof(label_size_out
)),
664 uint32_t label_size
, mxfer
;
666 label_size
= nvdimm
->label_size
;
667 mxfer
= nvdimm_get_max_xfer_label_size();
669 nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size
, mxfer
);
671 label_size_out
.func_ret_status
= cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
672 label_size_out
.label_size
= cpu_to_le32(label_size
);
673 label_size_out
.max_xfer
= cpu_to_le32(mxfer
);
675 cpu_physical_memory_write(dsm_mem_addr
, &label_size_out
,
676 sizeof(label_size_out
));
679 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice
*nvdimm
,
680 uint32_t offset
, uint32_t length
)
682 uint32_t ret
= NVDIMM_DSM_RET_STATUS_INVALID
;
684 if (offset
+ length
< offset
) {
685 nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset
,
690 if (nvdimm
->label_size
< offset
+ length
) {
691 nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64
").\n",
692 offset
+ length
, nvdimm
->label_size
);
696 if (length
> nvdimm_get_max_xfer_label_size()) {
697 nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n",
698 length
, nvdimm_get_max_xfer_label_size());
702 return NVDIMM_DSM_RET_STATUS_SUCCESS
;
706 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
708 static void nvdimm_dsm_get_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
711 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
712 NvdimmFuncGetLabelDataIn
*get_label_data
;
713 NvdimmFuncGetLabelDataOut
*get_label_data_out
;
717 get_label_data
= (NvdimmFuncGetLabelDataIn
*)in
->arg3
;
718 get_label_data
->offset
= le32_to_cpu(get_label_data
->offset
);
719 get_label_data
->length
= le32_to_cpu(get_label_data
->length
);
721 nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n",
722 get_label_data
->offset
, get_label_data
->length
);
724 status
= nvdimm_rw_label_data_check(nvdimm
, get_label_data
->offset
,
725 get_label_data
->length
);
726 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
727 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
731 size
= sizeof(*get_label_data_out
) + get_label_data
->length
;
732 assert(size
<= NVDIMM_DSM_MEMORY_SIZE
);
733 get_label_data_out
= g_malloc(size
);
735 get_label_data_out
->len
= cpu_to_le32(size
);
736 get_label_data_out
->func_ret_status
=
737 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
738 nvc
->read_label_data(nvdimm
, get_label_data_out
->out_buf
,
739 get_label_data
->length
, get_label_data
->offset
);
741 cpu_physical_memory_write(dsm_mem_addr
, get_label_data_out
, size
);
742 g_free(get_label_data_out
);
746 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
748 static void nvdimm_dsm_set_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
751 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
752 NvdimmFuncSetLabelDataIn
*set_label_data
;
755 set_label_data
= (NvdimmFuncSetLabelDataIn
*)in
->arg3
;
757 set_label_data
->offset
= le32_to_cpu(set_label_data
->offset
);
758 set_label_data
->length
= le32_to_cpu(set_label_data
->length
);
760 nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n",
761 set_label_data
->offset
, set_label_data
->length
);
763 status
= nvdimm_rw_label_data_check(nvdimm
, set_label_data
->offset
,
764 set_label_data
->length
);
765 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
766 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
770 assert(offsetof(NvdimmDsmIn
, arg3
) + sizeof(*set_label_data
) +
771 set_label_data
->length
<= NVDIMM_DSM_MEMORY_SIZE
);
773 nvc
->write_label_data(nvdimm
, set_label_data
->in_buf
,
774 set_label_data
->length
