target-arm: Implement RVBAR register
[qemu.git] / target-arm / helper.c
blob2bcd400ff4450c4168b9cec2154d8bcfa238fb73
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "helper.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include <zlib.h> /* For crc32 */
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/softmmu_exec.h"
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, int is_user,
17 hwaddr *phys_ptr, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 if (cpreg_field_is_64bit(ri)) {
123 return CPREG_FIELD64(env, ri);
124 } else {
125 return CPREG_FIELD32(env, ri);
129 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
130 uint64_t value)
132 if (cpreg_field_is_64bit(ri)) {
133 CPREG_FIELD64(env, ri) = value;
134 } else {
135 CPREG_FIELD32(env, ri) = value;
139 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri->type & ARM_CP_CONST) {
143 return ri->resetvalue;
144 } else if (ri->raw_readfn) {
145 return ri->raw_readfn(env, ri);
146 } else if (ri->readfn) {
147 return ri->readfn(env, ri);
148 } else {
149 return raw_read(env, ri);
153 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154 uint64_t v)
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
159 * value written.
161 if (ri->type & ARM_CP_CONST) {
162 return;
163 } else if (ri->raw_writefn) {
164 ri->raw_writefn(env, ri, v);
165 } else if (ri->writefn) {
166 ri->writefn(env, ri, v);
167 } else {
168 raw_write(env, ri, v);
172 bool write_cpustate_to_list(ARMCPU *cpu)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
175 int i;
176 bool ok = true;
178 for (i = 0; i < cpu->cpreg_array_len; i++) {
179 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
180 const ARMCPRegInfo *ri;
182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 if (!ri) {
184 ok = false;
185 continue;
187 if (ri->type & ARM_CP_NO_MIGRATE) {
188 continue;
190 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
192 return ok;
195 bool write_list_to_cpustate(ARMCPU *cpu)
197 int i;
198 bool ok = true;
200 for (i = 0; i < cpu->cpreg_array_len; i++) {
201 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
202 uint64_t v = cpu->cpreg_values[i];
203 const ARMCPRegInfo *ri;
205 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 if (!ri) {
207 ok = false;
208 continue;
210 if (ri->type & ARM_CP_NO_MIGRATE) {
211 continue;
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu->env, ri, v);
218 if (read_raw_cp_reg(&cpu->env, ri) != v) {
219 ok = false;
222 return ok;
225 static void add_cpreg_to_list(gpointer key, gpointer opaque)
227 ARMCPU *cpu = opaque;
228 uint64_t regidx;
229 const ARMCPRegInfo *ri;
231 regidx = *(uint32_t *)key;
232 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
235 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
236 /* The value array need not be initialized at this point */
237 cpu->cpreg_array_len++;
241 static void count_cpreg(gpointer key, gpointer opaque)
243 ARMCPU *cpu = opaque;
244 uint64_t regidx;
245 const ARMCPRegInfo *ri;
247 regidx = *(uint32_t *)key;
248 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
250 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
251 cpu->cpreg_array_len++;
255 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
257 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
258 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
260 if (aidx > bidx) {
261 return 1;
263 if (aidx < bidx) {
264 return -1;
266 return 0;
269 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
271 GList **plist = udata;
273 *plist = g_list_prepend(*plist, key);
276 void init_cpreg_list(ARMCPU *cpu)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
281 GList *keys = NULL;
282 int arraylen;
284 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
286 keys = g_list_sort(keys, cpreg_key_compare);
288 cpu->cpreg_array_len = 0;
290 g_list_foreach(keys, count_cpreg, cpu);
292 arraylen = cpu->cpreg_array_len;
293 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
294 cpu->cpreg_values = g_new(uint64_t, arraylen);
295 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
296 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
297 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
298 cpu->cpreg_array_len = 0;
300 g_list_foreach(keys, add_cpreg_to_list, cpu);
302 assert(cpu->cpreg_array_len == arraylen);
304 g_list_free(keys);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState *env)
313 return arm_el_is_aa64(env, 1)
314 || ((arm_feature(env, ARM_FEATURE_LPAE)
315 && (env->cp15.c2_control & (1U << 31))));
318 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
320 ARMCPU *cpu = arm_env_get_cpu(env);
322 env->cp15.c3 = value;
323 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
328 ARMCPU *cpu = arm_env_get_cpu(env);
330 if (env->cp15.c13_fcse != value) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu), 1);
335 env->cp15.c13_fcse = value;
339 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
340 uint64_t value)
342 ARMCPU *cpu = arm_env_get_cpu(env);
344 if (env->cp15.contextidr_el1 != value && !arm_feature(env, ARM_FEATURE_MPU)
345 && !extended_addresses_enabled(env)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu), 1);
352 env->cp15.contextidr_el1 = value;
355 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
356 uint64_t value)
358 /* Invalidate all (TLBIALL) */
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 tlb_flush(CPU(cpu), 1);
364 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
365 uint64_t value)
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU *cpu = arm_env_get_cpu(env);
370 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
373 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
374 uint64_t value)
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU *cpu = arm_env_get_cpu(env);
379 tlb_flush(CPU(cpu), value == 0);
382 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
383 uint64_t value)
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU *cpu = arm_env_get_cpu(env);
388 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
391 static const ARMCPRegInfo cp_reginfo[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
398 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
400 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
401 { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
402 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
403 .access = PL1_RW,
404 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
405 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
406 REGINFO_SENTINEL
409 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name = "DACR", .cp = 15,
415 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
417 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
422 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
427 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
428 .type = ARM_CP_NO_MIGRATE },
429 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
430 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
431 .type = ARM_CP_NO_MIGRATE },
432 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
433 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
434 .type = ARM_CP_NO_MIGRATE },
435 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
436 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
437 .type = ARM_CP_NO_MIGRATE },
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
440 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
441 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
442 REGINFO_SENTINEL
445 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
447 * over-broad.
449 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
450 .access = PL1_W, .type = ARM_CP_WFI },
451 REGINFO_SENTINEL
454 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
459 .access = PL1_W, .type = ARM_CP_WFI },
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
465 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
466 .resetvalue = 0 },
467 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
468 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
469 .resetvalue = 0 },
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
472 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
473 .resetvalue = 0 },
474 REGINFO_SENTINEL
477 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
478 uint64_t value)
480 if (env->cp15.c1_coproc != value) {
481 env->cp15.c1_coproc = value;
482 /* ??? Is this safe when called from within a TB? */
483 tb_flush(env);
487 static const ARMCPRegInfo v6_cp_reginfo[] = {
488 /* prefetch by MVA in v6, NOP in v7 */
489 { .name = "MVA_prefetch",
490 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
491 .access = PL1_W, .type = ARM_CP_NOP },
492 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
493 .access = PL0_W, .type = ARM_CP_NOP },
494 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
495 .access = PL0_W, .type = ARM_CP_NOP },
496 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
497 .access = PL0_W, .type = ARM_CP_NOP },
498 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
499 .access = PL1_RW,
500 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el1),
501 .resetvalue = 0, },
502 /* Watchpoint Fault Address Register : should actually only be present
503 * for 1136, 1176, 11MPCore.
505 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
506 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
507 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
508 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
509 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
510 .resetvalue = 0, .writefn = cpacr_write },
511 REGINFO_SENTINEL
514 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
516 /* Performance monitor registers user accessibility is controlled
517 * by PMUSERENR.
519 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
520 return CP_ACCESS_TRAP;
522 return CP_ACCESS_OK;
525 #ifndef CONFIG_USER_ONLY
526 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Don't computer the number of ticks in user mode */
530 uint32_t temp_ticks;
532 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
533 get_ticks_per_sec() / 1000000;
535 if (env->cp15.c9_pmcr & PMCRE) {
536 /* If the counter is enabled */
537 if (env->cp15.c9_pmcr & PMCRD) {
538 /* Increment once every 64 processor clock cycles */
539 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
540 } else {
541 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
545 if (value & PMCRC) {
546 /* The counter has been reset */
547 env->cp15.c15_ccnt = 0;
550 /* only the DP, X, D and E bits are writable */
551 env->cp15.c9_pmcr &= ~0x39;
552 env->cp15.c9_pmcr |= (value & 0x39);
554 if (env->cp15.c9_pmcr & PMCRE) {
555 if (env->cp15.c9_pmcr & PMCRD) {
556 /* Increment once every 64 processor clock cycles */
557 temp_ticks /= 64;
559 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
563 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
565 uint32_t total_ticks;
567 if (!(env->cp15.c9_pmcr & PMCRE)) {
568 /* Counter is disabled, do not change value */
569 return env->cp15.c15_ccnt;
572 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
573 get_ticks_per_sec() / 1000000;
575 if (env->cp15.c9_pmcr & PMCRD) {
576 /* Increment once every 64 processor clock cycles */
577 total_ticks /= 64;
579 return total_ticks - env->cp15.c15_ccnt;
582 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 uint32_t total_ticks;
587 if (!(env->cp15.c9_pmcr & PMCRE)) {
588 /* Counter is disabled, set the absolute value */
589 env->cp15.c15_ccnt = value;
590 return;
593 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
594 get_ticks_per_sec() / 1000000;
596 if (env->cp15.c9_pmcr & PMCRD) {
597 /* Increment once every 64 processor clock cycles */
598 total_ticks /= 64;
600 env->cp15.c15_ccnt = total_ticks - value;
602 #endif
604 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
605 uint64_t value)
607 value &= (1 << 31);
608 env->cp15.c9_pmcnten |= value;
611 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 value &= (1 << 31);
615 env->cp15.c9_pmcnten &= ~value;
618 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
619 uint64_t value)
621 env->cp15.c9_pmovsr &= ~value;
624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t value)
627 env->cp15.c9_pmxevtyper = value & 0xff;
630 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
633 env->cp15.c9_pmuserenr = value & 1;
636 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
637 uint64_t value)
639 /* We have no event counters so only the C bit can be changed */
640 value &= (1 << 31);
641 env->cp15.c9_pminten |= value;
644 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
647 value &= (1 << 31);
648 env->cp15.c9_pminten &= ~value;
651 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
652 uint64_t value)
654 /* Note that even though the AArch64 view of this register has bits
655 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
656 * architectural requirements for bits which are RES0 only in some
657 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
658 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
660 env->cp15.c12_vbar = value & ~0x1Ful;
663 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
665 ARMCPU *cpu = arm_env_get_cpu(env);
666 return cpu->ccsidr[env->cp15.c0_cssel];
669 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
672 env->cp15.c0_cssel = value & 0xf;
675 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
677 CPUState *cs = ENV_GET_CPU(env);
678 uint64_t ret = 0;
680 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
681 ret |= CPSR_I;
683 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
684 ret |= CPSR_F;
686 /* External aborts are not possible in QEMU so A bit is always clear */
687 return ret;
690 static const ARMCPRegInfo v7_cp_reginfo[] = {
691 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
692 * debug components
694 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
695 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
696 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
697 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
698 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
699 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
700 .access = PL1_W, .type = ARM_CP_NOP },
701 /* Performance monitors are implementation defined in v7,
702 * but with an ARM recommended set of registers, which we
703 * follow (although we don't actually implement any counters)
705 * Performance registers fall into three categories:
706 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
707 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
708 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
709 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
710 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
712 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
713 .access = PL0_RW, .resetvalue = 0,
714 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
715 .writefn = pmcntenset_write,
716 .accessfn = pmreg_access,
717 .raw_writefn = raw_write },
718 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
719 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
720 .accessfn = pmreg_access,
721 .writefn = pmcntenclr_write,
722 .type = ARM_CP_NO_MIGRATE },
723 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
724 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
725 .accessfn = pmreg_access,
726 .writefn = pmovsr_write,
727 .raw_writefn = raw_write },
728 /* Unimplemented so WI. */
729 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
730 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
731 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
732 * We choose to RAZ/WI.
734 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
735 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
736 .accessfn = pmreg_access },
737 #ifndef CONFIG_USER_ONLY
738 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
739 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
740 .readfn = pmccntr_read, .writefn = pmccntr_write,
741 .accessfn = pmreg_access },
742 #endif
743 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
744 .access = PL0_RW,
745 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
746 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
747 .raw_writefn = raw_write },
748 /* Unimplemented, RAZ/WI. */
749 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
750 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
751 .accessfn = pmreg_access },
752 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
753 .access = PL0_R | PL1_RW,
754 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
755 .resetvalue = 0,
756 .writefn = pmuserenr_write, .raw_writefn = raw_write },
757 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
758 .access = PL1_RW,
759 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
760 .resetvalue = 0,
761 .writefn = pmintenset_write, .raw_writefn = raw_write },
762 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
763 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
764 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
765 .resetvalue = 0, .writefn = pmintenclr_write, },
766 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
767 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
768 .access = PL1_RW, .writefn = vbar_write,
769 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
770 .resetvalue = 0 },
771 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
772 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
773 .resetvalue = 0, },
774 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
775 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
776 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
777 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
778 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
779 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
780 .writefn = csselr_write, .resetvalue = 0 },
781 /* Auxiliary ID register: this actually has an IMPDEF value but for now
782 * just RAZ for all cores:
784 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
785 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
786 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
787 /* Auxiliary fault status registers: these also are IMPDEF, and we
788 * choose to RAZ/WI for all cores.
790 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
791 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
792 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
793 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
794 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
795 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
796 /* MAIR can just read-as-written because we don't implement caches
797 * and so don't need to care about memory attributes.
799 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
800 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
801 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
802 .resetvalue = 0 },
803 /* For non-long-descriptor page tables these are PRRR and NMRR;
804 * regardless they still act as reads-as-written for QEMU.
805 * The override is necessary because of the overly-broad TLB_LOCKDOWN
806 * definition.
808 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
809 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
810 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
811 .resetfn = arm_cp_reset_ignore },
812 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
813 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
814 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
815 .resetfn = arm_cp_reset_ignore },
816 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
817 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
818 .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
819 REGINFO_SENTINEL
822 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t value)
825 value &= 1;
826 env->teecr = value;
829 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
831 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
832 return CP_ACCESS_TRAP;
834 return CP_ACCESS_OK;
837 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
838 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
839 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
840 .resetvalue = 0,
841 .writefn = teecr_write },
842 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
843 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
844 .accessfn = teehbr_access, .resetvalue = 0 },
845 REGINFO_SENTINEL
848 static const ARMCPRegInfo v6k_cp_reginfo[] = {
849 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
850 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
851 .access = PL0_RW,
852 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
853 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
854 .access = PL0_RW,
855 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
856 .resetfn = arm_cp_reset_ignore },
857 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
858 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
859 .access = PL0_R|PL1_W,
860 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
861 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
862 .access = PL0_R|PL1_W,
863 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
864 .resetfn = arm_cp_reset_ignore },
865 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
866 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
867 .access = PL1_RW,
868 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
869 REGINFO_SENTINEL
872 #ifndef CONFIG_USER_ONLY
874 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
876 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
877 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
878 return CP_ACCESS_TRAP;
880 return CP_ACCESS_OK;
883 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
885 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
886 if (arm_current_pl(env) == 0 &&
887 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
888 return CP_ACCESS_TRAP;
890 return CP_ACCESS_OK;
893 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
895 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
896 * EL0[PV]TEN is zero.
898 if (arm_current_pl(env) == 0 &&
899 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
900 return CP_ACCESS_TRAP;
902 return CP_ACCESS_OK;
905 static CPAccessResult gt_pct_access(CPUARMState *env,
906 const ARMCPRegInfo *ri)
908 return gt_counter_access(env, GTIMER_PHYS);
911 static CPAccessResult gt_vct_access(CPUARMState *env,
912 const ARMCPRegInfo *ri)
914 return gt_counter_access(env, GTIMER_VIRT);
917 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
919 return gt_timer_access(env, GTIMER_PHYS);
922 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
924 return gt_timer_access(env, GTIMER_VIRT);
927 static uint64_t gt_get_countervalue(CPUARMState *env)
929 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
932 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
934 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
936 if (gt->ctl & 1) {
937 /* Timer enabled: calculate and set current ISTATUS, irq, and
938 * reset timer to when ISTATUS next has to change
940 uint64_t count = gt_get_countervalue(&cpu->env);
941 /* Note that this must be unsigned 64 bit arithmetic: */
942 int istatus = count >= gt->cval;
943 uint64_t nexttick;
945 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
946 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
947 (istatus && !(gt->ctl & 2)));
948 if (istatus) {
949 /* Next transition is when count rolls back over to zero */
950 nexttick = UINT64_MAX;
951 } else {
952 /* Next transition is when we hit cval */
953 nexttick = gt->cval;
955 /* Note that the desired next expiry time might be beyond the
956 * signed-64-bit range of a QEMUTimer -- in this case we just
957 * set the timer for as far in the future as possible. When the
958 * timer expires we will reset the timer for any remaining period.
