target/arm: Define init-svtor property for the reset secure VTOR value
[qemu.git] / target / arm / cpu.h
blob72b5668377d9a548c84c86d98bdc0db1198e6fa7
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 #define ARMV7M_EXCP_RESET 1
62 #define ARMV7M_EXCP_NMI 2
63 #define ARMV7M_EXCP_HARD 3
64 #define ARMV7M_EXCP_MEM 4
65 #define ARMV7M_EXCP_BUS 5
66 #define ARMV7M_EXCP_USAGE 6
67 #define ARMV7M_EXCP_SECURE 7
68 #define ARMV7M_EXCP_SVC 11
69 #define ARMV7M_EXCP_DEBUG 12
70 #define ARMV7M_EXCP_PENDSV 14
71 #define ARMV7M_EXCP_SYSTICK 15
73 /* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
82 enum {
83 M_REG_NS = 0,
84 M_REG_S = 1,
85 M_REG_NUM_BANKS = 2,
88 /* ARM-specific interrupt pending bits. */
89 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 /* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115 * 1: Conditional execution bits
116 * 2: Partial exception syndrome for data aborts
118 #define TARGET_INSN_START_EXTRA_WORDS 2
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122 * help the sleb128 encoder do a better job.
123 * When restoring the CPU state, we shift it back up.
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
128 /* We currently assume float and double are IEEE single and double
129 precision respectively.
130 Doing runtime conversions is tricky because VFP registers may contain
131 integer values (eg. as the result of a FTOSI instruction).
132 s<2n> maps to the least significant half of d<n>
133 s<2n+1> maps to the most significant half of d<n>
136 /* CPU state for each instance of a generic timer (in cp15 c14) */
137 typedef struct ARMGenericTimer {
138 uint64_t cval; /* Timer CompareValue register */
139 uint64_t ctl; /* Timer Control register */
140 } ARMGenericTimer;
142 #define GTIMER_PHYS 0
143 #define GTIMER_VIRT 1
144 #define GTIMER_HYP 2
145 #define GTIMER_SEC 3
146 #define NUM_GTIMERS 4
148 typedef struct {
149 uint64_t raw_tcr;
150 uint32_t mask;
151 uint32_t base_mask;
152 } TCR;
154 /* Define a maximum sized vector register.
155 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156 * For 64-bit, this is a 2048-bit SVE register.
158 * Note that the mapping between S, D, and Q views of the register bank
159 * differs between AArch64 and AArch32.
160 * In AArch32:
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n / 2].d[n & 1]
163 * Sn = regs[n / 4].d[n % 4 / 2],
164 * bits 31..0 for even n, and bits 63..32 for odd n
165 * (and regs[16] to regs[31] are inaccessible)
166 * In AArch64:
167 * Zn = regs[n].d[*]
168 * Qn = regs[n].d[1]:regs[n].d[0]
169 * Dn = regs[n].d[0]
170 * Sn = regs[n].d[0] bits 31..0
171 * Hn = regs[n].d[0] bits 15..0
173 * This corresponds to the architecturally defined mapping between
174 * the two execution states, and means we do not need to explicitly
175 * map these registers when changing states.
177 * Align the data for use with TCG host vector operations.
180 #ifdef TARGET_AARCH64
181 # define ARM_MAX_VQ 16
182 #else
183 # define ARM_MAX_VQ 1
184 #endif
186 typedef struct ARMVectorReg {
187 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
188 } ARMVectorReg;
190 /* In AArch32 mode, predicate registers do not exist at all. */
191 #ifdef TARGET_AARCH64
192 typedef struct ARMPredicateReg {
193 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
194 } ARMPredicateReg;
195 #endif
198 typedef struct CPUARMState {
199 /* Regs for current mode. */
200 uint32_t regs[16];
202 /* 32/64 switch only happens when taking and returning from
203 * exceptions so the overlap semantics are taken care of then
204 * instead of having a complicated union.
206 /* Regs for A64 mode. */
207 uint64_t xregs[32];
208 uint64_t pc;
209 /* PSTATE isn't an architectural register for ARMv8. However, it is
210 * convenient for us to assemble the underlying state into a 32 bit format
211 * identical to the architectural format used for the SPSR. (This is also
212 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
213 * 'pstate' register are.) Of the PSTATE bits:
214 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
215 * semantics as for AArch32, as described in the comments on each field)
216 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
217 * DAIF (exception masks) are kept in env->daif
218 * all other bits are stored in their correct places in env->pstate
220 uint32_t pstate;
221 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
223 /* Frequently accessed CPSR bits are stored separately for efficiency.