, set_label_data
->offset
);
775 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS
, dsm_mem_addr
);
778 static void nvdimm_dsm_device(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
780 NVDIMMDevice
*nvdimm
= nvdimm_get_device_by_handle(in
->handle
);
782 /* See the comments in nvdimm_dsm_root(). */
784 uint32_t supported_func
= 0;
786 if (nvdimm
&& nvdimm
->label_size
) {
787 supported_func
|= 0x1 /* Bit 0 indicates whether there is
788 support for any functions other
789 than function 0. */ |
790 1 << 4 /* Get Namespace Label Size */ |
791 1 << 5 /* Get Namespace Label Data */ |
792 1 << 6 /* Set Namespace Label Data */;
794 nvdimm_dsm_function0(supported_func
, dsm_mem_addr
);
799 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV
,
804 /* Encode DSM function according to DSM Spec Rev1. */
805 switch (in
->function
) {
806 case 4 /* Get Namespace Label Size */:
807 if (nvdimm
->label_size
) {
808 nvdimm_dsm_label_size(nvdimm
, dsm_mem_addr
);
812 case 5 /* Get Namespace Label Data */:
813 if (nvdimm
->label_size
) {
814 nvdimm_dsm_get_label_data(nvdimm
, in
, dsm_mem_addr
);
818 case 0x6 /* Set Namespace Label Data */:
819 if (nvdimm
->label_size
) {
820 nvdimm_dsm_set_label_data(nvdimm
, in
, dsm_mem_addr
);
826 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
830 nvdimm_dsm_read(void *opaque
, hwaddr addr
, unsigned size
)
832 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
837 nvdimm_dsm_write(void *opaque
, hwaddr addr
, uint64_t val
, unsigned size
)
839 NVDIMMState
*state
= opaque
;
841 hwaddr dsm_mem_addr
= val
;
843 nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx
".\n", dsm_mem_addr
);
846 * The DSM memory is mapped to guest address space so an evil guest
847 * can change its content while we are doing DSM emulation. Avoid
848 * this by copying DSM memory to QEMU local memory.
850 in
= g_new(NvdimmDsmIn
, 1);
851 cpu_physical_memory_read(dsm_mem_addr
, in
, sizeof(*in
));
853 in
->revision
= le32_to_cpu(in
->revision
);
854 in
->function
= le32_to_cpu(in
->function
);
855 in
->handle
= le32_to_cpu(in
->handle
);
857 nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in
->revision
,
858 in
->handle
, in
->function
);
860 if (in
->revision
!= 0x1 /* Currently we only support DSM Spec Rev1. */) {
861 nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n",
863 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
867 if (in
->handle
== NVDIMM_QEMU_RSVD_HANDLE_ROOT
) {
868 nvdimm_dsm_handle_reserved_root_method(state
, in
, dsm_mem_addr
);
872 /* Handle 0 is reserved for NVDIMM Root Device. */
874 nvdimm_dsm_root(in
, dsm_mem_addr
);
878 nvdimm_dsm_device(in
, dsm_mem_addr
);
884 static const MemoryRegionOps nvdimm_dsm_ops
= {
885 .read
= nvdimm_dsm_read
,
886 .write
= nvdimm_dsm_write
,
887 .endianness
= DEVICE_LITTLE_ENDIAN
,
889 .min_access_size
= 4,
890 .max_access_size
= 4,
894 void nvdimm_acpi_plug_cb(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
896 if (dev
->hotplugged
) {
897 acpi_send_event(DEVICE(hotplug_dev
), ACPI_NVDIMM_HOTPLUG_STATUS
);
901 void nvdimm_init_acpi_state(NVDIMMState
*state
, MemoryRegion
*io
,
902 struct AcpiGenericAddress dsm_io
,
903 FWCfgState
*fw_cfg
, Object
*owner
)
905 state
->dsm_io
= dsm_io
;
906 memory_region_init_io(&state
->io_mr
, owner
, &nvdimm_dsm_ops
, state
,
907 "nvdimm-acpi-io", dsm_io
.bit_width
>> 3);
908 memory_region_add_subregion(io
, dsm_io
.address
, &state
->io_mr
);
910 state
->dsm_mem
= g_array_new(false, true /* clear */, 1);
911 acpi_data_push(state
->dsm_mem