960 if (nexttick > INT64_MAX / GTIMER_SCALE) {
961 nexttick = INT64_MAX / GTIMER_SCALE;
963 timer_mod(cpu->gt_timer[timeridx], nexttick);
964 } else {
965 /* Timer disabled: ISTATUS and timer output always clear */
966 gt->ctl &= ~4;
967 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
968 timer_del(cpu->gt_timer[timeridx]);
972 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
974 ARMCPU *cpu = arm_env_get_cpu(env);
975 int timeridx = ri->opc1 & 1;
977 timer_del(cpu->gt_timer[timeridx]);
980 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
982 return gt_get_countervalue(env);
985 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
986 uint64_t value)
988 int timeridx = ri->opc1 & 1;
990 env->cp15.c14_timer[timeridx].cval = value;
991 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
994 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
996 int timeridx = ri->crm & 1;
998 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
999 gt_get_countervalue(env));
1002 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1003 uint64_t value)
1005 int timeridx = ri->crm & 1;
1007 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1008 + sextract64(value, 0, 32);
1009 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1012 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1013 uint64_t value)
1015 ARMCPU *cpu = arm_env_get_cpu(env);
1016 int timeridx = ri->crm & 1;
1017 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1019 env->cp15.c14_timer[timeridx].ctl = value & 3;
1020 if ((oldval ^ value) & 1) {
1021 /* Enable toggled */
1022 gt_recalc_timer(cpu, timeridx);
1023 } else if ((oldval & value) & 2) {
1024 /* IMASK toggled: don't need to recalculate,
1025 * just set the interrupt line based on ISTATUS
1027 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1028 (oldval & 4) && (value & 2));
1032 void arm_gt_ptimer_cb(void *opaque)
1034 ARMCPU *cpu = opaque;
1036 gt_recalc_timer(cpu, GTIMER_PHYS);
1039 void arm_gt_vtimer_cb(void *opaque)
1041 ARMCPU *cpu = opaque;
1043 gt_recalc_timer(cpu, GTIMER_VIRT);
1046 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1047 /* Note that CNTFRQ is purely reads-as-written for the benefit
1048 * of software; writing it doesn't actually change the timer frequency.
1049 * Our reset value matches the fixed frequency we implement the timer at.
1051 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1052 .type = ARM_CP_NO_MIGRATE,
1053 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1055 .resetfn = arm_cp_reset_ignore,
1057 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1059 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1060 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1061 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1063 /* overall control: mostly access permissions */
1064 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1065 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1066 .access = PL1_RW,
1067 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1068 .resetvalue = 0,
1070 /* per-timer control */
1071 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1072 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1073 .accessfn = gt_ptimer_access,
1074 .fieldoffset = offsetoflow32(CPUARMState,
1075 cp15.c14_timer[GTIMER_PHYS].ctl),
1076 .resetfn = arm_cp_reset_ignore,
1077 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1079 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1080 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1081 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1082 .accessfn = gt_ptimer_access,
1083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1084 .resetvalue = 0,
1085 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1087 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1088 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1089 .accessfn = gt_vtimer_access,
1090 .fieldoffset = offsetoflow32(CPUARMState,
1091 cp15.c14_timer[GTIMER_VIRT].ctl),
1092 .resetfn = arm_cp_reset_ignore,
1093 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1095 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1096 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1097 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1098 .accessfn = gt_vtimer_access,
1099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1100 .resetvalue = 0,
1101 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1103 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1104 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1105 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1106 .accessfn = gt_ptimer_access,
1107 .readfn = gt_tval_read, .writefn = gt_tval_write,
1109 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1110 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1111 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1112 .readfn = gt_tval_read, .writefn = gt_tval_write,
1114 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1115 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1116 .accessfn = gt_vtimer_access,
1117 .readfn = gt_tval_read, .writefn = gt_tval_write,
1119 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1121 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1122 .readfn = gt_tval_read, .writefn = gt_tval_write,
1124 /* The counter itself */
1125 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1126 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1127 .accessfn = gt_pct_access,
1128 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1130 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1132 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1133 .accessfn = gt_pct_access,
1134 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1136 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1137 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1138 .accessfn = gt_vct_access,
1139 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1141 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1142 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1143 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1144 .accessfn = gt_vct_access,
1145 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1147 /* Comparison value, indicating when the timer goes off */
1148 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1149 .access = PL1_RW | PL0_R,
1150 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1151 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1152 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1153 .writefn = gt_cval_write, .raw_writefn = raw_write,
1155 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1156 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1157 .access = PL1_RW | PL0_R,
1158 .type = ARM_CP_IO,
1159 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1160 .resetvalue = 0, .accessfn = gt_vtimer_access,
1161 .writefn = gt_cval_write, .raw_writefn = raw_write,
1163 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1164 .access = PL1_RW | PL0_R,
1165 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1166 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1167 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1168 .writefn = gt_cval_write, .raw_writefn = raw_write,
1170 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1172 .access = PL1_RW | PL0_R,
1173 .type = ARM_CP_IO,
1174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1175 .resetvalue = 0, .accessfn = gt_vtimer_access,
1176 .writefn = gt_cval_write, .raw_writefn = raw_write,
1178 REGINFO_SENTINEL
1181 #else
1182 /* In user-mode none of the generic timer registers are accessible,
1183 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1184 * so instead just don't register any of them.
1186 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1187 REGINFO_SENTINEL
1190 #endif
1192 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1194 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1195 env->cp15.par_el1 = value;
1196 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1197 env->cp15.par_el1 = value & 0xfffff6ff;
1198 } else {
1199 env->cp15.par_el1 = value & 0xfffff1ff;
1203 #ifndef CONFIG_USER_ONLY
1204 /* get_phys_addr() isn't present for user-mode-only targets */
1206 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1208 if (ri->opc2 & 4) {
1209 /* Other states are only available with TrustZone; in
1210 * a non-TZ implementation these registers don't exist
1211 * at all, which is an Uncategorized trap. This underdecoding
1212 * is safe because the reginfo is NO_MIGRATE.
1214 return CP_ACCESS_TRAP_UNCATEGORIZED;
1216 return CP_ACCESS_OK;
1219 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1221 hwaddr phys_addr;
1222 target_ulong page_size;
1223 int prot;
1224 int ret, is_user = ri->opc2 & 2;
1225 int access_type = ri->opc2 & 1;
1227 ret = get_phys_addr(env, value, access_type, is_user,
1228 &phys_addr, &prot, &page_size);
1229 if (extended_addresses_enabled(env)) {
1230 /* ret is a DFSR/IFSR value for the long descriptor
1231 * translation table format, but with WnR always clear.
1232 * Convert it to a 64-bit PAR.
1234 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1235 if (ret == 0) {
1236 par64 |= phys_addr & ~0xfffULL;
1237 /* We don't set the ATTR or SH fields in the PAR. */
1238 } else {
1239 par64 |= 1; /* F */
1240 par64 |= (ret & 0x3f) << 1; /* FS */
1241 /* Note that S2WLK and FSTAGE are always zero, because we don't
1242 * implement virtualization and therefore there can't be a stage 2
1243 * fault.
1246 env->cp15.par_el1 = par64;
1247 } else {
1248 /* ret is a DFSR/IFSR value for the short descriptor
1249 * translation table format (with WnR always clear).
1250 * Convert it to a 32-bit PAR.
1252 if (ret == 0) {
1253 /* We do not set any attribute bits in the PAR */
1254 if (page_size == (1 << 24)
1255 && arm_feature(env, ARM_FEATURE_V7)) {
1256 env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
1257 } else {
1258 env->cp15.par_el1 = phys_addr & 0xfffff000;
1260 } else {
1261 env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
1262 ((ret & (1 << 12)) >> 6) |
1263 ((ret & 0xf) << 1) | 1;
1267 #endif
1269 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1270 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1271 .access = PL1_RW, .resetvalue = 0,
1272 .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
1273 .writefn = par_write },
1274 #ifndef CONFIG_USER_ONLY
1275 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1276 .access = PL1_W, .accessfn = ats_access,
1277 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1278 #endif
1279 REGINFO_SENTINEL
1282 /* Return basic MPU access permission bits. */
1283 static uint32_t simple_mpu_ap_bits(uint32_t val)
1285 uint32_t ret;
1286 uint32_t mask;
1287 int i;
1288 ret = 0;
1289 mask = 3;
1290 for (i = 0; i < 16; i += 2) {
1291 ret |= (val >> i) & mask;
1292 mask <<= 2;
1294 return ret;
1297 /* Pad basic MPU access permission bits to extended format. */
1298 static uint32_t extended_mpu_ap_bits(uint32_t val)
1300 uint32_t ret;
1301 uint32_t mask;
1302 int i;
1303 ret = 0;
1304 mask = 3;
1305 for (i = 0; i < 16; i += 2) {
1306 ret |= (val & mask) << i;
1307 mask <<= 2;
1309 return ret;
1312 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1313 uint64_t value)
1315 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1318 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1320 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1323 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1324 uint64_t value)
1326 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1329 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1331 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1334 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1335 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1336 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1337 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1338 .resetvalue = 0,
1339 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1340 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1341 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1342 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1343 .resetvalue = 0,
1344 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1345 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1346 .access = PL1_RW,
1347 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1348 .resetvalue = 0, },
1349 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1350 .access = PL1_RW,
1351 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1352 .resetvalue = 0, },
1353 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1354 .access = PL1_RW,
1355 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1356 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1357 .access = PL1_RW,
1358 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1359 /* Protection region base and size registers */
1360 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1361 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1362 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1363 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1364 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1365 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1366 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1367 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1368 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1369 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1370 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1371 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1372 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1373 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1374 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1375 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1378 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1381 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1384 REGINFO_SENTINEL
1387 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1388 uint64_t value)
1390 int maskshift = extract32(value, 0, 3);
1392 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1393 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1394 } else {
1395 value &= 7;
1397 /* Note that we always calculate c2_mask and c2_base_mask, but
1398 * they are only used for short-descriptor tables (ie if EAE is 0);
1399 * for long-descriptor tables the TTBCR fields are used differently
1400 * and the c2_mask and c2_base_mask values are meaningless.
1402 env->cp15.c2_control = value;
1403 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1404 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1407 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1408 uint64_t value)
1410 ARMCPU *cpu = arm_env_get_cpu(env);
1412 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1413 /* With LPAE the TTBCR could result in a change of ASID
1414 * via the TTBCR.A1 bit, so do a TLB flush.
1416 tlb_flush(CPU(cpu), 1);
1418 vmsa_ttbcr_raw_write(env, ri, value);
1421 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1423 env->cp15.c2_base_mask = 0xffffc000u;
1424 env->cp15.c2_control = 0;
1425 env->cp15.c2_mask = 0;
1428 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1429 uint64_t value)
1431 ARMCPU *cpu = arm_env_get_cpu(env);
1433 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1434 tlb_flush(CPU(cpu), 1);
1435 env->cp15.c2_control = value;
1438 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1439 uint64_t value)
1441 /* 64 bit accesses to the TTBRs can change the ASID and so we
1442 * must flush the TLB.
1444 if (cpreg_field_is_64bit(ri)) {
1445 ARMCPU *cpu = arm_env_get_cpu(env);
1447 tlb_flush(CPU(cpu), 1);
1449 raw_write(env, ri, value);
1452 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1453 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1454 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1455 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1),
1456 .resetfn = arm_cp_reset_ignore, },
1457 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1458 .access = PL1_RW,
1459 .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
1460 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1461 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1462 .access = PL1_RW,
1463 .fieldoffset = offsetof(CPUARMState, cp15.esr_el1), .resetvalue = 0, },
1464 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1465 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1466 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1467 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1468 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1469 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1470 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1471 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1472 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1473 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1474 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1475 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1476 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1477 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1478 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1479 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1480 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1481 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1482 { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
1483 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el1),
1485 .resetvalue = 0, },
1486 REGINFO_SENTINEL
1489 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1490 uint64_t value)
1492 env->cp15.c15_ticonfig = value & 0xe7;
1493 /* The OS_TYPE bit in this register changes the reported CPUID! */
1494 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1495 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1498 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1499 uint64_t value)
1501 env->cp15.c15_threadid = value & 0xffff;
1504 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1505 uint64_t value)
1507 /* Wait-for-interrupt (deprecated) */
1508 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1511 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1512 uint64_t value)
1514 /* On OMAP there are registers indicating the max/min index of dcache lines
1515 * containing a dirty line; cache flush operations have to reset these.
1517 env->cp15.c15_i_max = 0x000;
1518 env->cp15.c15_i_min = 0xff0;
1521 static const ARMCPRegInfo omap_cp_reginfo[] = {
1522 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1523 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1524 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1),
1525 .resetvalue = 0, },
1526 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1527 .access = PL1_RW, .type = ARM_CP_NOP },
1528 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1529 .access = PL1_RW,
1530 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1531 .writefn = omap_ticonfig_write },
1532 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1533 .access = PL1_RW,
1534 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1535 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1536 .access = PL1_RW, .resetvalue = 0xff0,
1537 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1538 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1539 .access = PL1_RW,
1540 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1541 .writefn = omap_threadid_write },
1542 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1543 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1544 .type = ARM_CP_NO_MIGRATE,
1545 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1546 /* TODO: Peripheral port remap register:
1547 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1548 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1549 * when MMU is off.
1551 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1552 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1553 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1554 .writefn = omap_cachemaint_write },
1555 { .name = "C9", .cp = 15, .crn = 9,
1556 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1557 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1558 REGINFO_SENTINEL
1561 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1562 uint64_t value)
1564 value &= 0x3fff;
1565 if (env->cp15.c15_cpar != value) {
1566 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1567 tb_flush(env);
1568 env->cp15.c15_cpar = value;
1572 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1573 { .name = "XSCALE_CPAR",
1574 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1575 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1576 .writefn = xscale_cpar_write, },
1577 { .name = "XSCALE_AUXCR",
1578 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1579 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1580 .resetvalue = 0, },
1581 REGINFO_SENTINEL
1584 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1585 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1586 * implementation of this implementation-defined space.
1587 * Ideally this should eventually disappear in favour of actually
1588 * implementing the correct behaviour for all cores.
1590 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1591 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1592 .access = PL1_RW,
1593 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1594 .resetvalue = 0 },
1595 REGINFO_SENTINEL
1598 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1599 /* Cache status: RAZ because we have no cache so it's always clean */
1600 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1601 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1602 .resetvalue = 0 },
1603 REGINFO_SENTINEL
1606 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1607 /* We never have a a block transfer operation in progress */
1608 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1609 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1610 .resetvalue = 0 },
1611 /* The cache ops themselves: these all NOP for QEMU */
1612 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1613 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1614 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1615 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1616 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1617 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1618 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1619 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1620 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1621 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1622 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1623 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1624 REGINFO_SENTINEL
1627 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1628 /* The cache test-and-clean instructions always return (1 << 30)
1629 * to indicate that there are no dirty cache lines.
1631 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1632 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1633 .resetvalue = (1 << 30) },
1634 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1635 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1636 .resetvalue = (1 << 30) },
1637 REGINFO_SENTINEL
1640 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1641 /* Ignore ReadBuffer accesses */
1642 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1643 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1644 .access = PL1_RW, .resetvalue = 0,
1645 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1646 REGINFO_SENTINEL
1649 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1651 CPUState *cs = CPU(arm_env_get_cpu(env));
1652 uint32_t mpidr = cs->cpu_index;
1653 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1654 * in later ARM ARM versions), or any of the higher affinity level fields,
1655 * so these bits always RAZ.
1657 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1658 mpidr |= (1U << 31);
1659 /* Cores which are uniprocessor (non-coherent)
1660 * but still implement the MP extensions set
1661 * bit 30. (For instance, A9UP.) However we do
1662 * not currently model any of those cores.
1665 return mpidr;
1668 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1669 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1670 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1671 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1672 REGINFO_SENTINEL
1675 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1676 /* NOP AMAIR0/1: the override is because these clash with the rather
1677 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1679 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1680 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1681 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1682 .resetvalue = 0 },
1683 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1684 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1685 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1686 .resetvalue = 0 },
1687 /* 64 bit access versions of the (dummy) debug registers */
1688 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1689 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1690 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1691 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1692 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1693 .access = PL1_RW, .type = ARM_CP_64BIT,
1694 .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
1695 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1696 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1697 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1698 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1699 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1700 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1701 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1702 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1703 REGINFO_SENTINEL
1706 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1708 return vfp_get_fpcr(env);
1711 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1712 uint64_t value)
1714 vfp_set_fpcr(env, value);
1717 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1719 return vfp_get_fpsr(env);
1722 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1723 uint64_t value)
1725 vfp_set_fpsr(env, value);
1728 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
1730 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
1731 return CP_ACCESS_TRAP;
1733 return CP_ACCESS_OK;
1736 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737 uint64_t value)
1739 env->daif = value & PSTATE_DAIF;
1742 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1743 const ARMCPRegInfo *ri)
1745 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1746 * SCTLR_EL1.UCI is set.