224 This contains all the other bits. Use cpsr_{read,write} to access
225 the whole CPSR. */
226 uint32_t uncached_cpsr;
227 uint32_t spsr;
229 /* Banked registers. */
230 uint64_t banked_spsr[8];
231 uint32_t banked_r13[8];
232 uint32_t banked_r14[8];
234 /* These hold r8-r12. */
235 uint32_t usr_regs[5];
236 uint32_t fiq_regs[5];
238 /* cpsr flag cache for faster execution */
239 uint32_t CF; /* 0 or 1 */
240 uint32_t VF; /* V is the bit 31. All other bits are undefined */
241 uint32_t NF; /* N is bit 31. All other bits are undefined. */
242 uint32_t ZF; /* Z set if zero. */
243 uint32_t QF; /* 0 or 1 */
244 uint32_t GE; /* cpsr[19:16] */
245 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
246 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
247 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
249 uint64_t elr_el[4]; /* AArch64 exception link regs */
250 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
252 /* System control coprocessor (cp15) */
253 struct {
254 uint32_t c0_cpuid;
255 union { /* Cache size selection */
256 struct {
257 uint64_t _unused_csselr0;
258 uint64_t csselr_ns;
259 uint64_t _unused_csselr1;
260 uint64_t csselr_s;
262 uint64_t csselr_el[4];
264 union { /* System control register. */
265 struct {
266 uint64_t _unused_sctlr;
267 uint64_t sctlr_ns;
268 uint64_t hsctlr;
269 uint64_t sctlr_s;
271 uint64_t sctlr_el[4];
273 uint64_t cpacr_el1; /* Architectural feature access control register */
274 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
275 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
276 uint64_t sder; /* Secure debug enable register. */
277 uint32_t nsacr; /* Non-secure access control register. */
278 union { /* MMU translation table base 0. */
279 struct {
280 uint64_t _unused_ttbr0_0;
281 uint64_t ttbr0_ns;
282 uint64_t _unused_ttbr0_1;
283 uint64_t ttbr0_s;
285 uint64_t ttbr0_el[4];
287 union { /* MMU translation table base 1. */
288 struct {
289 uint64_t _unused_ttbr1_0;
290 uint64_t ttbr1_ns;
291 uint64_t _unused_ttbr1_1;
292 uint64_t ttbr1_s;
294 uint64_t ttbr1_el[4];
296 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
297 /* MMU translation table base control. */
298 TCR tcr_el[4];
299 TCR vtcr_el2; /* Virtualization Translation Control. */
300 uint32_t c2_data; /* MPU data cacheable bits. */
301 uint32_t c2_insn; /* MPU instruction cacheable bits. */
302 union { /* MMU domain access control register
303 * MPU write buffer control.
305 struct {
306 uint64_t dacr_ns;
307 uint64_t dacr_s;
309 struct {
310 uint64_t dacr32_el2;
313 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
314 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
315 uint64_t hcr_el2; /* Hypervisor configuration register */
316 uint64_t scr_el3; /* Secure configuration register. */
317 union { /* Fault status registers. */
318 struct {
319 uint64_t ifsr_ns;
320 uint64_t ifsr_s;
322 struct {
323 uint64_t ifsr32_el2;
326 union {
327 struct {
328 uint64_t _unused_dfsr;
329 uint64_t dfsr_ns;
330 uint64_t hsr;
331 uint64_t dfsr_s;
333 uint64_t esr_el[4];
335 uint32_t c6_region[8]; /* MPU base/size registers. */
336 union { /* Fault address registers. */
337 struct {
338 uint64_t _unused_far0;
339 #ifdef HOST_WORDS_BIGENDIAN
340 uint32_t ifar_ns;
341 uint32_t dfar_ns;
342 uint32_t ifar_s;
343 uint32_t dfar_s;
344 #else
345 uint32_t dfar_ns;
346 uint32_t ifar_ns;
347 uint32_t dfar_s;
348 uint32_t ifar_s;
349 #endif
350 uint64_t _unused_far3;
352 uint64_t far_el[4];
354 uint64_t hpfar_el2;
355 uint64_t hstr_el2;
356 union { /* Translation result. */
357 struct {
358 uint64_t _unused_par_0;
359 uint64_t par_ns;
360 uint64_t _unused_par_1;
361 uint64_t par_s;
363 uint64_t par_el[4];
366 uint32_t c9_insn; /* Cache lockdown registers. */
367 uint32_t c9_data;
368 uint64_t c9_pmcr; /* performance monitor control register */
369 uint64_t c9_pmcnten; /* perf monitor counter enables */
370 uint32_t c9_pmovsr; /* perf monitor overflow status */
371 uint32_t c9_pmuserenr; /* perf monitor user enable */
372 uint64_t c9_pmselr; /* perf monitor counter selection register */
373 uint64_t c9_pminten; /* perf monitor interrupt enables */
374 union { /* Memory attribute redirection */
375 struct {
376 #ifdef HOST_WORDS_BIGENDIAN
377 uint64_t _unused_mair_0;
378 uint32_t mair1_ns;
379 uint32_t mair0_ns;
380 uint64_t _unused_mair_1;
381 uint32_t mair1_s;
382 uint32_t mair0_s;
383 #else
384 uint64_t _unused_mair_0;
385 uint32_t mair0_ns;
386 uint32_t mair1_ns;
387 uint64_t _unused_mair_1;
388 uint32_t mair0_s;
389 uint32_t mair1_s;
390 #endif
392 uint64_t mair_el[4];
394 union { /* vector base address register */
395 struct {
396 uint64_t _unused_vbar;
397 uint64_t vbar_ns;
398 uint64_t hvbar;
399 uint64_t vbar_s;
401 uint64_t vbar_el[4];
403 uint32_t mvbar; /* (monitor) vector base address register */
404 struct { /* FCSE PID. */
405 uint32_t fcseidr_ns;
406 uint32_t fcseidr_s;
408 union { /* Context ID. */
409 struct {
410 uint64_t _unused_contextidr_0;
411 uint64_t contextidr_ns;