, sizeof(NvdimmDsmIn
));
912 fw_cfg_add_file(fw_cfg
, NVDIMM_DSM_MEM_FILE
, state
->dsm_mem
->data
,
913 state
->dsm_mem
->len
);
915 nvdimm_init_fit_buffer(&state
->fit_buf
);
918 #define NVDIMM_COMMON_DSM "NCAL"
919 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
921 #define NVDIMM_DSM_MEMORY "NRAM"
922 #define NVDIMM_DSM_IOPORT "NPIO"
924 #define NVDIMM_DSM_NOTIFY "NTFI"
925 #define NVDIMM_DSM_HANDLE "HDLE"
926 #define NVDIMM_DSM_REVISION "REVS"
927 #define NVDIMM_DSM_FUNCTION "FUNC"
928 #define NVDIMM_DSM_ARG3 "FARG"
930 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
931 #define NVDIMM_DSM_OUT_BUF "ODAT"
933 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
935 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
937 static void nvdimm_build_common_dsm(Aml
*dev
,
938 NVDIMMState
*nvdimm_state
)
940 Aml
*method
, *ifctx
, *function
, *handle
, *uuid
, *dsm_mem
, *elsectx2
;
941 Aml
*elsectx
, *unsupport
, *unpatched
, *expected_uuid
, *uuid_invalid
;
942 Aml
*pckg
, *pckg_index
, *pckg_buf
, *field
, *dsm_out_buf
, *dsm_out_buf_size
;
943 Aml
*whilectx
, *offset
;
944 uint8_t byte_list
[1];
947 method
= aml_method(NVDIMM_COMMON_DSM
, 5, AML_SERIALIZED
);
949 function
= aml_arg(2);
951 dsm_mem
= aml_local(6);
952 dsm_out_buf
= aml_local(7);
954 aml_append(method
, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR
), dsm_mem
));
956 if (nvdimm_state
->dsm_io
.space_id
== AML_AS_SYSTEM_IO
) {
959 rs
= AML_SYSTEM_MEMORY
;
962 /* map DSM memory and IO into ACPI namespace. */
963 aml_append(method
, aml_operation_region(NVDIMM_DSM_IOPORT
, rs
,
964 aml_int(nvdimm_state
->dsm_io
.address
),
965 nvdimm_state
->dsm_io
.bit_width
>> 3));
966 aml_append(method
, aml_operation_region(NVDIMM_DSM_MEMORY
,
967 AML_SYSTEM_MEMORY
, dsm_mem
, sizeof(NvdimmDsmIn
)));
971 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
972 * emulate the access.
974 * It is the IO port so that accessing them will cause VM-exit, the
975 * control will be transferred to QEMU.
977 field
= aml_field(NVDIMM_DSM_IOPORT
, AML_DWORD_ACC
, AML_NOLOCK
,
979 aml_append(field
, aml_named_field(NVDIMM_DSM_NOTIFY
,
980 nvdimm_state
->dsm_io
.bit_width
));
981 aml_append(method
, field
);
985 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
986 * happens on NVDIMM Root Device.
987 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
988 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
989 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
990 * containing function-specific arguments.
992 * They are RAM mapping on host so that these accesses never cause
995 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
997 aml_append(field
, aml_named_field(NVDIMM_DSM_HANDLE
,
998 sizeof(typeof_field(NvdimmDsmIn
, handle
)) * BITS_PER_BYTE
));
999 aml_append(field
, aml_named_field(NVDIMM_DSM_REVISION
,
1000 sizeof(typeof_field(NvdimmDsmIn
, revision
)) * BITS_PER_BYTE
));
1001 aml_append(field
, aml_named_field(NVDIMM_DSM_FUNCTION
,
1002 sizeof(typeof_field(NvdimmDsmIn
, function
)) * BITS_PER_BYTE
));
1003 aml_append(field
, aml_named_field(NVDIMM_DSM_ARG3
,
1004 (sizeof(NvdimmDsmIn
) - offsetof(NvdimmDsmIn
, arg3
)) * BITS_PER_BYTE
));
1005 aml_append(method
, field
);
1009 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1010 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1012 * Since the page is reused by both input and out, the input data
1013 * will be lost after storing new result into ODAT so we should fetch
1014 * all the input data before writing the result.