1748 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1749 return CP_ACCESS_TRAP;
1751 return CP_ACCESS_OK;
1754 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1757 /* Invalidate by VA (AArch64 version) */
1758 ARMCPU *cpu = arm_env_get_cpu(env);
1759 uint64_t pageaddr = value << 12;
1760 tlb_flush_page(CPU(cpu), pageaddr);
1763 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1766 /* Invalidate by VA, all ASIDs (AArch64 version) */
1767 ARMCPU *cpu = arm_env_get_cpu(env);
1768 uint64_t pageaddr = value << 12;
1769 tlb_flush_page(CPU(cpu), pageaddr);
1772 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 /* Invalidate by ASID (AArch64 version) */
1776 ARMCPU *cpu = arm_env_get_cpu(env);
1777 int asid = extract64(value, 48, 16);
1778 tlb_flush(CPU(cpu), asid == 0);
1781 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
1783 /* We don't implement EL2, so the only control on DC ZVA is the
1784 * bit in the SCTLR which can prohibit access for EL0.
1786 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
1787 return CP_ACCESS_TRAP;
1789 return CP_ACCESS_OK;
1792 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
1794 ARMCPU *cpu = arm_env_get_cpu(env);
1795 int dzp_bit = 1 << 4;
1797 /* DZP indicates whether DC ZVA access is allowed */
1798 if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
1799 dzp_bit = 0;
1801 return cpu->dcz_blocksize | dzp_bit;
1804 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1806 if (!env->pstate & PSTATE_SP) {
1807 /* Access to SP_EL0 is undefined if it's being used as
1808 * the stack pointer.
1810 return CP_ACCESS_TRAP_UNCATEGORIZED;
1812 return CP_ACCESS_OK;
1815 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
1817 return env->pstate & PSTATE_SP;
1820 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
1822 update_spsel(env, val);
1825 static const ARMCPRegInfo v8_cp_reginfo[] = {
1826 /* Minimal set of EL0-visible registers. This will need to be expanded
1827 * significantly for system emulation of AArch64 CPUs.
1829 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1830 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1831 .access = PL0_RW, .type = ARM_CP_NZCV },
1832 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
1833 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
1834 .type = ARM_CP_NO_MIGRATE,
1835 .access = PL0_RW, .accessfn = aa64_daif_access,
1836 .fieldoffset = offsetof(CPUARMState, daif),
1837 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
1838 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1839 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1840 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1841 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1842 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1843 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1844 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1845 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1846 .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
1847 .readfn = aa64_dczid_read },
1848 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
1849 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
1850 .access = PL0_W, .type = ARM_CP_DC_ZVA,
1851 #ifndef CONFIG_USER_ONLY
1852 /* Avoid overhead of an access check that always passes in user-mode */
1853 .accessfn = aa64_zva_access,
1854 #endif
1856 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1857 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1858 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1859 /* Cache ops: all NOPs since we don't emulate caches */
1860 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1861 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1862 .access = PL1_W, .type = ARM_CP_NOP },
1863 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1865 .access = PL1_W, .type = ARM_CP_NOP },
1866 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1867 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1868 .access = PL0_W, .type = ARM_CP_NOP,
1869 .accessfn = aa64_cacheop_access },
1870 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1871 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1872 .access = PL1_W, .type = ARM_CP_NOP },
1873 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1874 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1875 .access = PL1_W, .type = ARM_CP_NOP },
1876 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1878 .access = PL0_W, .type = ARM_CP_NOP,
1879 .accessfn = aa64_cacheop_access },
1880 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1881 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1882 .access = PL1_W, .type = ARM_CP_NOP },
1883 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1884 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1885 .access = PL0_W, .type = ARM_CP_NOP,
1886 .accessfn = aa64_cacheop_access },
1887 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1888 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1889 .access = PL0_W, .type = ARM_CP_NOP,
1890 .accessfn = aa64_cacheop_access },
1891 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1892 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1893 .access = PL1_W, .type = ARM_CP_NOP },
1894 /* TLBI operations */
1895 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1896 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1897 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1898 .writefn = tlbiall_write },
1899 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1900 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1901 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1902 .writefn = tlbi_aa64_va_write },
1903 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1904 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1905 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1906 .writefn = tlbi_aa64_asid_write },
1907 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1908 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1909 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1910 .writefn = tlbi_aa64_vaa_write },
1911 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1912 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1913 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1914 .writefn = tlbi_aa64_va_write },
1915 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1916 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1917 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1918 .writefn = tlbi_aa64_vaa_write },
1919 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1920 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1921 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1922 .writefn = tlbiall_write },
1923 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1925 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1926 .writefn = tlbi_aa64_va_write },
1927 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1928 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1929 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1930 .writefn = tlbi_aa64_asid_write },
1931 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1932 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1933 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1934 .writefn = tlbi_aa64_vaa_write },
1935 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1936 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1937 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1938 .writefn = tlbi_aa64_va_write },
1939 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1940 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1941 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1942 .writefn = tlbi_aa64_vaa_write },
1943 #ifndef CONFIG_USER_ONLY
1944 /* 64 bit address translation operations */
1945 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
1946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
1947 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1948 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
1949 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
1950 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1951 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
1952 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
1953 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1954 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
1955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
1956 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1957 #endif
1958 /* 32 bit TLB invalidates, Inner Shareable */
1959 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1960 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
1961 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1962 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1963 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1964 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
1965 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1966 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
1967 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1968 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1969 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1970 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
1971 /* 32 bit ITLB invalidates */
1972 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1973 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
1974 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1975 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1976 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1977 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
1978 /* 32 bit DTLB invalidates */
1979 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1980 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
1981 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1982 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1983 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1984 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
1985 /* 32 bit TLB invalidates */
1986 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1987 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
1988 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1989 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1990 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1991 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
1992 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1993 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
1994 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1995 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
1996 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1997 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
1998 /* 32 bit cache operations */
1999 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2000 .type = ARM_CP_NOP, .access = PL1_W },
2001 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2002 .type = ARM_CP_NOP, .access = PL1_W },
2003 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2004 .type = ARM_CP_NOP, .access = PL1_W },
2005 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2006 .type = ARM_CP_NOP, .access = PL1_W },
2007 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2008 .type = ARM_CP_NOP, .access = PL1_W },
2009 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2010 .type = ARM_CP_NOP, .access = PL1_W },
2011 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2012 .type = ARM_CP_NOP, .access = PL1_W },
2013 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2014 .type = ARM_CP_NOP, .access = PL1_W },
2015 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2016 .type = ARM_CP_NOP, .access = PL1_W },
2017 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2018 .type = ARM_CP_NOP, .access = PL1_W },
2019 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2020 .type = ARM_CP_NOP, .access = PL1_W },
2021 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2022 .type = ARM_CP_NOP, .access = PL1_W },
2023 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2024 .type = ARM_CP_NOP, .access = PL1_W },
2025 /* MMU Domain access control / MPU write buffer control */
2026 { .name = "DACR", .cp = 15,
2027 .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2028 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
2029 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
2030 /* Dummy implementation of monitor debug system control register:
2031 * we don't support debug.
2033 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
2034 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2035 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2036 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2037 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
2038 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2039 .access = PL1_W, .type = ARM_CP_NOP },
2040 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2041 .type = ARM_CP_NO_MIGRATE,
2042 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2043 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el1) },
2044 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2045 .type = ARM_CP_NO_MIGRATE,
2046 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2047 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2048 /* We rely on the access checks not allowing the guest to write to the
2049 * state field when SPSel indicates that it's being used as the stack
2050 * pointer.
2052 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2053 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2054 .access = PL1_RW, .accessfn = sp_el0_access,
2055 .type = ARM_CP_NO_MIGRATE,
2056 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2057 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2058 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2059 .type = ARM_CP_NO_MIGRATE,
2060 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2061 REGINFO_SENTINEL
2064 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2065 uint64_t value)
2067 ARMCPU *cpu = arm_env_get_cpu(env);
2069 env->cp15.c1_sys = value;
2070 /* ??? Lots of these bits are not implemented. */
2071 /* This may enable/disable the MMU, so do a TLB flush. */
2072 tlb_flush(CPU(cpu), 1);
2075 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2077 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2078 * but the AArch32 CTR has its own reginfo struct)
2080 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
2081 return CP_ACCESS_TRAP;
2083 return CP_ACCESS_OK;
2086 static void define_aarch64_debug_regs(ARMCPU *cpu)
2088 /* Define breakpoint and watchpoint registers. These do nothing
2089 * but read as written, for now.
2091 int i;
2093 for (i = 0; i < 16; i++) {
2094 ARMCPRegInfo dbgregs[] = {
2095 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2097 .access = PL1_RW,
2098 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
2099 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2101 .access = PL1_RW,
2102 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
2103 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2105 .access = PL1_RW,
2106 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
2107 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
2108 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2109 .access = PL1_RW,
2110 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
2111 REGINFO_SENTINEL
2113 define_arm_cp_regs(cpu, dbgregs);
2117 void register_cp_regs_for_features(ARMCPU *cpu)
2119 /* Register all the coprocessor registers based on feature bits */
2120 CPUARMState *env = &cpu->env;
2121 if (arm_feature(env, ARM_FEATURE_M)) {
2122 /* M profile has no coprocessor registers */
2123 return;
2126 define_arm_cp_regs(cpu, cp_reginfo);
2127 if (!arm_feature(env, ARM_FEATURE_V8)) {
2128 /* Must go early as it is full of wildcards that may be
2129 * overridden by later definitions.
2131 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
2134 if (arm_feature(env, ARM_FEATURE_V6)) {
2135 /* The ID registers all have impdef reset values */
2136 ARMCPRegInfo v6_idregs[] = {
2137 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
2138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2139 .access = PL1_R, .type = ARM_CP_CONST,
2140 .resetvalue = cpu->id_pfr0 },
2141 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
2142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
2143 .access = PL1_R, .type = ARM_CP_CONST,
2144 .resetvalue = cpu->id_pfr1 },
2145 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
2146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
2147 .access = PL1_R, .type = ARM_CP_CONST,
2148 .resetvalue = cpu->id_dfr0 },
2149 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
2150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
2151 .access = PL1_R, .type = ARM_CP_CONST,
2152 .resetvalue = cpu->id_afr0 },
2153 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
2154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
2155 .access = PL1_R, .type = ARM_CP_CONST,
2156 .resetvalue = cpu->id_mmfr0 },
2157 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
2159 .access = PL1_R, .type = ARM_CP_CONST,
2160 .resetvalue = cpu->id_mmfr1 },
2161 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
2162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
2163 .access = PL1_R, .type = ARM_CP_CONST,
2164 .resetvalue = cpu->id_mmfr2 },
2165 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
2167 .access = PL1_R, .type = ARM_CP_CONST,
2168 .resetvalue = cpu->id_mmfr3 },
2169 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
2170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
2171 .access = PL1_R, .type = ARM_CP_CONST,
2172 .resetvalue = cpu->id_isar0 },
2173 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
2174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
2175 .access = PL1_R, .type = ARM_CP_CONST,
2176 .resetvalue = cpu->id_isar1 },
2177 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
2178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2179 .access = PL1_R, .type = ARM_CP_CONST,
2180 .resetvalue = cpu->id_isar2 },
2181 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
2182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
2183 .access = PL1_R, .type = ARM_CP_CONST,
2184 .resetvalue = cpu->id_isar3 },
2185 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
2186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
2187 .access = PL1_R, .type = ARM_CP_CONST,
2188 .resetvalue = cpu->id_isar4 },
2189 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
2190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
2191 .access = PL1_R, .type = ARM_CP_CONST,
2192 .resetvalue = cpu->id_isar5 },
2193 /* 6..7 are as yet unallocated and must RAZ */
2194 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
2195 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
2196 .resetvalue = 0 },
2197 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
2198 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
2199 .resetvalue = 0 },
2200 REGINFO_SENTINEL
2202 define_arm_cp_regs(cpu, v6_idregs);
2203 define_arm_cp_regs(cpu, v6_cp_reginfo);
2204 } else {
2205 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
2207 if (arm_feature(env, ARM_FEATURE_V6K)) {
2208 define_arm_cp_regs(cpu, v6k_cp_reginfo);
2210 if (arm_feature(env, ARM_FEATURE_V7)) {
2211 /* v7 performance monitor control register: same implementor
2212 * field as main ID register, and we implement only the cycle
2213 * count register.
2215 #ifndef CONFIG_USER_ONLY
2216 ARMCPRegInfo pmcr = {
2217 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
2218 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
2219 .type = ARM_CP_IO,
2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2221 .accessfn = pmreg_access, .writefn = pmcr_write,
2222 .raw_writefn = raw_write,
2224 define_one_arm_cp_reg(cpu, &pmcr);
2225 #endif
2226 ARMCPRegInfo clidr = {
2227 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
2228 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2229 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
2231 define_one_arm_cp_reg(cpu, &clidr);
2232 define_arm_cp_regs(cpu, v7_cp_reginfo);
2233 } else {
2234 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2236 if (arm_feature(env, ARM_FEATURE_V8)) {
2237 /* AArch64 ID registers, which all have impdef reset values */
2238 ARMCPRegInfo v8_idregs[] = {
2239 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2241 .access = PL1_R, .type = ARM_CP_CONST,
2242 .resetvalue = cpu->id_aa64pfr0 },
2243 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2245 .access = PL1_R, .type = ARM_CP_CONST,
2246 .resetvalue = cpu->id_aa64pfr1},
2247 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2249 .access = PL1_R, .type = ARM_CP_CONST,
2250 /* We mask out the PMUVer field, beacuse we don't currently
2251 * implement the PMU. Not advertising it prevents the guest
2252 * from trying to use it and getting UNDEFs on registers we
2253 * don't implement.
2255 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
2256 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2258 .access = PL1_R, .type = ARM_CP_CONST,
2259 .resetvalue = cpu->id_aa64dfr1 },
2260 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2262 .access = PL1_R, .type = ARM_CP_CONST,
2263 .resetvalue = cpu->id_aa64afr0 },
2264 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2266 .access = PL1_R, .type = ARM_CP_CONST,
2267 .resetvalue = cpu->id_aa64afr1 },
2268 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2270 .access = PL1_R, .type = ARM_CP_CONST,
2271 .resetvalue = cpu->id_aa64isar0 },
2272 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2274 .access = PL1_R, .type = ARM_CP_CONST,
2275 .resetvalue = cpu->id_aa64isar1 },
2276 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2278 .access = PL1_R, .type = ARM_CP_CONST,
2279 .resetvalue = cpu->id_aa64mmfr0 },
2280 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2282 .access = PL1_R, .type = ARM_CP_CONST,
2283 .resetvalue = cpu->id_aa64mmfr1 },
2284 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
2285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
2286 .access = PL1_R, .type = ARM_CP_CONST,
2287 .resetvalue = cpu->mvfr0 },
2288 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
2290 .access = PL1_R, .type = ARM_CP_CONST,
2291 .resetvalue = cpu->mvfr1 },
2292 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
2293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
2294 .access = PL1_R, .type = ARM_CP_CONST,
2295 .resetvalue = cpu->mvfr2 },
2296 REGINFO_SENTINEL
2298 ARMCPRegInfo rvbar = {
2299 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
2300 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
2301 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
2303 define_one_arm_cp_reg(cpu, &rvbar);
2304 define_arm_cp_regs(cpu, v8_idregs);
2305 define_arm_cp_regs(cpu, v8_cp_reginfo);
2306 define_aarch64_debug_regs(cpu);
2308 if (arm_feature(env, ARM_FEATURE_MPU)) {
2309 /* These are the MPU registers prior to PMSAv6. Any new
2310 * PMSA core later than the ARM946 will require that we
2311 * implement the PMSAv6 or PMSAv7 registers, which are
2312 * completely different.
2314 assert(!arm_feature(env, ARM_FEATURE_V6));
2315 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2316 } else {
2317 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2319 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2320 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2322 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2323 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2325 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2326 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2328 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2329 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2331 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2332 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2334 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2335 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2337 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2338 define_arm_cp_regs(cpu, omap_cp_reginfo);
2340 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2341 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2343 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2344 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2346 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2347 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2349 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2350 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2352 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2353 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2354 * be read-only (ie write causes UNDEF exception).
2357 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
2358 /* Pre-v8 MIDR space.
2359 * Note that the MIDR isn't a simple constant register because
2360 * of the TI925 behaviour where writes to another register can
2361 * cause the MIDR value to change.
2363 * Unimplemented registers in the c15 0 0 0 space default to
2364 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2365 * and friends override accordingly.