412 uint64_t _unused_contextidr_1;
413 uint64_t contextidr_s;
415 uint64_t contextidr_el[4];
417 union { /* User RW Thread register. */
418 struct {
419 uint64_t tpidrurw_ns;
420 uint64_t tpidrprw_ns;
421 uint64_t htpidr;
422 uint64_t _tpidr_el3;
424 uint64_t tpidr_el[4];
426 /* The secure banks of these registers don't map anywhere */
427 uint64_t tpidrurw_s;
428 uint64_t tpidrprw_s;
429 uint64_t tpidruro_s;
431 union { /* User RO Thread register. */
432 uint64_t tpidruro_ns;
433 uint64_t tpidrro_el[1];
435 uint64_t c14_cntfrq; /* Counter Frequency register */
436 uint64_t c14_cntkctl; /* Timer Control register */
437 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
438 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
439 ARMGenericTimer c14_timer[NUM_GTIMERS];
440 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
441 uint32_t c15_ticonfig; /* TI925T configuration byte. */
442 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
443 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
444 uint32_t c15_threadid; /* TI debugger thread-ID. */
445 uint32_t c15_config_base_address; /* SCU base address. */
446 uint32_t c15_diagnostic; /* diagnostic register */
447 uint32_t c15_power_diagnostic;
448 uint32_t c15_power_control; /* power control */
449 uint64_t dbgbvr[16]; /* breakpoint value registers */
450 uint64_t dbgbcr[16]; /* breakpoint control registers */
451 uint64_t dbgwvr[16]; /* watchpoint value registers */
452 uint64_t dbgwcr[16]; /* watchpoint control registers */
453 uint64_t mdscr_el1;
454 uint64_t oslsr_el1; /* OS Lock Status */
455 uint64_t mdcr_el2;
456 uint64_t mdcr_el3;
457 /* If the counter is enabled, this stores the last time the counter
458 * was reset. Otherwise it stores the counter value
460 uint64_t c15_ccnt;
461 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
462 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
463 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
464 } cp15;
466 struct {
467 /* M profile has up to 4 stack pointers:
468 * a Main Stack Pointer and a Process Stack Pointer for each
469 * of the Secure and Non-Secure states. (If the CPU doesn't support
470 * the security extension then it has only two SPs.)
471 * In QEMU we always store the currently active SP in regs[13],
472 * and the non-active SP for the current security state in
473 * v7m.other_sp. The stack pointers for the inactive security state
474 * are stored in other_ss_msp and other_ss_psp.
475 * switch_v7m_security_state() is responsible for rearranging them
476 * when we change security state.
478 uint32_t other_sp;
479 uint32_t other_ss_msp;
480 uint32_t other_ss_psp;
481 uint32_t vecbase[M_REG_NUM_BANKS];
482 uint32_t basepri[M_REG_NUM_BANKS];
483 uint32_t control[M_REG_NUM_BANKS];
484 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
485 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
486 uint32_t hfsr; /* HardFault Status */
487 uint32_t dfsr; /* Debug Fault Status Register */
488 uint32_t sfsr; /* Secure Fault Status Register */
489 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
490 uint32_t bfar; /* BusFault Address */
491 uint32_t sfar; /* Secure Fault Address Register */
492 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
493 int exception;
494 uint32_t primask[M_REG_NUM_BANKS];
495 uint32_t faultmask[M_REG_NUM_BANKS];
496 uint32_t aircr; /* only holds r/w state if security extn implemented */
497 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
498 uint32_t csselr[M_REG_NUM_BANKS];
499 uint32_t scr[M_REG_NUM_BANKS];
500 uint32_t msplim[M_REG_NUM_BANKS];
501 uint32_t psplim[M_REG_NUM_BANKS];
502 } v7m;
504 /* Information associated with an exception about to be taken:
505 * code which raises an exception must set cs->exception_index and
506 * the relevant parts of this structure; the cpu_do_interrupt function
507 * will then set the guest-visible registers as part of the exception
508 * entry process.
510 struct {
511 uint32_t syndrome; /* AArch64 format syndrome register */
512 uint32_t fsr; /* AArch32 format fault status register info */
513 uint64_t vaddress; /* virtual addr associated with exception, if any */
514 uint32_t target_el; /* EL the exception should be targeted for */
515 /* If we implement EL2 we will also need to store information
516 * about the intermediate physical address for stage 2 faults.
518 } exception;
520 /* Thumb-2 EE state. */
521 uint32_t teecr;
522 uint32_t teehbr;
524 /* VFP coprocessor state. */
525 struct {
526 ARMVectorReg zregs[32];
528 #ifdef TARGET_AARCH64
529 /* Store FFR as pregs[16] to make it easier to treat as any other. */
530 ARMPredicateReg pregs[17];
531 #endif
533 uint32_t xregs[16];
534 /* We store these fpcsr fields separately for convenience. */
535 int vec_len;
536 int vec_stride;
538 /* scratch space when Tn are not sufficient. */
539 uint32_t scratch[8];
541 /* There are a number of distinct float control structures:
543 * fp_status: is the "normal" fp status.