1016 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
1018 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE
,
1019 sizeof(typeof_field(NvdimmDsmOut
, len
)) * BITS_PER_BYTE
));
1020 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF
,
1021 (sizeof(NvdimmDsmOut
) - offsetof(NvdimmDsmOut
, data
)) * BITS_PER_BYTE
));
1022 aml_append(method
, field
);
1025 * do not support any method if DSM memory address has not been
1028 unpatched
= aml_equal(dsm_mem
, aml_int(0x0));
1030 expected_uuid
= aml_local(0);
1032 ifctx
= aml_if(aml_equal(handle
, aml_int(0x0)));
1033 aml_append(ifctx
, aml_store(
1034 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1035 /* UUID for NVDIMM Root Device */, expected_uuid
));
1036 aml_append(method
, ifctx
);
1037 elsectx
= aml_else();
1038 ifctx
= aml_if(aml_equal(handle
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
)));
1039 aml_append(ifctx
, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1040 /* UUID for QEMU internal use */), expected_uuid
));
1041 aml_append(elsectx
, ifctx
);
1042 elsectx2
= aml_else();
1043 aml_append(elsectx2
, aml_store(
1044 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1045 /* UUID for NVDIMM Devices */, expected_uuid
));
1046 aml_append(elsectx
, elsectx2
);
1047 aml_append(method
, elsectx
);
1049 uuid_invalid
= aml_lnot(aml_equal(uuid
, expected_uuid
));
1051 unsupport
= aml_if(aml_or(unpatched
, uuid_invalid
, NULL
));
1054 * function 0 is called to inquire what functions are supported by
1057 ifctx
= aml_if(aml_equal(function
, aml_int(0)));
1058 byte_list
[0] = 0 /* No function Supported */;
1059 aml_append(ifctx
, aml_return(aml_buffer(1, byte_list
)));
1060 aml_append(unsupport
, ifctx
);
1062 /* No function is supported yet. */
1063 byte_list
[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT
;
1064 aml_append(unsupport
, aml_return(aml_buffer(1, byte_list
)));
1065 aml_append(method
, unsupport
);
1068 * The HDLE indicates the DSM function is issued from which device,
1069 * it reserves 0 for root device and is the handle for NVDIMM devices.
1070 * See the comments in nvdimm_slot_to_handle().
1072 aml_append(method
, aml_store(handle
, aml_name(NVDIMM_DSM_HANDLE
)));
1073 aml_append(method
, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION
)));
1074 aml_append(method
, aml_store(function
, aml_name(NVDIMM_DSM_FUNCTION
)));
1077 * The fourth parameter (Arg3) of _DSM is a package which contains
1078 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1079 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1083 ifctx
= aml_if(aml_and(aml_equal(aml_object_type(pckg
),
1084 aml_int(4 /* Package */)) /* It is a Package? */,
1085 aml_equal(aml_sizeof(pckg
), aml_int(1)) /* 1 element? */,
1088 pckg_index
= aml_local(2);
1089 pckg_buf
= aml_local(3);
1090 aml_append(ifctx
, aml_store(aml_index(pckg
, aml_int(0)), pckg_index
));
1091 aml_append(ifctx
, aml_store(aml_derefof(pckg_index
), pckg_buf
));
1092 aml_append(ifctx
, aml_store(pckg_buf
, aml_name(NVDIMM_DSM_ARG3
)));
1093 aml_append(method
, ifctx
);
1096 * tell QEMU about the real address of DSM memory, then QEMU
1097 * gets the control and fills the result in DSM memory.