2367 { .name = "MIDR",
2368 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2369 .access = PL1_R, .resetvalue = cpu->midr,
2370 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2371 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2372 .type = ARM_CP_OVERRIDE },
2373 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2374 { .name = "DUMMY",
2375 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2376 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2377 { .name = "DUMMY",
2378 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2379 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2380 { .name = "DUMMY",
2381 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2382 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2383 { .name = "DUMMY",
2384 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2385 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2386 { .name = "DUMMY",
2387 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2388 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2389 REGINFO_SENTINEL
2391 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
2392 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2393 * variable-MIDR TI925 behaviour. Instead we have a single
2394 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2396 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
2397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
2398 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2399 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
2400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
2401 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2402 REGINFO_SENTINEL
2404 ARMCPRegInfo id_cp_reginfo[] = {
2405 /* These are common to v8 and pre-v8 */
2406 { .name = "CTR",
2407 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2408 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2409 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2410 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2411 .access = PL0_R, .accessfn = ctr_el0_access,
2412 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2413 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2414 { .name = "TCMTR",
2415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2417 { .name = "TLBTR",
2418 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2419 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2420 REGINFO_SENTINEL
2422 ARMCPRegInfo crn0_wi_reginfo = {
2423 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2424 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2425 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2427 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2428 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2429 ARMCPRegInfo *r;
2430 /* Register the blanket "writes ignored" value first to cover the
2431 * whole space. Then update the specific ID registers to allow write
2432 * access, so that they ignore writes rather than causing them to
2433 * UNDEF.
2435 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2436 for (r = id_pre_v8_midr_cp_reginfo;
2437 r->type != ARM_CP_SENTINEL; r++) {
2438 r->access = PL1_RW;
2440 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2441 r->access = PL1_RW;
2444 if (arm_feature(env, ARM_FEATURE_V8)) {
2445 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
2446 } else {
2447 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
2449 define_arm_cp_regs(cpu, id_cp_reginfo);
2452 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2453 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2456 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2457 ARMCPRegInfo auxcr = {
2458 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
2459 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
2460 .access = PL1_RW, .type = ARM_CP_CONST,
2461 .resetvalue = cpu->reset_auxcr
2463 define_one_arm_cp_reg(cpu, &auxcr);
2466 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2467 ARMCPRegInfo cbar = {
2468 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2469 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2470 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2472 define_one_arm_cp_reg(cpu, &cbar);
2475 /* Generic registers whose values depend on the implementation */
2477 ARMCPRegInfo sctlr = {
2478 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2479 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2480 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2481 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2482 .raw_writefn = raw_write,
2484 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2485 /* Normally we would always end the TB on an SCTLR write, but Linux
2486 * arch/arm/mach-pxa/sleep.S expects two instructions following
2487 * an MMU enable to execute from cache. Imitate this behaviour.
2489 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2491 define_one_arm_cp_reg(cpu, &sctlr);
2495 ARMCPU *cpu_arm_init(const char *cpu_model)
2497 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2500 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2502 CPUState *cs = CPU(cpu);
2503 CPUARMState *env = &cpu->env;
2505 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2506 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2507 aarch64_fpu_gdb_set_reg,
2508 34, "aarch64-fpu.xml", 0);
2509 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2510 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2511 51, "arm-neon.xml", 0);
2512 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2513 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2514 35, "arm-vfp3.xml", 0);
2515 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2516 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2517 19, "arm-vfp.xml", 0);
2521 /* Sort alphabetically by type name, except for "any". */
2522 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2524 ObjectClass *class_a = (ObjectClass *)a;
2525 ObjectClass *class_b = (ObjectClass *)b;
2526 const char *name_a, *name_b;
2528 name_a = object_class_get_name(class_a);
2529 name_b = object_class_get_name(class_b);
2530 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2531 return 1;
2532 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2533 return -1;
2534 } else {
2535 return strcmp(name_a, name_b);
2539 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2541 ObjectClass *oc = data;
2542 CPUListState *s = user_data;
2543 const char *typename;
2544 char *name;
2546 typename = object_class_get_name(oc);
2547 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2548 (*s->cpu_fprintf)(s->file, " %s\n",
2549 name);
2550 g_free(name);
2553 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2555 CPUListState s = {
2556 .file = f,
2557 .cpu_fprintf = cpu_fprintf,
2559 GSList *list;
2561 list = object_class_get_list(TYPE_ARM_CPU, false);
2562 list = g_slist_sort(list, arm_cpu_list_compare);
2563 (*cpu_fprintf)(f, "Available CPUs:\n");
2564 g_slist_foreach(list, arm_cpu_list_entry, &s);
2565 g_slist_free(list);
2566 #ifdef CONFIG_KVM
2567 /* The 'host' CPU type is dynamically registered only if KVM is
2568 * enabled, so we have to special-case it here:
2570 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2571 #endif
2574 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2576 ObjectClass *oc = data;
2577 CpuDefinitionInfoList **cpu_list = user_data;
2578 CpuDefinitionInfoList *entry;
2579 CpuDefinitionInfo *info;
2580 const char *typename;
2582 typename = object_class_get_name(oc);
2583 info = g_malloc0(sizeof(*info));
2584 info->name = g_strndup(typename,
2585 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2587 entry = g_malloc0(sizeof(*entry));
2588 entry->value = info;
2589 entry->next = *cpu_list;
2590 *cpu_list = entry;
2593 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2595 CpuDefinitionInfoList *cpu_list = NULL;
2596 GSList *list;
2598 list = object_class_get_list(TYPE_ARM_CPU, false);
2599 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2600 g_slist_free(list);
2602 return cpu_list;
2605 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2606 void *opaque, int state,
2607 int crm, int opc1, int opc2)
2609 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2610 * add a single reginfo struct to the hash table.
2612 uint32_t *key = g_new(uint32_t, 1);
2613 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2614 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2615 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2616 /* The AArch32 view of a shared register sees the lower 32 bits
2617 * of a 64 bit backing field. It is not migratable as the AArch64
2618 * view handles that. AArch64 also handles reset.
2619 * We assume it is a cp15 register.
2621 r2->cp = 15;
2622 r2->type |= ARM_CP_NO_MIGRATE;
2623 r2->resetfn = arm_cp_reset_ignore;
2624 #ifdef HOST_WORDS_BIGENDIAN
2625 if (r2->fieldoffset) {
2626 r2->fieldoffset += sizeof(uint32_t);
2628 #endif
2630 if (state == ARM_CP_STATE_AA64) {
2631 /* To allow abbreviation of ARMCPRegInfo
2632 * definitions, we treat cp == 0 as equivalent to
2633 * the value for "standard guest-visible sysreg".
2635 if (r->cp == 0) {
2636 r2->cp = CP_REG_ARM64_SYSREG_CP;
2638 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2639 r2->opc0, opc1, opc2);
2640 } else {
2641 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2643 if (opaque) {
2644 r2->opaque = opaque;
2646 /* reginfo passed to helpers is correct for the actual access,
2647 * and is never ARM_CP_STATE_BOTH:
2649 r2->state = state;
2650 /* Make sure reginfo passed to helpers for wildcarded regs
2651 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2653 r2->crm = crm;
2654 r2->opc1 = opc1;
2655 r2->opc2 = opc2;
2656 /* By convention, for wildcarded registers only the first
2657 * entry is used for migration; the others are marked as
2658 * NO_MIGRATE so we don't try to transfer the register
2659 * multiple times. Special registers (ie NOP/WFI) are
2660 * never migratable.
2662 if ((r->type & ARM_CP_SPECIAL) ||
2663 ((r->crm == CP_ANY) && crm != 0) ||
2664 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2665 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2666 r2->type |= ARM_CP_NO_MIGRATE;
2669 /* Overriding of an existing definition must be explicitly
2670 * requested.
2672 if (!(r->type & ARM_CP_OVERRIDE)) {
2673 ARMCPRegInfo *oldreg;
2674 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2675 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2676 fprintf(stderr, "Register redefined: cp=%d %d bit "
2677 "crn=%d crm=%d opc1=%d opc2=%d, "
2678 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2679 r2->crn, r2->crm, r2->opc1, r2->opc2,
2680 oldreg->name, r2->name);
2681 g_assert_not_reached();
2684 g_hash_table_insert(cpu->cp_regs, key, r2);
2688 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2689 const ARMCPRegInfo *r, void *opaque)
2691 /* Define implementations of coprocessor registers.
2692 * We store these in a hashtable because typically
2693 * there are less than 150 registers in a space which
2694 * is 16*16*16*8*8 = 262144 in size.
2695 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2696 * If a register is defined twice then the second definition is
2697 * used, so this can be used to define some generic registers and
2698 * then override them with implementation specific variations.
2699 * At least one of the original and the second definition should
2700 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2701 * against accidental use.
2703 * The state field defines whether the register is to be
2704 * visible in the AArch32 or AArch64 execution state. If the
2705 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2706 * reginfo structure for the AArch32 view, which sees the lower
2707 * 32 bits of the 64 bit register.
2709 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2710 * be wildcarded. AArch64 registers are always considered to be 64
2711 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2712 * the register, if any.
2714 int crm, opc1, opc2, state;
2715 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2716 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2717 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2718 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2719 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2720 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2721 /* 64 bit registers have only CRm and Opc1 fields */
2722 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2723 /* op0 only exists in the AArch64 encodings */
2724 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2725 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2726 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2727 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2728 * encodes a minimum access level for the register. We roll this
2729 * runtime check into our general permission check code, so check
2730 * here that the reginfo's specified permissions are strict enough
2731 * to encompass the generic architectural permission check.
2733 if (r->state != ARM_CP_STATE_AA32) {
2734 int mask = 0;
2735 switch (r->opc1) {
2736 case 0: case 1: case 2:
2737 /* min_EL EL1 */
2738 mask = PL1_RW;
2739 break;
2740 case 3:
2741 /* min_EL EL0 */
2742 mask = PL0_RW;
2743 break;
2744 case 4:
2745 /* min_EL EL2 */
2746 mask = PL2_RW;
2747 break;
2748 case 5:
2749 /* unallocated encoding, so not possible */
2750 assert(false);
2751 break;
2752 case 6:
2753 /* min_EL EL3 */
2754 mask = PL3_RW;
2755 break;
2756 case 7:
2757 /* min_EL EL1, secure mode only (we don't check the latter) */
2758 mask = PL1_RW;
2759 break;
2760 default:
2761 /* broken reginfo with out-of-range opc1 */
2762 assert(false);
2763 break;
2765 /* assert our permissions are not too lax (stricter is fine) */
2766 assert((r->access & ~mask) == 0);
2769 /* Check that the register definition has enough info to handle
2770 * reads and writes if they are permitted.
2772 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2773 if (r->access & PL3_R) {
2774 assert(r->fieldoffset || r->readfn);
2776 if (r->access & PL3_W) {
2777 assert(r->fieldoffset || r->writefn);
2780 /* Bad type field probably means missing sentinel at end of reg list */
2781 assert(cptype_valid(r->type));
2782 for (crm = crmmin; crm <= crmmax; crm++) {
2783 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2784 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2785 for (state = ARM_CP_STATE_AA32;
2786 state <= ARM_CP_STATE_AA64; state++) {
2787 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2788 continue;
2790 add_cpreg_to_hashtable(cpu, r, opaque, state,
2791 crm, opc1, opc2);
2798 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2799 const ARMCPRegInfo *regs, void *opaque)
2801 /* Define a whole list of registers */
2802 const ARMCPRegInfo *r;
2803 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2804 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2808 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2810 return g_hash_table_lookup(cpregs, &encoded_cp);
2813 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2814 uint64_t value)
2816 /* Helper coprocessor write function for write-ignore registers */
2819 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2821 /* Helper coprocessor write function for read-as-zero registers */
2822 return 0;
2825 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2827 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2830 static int bad_mode_switch(CPUARMState *env, int mode)
2832 /* Return true if it is not valid for us to switch to
2833 * this CPU mode (ie all the UNPREDICTABLE cases in
2834 * the ARM ARM CPSRWriteByInstr pseudocode).
2836 switch (mode) {
2837 case ARM_CPU_MODE_USR:
2838 case ARM_CPU_MODE_SYS:
2839 case ARM_CPU_MODE_SVC:
2840 case ARM_CPU_MODE_ABT:
2841 case ARM_CPU_MODE_UND:
2842 case ARM_CPU_MODE_IRQ:
2843 case ARM_CPU_MODE_FIQ:
2844 return 0;
2845 default:
2846 return 1;
2850 uint32_t cpsr_read(CPUARMState *env)
2852 int ZF;
2853 ZF = (env->ZF == 0);
2854 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2855 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2856 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2857 | ((env->condexec_bits & 0xfc) << 8)
2858 | (env->GE << 16) | (env->daif & CPSR_AIF);
2861 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2863 if (mask & CPSR_NZCV) {
2864 env->ZF = (~val) & CPSR_Z;
2865 env->NF = val;
2866 env->CF = (val >> 29) & 1;
2867 env->VF = (val << 3) & 0x80000000;
2869 if (mask & CPSR_Q)
2870 env->QF = ((val & CPSR_Q) != 0);
2871 if (mask & CPSR_T)
2872 env->thumb = ((val & CPSR_T) != 0);
2873 if (mask & CPSR_IT_0_1) {
2874 env->condexec_bits &= ~3;
2875 env->condexec_bits |= (val >> 25) & 3;
2877 if (mask & CPSR_IT_2_7) {
2878 env->condexec_bits &= 3;
2879 env->condexec_bits |= (val >> 8) & 0xfc;
2881 if (mask & CPSR_GE) {
2882 env->GE = (val >> 16) & 0xf;
2885 env->daif &= ~(CPSR_AIF & mask);
2886 env->daif |= val & CPSR_AIF & mask;
2888 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2889 if (bad_mode_switch(env, val & CPSR_M)) {
2890 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2891 * We choose to ignore the attempt and leave the CPSR M field
2892 * untouched.