544 * fp_status_fp16: used for half-precision calculations
545 * standard_fp_status : the ARM "Standard FPSCR Value"
547 * Half-precision operations are governed by a separate
548 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
549 * status structure to control this.
551 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
552 * round-to-nearest and is used by any operations (generally
553 * Neon) which the architecture defines as controlled by the
554 * standard FPSCR value rather than the FPSCR.
556 * To avoid having to transfer exception bits around, we simply
557 * say that the FPSCR cumulative exception flags are the logical
558 * OR of the flags in the three fp statuses. This relies on the
559 * only thing which needs to read the exception flags being
560 * an explicit FPSCR read.
562 float_status fp_status;
563 float_status fp_status_f16;
564 float_status standard_fp_status;
566 /* ZCR_EL[1-3] */
567 uint64_t zcr_el[4];
568 } vfp;
569 uint64_t exclusive_addr;
570 uint64_t exclusive_val;
571 uint64_t exclusive_high;
573 /* iwMMXt coprocessor state. */
574 struct {
575 uint64_t regs[16];
576 uint64_t val;
578 uint32_t cregs[16];
579 } iwmmxt;
581 #if defined(CONFIG_USER_ONLY)
582 /* For usermode syscall translation. */
583 int eabi;
584 #endif
586 struct CPUBreakpoint *cpu_breakpoint[16];
587 struct CPUWatchpoint *cpu_watchpoint[16];
589 /* Fields up to this point are cleared by a CPU reset */
590 struct {} end_reset_fields;
592 CPU_COMMON
594 /* Fields after CPU_COMMON are preserved across CPU reset. */
596 /* Internal CPU feature flags. */
597 uint64_t features;
599 /* PMSAv7 MPU */
600 struct {
601 uint32_t *drbar;
602 uint32_t *drsr;
603 uint32_t *dracr;
604 uint32_t rnr[M_REG_NUM_BANKS];
605 } pmsav7;
607 /* PMSAv8 MPU */
608 struct {
609 /* The PMSAv8 implementation also shares some PMSAv7 config
610 * and state:
611 * pmsav7.rnr (region number register)
612 * pmsav7_dregion (number of configured regions)
614 uint32_t *rbar[M_REG_NUM_BANKS];
615 uint32_t *rlar[M_REG_NUM_BANKS];
616 uint32_t mair0[M_REG_NUM_BANKS];
617 uint32_t mair1[M_REG_NUM_BANKS];
618 } pmsav8;
620 /* v8M SAU */
621 struct {
622 uint32_t *rbar;
623 uint32_t *rlar;
624 uint32_t rnr;
625 uint32_t ctrl;
626 } sau;
628 void *nvic;
629 const struct arm_boot_info *boot_info;
630 /* Store GICv3CPUState to access from this struct */
631 void *gicv3state;
632 } CPUARMState;
635 * ARMELChangeHook:
636 * type of a function which can be registered via arm_register_el_change_hook()
637 * to get callbacks when the CPU changes its exception level or mode.
639 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
642 /* These values map onto the return values for
643 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
644 typedef enum ARMPSCIState {
645 PSCI_ON = 0,
646 PSCI_OFF = 1,
647 PSCI_ON_PENDING = 2
648 } ARMPSCIState;
651 * ARMCPU:
652 * @env: #CPUARMState
654 * An ARM CPU core.
656 struct ARMCPU {
657 /*< private >*/
658 CPUState parent_obj;
659 /*< public >*/
661 CPUARMState env;
663 /* Coprocessor information */
664 GHashTable *cp_regs;
665 /* For marshalling (mostly coprocessor) register state between the
666 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
667 * we use these arrays.
669 /* List of register indexes managed via these arrays; (full KVM style
670 * 64 bit indexes, not CPRegInfo 32 bit indexes)
672 uint64_t *cpreg_indexes;
673 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
674 uint64_t *cpreg_values;
675 /* Length of the indexes, values, reset_values arrays */
676 int32_t cpreg_array_len;
677 /* These are used only for migration: incoming data arrives in
678 * these fields and is sanity checked in post_load before copying
679 * to the working data structures above.