1099 aml_append(method
, aml_store(dsm_mem
, aml_name(NVDIMM_DSM_NOTIFY
)));
1101 dsm_out_buf_size
= aml_local(1);
1102 /* RLEN is not included in the payload returned to guest. */
1103 aml_append(method
, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE
),
1104 aml_int(4), dsm_out_buf_size
));
1107 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1108 * the Buffer Field <= to the size of an Integer (in bits), it will
1109 * be treated as an integer. Moreover, the integer size depends on
1110 * DSDT tables revision number. If revision number is < 2, integer
1111 * size is 32 bits, otherwise it is 64 bits.
1112 * Because of this CreateField() canot be used if RLEN < Integer Size.
1114 * Also please note that APCI ASL operator SizeOf() doesn't support
1115 * Integer and there isn't any other way to figure out the Integer
1116 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1117 * build dsm_out_buf byte by byte.
1119 ifctx
= aml_if(aml_lless(dsm_out_buf_size
, aml_int(8)));
1120 offset
= aml_local(2);
1121 aml_append(ifctx
, aml_store(aml_int(0), offset
));
1122 aml_append(ifctx
, aml_name_decl("TBUF", aml_buffer(1, NULL
)));
1123 aml_append(ifctx
, aml_store(aml_buffer(0, NULL
), dsm_out_buf
));
1125 whilectx
= aml_while(aml_lless(offset
, dsm_out_buf_size
));
1126 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1127 aml_append(whilectx
, aml_store(aml_derefof(aml_index(
1128 aml_name(NVDIMM_DSM_OUT_BUF
), offset
)),
1129 aml_index(aml_name("TBUF"), aml_int(0))));
1130 aml_append(whilectx
, aml_concatenate(dsm_out_buf
, aml_name("TBUF"),
1132 aml_append(whilectx
, aml_increment(offset
));
1133 aml_append(ifctx
, whilectx
);
1135 aml_append(ifctx
, aml_return(dsm_out_buf
));
1136 aml_append(method
, ifctx
);
1138 /* If RLEN >= Integer size, just use CreateField() operator */
1139 aml_append(method
, aml_store(aml_shiftleft(dsm_out_buf_size
, aml_int(3)),
1141 aml_append(method
, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF
),
1142 aml_int(0), dsm_out_buf_size
, "OBUF"));
1143 aml_append(method
, aml_return(aml_name("OBUF")));
1145 aml_append(dev
, method
);
1148 static void nvdimm_build_device_dsm(Aml
*dev
, uint32_t handle
)
1152 method
= aml_method("_DSM", 4, AML_NOTSERIALIZED
);
1153 aml_append(method
, aml_return(aml_call5(NVDIMM_COMMON_DSM
, aml_arg(0),
1154 aml_arg(1), aml_arg(2), aml_arg(3),
1156 aml_append(dev
, method
);
1159 static void nvdimm_build_fit(Aml
*dev
)
1161 Aml
*method
, *pkg
, *buf
, *buf_size
, *offset
, *call_result
;
1162 Aml
*whilectx
, *ifcond
, *ifctx
, *elsectx
, *fit
;
1165 buf_size
= aml_local(1);
1168 aml_append(dev
, aml_name_decl(NVDIMM_DSM_RFIT_STATUS
, aml_int(0)));
1170 /* build helper function, RFIT. */
1171 method
= aml_method("RFIT", 1, AML_SERIALIZED
);
1172 aml_append(method
, aml_name_decl("OFST", aml_int(0)));
1174 /* prepare input package. */
1175 pkg
= aml_package(1);
1176 aml_append(method
, aml_store(aml_arg(0), aml_name("OFST")));
1177 aml_append(pkg
, aml_name("OFST"));
1179 /* call Read_FIT function. */
1180 call_result
= aml_call5(NVDIMM_COMMON_DSM
,