2894 mask &= ~CPSR_M;
2895 } else {
2896 switch_mode(env, val & CPSR_M);
2899 mask &= ~CACHED_CPSR_BITS;
2900 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2903 /* Sign/zero extend */
2904 uint32_t HELPER(sxtb16)(uint32_t x)
2906 uint32_t res;
2907 res = (uint16_t)(int8_t)x;
2908 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2909 return res;
2912 uint32_t HELPER(uxtb16)(uint32_t x)
2914 uint32_t res;
2915 res = (uint16_t)(uint8_t)x;
2916 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2917 return res;
2920 uint32_t HELPER(clz)(uint32_t x)
2922 return clz32(x);
2925 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2927 if (den == 0)
2928 return 0;
2929 if (num == INT_MIN && den == -1)
2930 return INT_MIN;
2931 return num / den;
2934 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2936 if (den == 0)
2937 return 0;
2938 return num / den;
2941 uint32_t HELPER(rbit)(uint32_t x)
2943 x = ((x & 0xff000000) >> 24)
2944 | ((x & 0x00ff0000) >> 8)
2945 | ((x & 0x0000ff00) << 8)
2946 | ((x & 0x000000ff) << 24);
2947 x = ((x & 0xf0f0f0f0) >> 4)
2948 | ((x & 0x0f0f0f0f) << 4);
2949 x = ((x & 0x88888888) >> 3)
2950 | ((x & 0x44444444) >> 1)
2951 | ((x & 0x22222222) << 1)
2952 | ((x & 0x11111111) << 3);
2953 return x;
2956 #if defined(CONFIG_USER_ONLY)
2958 void arm_cpu_do_interrupt(CPUState *cs)
2960 cs->exception_index = -1;
2963 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
2964 int mmu_idx)
2966 ARMCPU *cpu = ARM_CPU(cs);
2967 CPUARMState *env = &cpu->env;
2969 env->exception.vaddress = address;
2970 if (rw == 2) {
2971 cs->exception_index = EXCP_PREFETCH_ABORT;
2972 } else {
2973 cs->exception_index = EXCP_DATA_ABORT;
2975 return 1;
2978 /* These should probably raise undefined insn exceptions. */
2979 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2981 ARMCPU *cpu = arm_env_get_cpu(env);
2983 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
2986 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2988 ARMCPU *cpu = arm_env_get_cpu(env);
2990 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
2991 return 0;
2994 void switch_mode(CPUARMState *env, int mode)
2996 ARMCPU *cpu = arm_env_get_cpu(env);
2998 if (mode != ARM_CPU_MODE_USR) {
2999 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
3003 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3005 ARMCPU *cpu = arm_env_get_cpu(env);
3007 cpu_abort(CPU(cpu), "banked r13 write\n");
3010 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3012 ARMCPU *cpu = arm_env_get_cpu(env);
3014 cpu_abort(CPU(cpu), "banked r13 read\n");
3015 return 0;
3018 #else
3020 /* Map CPU modes onto saved register banks. */
3021 int bank_number(int mode)
3023 switch (mode) {
3024 case ARM_CPU_MODE_USR:
3025 case ARM_CPU_MODE_SYS:
3026 return 0;
3027 case ARM_CPU_MODE_SVC:
3028 return 1;
3029 case ARM_CPU_MODE_ABT:
3030 return 2;
3031 case ARM_CPU_MODE_UND:
3032 return 3;
3033 case ARM_CPU_MODE_IRQ:
3034 return 4;
3035 case ARM_CPU_MODE_FIQ:
3036 return 5;
3038 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
3041 void switch_mode(CPUARMState *env, int mode)
3043 int old_mode;
3044 int i;
3046 old_mode = env->uncached_cpsr & CPSR_M;
3047 if (mode == old_mode)
3048 return;
3050 if (old_mode == ARM_CPU_MODE_FIQ) {
3051 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
3052 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
3053 } else if (mode == ARM_CPU_MODE_FIQ) {
3054 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
3055 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
3058 i = bank_number(old_mode);
3059 env->banked_r13[i] = env->regs[13];
3060 env->banked_r14[i] = env->regs[14];
3061 env->banked_spsr[i] = env->spsr;
3063 i = bank_number(mode);
3064 env->regs[13] = env->banked_r13[i];
3065 env->regs[14] = env->banked_r14[i];
3066 env->spsr = env->banked_spsr[i];
3069 static void v7m_push(CPUARMState *env, uint32_t val)
3071 CPUState *cs = CPU(arm_env_get_cpu(env));
3073 env->regs[13] -= 4;
3074 stl_phys(cs->as, env->regs[13], val);
3077 static uint32_t v7m_pop(CPUARMState *env)
3079 CPUState *cs = CPU(arm_env_get_cpu(env));
3080 uint32_t val;
3082 val = ldl_phys(cs->as, env->regs[13]);
3083 env->regs[13] += 4;
3084 return val;
3087 /* Switch to V7M main or process stack pointer. */
3088 static void switch_v7m_sp(CPUARMState *env, int process)
3090 uint32_t tmp;
3091 if (env->v7m.current_sp != process) {
3092 tmp = env->v7m.other_sp;
3093 env->v7m.other_sp = env->regs[13];
3094 env->regs[13] = tmp;
3095 env->v7m.current_sp = process;
3099 static void do_v7m_exception_exit(CPUARMState *env)
3101 uint32_t type;
3102 uint32_t xpsr;
3104 type = env->regs[15];
3105 if (env->v7m.exception != 0)
3106 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
3108 /* Switch to the target stack. */
3109 switch_v7m_sp(env, (type & 4) != 0);
3110 /* Pop registers. */
3111 env->regs[0] = v7m_pop(env);
3112 env->regs[1] = v7m_pop(env);
3113 env->regs[2] = v7m_pop(env);
3114 env->regs[3] = v7m_pop(env);
3115 env->regs[12] = v7m_pop(env);
3116 env->regs[14] = v7m_pop(env);
3117 env->regs[15] = v7m_pop(env);
3118 xpsr = v7m_pop(env);
3119 xpsr_write(env, xpsr, 0xfffffdff);
3120 /* Undo stack alignment. */
3121 if (xpsr & 0x200)
3122 env->regs[13] |= 4;
3123 /* ??? The exception return type specifies Thread/Handler mode. However
3124 this is also implied by the xPSR value. Not sure what to do
3125 if there is a mismatch. */
3126 /* ??? Likewise for mismatches between the CONTROL register and the stack
3127 pointer. */
3130 void arm_v7m_cpu_do_interrupt(CPUState *cs)
3132 ARMCPU *cpu = ARM_CPU(cs);
3133 CPUARMState *env = &cpu->env;
3134 uint32_t xpsr = xpsr_read(env);
3135 uint32_t lr;
3136 uint32_t addr;
3138 arm_log_exception(cs->exception_index);
3140 lr = 0xfffffff1;
3141 if (env->v7m.current_sp)
3142 lr |= 4;
3143 if (env->v7m.exception == 0)
3144 lr |= 8;
3146 /* For exceptions we just mark as pending on the NVIC, and let that
3147 handle it. */
3148 /* TODO: Need to escalate if the current priority is higher than the
3149 one we're raising. */
3150 switch (cs->exception_index) {
3151 case EXCP_UDEF:
3152 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
3153 return;
3154 case EXCP_SWI:
3155 /* The PC already points to the next instruction. */
3156 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
3157 return;
3158 case EXCP_PREFETCH_ABORT:
3159 case EXCP_DATA_ABORT:
3160 /* TODO: if we implemented the MPU registers, this is where we
3161 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3163 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
3164 return;
3165 case EXCP_BKPT:
3166 if (semihosting_enabled) {
3167 int nr;
3168 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3169 if (nr == 0xab) {
3170 env->regs[15] += 2;
3171 env->regs[0] = do_arm_semihosting(env);
3172 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3173 return;
3176 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
3177 return;
3178 case EXCP_IRQ:
3179 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
3180 break;
3181 case EXCP_EXCEPTION_EXIT:
3182 do_v7m_exception_exit(env);
3183 return;
3184 default:
3185 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3186 return; /* Never happens. Keep compiler happy. */
3189 /* Align stack pointer. */
3190 /* ??? Should only do this if Configuration Control Register
3191 STACKALIGN bit is set. */
3192 if (env->regs[13] & 4) {
3193 env->regs[13] -= 4;
3194 xpsr |= 0x200;
3196 /* Switch to the handler mode. */
3197 v7m_push(env, xpsr);
3198 v7m_push(env, env->regs[15]);
3199 v7m_push(env, env->regs[14]);
3200 v7m_push(env, env->regs[12]);
3201 v7m_push(env, env->regs[3]);
3202 v7m_push(env, env->regs[2]);
3203 v7m_push(env, env->regs[1]);
3204 v7m_push(env, env->regs[0]);
3205 switch_v7m_sp(env, 0);
3206 /* Clear IT bits */
3207 env->condexec_bits = 0;
3208 env->regs[14] = lr;
3209 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
3210 env->regs[15] = addr & 0xfffffffe;
3211 env->thumb = addr & 1;
3214 /* Handle a CPU exception. */
3215 void arm_cpu_do_interrupt(CPUState *cs)
3217 ARMCPU *cpu = ARM_CPU(cs);
3218 CPUARMState *env = &cpu->env;
3219 uint32_t addr;
3220 uint32_t mask;
3221 int new_mode;
3222 uint32_t offset;
3224 assert(!IS_M(env));
3226 arm_log_exception(cs->exception_index);
3228 /* TODO: Vectored interrupt controller. */
3229 switch (cs->exception_index) {
3230 case EXCP_UDEF:
3231 new_mode = ARM_CPU_MODE_UND;
3232 addr = 0x04;
3233 mask = CPSR_I;
3234 if (env->thumb)
3235 offset = 2;
3236 else
3237 offset = 4;
3238 break;
3239 case EXCP_SWI:
3240 if (semihosting_enabled) {
3241 /* Check for semihosting interrupt. */
3242 if (env->thumb) {
3243 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
3244 & 0xff;
3245 } else {
3246 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
3247 & 0xffffff;
3249 /* Only intercept calls from privileged modes, to provide some
3250 semblance of security. */
3251 if (((mask == 0x123456 && !env->thumb)
3252 || (mask == 0xab && env->thumb))
3253 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3254 env->regs[0] = do_arm_semihosting(env);
3255 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3256 return;
3259 new_mode = ARM_CPU_MODE_SVC;
3260 addr = 0x08;
3261 mask = CPSR_I;
3262 /* The PC already points to the next instruction. */
3263 offset = 0;
3264 break;
3265 case EXCP_BKPT:
3266 /* See if this is a semihosting syscall. */
3267 if (env->thumb && semihosting_enabled) {
3268 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3269 if (mask == 0xab
3270 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3271 env->regs[15] += 2;
3272 env->regs[0] = do_arm_semihosting(env);
3273 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3274 return;
3277 env->exception.fsr = 2;
3278 /* Fall through to prefetch abort. */
3279 case EXCP_PREFETCH_ABORT:
3280 env->cp15.ifsr_el2 = env->exception.fsr;
3281 env->cp15.far_el1 = deposit64(env->cp15.far_el1, 32, 32,
3282 env->exception.vaddress);
3283 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3284 env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
3285 new_mode = ARM_CPU_MODE_ABT;
3286 addr = 0x0c;
3287 mask = CPSR_A | CPSR_I;
3288 offset = 4;
3289 break;
3290 case EXCP_DATA_ABORT:
3291 env->cp15.esr_el1 = env->exception.fsr;
3292 env->cp15.far_el1 = deposit64(env->cp15.far_el1, 0, 32,
3293 env->exception.vaddress);
3294 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3295 (uint32_t)env->cp15.esr_el1,
3296 (uint32_t)env->exception.vaddress);
3297 new_mode = ARM_CPU_MODE_ABT;
3298 addr = 0x10;
3299 mask = CPSR_A | CPSR_I;
3300 offset = 8;
3301 break;
3302 case EXCP_IRQ:
3303 new_mode = ARM_CPU_MODE_IRQ;
3304 addr = 0x18;
3305 /* Disable IRQ and imprecise data aborts. */
3306 mask = CPSR_A | CPSR_I;
3307 offset = 4;
3308 break;
3309 case EXCP_FIQ:
3310 new_mode = ARM_CPU_MODE_FIQ;
3311 addr = 0x1c;
3312 /* Disable FIQ, IRQ and imprecise data aborts. */
3313 mask = CPSR_A | CPSR_I | CPSR_F;
3314 offset = 4;
3315 break;
3316 default:
3317 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3318 return; /* Never happens. Keep compiler happy. */
3320 /* High vectors. */
3321 if (env->cp15.c1_sys & SCTLR_V) {
3322 /* when enabled, base address cannot be remapped. */
3323 addr += 0xffff0000;
3324 } else {
3325 /* ARM v7 architectures provide a vector base address register to remap
3326 * the interrupt vector table.
3327 * This register is only followed in non-monitor mode, and has a secure
3328 * and un-secure copy. Since the cpu is always in a un-secure operation
3329 * and is never in monitor mode this feature is always active.
3330 * Note: only bits 31:5 are valid.
3332 addr += env->cp15.c12_vbar;
3334 switch_mode (env, new_mode);
3335 env->spsr = cpsr_read(env);
3336 /* Clear IT bits. */
3337 env->condexec_bits = 0;
3338 /* Switch to the new mode, and to the correct instruction set. */
3339 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3340 env->daif |= mask;
3341 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3342 * and we should just guard the thumb mode on V4 */
3343 if (arm_feature(env, ARM_FEATURE_V4T)) {
3344 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3346 env->regs[14] = env->regs[15] + offset;
3347 env->regs[15] = addr;
3348 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3351 /* Check section/page access permissions.
3352 Returns the page protection flags, or zero if the access is not
3353 permitted. */
3354 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3355 int access_type, int is_user)
3357 int prot_ro;
3359 if (domain_prot == 3) {
3360 return PAGE_READ | PAGE_WRITE;
3363 if (access_type == 1)
3364 prot_ro = 0;
3365 else
3366 prot_ro = PAGE_READ;
3368 switch (ap) {
3369 case 0:
3370 if (arm_feature(env, ARM_FEATURE_V7)) {
3371 return 0;
3373 if (access_type == 1)
3374 return 0;
3375 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3376 case SCTLR_S:
3377 return is_user ? 0 : PAGE_READ;
3378 case SCTLR_R:
3379 return PAGE_READ;
3380 default:
3381 return 0;
3383 case 1:
3384 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3385 case 2:
3386 if (is_user)
3387 return prot_ro;
3388 else
3389 return PAGE_READ | PAGE_WRITE;
3390 case 3:
3391 return PAGE_READ | PAGE_WRITE;
3392 case 4: /* Reserved. */
3393 return 0;
3394 case 5:
3395 return is_user ? 0 : prot_ro;
3396 case 6:
3397 return prot_ro;
3398 case 7:
3399 if (!arm_feature (env, ARM_FEATURE_V6K))
3400 return 0;
3401 return prot_ro;
3402 default:
3403 abort();
3407 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3409 uint32_t table;
3411 if (address & env->cp15.c2_mask)
3412 table = env->cp15.ttbr1_el1 & 0xffffc000;
3413 else
3414 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3416 table |= (address >> 18) & 0x3ffc;
3417 return table;
3420 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3421 int is_user, hwaddr *phys_ptr,
3422 int *prot, target_ulong *page_size)
3424 CPUState *cs = CPU(arm_env_get_cpu(env));
3425 int code;
3426 uint32_t table;
3427 uint32_t desc;
3428 int type;
3429 int ap;
3430 int domain;
3431 int domain_prot;
3432 hwaddr phys_addr;
3434 /* Pagetable walk. */
3435 /* Lookup l1 descriptor. */
3436 table = get_level1_table_address(env, address);
3437 desc = ldl_phys(cs->as, table);
3438 type = (desc & 3);
3439 domain = (desc >> 5) & 0x0f;
3440 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3441 if (type == 0) {
3442 /* Section translation fault. */
3443 code = 5;
3444 goto do_fault;
3446 if (domain_prot == 0 || domain_prot == 2) {
3447 if (type == 2)
3448 code = 9; /* Section domain fault. */
3449 else
3450 code = 11; /* Page domain fault. */
3451 goto do_fault;
3453 if (type == 2) {
3454 /* 1Mb section. */
3455 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3456 ap = (desc >> 10) & 3;
3457 code = 13;
3458 *page_size = 1024 * 1024;
3459 } else {
3460 /* Lookup l2 entry. */
3461 if (type == 1) {
3462 /* Coarse pagetable. */
3463 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3464 } else {
3465 /* Fine pagetable. */
3466 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3468 desc = ldl_phys(cs->as, table);
3469 switch (desc & 3) {
3470 case 0: /* Page translation fault. */
3471 code = 7;
3472 goto do_fault;
3473 case 1: /* 64k page. */
3474 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3475 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3476 *page_size = 0x10000;
3477 break;
3478 case 2: /* 4k page. */
3479 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3480 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3481 *page_size = 0x1000;
3482 break;
3483 case 3: /* 1k page. */
3484 if (type == 1) {
3485 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3486 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3487 } else {
3488 /* Page translation fault. */
3489 code = 7;
3490 goto do_fault;
3492 } else {
3493 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3495 ap = (desc >> 4) & 3;
3496 *page_size = 0x400;
3497 break;
3498 default:
3499 /* Never happens, but compiler isn't smart enough to tell. */
3500 abort();
3502 code = 15;
3504 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3505 if (!*prot) {
3506 /* Access permission fault. */
3507 goto do_fault;
3509 *prot |= PAGE_EXEC;
3510 *phys_ptr = phys_addr;
3511 return 0;
3512 do_fault:
3513 return code | (domain << 4);
3516 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3517 int is_user, hwaddr *phys_ptr,
3518 int *prot, target_ulong *page_size)
3520 CPUState *cs = CPU(arm_env_get_cpu(env));
3521 int code;
3522 uint32_t table;
3523 uint32_t desc;
3524 uint32_t xn;
3525 uint32_t pxn = 0;
3526 int type;
3527 int ap;
3528 int domain = 0;
3529 int domain_prot;
3530 hwaddr phys_addr;
3532 /* Pagetable walk. */
3533 /* Lookup l1 descriptor. */
3534 table = get_level1_table_address(env, address);
3535 desc = ldl_phys(cs->as, table);
3536 type = (desc & 3);
3537 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3538 /* Section translation fault, or attempt to use the encoding
3539 * which is Reserved on implementations without PXN.