681 uint64_t *cpreg_vmstate_indexes;
682 uint64_t *cpreg_vmstate_values;
683 int32_t cpreg_vmstate_array_len;
685 /* Timers used by the generic (architected) timer */
686 QEMUTimer *gt_timer[NUM_GTIMERS];
687 /* GPIO outputs for generic timer */
688 qemu_irq gt_timer_outputs[NUM_GTIMERS];
689 /* GPIO output for GICv3 maintenance interrupt signal */
690 qemu_irq gicv3_maintenance_interrupt;
691 /* GPIO output for the PMU interrupt */
692 qemu_irq pmu_interrupt;
694 /* MemoryRegion to use for secure physical accesses */
695 MemoryRegion *secure_memory;
697 /* For v8M, pointer to the IDAU interface provided by board/SoC */
698 Object *idau;
700 /* 'compatible' string for this CPU for Linux device trees */
701 const char *dtb_compatible;
703 /* PSCI version for this CPU
704 * Bits[31:16] = Major Version
705 * Bits[15:0] = Minor Version
707 uint32_t psci_version;
709 /* Should CPU start in PSCI powered-off state? */
710 bool start_powered_off;
712 /* Current power state, access guarded by BQL */
713 ARMPSCIState power_state;
715 /* CPU has virtualization extension */
716 bool has_el2;
717 /* CPU has security extension */
718 bool has_el3;
719 /* CPU has PMU (Performance Monitor Unit) */
720 bool has_pmu;
722 /* CPU has memory protection unit */
723 bool has_mpu;
724 /* PMSAv7 MPU number of supported regions */
725 uint32_t pmsav7_dregion;
726 /* v8M SAU number of supported regions */
727 uint32_t sau_sregion;
729 /* PSCI conduit used to invoke PSCI methods
730 * 0 - disabled, 1 - smc, 2 - hvc
732 uint32_t psci_conduit;
734 /* For v8M, initial value of the Secure VTOR */
735 uint32_t init_svtor;
737 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
738 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
740 uint32_t kvm_target;
742 /* KVM init features for this CPU */
743 uint32_t kvm_init_features[7];
745 /* Uniprocessor system with MP extensions */
746 bool mp_is_up;
748 /* The instance init functions for implementation-specific subclasses
749 * set these fields to specify the implementation-dependent values of
750 * various constant registers and reset values of non-constant
751 * registers.
752 * Some of these might become QOM properties eventually.
753 * Field names match the official register names as defined in the
754 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
755 * is used for reset values of non-constant registers; no reset_
756 * prefix means a constant register.
758 uint32_t midr;
759 uint32_t revidr;
760 uint32_t reset_fpsid;
761 uint32_t mvfr0;
762 uint32_t mvfr1;
763 uint32_t mvfr2;
764 uint32_t ctr;
765 uint32_t reset_sctlr;
766 uint32_t id_pfr0;
767 uint32_t id_pfr1;
768 uint32_t id_dfr0;
769 uint32_t pmceid0;
770 uint32_t pmceid1;
771 uint32_t id_afr0;
772 uint32_t id_mmfr0;
773 uint32_t id_mmfr1;
774 uint32_t id_mmfr2;
775 uint32_t id_mmfr3;
776 uint32_t id_mmfr4;
777 uint32_t id_isar0;
778 uint32_t id_isar1;
779 uint32_t id_isar2;
780 uint32_t id_isar3;
781 uint32_t id_isar4;
782 uint32_t id_isar5;
783 uint64_t id_aa64pfr0;
784 uint64_t id_aa64pfr1;
785 uint64_t id_aa64dfr0;
786 uint64_t id_aa64dfr1;
787 uint64_t id_aa64afr0;
788 uint64_t id_aa64afr1;
789 uint64_t id_aa64isar0;
790 uint64_t id_aa64isar1;
791 uint64_t id_aa64mmfr0;
792 uint64_t id_aa64mmfr1;
793 uint32_t dbgdidr;
794 uint32_t clidr;
795 uint64_t mp_affinity; /* MP ID without feature bits */
796 /* The elements of this array are the CCSIDR values for each cache,
797 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
799 uint32_t ccsidr[16];
800 uint64_t reset_cbar;
801 uint32_t reset_auxcr;
802 bool reset_hivecs;
803 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
804 uint32_t dcz_blocksize;
805 uint64_t rvbar;
807 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
808 int gic_num_lrs; /* number of list registers */
809 int gic_vpribits; /* number of virtual priority bits */
810 int gic_vprebits; /* number of virtual preemption bits */
812 /* Whether the cfgend input is high (i.e. this CPU should reset into
813 * big-endian mode). This setting isn't used directly: instead it modifies
814 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
815 * architecture version.
817 bool cfgend;
819 ARMELChangeHook *el_change_hook;
820 void *el_change_hook_opaque;
822 int32_t node_id; /* NUMA node this CPU belongs to */
824 /* Used to synchronize KVM and QEMU in-kernel device levels */
825 uint8_t device_irq_level;
828 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
830 return container_of(env, ARMCPU, env);
833 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
835 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
837 #define ENV_OFFSET offsetof(ARMCPU, env)
839 #ifndef CONFIG_USER_ONLY
840 extern const struct VMStateDescription vmstate_arm_cpu;
841 #endif
843 void arm_cpu_do_interrupt(CPUState *cpu);
844 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
845 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
847 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
848 int flags);
850 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
851 MemTxAttrs *attrs);
853 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
854 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
856 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
857 int cpuid, void *opaque);
858 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
859 int cpuid, void *opaque);
861 #ifdef TARGET_AARCH64
862 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
863 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
864 #endif
866 target_ulong do_arm_semihosting(CPUARMState *env);
867 void aarch64_sync_32_to_64(CPUARMState *env);
868 void aarch64_sync_64_to_32(CPUARMState *env);
870 static inline bool is_a64(CPUARMState *env)
872 return env->aarch64;
875 /* you can call this signal handler from your SIGBUS and SIGSEGV
876 signal handlers to inform the virtual CPU of exceptions. non zero
877 is returned if the signal was handled by the virtual CPU. */
878 int cpu_arm_signal_handler(int host_signum, void *pinfo,
879 void *puc);
882 * pmccntr_sync
883 * @env: CPUARMState
885 * Synchronises the counter in the PMCCNTR. This must always be called twice,
886 * once before any action that might affect the timer and again afterwards.