1181 aml_touuid(NVDIMM_QEMU_RSVD_UUID
),
1182 aml_int(1) /* Revision 1 */,
1183 aml_int(0x1) /* Read FIT */,
1184 pkg
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
));
1185 aml_append(method
, aml_store(call_result
, buf
));
1187 /* handle _DSM result. */
1188 aml_append(method
, aml_create_dword_field(buf
,
1189 aml_int(0) /* offset at byte 0 */, "STAU"));
1191 aml_append(method
, aml_store(aml_name("STAU"),
1192 aml_name(NVDIMM_DSM_RFIT_STATUS
)));
1194 /* if something is wrong during _DSM. */
1195 ifcond
= aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS
),
1197 ifctx
= aml_if(aml_lnot(ifcond
));
1198 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1199 aml_append(method
, ifctx
);
1201 aml_append(method
, aml_store(aml_sizeof(buf
), buf_size
));
1202 aml_append(method
, aml_subtract(buf_size
,
1203 aml_int(4) /* the size of "STAU" */,
1206 /* if we read the end of fit. */
1207 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1208 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1209 aml_append(method
, ifctx
);
1211 aml_append(method
, aml_create_field(buf
,
1212 aml_int(4 * BITS_PER_BYTE
), /* offset at byte 4.*/
1213 aml_shiftleft(buf_size
, aml_int(3)), "BUFF"));
1214 aml_append(method
, aml_return(aml_name("BUFF")));
1215 aml_append(dev
, method
);
1218 method
= aml_method("_FIT", 0, AML_SERIALIZED
);
1219 offset
= aml_local(3);
1221 aml_append(method
, aml_store(aml_buffer(0, NULL
), fit
));
1222 aml_append(method
, aml_store(aml_int(0), offset
));
1224 whilectx
= aml_while(aml_int(1));
1225 aml_append(whilectx
, aml_store(aml_call1("RFIT", offset
), buf
));
1226 aml_append(whilectx
, aml_store(aml_sizeof(buf
), buf_size
));
1229 * if fit buffer was changed during RFIT, read from the beginning
1232 ifctx
= aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS
),
1233 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED
)));
1234 aml_append(ifctx
, aml_store(aml_buffer(0, NULL
), fit
));
1235 aml_append(ifctx
, aml_store(aml_int(0), offset
));
1236 aml_append(whilectx
, ifctx
);
1238 elsectx
= aml_else();
1240 /* finish fit read if no data is read out. */
1241 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1242 aml_append(ifctx
, aml_return(fit
));
1243 aml_append(elsectx
, ifctx
);
1245 /* update the offset. */
1246 aml_append(elsectx
, aml_add(offset
, buf_size
, offset
));
1247 /* append the data we read out to the fit buffer. */
1248 aml_append(elsectx
, aml_concatenate(fit
, buf
, fit
));
1249 aml_append(whilectx
, elsectx
);
1250 aml_append(method
, whilectx
);
1252 aml_append(dev
, method
);
1255 static void nvdimm_build_nvdimm_devices(Aml
*root_dev
, uint32_t ram_slots
)
1259 for (slot
= 0; slot
< ram_slots
; slot
++) {
1260 uint32_t handle
= nvdimm_slot_to_handle(slot
);
1263 nvdimm_dev
= aml_device("NV%02X", slot
);
1266 * ACPI 6.0: 9.20 NVDIMM Devices:
1268 * _ADR object that is used to supply OSPM with unique address
1269 * of the NVDIMM device. This is done by returning the NFIT Device
1270 * handle that is used to identify the associated entries in ACPI
1271 * table NFIT or _FIT.