3541 code = 5;
3542 goto do_fault;
3544 if ((type == 1) || !(desc & (1 << 18))) {
3545 /* Page or Section. */
3546 domain = (desc >> 5) & 0x0f;
3548 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3549 if (domain_prot == 0 || domain_prot == 2) {
3550 if (type != 1) {
3551 code = 9; /* Section domain fault. */
3552 } else {
3553 code = 11; /* Page domain fault. */
3555 goto do_fault;
3557 if (type != 1) {
3558 if (desc & (1 << 18)) {
3559 /* Supersection. */
3560 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3561 *page_size = 0x1000000;
3562 } else {
3563 /* Section. */
3564 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3565 *page_size = 0x100000;
3567 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3568 xn = desc & (1 << 4);
3569 pxn = desc & 1;
3570 code = 13;
3571 } else {
3572 if (arm_feature(env, ARM_FEATURE_PXN)) {
3573 pxn = (desc >> 2) & 1;
3575 /* Lookup l2 entry. */
3576 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3577 desc = ldl_phys(cs->as, table);
3578 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3579 switch (desc & 3) {
3580 case 0: /* Page translation fault. */
3581 code = 7;
3582 goto do_fault;
3583 case 1: /* 64k page. */
3584 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3585 xn = desc & (1 << 15);
3586 *page_size = 0x10000;
3587 break;
3588 case 2: case 3: /* 4k page. */
3589 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3590 xn = desc & 1;
3591 *page_size = 0x1000;
3592 break;
3593 default:
3594 /* Never happens, but compiler isn't smart enough to tell. */
3595 abort();
3597 code = 15;
3599 if (domain_prot == 3) {
3600 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3601 } else {
3602 if (pxn && !is_user) {
3603 xn = 1;
3605 if (xn && access_type == 2)
3606 goto do_fault;
3608 /* The simplified model uses AP[0] as an access control bit. */
3609 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3610 /* Access flag fault. */
3611 code = (code == 15) ? 6 : 3;
3612 goto do_fault;
3614 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3615 if (!*prot) {
3616 /* Access permission fault. */
3617 goto do_fault;
3619 if (!xn) {
3620 *prot |= PAGE_EXEC;
3623 *phys_ptr = phys_addr;
3624 return 0;
3625 do_fault:
3626 return code | (domain << 4);
3629 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3630 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3632 typedef enum {
3633 translation_fault = 1,
3634 access_fault = 2,
3635 permission_fault = 3,
3636 } MMUFaultType;
3638 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3639 int access_type, int is_user,
3640 hwaddr *phys_ptr, int *prot,
3641 target_ulong *page_size_ptr)
3643 CPUState *cs = CPU(arm_env_get_cpu(env));
3644 /* Read an LPAE long-descriptor translation table. */
3645 MMUFaultType fault_type = translation_fault;
3646 uint32_t level = 1;
3647 uint32_t epd;
3648 int32_t tsz;
3649 uint32_t tg;
3650 uint64_t ttbr;
3651 int ttbr_select;
3652 hwaddr descaddr, descmask;
3653 uint32_t tableattrs;
3654 target_ulong page_size;
3655 uint32_t attrs;
3656 int32_t granule_sz = 9;
3657 int32_t va_size = 32;
3658 int32_t tbi = 0;
3660 if (arm_el_is_aa64(env, 1)) {
3661 va_size = 64;
3662 if (extract64(address, 55, 1))
3663 tbi = extract64(env->cp15.c2_control, 38, 1);
3664 else
3665 tbi = extract64(env->cp15.c2_control, 37, 1);
3666 tbi *= 8;
3669 /* Determine whether this address is in the region controlled by
3670 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3671 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3672 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3674 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
3675 if (arm_el_is_aa64(env, 1)) {
3676 t0sz = MIN(t0sz, 39);
3677 t0sz = MAX(t0sz, 16);
3679 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
3680 if (arm_el_is_aa64(env, 1)) {
3681 t1sz = MIN(t1sz, 39);
3682 t1sz = MAX(t1sz, 16);
3684 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3685 /* there is a ttbr0 region and we are in it (high bits all zero) */
3686 ttbr_select = 0;
3687 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3688 /* there is a ttbr1 region and we are in it (high bits all one) */
3689 ttbr_select = 1;
3690 } else if (!t0sz) {
3691 /* ttbr0 region is "everything not in the ttbr1 region" */
3692 ttbr_select = 0;
3693 } else if (!t1sz) {
3694 /* ttbr1 region is "everything not in the ttbr0 region" */
3695 ttbr_select = 1;
3696 } else {
3697 /* in the gap between the two regions, this is a Translation fault */
3698 fault_type = translation_fault;
3699 goto do_fault;
3702 /* Note that QEMU ignores shareability and cacheability attributes,
3703 * so we don't need to do anything with the SH, ORGN, IRGN fields
3704 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3705 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3706 * implement any ASID-like capability so we can ignore it (instead
3707 * we will always flush the TLB any time the ASID is changed).
3709 if (ttbr_select == 0) {
3710 ttbr = env->cp15.ttbr0_el1;
3711 epd = extract32(env->cp15.c2_control, 7, 1);
3712 tsz = t0sz;
3714 tg = extract32(env->cp15.c2_control, 14, 2);
3715 if (tg == 1) { /* 64KB pages */
3716 granule_sz = 13;
3718 if (tg == 2) { /* 16KB pages */
3719 granule_sz = 11;
3721 } else {
3722 ttbr = env->cp15.ttbr1_el1;
3723 epd = extract32(env->cp15.c2_control, 23, 1);
3724 tsz = t1sz;
3726 tg = extract32(env->cp15.c2_control, 30, 2);
3727 if (tg == 3) { /* 64KB pages */
3728 granule_sz = 13;
3730 if (tg == 1) { /* 16KB pages */
3731 granule_sz = 11;
3735 if (epd) {
3736 /* Translation table walk disabled => Translation fault on TLB miss */
3737 goto do_fault;
3740 /* The starting level depends on the virtual address size which can be
3741 * up to 48-bits and the translation granule size.
3743 if ((va_size - tsz) > (granule_sz * 4 + 3)) {
3744 level = 0;
3745 } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
3746 level = 1;
3747 } else {
3748 level = 2;
3751 /* Clear the vaddr bits which aren't part of the within-region address,
3752 * so that we don't have to special case things when calculating the
3753 * first descriptor address.
3755 if (tsz) {
3756 address &= (1ULL << (va_size - tsz)) - 1;
3759 descmask = (1ULL << (granule_sz + 3)) - 1;
3761 /* Now we can extract the actual base address from the TTBR */
3762 descaddr = extract64(ttbr, 0, 48);
3763 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3765 tableattrs = 0;
3766 for (;;) {
3767 uint64_t descriptor;
3769 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
3770 descaddr &= ~7ULL;
3771 descriptor = ldq_phys(cs->as, descaddr);
3772 if (!(descriptor & 1) ||
3773 (!(descriptor & 2) && (level == 3))) {
3774 /* Invalid, or the Reserved level 3 encoding */
3775 goto do_fault;
3777 descaddr = descriptor & 0xfffffff000ULL;
3779 if ((descriptor & 2) && (level < 3)) {
3780 /* Table entry. The top five bits are attributes which may
3781 * propagate down through lower levels of the table (and
3782 * which are all arranged so that 0 means "no effect", so
3783 * we can gather them up by ORing in the bits at each level).
3785 tableattrs |= extract64(descriptor, 59, 5);
3786 level++;
3787 continue;
3789 /* Block entry at level 1 or 2, or page entry at level 3.
3790 * These are basically the same thing, although the number
3791 * of bits we pull in from the vaddr varies.
3793 page_size = (1 << ((granule_sz * (4 - level)) + 3));
3794 descaddr |= (address & (page_size - 1));
3795 /* Extract attributes from the descriptor and merge with table attrs */
3796 if (arm_feature(env, ARM_FEATURE_V8)) {
3797 attrs = extract64(descriptor, 2, 10)
3798 | (extract64(descriptor, 53, 11) << 10);
3799 } else {
3800 attrs = extract64(descriptor, 2, 10)
3801 | (extract64(descriptor, 52, 12) << 10);
3803 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3804 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3805 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3806 * means "force PL1 access only", which means forcing AP[1] to 0.
3808 if (extract32(tableattrs, 2, 1)) {
3809 attrs &= ~(1 << 4);
3811 /* Since we're always in the Non-secure state, NSTable is ignored. */
3812 break;
3814 /* Here descaddr is the final physical address, and attributes
3815 * are all in attrs.
3817 fault_type = access_fault;
3818 if ((attrs & (1 << 8)) == 0) {
3819 /* Access flag */
3820 goto do_fault;
3822 fault_type = permission_fault;
3823 if (is_user && !(attrs & (1 << 4))) {
3824 /* Unprivileged access not enabled */
3825 goto do_fault;
3827 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3828 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3829 /* XN or PXN */
3830 if (access_type == 2) {
3831 goto do_fault;
3833 *prot &= ~PAGE_EXEC;
3835 if (attrs & (1 << 5)) {
3836 /* Write access forbidden */
3837 if (access_type == 1) {
3838 goto do_fault;
3840 *prot &= ~PAGE_WRITE;
3843 *phys_ptr = descaddr;
3844 *page_size_ptr = page_size;
3845 return 0;
3847 do_fault:
3848 /* Long-descriptor format IFSR/DFSR value */
3849 return (1 << 9) | (fault_type << 2) | level;
3852 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3853 int access_type, int is_user,
3854 hwaddr *phys_ptr, int *prot)
3856 int n;
3857 uint32_t mask;
3858 uint32_t base;
3860 *phys_ptr = address;
3861 for (n = 7; n >= 0; n--) {
3862 base = env->cp15.c6_region[n];
3863 if ((base & 1) == 0)
3864 continue;
3865 mask = 1 << ((base >> 1) & 0x1f);
3866 /* Keep this shift separate from the above to avoid an
3867 (undefined) << 32. */
3868 mask = (mask << 1) - 1;
3869 if (((base ^ address) & ~mask) == 0)
3870 break;
3872 if (n < 0)
3873 return 2;
3875 if (access_type == 2) {
3876 mask = env->cp15.pmsav5_insn_ap;
3877 } else {
3878 mask = env->cp15.pmsav5_data_ap;
3880 mask = (mask >> (n * 4)) & 0xf;
3881 switch (mask) {
3882 case 0:
3883 return 1;
3884 case 1:
3885 if (is_user)
3886 return 1;
3887 *prot = PAGE_READ | PAGE_WRITE;
3888 break;
3889 case 2:
3890 *prot = PAGE_READ;
3891 if (!is_user)
3892 *prot |= PAGE_WRITE;
3893 break;
3894 case 3:
3895 *prot = PAGE_READ | PAGE_WRITE;
3896 break;
3897 case 5:
3898 if (is_user)
3899 return 1;
3900 *prot = PAGE_READ;
3901 break;
3902 case 6:
3903 *prot = PAGE_READ;
3904 break;
3905 default:
3906 /* Bad permission. */
3907 return 1;
3909 *prot |= PAGE_EXEC;
3910 return 0;
3913 /* get_phys_addr - get the physical address for this virtual address
3915 * Find the physical address corresponding to the given virtual address,
3916 * by doing a translation table walk on MMU based systems or using the
3917 * MPU state on MPU based systems.
3919 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3920 * prot and page_size are not filled in, and the return value provides
3921 * information on why the translation aborted, in the format of a
3922 * DFSR/IFSR fault register, with the following caveats:
3923 * * we honour the short vs long DFSR format differences.
3924 * * the WnR bit is never set (the caller must do this).
3925 * * for MPU based systems we don't bother to return a full FSR format
3926 * value.
3928 * @env: CPUARMState
3929 * @address: virtual address to get physical address for
3930 * @access_type: 0 for read, 1 for write, 2 for execute
3931 * @is_user: 0 for privileged access, 1 for user
3932 * @phys_ptr: set to the physical address corresponding to the virtual address
3933 * @prot: set to the permissions for the page containing phys_ptr
3934 * @page_size: set to the size of the page containing phys_ptr
3936 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
3937 int access_type, int is_user,
3938 hwaddr *phys_ptr, int *prot,
3939 target_ulong *page_size)
3941 /* Fast Context Switch Extension. */
3942 if (address < 0x02000000)
3943 address += env->cp15.c13_fcse;
3945 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3946 /* MMU/MPU disabled. */
3947 *phys_ptr = address;
3948 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3949 *page_size = TARGET_PAGE_SIZE;
3950 return 0;
3951 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3952 *page_size = TARGET_PAGE_SIZE;
3953 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3954 prot);
3955 } else if (extended_addresses_enabled(env)) {
3956 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3957 prot, page_size);
3958 } else if (env->cp15.c1_sys & SCTLR_XP) {
3959 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3960 prot, page_size);
3961 } else {
3962 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3963 prot, page_size);
3967 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
3968 int access_type, int mmu_idx)
3970 ARMCPU *cpu = ARM_CPU(cs);
3971 CPUARMState *env = &cpu->env;
3972 hwaddr phys_addr;
3973 target_ulong page_size;
3974 int prot;
3975 int ret, is_user;
3976 uint32_t syn;
3977 bool same_el = (arm_current_pl(env) != 0);
3979 is_user = mmu_idx == MMU_USER_IDX;
3980 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3981 &page_size);
3982 if (ret == 0) {
3983 /* Map a single [sub]page. */
3984 phys_addr &= ~(hwaddr)0x3ff;
3985 address &= ~(target_ulong)0x3ff;
3986 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
3987 return 0;
3990 /* AArch64 syndrome does not have an LPAE bit */
3991 syn = ret & ~(1 << 9);
3993 /* For insn and data aborts we assume there is no instruction syndrome
3994 * information; this is always true for exceptions reported to EL1.
3996 if (access_type == 2) {
3997 syn = syn_insn_abort(same_el, 0, 0, syn);
3998 cs->exception_index = EXCP_PREFETCH_ABORT;
3999 } else {
4000 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
4001 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
4002 ret |= (1 << 11);
4004 cs->exception_index = EXCP_DATA_ABORT;
4007 env->exception.syndrome = syn;
4008 env->exception.vaddress = address;
4009 env->exception.fsr = ret;
4010 return 1;
4013 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
4015 ARMCPU *cpu = ARM_CPU(cs);
4016 hwaddr phys_addr;
4017 target_ulong page_size;
4018 int prot;
4019 int ret;
4021 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
4023 if (ret != 0) {
4024 return -1;
4027 return phys_addr;
4030 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4032 if ((env->uncached_cpsr & CPSR_M) == mode) {
4033 env->regs[13] = val;
4034 } else {
4035 env->banked_r13[bank_number(mode)] = val;
4039 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4041 if ((env->uncached_cpsr & CPSR_M) == mode) {
4042 return env->regs[13];
4043 } else {
4044 return env->banked_r13[bank_number(mode)];
4048 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4050 ARMCPU *cpu = arm_env_get_cpu(env);
4052 switch (reg) {
4053 case 0: /* APSR */
4054 return xpsr_read(env) & 0xf8000000;
4055 case 1: /* IAPSR */
4056 return xpsr_read(env) & 0xf80001ff;
4057 case 2: /* EAPSR */
4058 return xpsr_read(env) & 0xff00fc00;
4059 case 3: /* xPSR */
4060 return xpsr_read(env) & 0xff00fdff;
4061 case 5: /* IPSR */
4062 return xpsr_read(env) & 0x000001ff;
4063 case 6: /* EPSR */
4064 return xpsr_read(env) & 0x0700fc00;
4065 case 7: /* IEPSR */
4066 return xpsr_read(env) & 0x0700edff;
4067 case 8: /* MSP */
4068 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
4069 case 9: /* PSP */
4070 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
4071 case 16: /* PRIMASK */
4072 return (env->daif & PSTATE_I) != 0;
4073 case 17: /* BASEPRI */
4074 case 18: /* BASEPRI_MAX */
4075 return env->v7m.basepri;
4076 case 19: /* FAULTMASK */
4077 return (env->daif & PSTATE_F) != 0;
4078 case 20: /* CONTROL */
4079 return env->v7m.control;
4080 default:
4081 /* ??? For debugging only. */
4082 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
4083 return 0;
4087 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4089 ARMCPU *cpu = arm_env_get_cpu(env);
4091 switch (reg) {
4092 case 0: /* APSR */
4093 xpsr_write(env, val, 0xf8000000);
4094 break;
4095 case 1: /* IAPSR */
4096 xpsr_write(env, val, 0xf8000000);
4097 break;
4098 case 2: /* EAPSR */
4099 xpsr_write(env, val, 0xfe00fc00);
4100 break;
4101 case 3: /* xPSR */
4102 xpsr_write(env, val, 0xfe00fc00);
4103 break;
4104 case 5: /* IPSR */
4105 /* IPSR bits are readonly. */
4106 break;
4107 case 6: /* EPSR */
4108 xpsr_write(env, val, 0x0600fc00);
4109 break;
4110 case 7: /* IEPSR */
4111 xpsr_write(env, val, 0x0600fc00);
4112 break;
4113 case 8: /* MSP */
4114 if (env->v7m.current_sp)
4115 env->v7m.other_sp = val;
4116 else
4117 env->regs[13] = val;
4118 break;
4119 case 9: /* PSP */
4120 if (env->v7m.current_sp)
4121 env->regs[13] = val;
4122 else
4123 env->v7m.other_sp = val;
4124 break;
4125 case 16: /* PRIMASK */
4126 if (val & 1) {
4127 env->daif |= PSTATE_I;
4128 } else {
4129 env->daif &= ~PSTATE_I;
4131 break;
4132 case 17: /* BASEPRI */
4133 env->v7m.basepri = val & 0xff;
4134 break;
4135 case 18: /* BASEPRI_MAX */
4136 val &= 0xff;
4137 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
4138 env->v7m.basepri = val;
4139 break;
4140 case 19: /* FAULTMASK */
4141 if (val & 1) {
4142 env->daif |= PSTATE_F;
4143 } else {
4144 env->daif &= ~PSTATE_F;
4146 break;
4147 case 20: /* CONTROL */
4148 env->v7m.control = val & 3;
4149 switch_v7m_sp(env, (val & 2) != 0);
4150 break;
4151 default:
4152 /* ??? For debugging only. */
4153 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
4154 return;
4158 #endif
4160 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
4162 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4163 * Note that we do not implement the (architecturally mandated)
4164 * alignment fault for attempts to use this on Device memory
4165 * (which matches the usual QEMU behaviour of not implementing either
4166 * alignment faults or any memory attribute handling).
4169 ARMCPU *cpu = arm_env_get_cpu(env);
4170 uint64_t blocklen = 4 << cpu->dcz_blocksize;
4171 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
4173 #ifndef CONFIG_USER_ONLY
4175 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4176 * the block size so we might have to do more than one TLB lookup.
4177 * We know that in fact for any v8 CPU the page size is at least 4K
4178 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4179 * 1K as an artefact of legacy v5 subpage support being present in the
4180 * same QEMU executable.