887 * The function is used to swap the state of the register if required.
888 * This only happens when not in user mode (!CONFIG_USER_ONLY)
890 void pmccntr_sync(CPUARMState *env);
892 /* SCTLR bit meanings. Several bits have been reused in newer
893 * versions of the architecture; in that case we define constants
894 * for both old and new bit meanings. Code which tests against those
895 * bits should probably check or otherwise arrange that the CPU
896 * is the architectural version it expects.
898 #define SCTLR_M (1U << 0)
899 #define SCTLR_A (1U << 1)
900 #define SCTLR_C (1U << 2)
901 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
902 #define SCTLR_SA (1U << 3)
903 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
904 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
905 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
906 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
907 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
908 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
909 #define SCTLR_ITD (1U << 7) /* v8 onward */
910 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
911 #define SCTLR_SED (1U << 8) /* v8 onward */
912 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
913 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
914 #define SCTLR_F (1U << 10) /* up to v6 */
915 #define SCTLR_SW (1U << 10) /* v7 onward */
916 #define SCTLR_Z (1U << 11)
917 #define SCTLR_I (1U << 12)
918 #define SCTLR_V (1U << 13)
919 #define SCTLR_RR (1U << 14) /* up to v7 */
920 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
921 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
922 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
923 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
924 #define SCTLR_nTWI (1U << 16) /* v8 onward */
925 #define SCTLR_HA (1U << 17)
926 #define SCTLR_BR (1U << 17) /* PMSA only */
927 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
928 #define SCTLR_nTWE (1U << 18) /* v8 onward */
929 #define SCTLR_WXN (1U << 19)
930 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
931 #define SCTLR_UWXN (1U << 20) /* v7 onward */
932 #define SCTLR_FI (1U << 21)
933 #define SCTLR_U (1U << 22)
934 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
935 #define SCTLR_VE (1U << 24) /* up to v7 */
936 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
937 #define SCTLR_EE (1U << 25)
938 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
939 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
940 #define SCTLR_NMFI (1U << 27)
941 #define SCTLR_TRE (1U << 28)
942 #define SCTLR_AFE (1U << 29)
943 #define SCTLR_TE (1U << 30)
945 #define CPTR_TCPAC (1U << 31)
946 #define CPTR_TTA (1U << 20)
947 #define CPTR_TFP (1U << 10)
948 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
949 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
951 #define MDCR_EPMAD (1U << 21)
952 #define MDCR_EDAD (1U << 20)
953 #define MDCR_SPME (1U << 17)
954 #define MDCR_SDD (1U << 16)
955 #define MDCR_SPD (3U << 14)
956 #define MDCR_TDRA (1U << 11)
957 #define MDCR_TDOSA (1U << 10)
958 #define MDCR_TDA (1U << 9)
959 #define MDCR_TDE (1U << 8)
960 #define MDCR_HPME (1U << 7)
961 #define MDCR_TPM (1U << 6)
962 #define MDCR_TPMCR (1U << 5)
964 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
965 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
967 #define CPSR_M (0x1fU)
968 #define CPSR_T (1U << 5)
969 #define CPSR_F (1U << 6)
970 #define CPSR_I (1U << 7)
971 #define CPSR_A (1U << 8)
972 #define CPSR_E (1U << 9)
973 #define CPSR_IT_2_7 (0xfc00U)
974 #define CPSR_GE (0xfU << 16)
975 #define CPSR_IL (1U << 20)
976 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
977 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
978 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
979 * where it is live state but not accessible to the AArch32 code.
981 #define CPSR_RESERVED (0x7U << 21)
982 #define CPSR_J (1U << 24)
983 #define CPSR_IT_0_1 (3U << 25)
984 #define CPSR_Q (1U << 27)
985 #define CPSR_V (1U << 28)
986 #define CPSR_C (1U << 29)
987 #define CPSR_Z (1U << 30)
988 #define CPSR_N (1U << 31)
989 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
990 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
992 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
993 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
994 | CPSR_NZCV)
995 /* Bits writable in user mode. */
996 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
997 /* Execution state bits. MRS read as zero, MSR writes ignored. */
998 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
999 /* Mask of bits which may be set by exception return copying them from SPSR */
1000 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1002 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1003 #define XPSR_EXCP 0x1ffU
1004 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1005 #define XPSR_IT_2_7 CPSR_IT_2_7
1006 #define XPSR_GE CPSR_GE
1007 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1008 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1009 #define XPSR_IT_0_1 CPSR_IT_0_1
1010 #define XPSR_Q CPSR_Q
1011 #define XPSR_V CPSR_V
1012 #define XPSR_C CPSR_C
1013 #define XPSR_Z CPSR_Z
1014 #define XPSR_N CPSR_N
1015 #define XPSR_NZCV CPSR_NZCV
1016 #define XPSR_IT CPSR_IT
1018 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1019 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1020 #define TTBCR_PD0 (1U << 4)
1021 #define TTBCR_PD1 (1U << 5)
1022 #define TTBCR_EPD0 (1U << 7)
1023 #define TTBCR_IRGN0 (3U << 8)
1024 #define TTBCR_ORGN0 (3U << 10)
1025 #define TTBCR_SH0 (3U << 12)
1026 #define TTBCR_T1SZ (3U << 16)
1027 #define TTBCR_A1 (1U << 22)
1028 #define TTBCR_EPD1 (1U << 23)
1029 #define TTBCR_IRGN1 (3U << 24)
1030 #define TTBCR_ORGN1 (3U << 26)
1031 #define TTBCR_SH1 (1U << 28)
1032 #define TTBCR_EAE (1U << 31)
1034 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1035 * Only these are valid when in AArch64 mode; in
1036 * AArch32 mode SPSRs are basically CPSR-format.