1273 aml_append(nvdimm_dev
, aml_name_decl("_ADR", aml_int(handle
)));
1275 nvdimm_build_device_dsm(nvdimm_dev
, handle
);
1276 aml_append(root_dev
, nvdimm_dev
);
1280 static void nvdimm_build_ssdt(GArray
*table_offsets
, GArray
*table_data
,
1282 NVDIMMState
*nvdimm_state
,
1283 uint32_t ram_slots
, const char *oem_id
)
1285 Aml
*ssdt
, *sb_scope
, *dev
;
1286 int mem_addr_offset
, nvdimm_ssdt
;
1288 acpi_add_table(table_offsets
, table_data
);
1290 ssdt
= init_aml_allocator();
1291 acpi_data_push(ssdt
->buf
, sizeof(AcpiTableHeader
));
1293 sb_scope
= aml_scope("\\_SB");
1295 dev
= aml_device("NVDR");
1298 * ACPI 6.0: 9.20 NVDIMM Devices:
1300 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1301 * NVDIMM interface device. Platform firmware is required to contain one
1302 * such device in _SB scope if NVDIMMs support is exposed by platform to
1304 * For each NVDIMM present or intended to be supported by platform,
1305 * platform firmware also exposes an ACPI Namespace Device under the
1308 aml_append(dev
, aml_name_decl("_HID", aml_string("ACPI0012")));
1310 nvdimm_build_common_dsm(dev
, nvdimm_state
);
1312 /* 0 is reserved for root device. */
1313 nvdimm_build_device_dsm(dev
, 0);
1314 nvdimm_build_fit(dev
);
1316 nvdimm_build_nvdimm_devices(dev
, ram_slots
);
1318 aml_append(sb_scope
, dev
);
1319 aml_append(ssdt
, sb_scope
);
1321 nvdimm_ssdt
= table_data
->len
;
1323 /* copy AML table into ACPI tables blob and patch header there */
1324 g_array_append_vals(table_data
, ssdt
->buf
->data
, ssdt
->buf
->len
);
1325 mem_addr_offset
= build_append_named_dword(table_data
,
1326 NVDIMM_ACPI_MEM_ADDR
);
1328 bios_linker_loader_alloc(linker
,
1329 NVDIMM_DSM_MEM_FILE
, nvdimm_state
->dsm_mem
,
1330 sizeof(NvdimmDsmIn
), false /* high memory */);
1331 bios_linker_loader_add_pointer(linker
,
1332 ACPI_BUILD_TABLE_FILE
, mem_addr_offset
, sizeof(uint32_t),
1333 NVDIMM_DSM_MEM_FILE
, 0);
1334 build_header(linker
, table_data
,
1335 (void *)(table_data
->data
+ nvdimm_ssdt
),
1336 "SSDT", table_data
->len
- nvdimm_ssdt
, 1, oem_id
, "NVDIMM");
1337 free_aml_allocator();
1340 void nvdimm_build_srat(GArray
*table_data
)
1342 GSList
*device_list
= nvdimm_get_device_list();
1344 for (; device_list
; device_list
= device_list
->next
) {
1345 AcpiSratMemoryAffinity
*numamem
= NULL
;
1346 DeviceState
*dev
= device_list
->data
;
1347 Object
*obj
= OBJECT(dev
);
1348 uint64_t addr
, size
;
1351 node
= object_property_get_int(obj
, PC_DIMM_NODE_PROP
, &error_abort
);
1352 addr
= object_property_get_uint(obj
, PC_DIMM_ADDR_PROP
, &error_abort
);
1353 size
= object_property_get_uint(obj
, PC_DIMM_SIZE_PROP
, &error_abort
);
1355 numamem
= acpi_data_push(table_data
, sizeof *numamem
);
1356 build_srat_memory(numamem
, addr
, size
, node
,
1357 MEM_AFFINITY_ENABLED
| MEM_AFFINITY_NON_VOLATILE
);
1359 g_slist_free(device_list
);
1362 void nvdimm_build_acpi(GArray
*table_offsets
, GArray
*table_data
,
1363 BIOSLinker
*linker
, NVDIMMState
*state
,
1364 uint32_t ram_slots
, const char *oem_id
,
1365 const char *oem_table_id
)
1367 GSList
*device_list
;
1369 /* no nvdimm device can be plugged. */
1374 nvdimm_build_ssdt(table_offsets
, table_data
, linker
, state
,
1377 device_list
= nvdimm_get_device_list();
1378 /* no NVDIMM device is plugged. */
1383 nvdimm_build_nfit(state
, table_offsets
, table_data
, linker
,
1384 oem_id
, oem_table_id
);
1385 g_slist_free(device_list
);