4182 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
4183 void *hostaddr[maxidx];
4184 int try, i;
4186 for (try = 0; try < 2; try++) {
4188 for (i = 0; i < maxidx; i++) {
4189 hostaddr[i] = tlb_vaddr_to_host(env,
4190 vaddr + TARGET_PAGE_SIZE * i,
4191 1, cpu_mmu_index(env));
4192 if (!hostaddr[i]) {
4193 break;
4196 if (i == maxidx) {
4197 /* If it's all in the TLB it's fair game for just writing to;
4198 * we know we don't need to update dirty status, etc.
4200 for (i = 0; i < maxidx - 1; i++) {
4201 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
4203 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
4204 return;
4206 /* OK, try a store and see if we can populate the tlb. This
4207 * might cause an exception if the memory isn't writable,
4208 * in which case we will longjmp out of here. We must for
4209 * this purpose use the actual register value passed to us
4210 * so that we get the fault address right.
4212 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
4213 /* Now we can populate the other TLB entries, if any */
4214 for (i = 0; i < maxidx; i++) {
4215 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
4216 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
4217 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
4222 /* Slow path (probably attempt to do this to an I/O device or
4223 * similar, or clearing of a block of code we have translations
4224 * cached for). Just do a series of byte writes as the architecture
4225 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4226 * memset(), unmap() sequence here because:
4227 * + we'd need to account for the blocksize being larger than a page
4228 * + the direct-RAM access case is almost always going to be dealt
4229 * with in the fastpath code above, so there's no speed benefit
4230 * + we would have to deal with the map returning NULL because the
4231 * bounce buffer was in use
4233 for (i = 0; i < blocklen; i++) {
4234 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
4237 #else
4238 memset(g2h(vaddr), 0, blocklen);
4239 #endif
4242 /* Note that signed overflow is undefined in C. The following routines are
4243 careful to use unsigned types where modulo arithmetic is required.
4244 Failure to do so _will_ break on newer gcc. */
4246 /* Signed saturating arithmetic. */
4248 /* Perform 16-bit signed saturating addition. */
4249 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
4251 uint16_t res;
4253 res = a + b;
4254 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
4255 if (a & 0x8000)
4256 res = 0x8000;
4257 else
4258 res = 0x7fff;
4260 return res;
4263 /* Perform 8-bit signed saturating addition. */
4264 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
4266 uint8_t res;
4268 res = a + b;
4269 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
4270 if (a & 0x80)
4271 res = 0x80;
4272 else
4273 res = 0x7f;
4275 return res;
4278 /* Perform 16-bit signed saturating subtraction. */
4279 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
4281 uint16_t res;
4283 res = a - b;
4284 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
4285 if (a & 0x8000)
4286 res = 0x8000;
4287 else
4288 res = 0x7fff;
4290 return res;
4293 /* Perform 8-bit signed saturating subtraction. */
4294 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
4296 uint8_t res;
4298 res = a - b;
4299 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
4300 if (a & 0x80)
4301 res = 0x80;
4302 else
4303 res = 0x7f;
4305 return res;
4308 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4309 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4310 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4311 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4312 #define PFX q
4314 #include "op_addsub.h"
4316 /* Unsigned saturating arithmetic. */
4317 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
4319 uint16_t res;
4320 res = a + b;
4321 if (res < a)
4322 res = 0xffff;
4323 return res;
4326 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
4328 if (a > b)
4329 return a - b;
4330 else
4331 return 0;
4334 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
4336 uint8_t res;
4337 res = a + b;
4338 if (res < a)
4339 res = 0xff;
4340 return res;
4343 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
4345 if (a > b)
4346 return a - b;
4347 else
4348 return 0;
4351 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4352 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4353 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4354 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4355 #define PFX uq
4357 #include "op_addsub.h"
4359 /* Signed modulo arithmetic. */
4360 #define SARITH16(a, b, n, op) do { \
4361 int32_t sum; \
4362 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4363 RESULT(sum, n, 16); \
4364 if (sum >= 0) \
4365 ge |= 3 << (n * 2); \
4366 } while(0)
4368 #define SARITH8(a, b, n, op) do { \
4369 int32_t sum; \
4370 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4371 RESULT(sum, n, 8); \
4372 if (sum >= 0) \
4373 ge |= 1 << n; \
4374 } while(0)
4377 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4378 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4379 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4380 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4381 #define PFX s
4382 #define ARITH_GE
4384 #include "op_addsub.h"
4386 /* Unsigned modulo arithmetic. */
4387 #define ADD16(a, b, n) do { \
4388 uint32_t sum; \
4389 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4390 RESULT(sum, n, 16); \
4391 if ((sum >> 16) == 1) \
4392 ge |= 3 << (n * 2); \
4393 } while(0)
4395 #define ADD8(a, b, n) do { \
4396 uint32_t sum; \
4397 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4398 RESULT(sum, n, 8); \
4399 if ((sum >> 8) == 1) \
4400 ge |= 1 << n; \
4401 } while(0)
4403 #define SUB16(a, b, n) do { \
4404 uint32_t sum; \
4405 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4406 RESULT(sum, n, 16); \
4407 if ((sum >> 16) == 0) \
4408 ge |= 3 << (n * 2); \
4409 } while(0)
4411 #define SUB8(a, b, n) do { \
4412 uint32_t sum; \
4413 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4414 RESULT(sum, n, 8); \
4415 if ((sum >> 8) == 0) \
4416 ge |= 1 << n; \
4417 } while(0)
4419 #define PFX u
4420 #define ARITH_GE
4422 #include "op_addsub.h"
4424 /* Halved signed arithmetic. */
4425 #define ADD16(a, b, n) \
4426 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4427 #define SUB16(a, b, n) \
4428 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4429 #define ADD8(a, b, n) \
4430 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4431 #define SUB8(a, b, n) \
4432 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4433 #define PFX sh
4435 #include "op_addsub.h"
4437 /* Halved unsigned arithmetic. */
4438 #define ADD16(a, b, n) \
4439 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4440 #define SUB16(a, b, n) \
4441 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4442 #define ADD8(a, b, n) \
4443 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4444 #define SUB8(a, b, n) \
4445 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4446 #define PFX uh
4448 #include "op_addsub.h"
4450 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4452 if (a > b)
4453 return a - b;
4454 else
4455 return b - a;
4458 /* Unsigned sum of absolute byte differences. */
4459 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4461 uint32_t sum;
4462 sum = do_usad(a, b);
4463 sum += do_usad(a >> 8, b >> 8);
4464 sum += do_usad(a >> 16, b >>16);
4465 sum += do_usad(a >> 24, b >> 24);
4466 return sum;
4469 /* For ARMv6 SEL instruction. */
4470 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4472 uint32_t mask;
4474 mask = 0;
4475 if (flags & 1)
4476 mask |= 0xff;
4477 if (flags & 2)
4478 mask |= 0xff00;
4479 if (flags & 4)
4480 mask |= 0xff0000;
4481 if (flags & 8)
4482 mask |= 0xff000000;
4483 return (a & mask) | (b & ~mask);
4486 /* VFP support. We follow the convention used for VFP instructions:
4487 Single precision routines have a "s" suffix, double precision a
4488 "d" suffix. */
4490 /* Convert host exception flags to vfp form. */
4491 static inline int vfp_exceptbits_from_host(int host_bits)
4493 int target_bits = 0;
4495 if (host_bits & float_flag_invalid)
4496 target_bits |= 1;
4497 if (host_bits & float_flag_divbyzero)
4498 target_bits |= 2;
4499 if (host_bits & float_flag_overflow)
4500 target_bits |= 4;
4501 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4502 target_bits |= 8;
4503 if (host_bits & float_flag_inexact)
4504 target_bits |= 0x10;
4505 if (host_bits & float_flag_input_denormal)
4506 target_bits |= 0x80;
4507 return target_bits;
4510 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4512 int i;
4513 uint32_t fpscr;
4515 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4516 | (env->vfp.vec_len << 16)
4517 | (env->vfp.vec_stride << 20);
4518 i = get_float_exception_flags(&env->vfp.fp_status);
4519 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4520 fpscr |= vfp_exceptbits_from_host(i);
4521 return fpscr;
4524 uint32_t vfp_get_fpscr(CPUARMState *env)
4526 return HELPER(vfp_get_fpscr)(env);
4529 /* Convert vfp exception flags to target form. */
4530 static inline int vfp_exceptbits_to_host(int target_bits)
4532 int host_bits = 0;
4534 if (target_bits & 1)
4535 host_bits |= float_flag_invalid;
4536 if (target_bits & 2)
4537 host_bits |= float_flag_divbyzero;
4538 if (target_bits & 4)
4539 host_bits |= float_flag_overflow;
4540 if (target_bits & 8)
4541 host_bits |= float_flag_underflow;
4542 if (target_bits & 0x10)
4543 host_bits |= float_flag_inexact;
4544 if (target_bits & 0x80)
4545 host_bits |= float_flag_input_denormal;
4546 return host_bits;
4549 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4551 int i;
4552 uint32_t changed;
4554 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4555 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4556 env->vfp.vec_len = (val >> 16) & 7;
4557 env->vfp.vec_stride = (val >> 20) & 3;
4559 changed ^= val;
4560 if (changed & (3 << 22)) {
4561 i = (val >> 22) & 3;
4562 switch (i) {
4563 case FPROUNDING_TIEEVEN:
4564 i = float_round_nearest_even;
4565 break;
4566 case FPROUNDING_POSINF:
4567 i = float_round_up;
4568 break;
4569 case FPROUNDING_NEGINF:
4570 i = float_round_down;
4571 break;
4572 case FPROUNDING_ZERO:
4573 i = float_round_to_zero;
4574 break;
4576 set_float_rounding_mode(i, &env->vfp.fp_status);
4578 if (changed & (1 << 24)) {
4579 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4580 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4582 if (changed & (1 << 25))
4583 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4585 i = vfp_exceptbits_to_host(val);
4586 set_float_exception_flags(i, &env->vfp.fp_status);
4587 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4590 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4592 HELPER(vfp_set_fpscr)(env, val);
4595 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4597 #define VFP_BINOP(name) \
4598 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4600 float_status *fpst = fpstp; \
4601 return float32_ ## name(a, b, fpst); \
4603 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4605 float_status *fpst = fpstp; \
4606 return float64_ ## name(a, b, fpst); \
4608 VFP_BINOP(add)
4609 VFP_BINOP(sub)
4610 VFP_BINOP(mul)
4611 VFP_BINOP(div)
4612 VFP_BINOP(min)
4613 VFP_BINOP(max)
4614 VFP_BINOP(minnum)
4615 VFP_BINOP(maxnum)
4616 #undef VFP_BINOP
4618 float32 VFP_HELPER(neg, s)(float32 a)
4620 return float32_chs(a);
4623 float64 VFP_HELPER(neg, d)(float64 a)
4625 return float64_chs(a);
4628 float32 VFP_HELPER(abs, s)(float32 a)
4630 return float32_abs(a);
4633 float64 VFP_HELPER(abs, d)(float64 a)
4635 return float64_abs(a);
4638 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4640 return float32_sqrt(a, &env->vfp.fp_status);
4643 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4645 return float64_sqrt(a, &env->vfp.fp_status);
4648 /* XXX: check quiet/signaling case */
4649 #define DO_VFP_cmp(p, type) \
4650 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4652 uint32_t flags; \
4653 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4654 case 0: flags = 0x6; break; \
4655 case -1: flags = 0x8; break; \
4656 case 1: flags = 0x2; break; \
4657 default: case 2: flags = 0x3; break; \
4659 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4660 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4662 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4664 uint32_t flags; \
4665 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4666 case 0: flags = 0x6; break; \
4667 case -1: flags = 0x8; break; \
4668 case 1: flags = 0x2; break; \
4669 default: case 2: flags = 0x3; break; \
4671 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4672 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4674 DO_VFP_cmp(s, float32)
4675 DO_VFP_cmp(d, float64)
4676 #undef DO_VFP_cmp
4678 /* Integer to float and float to integer conversions */
4680 #define CONV_ITOF(name, fsz, sign) \
4681 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4683 float_status *fpst = fpstp; \
4684 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4687 #define CONV_FTOI(name, fsz, sign, round) \
4688 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4690 float_status *fpst = fpstp; \
4691 if (float##fsz##_is_any_nan(x)) { \
4692 float_raise(float_flag_invalid, fpst); \
4693 return 0; \
4695 return float##fsz##_to_##sign##int32##round(x, fpst); \
4698 #define FLOAT_CONVS(name, p, fsz, sign) \
4699 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4700 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4701 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4703 FLOAT_CONVS(si, s, 32, )
4704 FLOAT_CONVS(si, d, 64, )
4705 FLOAT_CONVS(ui, s, 32, u)
4706 FLOAT_CONVS(ui, d, 64, u)
4708 #undef CONV_ITOF
4709 #undef CONV_FTOI
4710 #undef FLOAT_CONVS
4712 /* floating point conversion */
4713 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4715 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4716 /* ARM requires that S<->D conversion of any kind of NaN generates
4717 * a quiet NaN by forcing the most significant frac bit to 1.
4719 return float64_maybe_silence_nan(r);
4722 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4724 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4725 /* ARM requires that S<->D conversion of any kind of NaN generates
4726 * a quiet NaN by forcing the most significant frac bit to 1.
4728 return float32_maybe_silence_nan(r);
4731 /* VFP3 fixed point conversion. */
4732 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4733 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4734 void *fpstp) \
4736 float_status *fpst = fpstp; \
4737 float##fsz tmp; \
4738 tmp = itype##_to_##float##fsz(x, fpst); \
4739 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4742 /* Notice that we want only input-denormal exception flags from the
4743 * scalbn operation: the other possible flags (overflow+inexact if
4744 * we overflow to infinity, output-denormal) aren't correct for the
4745 * complete scale-and-convert operation.
4747 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4748 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4749 uint32_t shift, \
4750 void *fpstp) \
4752 float_status *fpst = fpstp; \
4753 int old_exc_flags = get_float_exception_flags(fpst); \
4754 float##fsz tmp; \
4755 if (float##fsz##_is_any_nan(x)) { \
4756 float_raise(float_flag_invalid, fpst); \
4757 return 0; \
4759 tmp = float##fsz##_scalbn(x, shift, fpst); \
4760 old_exc_flags |= get_float_exception_flags(fpst) \
4761 & float_flag_input_denormal; \
4762 set_float_exception_flags(old_exc_flags, fpst); \
4763 return float##fsz##_to_##itype##round(tmp, fpst); \
4766 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4767 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4768 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4769 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4771 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4772 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4773 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4775 VFP_CONV_FIX(sh, d, 64, 64, int16)
4776 VFP_CONV_FIX(sl, d, 64, 64, int32)
4777 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4778 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4779 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4780 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4781 VFP_CONV_FIX(sh, s, 32, 32, int16)
4782 VFP_CONV_FIX(sl, s, 32, 32, int32)
4783 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4784 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4785 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4786 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4787 #undef VFP_CONV_FIX
4788 #undef VFP_CONV_FIX_FLOAT
4789 #undef VFP_CONV_FLOAT_FIX_ROUND
4791 /* Set the current fp rounding mode and return the old one.
4792 * The argument is a softfloat float_round_ value.
4794 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4796 float_status *fp_status = &env->vfp.fp_status;
4798 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4799 set_float_rounding_mode(rmode, fp_status);
4801 return prev_rmode;
4804 /* Set the current fp rounding mode in the standard fp status and return
4805 * the old one. This is for NEON instructions that need to change the
4806 * rounding mode but wish to use the standard FPSCR values for everything
4807 * else. Always set the rounding mode back to the correct value after
4808 * modifying it.
4809 * The argument is a softfloat float_round_ value.
4811 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4813 float_status *fp_status = &env->vfp.standard_fp_status;
4815 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4816 set_float_rounding_mode(rmode, fp_status);
4818 return prev_rmode;
4821 /* Half precision conversions. */
4822 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4824 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4825 float32 r = float16_to_float32(make_float16(a), ieee, s);
4826 if (ieee) {
4827 return float32_maybe_silence_nan(r);
4829 return r;
4832 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4834 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4835 float16 r = float32_to_float16(a, ieee, s);
4836 if (ieee) {
4837 r = float16_maybe_silence_nan(r);
4839 return float16_val(r);
4842 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4844 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4847 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4849 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4852 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4854 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4857 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4859 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4862 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4864 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4865 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4866 if (ieee) {
4867 return float64_maybe_silence_nan(r);
4869 return r;
4872 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4874 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4875 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4876 if (ieee) {
4877 r = float16_maybe_silence_nan(r);
4879 return float16_val(r);
4882 #define float32_two make_float32(0x40000000)
4883 #define float32_three make_float32(0x40400000)
4884 #define float32_one_point_five make_float32(0x3fc00000)
4886 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4888 float_status *s = &env->vfp.standard_fp_status;
4889 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4890 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4891 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4892 float_raise(float_flag_input_denormal, s);
4894 return float32_two;
4896 return float32_sub(float32_two, float32_mul(a, b, s), s);
4899 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4901 float_status *s = &env->vfp.standard_fp_status;
4902 float32 product;
4903 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4904 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4905 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4906 float_raise(float_flag_input_denormal, s);
4908 return float32_one_point_five;
4910 product = float32_mul(a, b, s);
4911 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4914 /* NEON helpers. */
4916 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4917 * int->float conversions at run-time. */
4918 #define float64_256 make_float64(0x4070000000000000LL)
4919 #define float64_512 make_float64(0x4080000000000000LL)
4920 #define float32_maxnorm make_float32(0x7f7fffff)
4921 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4923 /* Reciprocal functions
4925 * The algorithm that must be used to calculate the estimate
4926 * is specified by the ARM ARM, see FPRecipEstimate()
4929 static float64 recip_estimate(float64 a, float_status *real_fp_status)
4931 /* These calculations mustn't set any fp exception flags,
4932 * so we use a local copy of the fp_status.