1038 #define PSTATE_SP (1U)
1039 #define PSTATE_M (0xFU)
1040 #define PSTATE_nRW (1U << 4)
1041 #define PSTATE_F (1U << 6)
1042 #define PSTATE_I (1U << 7)
1043 #define PSTATE_A (1U << 8)
1044 #define PSTATE_D (1U << 9)
1045 #define PSTATE_IL (1U << 20)
1046 #define PSTATE_SS (1U << 21)
1047 #define PSTATE_V (1U << 28)
1048 #define PSTATE_C (1U << 29)
1049 #define PSTATE_Z (1U << 30)
1050 #define PSTATE_N (1U << 31)
1051 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1052 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1053 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1054 /* Mode values for AArch64 */
1055 #define PSTATE_MODE_EL3h 13
1056 #define PSTATE_MODE_EL3t 12
1057 #define PSTATE_MODE_EL2h 9
1058 #define PSTATE_MODE_EL2t 8
1059 #define PSTATE_MODE_EL1h 5
1060 #define PSTATE_MODE_EL1t 4
1061 #define PSTATE_MODE_EL0t 0
1063 /* Write a new value to v7m.exception, thus transitioning into or out
1064 * of Handler mode; this may result in a change of active stack pointer.
1066 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1068 /* Map EL and handler into a PSTATE_MODE. */
1069 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1071 return (el << 2) | handler;
1074 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1075 * interprocessing, so we don't attempt to sync with the cpsr state used by
1076 * the 32 bit decoder.
1078 static inline uint32_t pstate_read(CPUARMState *env)
1080 int ZF;
1082 ZF = (env->ZF == 0);
1083 return (env->NF & 0x80000000) | (ZF << 30)
1084 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1085 | env->pstate | env->daif;
1088 static inline void pstate_write(CPUARMState *env, uint32_t val)
1090 env->ZF = (~val) & PSTATE_Z;
1091 env->NF = val;
1092 env->CF = (val >> 29) & 1;
1093 env->VF = (val << 3) & 0x80000000;
1094 env->daif = val & PSTATE_DAIF;
1095 env->pstate = val & ~CACHED_PSTATE_BITS;
1098 /* Return the current CPSR value. */
1099 uint32_t cpsr_read(CPUARMState *env);
1101 typedef enum CPSRWriteType {
1102 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1103 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1104 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1105 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1106 } CPSRWriteType;
1108 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1109 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1110 CPSRWriteType write_type);
1112 /* Return the current xPSR value. */
1113 static inline uint32_t xpsr_read(CPUARMState *env)
1115 int ZF;
1116 ZF = (env->ZF == 0);
1117 return (env->NF & 0x80000000) | (ZF << 30)
1118 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1119 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1120 | ((env->condexec_bits & 0xfc) << 8)
1121 | env->v7m.exception;
1124 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1125 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1127 if (mask & XPSR_NZCV) {
1128 env->ZF = (~val) & XPSR_Z;
1129 env->NF = val;
1130 env->CF = (val >> 29) & 1;
1131 env->VF = (val << 3) & 0x80000000;
1133 if (mask & XPSR_Q) {
1134 env->QF = ((val & XPSR_Q) != 0);
1136 if (mask & XPSR_T) {
1137 env->thumb = ((val & XPSR_T) != 0);
1139 if (mask & XPSR_IT_0_1) {
1140 env->condexec_bits &= ~3;
1141 env->condexec_bits |= (val >> 25) & 3;
1143 if (mask & XPSR_IT_2_7) {
1144 env->condexec_bits &= 3;
1145 env->condexec_bits |= (val >> 8) & 0xfc;
1147 if (mask & XPSR_EXCP) {
1148 /* Note that this only happens on exception exit */
1149 write_v7m_exception(env, val & XPSR_EXCP);
1153 #define HCR_VM (1ULL << 0)
1154 #define HCR_SWIO (1ULL << 1)
1155 #define HCR_PTW (1ULL << 2)
1156 #define HCR_FMO (1ULL << 3)
1157 #define HCR_IMO (1ULL << 4)
1158 #define HCR_AMO (1ULL << 5)
1159 #define HCR_VF (1ULL << 6)
1160 #define HCR_VI (1ULL << 7)
1161 #define HCR_VSE (1ULL << 8)
1162 #define HCR_FB (1ULL << 9)
1163 #define HCR_BSU_MASK (3ULL << 10)
1164 #define HCR_DC (1ULL << 12)
1165 #define HCR_TWI (1ULL << 13)
1166 #define HCR_TWE (1ULL << 14)
1167 #define HCR_TID0 (1ULL << 15)
1168 #define HCR_TID1 (1ULL << 16)
1169 #define HCR_TID2 (1ULL << 17)
1170 #define HCR_TID3 (1ULL << 18)
1171 #define HCR_TSC (1ULL << 19)
1172 #define HCR_TIDCP (1ULL << 20)
1173 #define HCR_TACR (1ULL << 21)
1174 #define HCR_TSW (1ULL << 22)
1175 #define HCR_TPC (1ULL << 23)
1176 #define HCR_TPU (1ULL << 24)
1177 #define HCR_TTLB (1ULL << 25)
1178 #define HCR_TVM (1ULL << 26)
1179 #define HCR_TGE (1ULL << 27)
1180 #define HCR_TDZ (1ULL << 28)
1181 #define HCR_HCD (1ULL << 29)
1182 #define HCR_TRVM (1ULL << 30)
1183 #define HCR_RW (1ULL << 31)