4934 float_status dummy_status = *real_fp_status;
4935 float_status *s = &dummy_status;
4936 /* q = (int)(a * 512.0) */
4937 float64 q = float64_mul(float64_512, a, s);
4938 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4940 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4941 q = int64_to_float64(q_int, s);
4942 q = float64_add(q, float64_half, s);
4943 q = float64_div(q, float64_512, s);
4944 q = float64_div(float64_one, q, s);
4946 /* s = (int)(256.0 * r + 0.5) */
4947 q = float64_mul(q, float64_256, s);
4948 q = float64_add(q, float64_half, s);
4949 q_int = float64_to_int64_round_to_zero(q, s);
4951 /* return (double)s / 256.0 */
4952 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4955 /* Common wrapper to call recip_estimate */
4956 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4958 uint64_t val64 = float64_val(num);
4959 uint64_t frac = extract64(val64, 0, 52);
4960 int64_t exp = extract64(val64, 52, 11);
4961 uint64_t sbit;
4962 float64 scaled, estimate;
4964 /* Generate the scaled number for the estimate function */
4965 if (exp == 0) {
4966 if (extract64(frac, 51, 1) == 0) {
4967 exp = -1;
4968 frac = extract64(frac, 0, 50) << 2;
4969 } else {
4970 frac = extract64(frac, 0, 51) << 1;
4974 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
4975 scaled = make_float64((0x3feULL << 52)
4976 | extract64(frac, 44, 8) << 44);
4978 estimate = recip_estimate(scaled, fpst);
4980 /* Build new result */
4981 val64 = float64_val(estimate);
4982 sbit = 0x8000000000000000ULL & val64;
4983 exp = off - exp;
4984 frac = extract64(val64, 0, 52);
4986 if (exp == 0) {
4987 frac = 1ULL << 51 | extract64(frac, 1, 51);
4988 } else if (exp == -1) {
4989 frac = 1ULL << 50 | extract64(frac, 2, 50);
4990 exp = 0;
4993 return make_float64(sbit | (exp << 52) | frac);
4996 static bool round_to_inf(float_status *fpst, bool sign_bit)
4998 switch (fpst->float_rounding_mode) {
4999 case float_round_nearest_even: /* Round to Nearest */
5000 return true;
5001 case float_round_up: /* Round to +Inf */
5002 return !sign_bit;
5003 case float_round_down: /* Round to -Inf */
5004 return sign_bit;
5005 case float_round_to_zero: /* Round to Zero */
5006 return false;
5009 g_assert_not_reached();
5012 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
5014 float_status *fpst = fpstp;
5015 float32 f32 = float32_squash_input_denormal(input, fpst);
5016 uint32_t f32_val = float32_val(f32);
5017 uint32_t f32_sbit = 0x80000000ULL & f32_val;
5018 int32_t f32_exp = extract32(f32_val, 23, 8);
5019 uint32_t f32_frac = extract32(f32_val, 0, 23);
5020 float64 f64, r64;
5021 uint64_t r64_val;
5022 int64_t r64_exp;
5023 uint64_t r64_frac;
5025 if (float32_is_any_nan(f32)) {
5026 float32 nan = f32;
5027 if (float32_is_signaling_nan(f32)) {
5028 float_raise(float_flag_invalid, fpst);
5029 nan = float32_maybe_silence_nan(f32);
5031 if (fpst->default_nan_mode) {
5032 nan = float32_default_nan;
5034 return nan;
5035 } else if (float32_is_infinity(f32)) {
5036 return float32_set_sign(float32_zero, float32_is_neg(f32));
5037 } else if (float32_is_zero(f32)) {
5038 float_raise(float_flag_divbyzero, fpst);
5039 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5040 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
5041 /* Abs(value) < 2.0^-128 */
5042 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5043 if (round_to_inf(fpst, f32_sbit)) {
5044 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5045 } else {
5046 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
5048 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
5049 float_raise(float_flag_underflow, fpst);
5050 return float32_set_sign(float32_zero, float32_is_neg(f32));
5054 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
5055 r64 = call_recip_estimate(f64, 253, fpst);
5056 r64_val = float64_val(r64);
5057 r64_exp = extract64(r64_val, 52, 11);
5058 r64_frac = extract64(r64_val, 0, 52);
5060 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5061 return make_float32(f32_sbit |
5062 (r64_exp & 0xff) << 23 |
5063 extract64(r64_frac, 29, 24));
5066 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
5068 float_status *fpst = fpstp;
5069 float64 f64 = float64_squash_input_denormal(input, fpst);
5070 uint64_t f64_val = float64_val(f64);
5071 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
5072 int64_t f64_exp = extract64(f64_val, 52, 11);
5073 float64 r64;
5074 uint64_t r64_val;
5075 int64_t r64_exp;
5076 uint64_t r64_frac;
5078 /* Deal with any special cases */
5079 if (float64_is_any_nan(f64)) {
5080 float64 nan = f64;
5081 if (float64_is_signaling_nan(f64)) {
5082 float_raise(float_flag_invalid, fpst);
5083 nan = float64_maybe_silence_nan(f64);
5085 if (fpst->default_nan_mode) {
5086 nan = float64_default_nan;
5088 return nan;
5089 } else if (float64_is_infinity(f64)) {
5090 return float64_set_sign(float64_zero, float64_is_neg(f64));
5091 } else if (float64_is_zero(f64)) {
5092 float_raise(float_flag_divbyzero, fpst);
5093 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5094 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
5095 /* Abs(value) < 2.0^-1024 */
5096 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5097 if (round_to_inf(fpst, f64_sbit)) {
5098 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5099 } else {
5100 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
5102 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
5103 float_raise(float_flag_underflow, fpst);
5104 return float64_set_sign(float64_zero, float64_is_neg(f64));
5107 r64 = call_recip_estimate(f64, 2045, fpst);
5108 r64_val = float64_val(r64);
5109 r64_exp = extract64(r64_val, 52, 11);
5110 r64_frac = extract64(r64_val, 0, 52);
5112 /* result = sign : result_exp<10:0> : fraction<51:0> */
5113 return make_float64(f64_sbit |
5114 ((r64_exp & 0x7ff) << 52) |
5115 r64_frac);
5118 /* The algorithm that must be used to calculate the estimate
5119 * is specified by the ARM ARM.
5121 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
5123 /* These calculations mustn't set any fp exception flags,
5124 * so we use a local copy of the fp_status.
5126 float_status dummy_status = *real_fp_status;
5127 float_status *s = &dummy_status;
5128 float64 q;
5129 int64_t q_int;
5131 if (float64_lt(a, float64_half, s)) {
5132 /* range 0.25 <= a < 0.5 */
5134 /* a in units of 1/512 rounded down */
5135 /* q0 = (int)(a * 512.0); */
5136 q = float64_mul(float64_512, a, s);
5137 q_int = float64_to_int64_round_to_zero(q, s);
5139 /* reciprocal root r */
5140 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5141 q = int64_to_float64(q_int, s);
5142 q = float64_add(q, float64_half, s);
5143 q = float64_div(q, float64_512, s);
5144 q = float64_sqrt(q, s);
5145 q = float64_div(float64_one, q, s);
5146 } else {
5147 /* range 0.5 <= a < 1.0 */
5149 /* a in units of 1/256 rounded down */
5150 /* q1 = (int)(a * 256.0); */
5151 q = float64_mul(float64_256, a, s);
5152 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5154 /* reciprocal root r */
5155 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5156 q = int64_to_float64(q_int, s);
5157 q = float64_add(q, float64_half, s);
5158 q = float64_div(q, float64_256, s);
5159 q = float64_sqrt(q, s);
5160 q = float64_div(float64_one, q, s);
5162 /* r in units of 1/256 rounded to nearest */
5163 /* s = (int)(256.0 * r + 0.5); */
5165 q = float64_mul(q, float64_256,s );
5166 q = float64_add(q, float64_half, s);
5167 q_int = float64_to_int64_round_to_zero(q, s);
5169 /* return (double)s / 256.0;*/
5170 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5173 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
5175 float_status *s = fpstp;
5176 float32 f32 = float32_squash_input_denormal(input, s);
5177 uint32_t val = float32_val(f32);
5178 uint32_t f32_sbit = 0x80000000 & val;
5179 int32_t f32_exp = extract32(val, 23, 8);
5180 uint32_t f32_frac = extract32(val, 0, 23);
5181 uint64_t f64_frac;
5182 uint64_t val64;
5183 int result_exp;
5184 float64 f64;
5186 if (float32_is_any_nan(f32)) {
5187 float32 nan = f32;
5188 if (float32_is_signaling_nan(f32)) {
5189 float_raise(float_flag_invalid, s);
5190 nan = float32_maybe_silence_nan(f32);
5192 if (s->default_nan_mode) {
5193 nan = float32_default_nan;
5195 return nan;
5196 } else if (float32_is_zero(f32)) {
5197 float_raise(float_flag_divbyzero, s);
5198 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5199 } else if (float32_is_neg(f32)) {
5200 float_raise(float_flag_invalid, s);
5201 return float32_default_nan;
5202 } else if (float32_is_infinity(f32)) {
5203 return float32_zero;
5206 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5207 * preserving the parity of the exponent. */
5209 f64_frac = ((uint64_t) f32_frac) << 29;
5210 if (f32_exp == 0) {
5211 while (extract64(f64_frac, 51, 1) == 0) {
5212 f64_frac = f64_frac << 1;
5213 f32_exp = f32_exp-1;
5215 f64_frac = extract64(f64_frac, 0, 51) << 1;
5218 if (extract64(f32_exp, 0, 1) == 0) {
5219 f64 = make_float64(((uint64_t) f32_sbit) << 32
5220 | (0x3feULL << 52)
5221 | f64_frac);
5222 } else {
5223 f64 = make_float64(((uint64_t) f32_sbit) << 32
5224 | (0x3fdULL << 52)
5225 | f64_frac);
5228 result_exp = (380 - f32_exp) / 2;
5230 f64 = recip_sqrt_estimate(f64, s);
5232 val64 = float64_val(f64);
5234 val = ((result_exp & 0xff) << 23)
5235 | ((val64 >> 29) & 0x7fffff);
5236 return make_float32(val);
5239 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
5241 float_status *s = fpstp;
5242 float64 f64 = float64_squash_input_denormal(input, s);
5243 uint64_t val = float64_val(f64);
5244 uint64_t f64_sbit = 0x8000000000000000ULL & val;
5245 int64_t f64_exp = extract64(val, 52, 11);
5246 uint64_t f64_frac = extract64(val, 0, 52);
5247 int64_t result_exp;
5248 uint64_t result_frac;
5250 if (float64_is_any_nan(f64)) {
5251 float64 nan = f64;
5252 if (float64_is_signaling_nan(f64)) {
5253 float_raise(float_flag_invalid, s);
5254 nan = float64_maybe_silence_nan(f64);
5256 if (s->default_nan_mode) {
5257 nan = float64_default_nan;
5259 return nan;
5260 } else if (float64_is_zero(f64)) {
5261 float_raise(float_flag_divbyzero, s);
5262 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5263 } else if (float64_is_neg(f64)) {
5264 float_raise(float_flag_invalid, s);
5265 return float64_default_nan;
5266 } else if (float64_is_infinity(f64)) {
5267 return float64_zero;
5270 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5271 * preserving the parity of the exponent. */
5273 if (f64_exp == 0) {
5274 while (extract64(f64_frac, 51, 1) == 0) {
5275 f64_frac = f64_frac << 1;
5276 f64_exp = f64_exp - 1;
5278 f64_frac = extract64(f64_frac, 0, 51) << 1;
5281 if (extract64(f64_exp, 0, 1) == 0) {
5282 f64 = make_float64(f64_sbit
5283 | (0x3feULL << 52)
5284 | f64_frac);
5285 } else {
5286 f64 = make_float64(f64_sbit
5287 | (0x3fdULL << 52)
5288 | f64_frac);
5291 result_exp = (3068 - f64_exp) / 2;
5293 f64 = recip_sqrt_estimate(f64, s);
5295 result_frac = extract64(float64_val(f64), 0, 52);
5297 return make_float64(f64_sbit |
5298 ((result_exp & 0x7ff) << 52) |
5299 result_frac);
5302 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
5304 float_status *s = fpstp;
5305 float64 f64;
5307 if ((a & 0x80000000) == 0) {
5308 return 0xffffffff;
5311 f64 = make_float64((0x3feULL << 52)
5312 | ((int64_t)(a & 0x7fffffff) << 21));
5314 f64 = recip_estimate(f64, s);
5316 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5319 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
5321 float_status *fpst = fpstp;
5322 float64 f64;
5324 if ((a & 0xc0000000) == 0) {
5325 return 0xffffffff;
5328 if (a & 0x80000000) {
5329 f64 = make_float64((0x3feULL << 52)
5330 | ((uint64_t)(a & 0x7fffffff) << 21));
5331 } else { /* bits 31-30 == '01' */
5332 f64 = make_float64((0x3fdULL << 52)
5333 | ((uint64_t)(a & 0x3fffffff) << 22));
5336 f64 = recip_sqrt_estimate(f64, fpst);
5338 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5341 /* VFPv4 fused multiply-accumulate */
5342 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
5344 float_status *fpst = fpstp;
5345 return float32_muladd(a, b, c, 0, fpst);
5348 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
5350 float_status *fpst = fpstp;
5351 return float64_muladd(a, b, c, 0, fpst);
5354 /* ARMv8 round to integral */
5355 float32 HELPER(rints_exact)(float32 x, void *fp_status)
5357 return float32_round_to_int(x, fp_status);
5360 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
5362 return float64_round_to_int(x, fp_status);
5365 float32 HELPER(rints)(float32 x, void *fp_status)
5367 int old_flags = get_float_exception_flags(fp_status), new_flags;
5368 float32 ret;
5370 ret = float32_round_to_int(x, fp_status);
5372 /* Suppress any inexact exceptions the conversion produced */
5373 if (!(old_flags & float_flag_inexact)) {
5374 new_flags = get_float_exception_flags(fp_status);
5375 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5378 return ret;
5381 float64 HELPER(rintd)(float64 x, void *fp_status)
5383 int old_flags = get_float_exception_flags(fp_status), new_flags;
5384 float64 ret;
5386 ret = float64_round_to_int(x, fp_status);
5388 new_flags = get_float_exception_flags(fp_status);
5390 /* Suppress any inexact exceptions the conversion produced */
5391 if (!(old_flags & float_flag_inexact)) {
5392 new_flags = get_float_exception_flags(fp_status);
5393 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5396 return ret;
5399 /* Convert ARM rounding mode to softfloat */
5400 int arm_rmode_to_sf(int rmode)
5402 switch (rmode) {
5403 case FPROUNDING_TIEAWAY:
5404 rmode = float_round_ties_away;
5405 break;
5406 case FPROUNDING_ODD:
5407 /* FIXME: add support for TIEAWAY and ODD */
5408 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
5409 rmode);
5410 case FPROUNDING_TIEEVEN:
5411 default:
5412 rmode = float_round_nearest_even;
5413 break;
5414 case FPROUNDING_POSINF:
5415 rmode = float_round_up;
5416 break;
5417 case FPROUNDING_NEGINF:
5418 rmode = float_round_down;
5419 break;
5420 case FPROUNDING_ZERO:
5421 rmode = float_round_to_zero;
5422 break;
5424 return rmode;
5427 static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
5429 memset(buf, 0, 4);
5431 if (bytes == 1) {
5432 buf[0] = val & 0xff;
5433 } else if (bytes == 2) {
5434 buf[0] = val & 0xff;
5435 buf[1] = (val >> 8) & 0xff;
5436 } else {
5437 buf[0] = val & 0xff;
5438 buf[1] = (val >> 8) & 0xff;
5439 buf[2] = (val >> 16) & 0xff;
5440 buf[3] = (val >> 24) & 0xff;
5444 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
5446 uint8_t buf[4];
5448 crc_init_buffer(buf, val, bytes);
5450 /* zlib crc32 converts the accumulator and output to one's complement. */
5451 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
5454 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
5456 uint8_t buf[4];
5458 crc_init_buffer(buf, val, bytes);
5460 /* Linux crc32c converts the output to one's complement. */
5461 return crc32c(acc, buf, bytes) ^ 0xffffffff;