1184 #define HCR_CD (1ULL << 32)
1185 #define HCR_ID (1ULL << 33)
1186 #define HCR_MASK ((1ULL << 34) - 1)
1188 #define SCR_NS (1U << 0)
1189 #define SCR_IRQ (1U << 1)
1190 #define SCR_FIQ (1U << 2)
1191 #define SCR_EA (1U << 3)
1192 #define SCR_FW (1U << 4)
1193 #define SCR_AW (1U << 5)
1194 #define SCR_NET (1U << 6)
1195 #define SCR_SMD (1U << 7)
1196 #define SCR_HCE (1U << 8)
1197 #define SCR_SIF (1U << 9)
1198 #define SCR_RW (1U << 10)
1199 #define SCR_ST (1U << 11)
1200 #define SCR_TWI (1U << 12)
1201 #define SCR_TWE (1U << 13)
1202 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1203 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1205 /* Return the current FPSCR value. */
1206 uint32_t vfp_get_fpscr(CPUARMState *env);
1207 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1209 /* FPCR, Floating Point Control Register
1210 * FPSR, Floating Poiht Status Register
1212 * For A64 the FPSCR is split into two logically distinct registers,
1213 * FPCR and FPSR. However since they still use non-overlapping bits
1214 * we store the underlying state in fpscr and just mask on read/write.
1216 #define FPSR_MASK 0xf800009f
1217 #define FPCR_MASK 0x07f79f00
1219 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1220 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1221 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1223 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1225 return vfp_get_fpscr(env) & FPSR_MASK;
1228 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1230 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1231 vfp_set_fpscr(env, new_fpscr);
1234 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1236 return vfp_get_fpscr(env) & FPCR_MASK;
1239 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1241 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1242 vfp_set_fpscr(env, new_fpscr);
1245 enum arm_cpu_mode {
1246 ARM_CPU_MODE_USR = 0x10,
1247 ARM_CPU_MODE_FIQ = 0x11,
1248 ARM_CPU_MODE_IRQ = 0x12,
1249 ARM_CPU_MODE_SVC = 0x13,
1250 ARM_CPU_MODE_MON = 0x16,
1251 ARM_CPU_MODE_ABT = 0x17,
1252 ARM_CPU_MODE_HYP = 0x1a,
1253 ARM_CPU_MODE_UND = 0x1b,
1254 ARM_CPU_MODE_SYS = 0x1f
1257 /* VFP system registers. */
1258 #define ARM_VFP_FPSID 0
1259 #define ARM_VFP_FPSCR 1
1260 #define ARM_VFP_MVFR2 5
1261 #define ARM_VFP_MVFR1 6
1262 #define ARM_VFP_MVFR0 7
1263 #define ARM_VFP_FPEXC 8
1264 #define ARM_VFP_FPINST 9
1265 #define ARM_VFP_FPINST2 10
1267 /* iwMMXt coprocessor control registers. */
1268 #define ARM_IWMMXT_wCID 0
1269 #define ARM_IWMMXT_wCon 1
1270 #define ARM_IWMMXT_wCSSF 2
1271 #define ARM_IWMMXT_wCASF 3
1272 #define ARM_IWMMXT_wCGR0 8
1273 #define ARM_IWMMXT_wCGR1 9
1274 #define ARM_IWMMXT_wCGR2 10
1275 #define ARM_IWMMXT_wCGR3 11
1277 /* V7M CCR bits */
1278 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1279 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1280 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1281 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1282 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1283 FIELD(V7M_CCR, STKALIGN, 9, 1)
1284 FIELD(V7M_CCR, DC, 16, 1)
1285 FIELD(V7M_CCR, IC, 17, 1)
1287 /* V7M SCR bits */
1288 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1289 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1290 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1291 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1293 /* V7M AIRCR bits */
1294 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1295 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1296 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1297 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1298 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1299 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1300 FIELD(V7M_AIRCR, PRIS, 14, 1)
1301 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1302 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1304 /* V7M CFSR bits for MMFSR */
1305 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1306 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1307 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1308 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1309 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1310 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1312 /* V7M CFSR bits for BFSR */
1313 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1314 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1315 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1316 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1317 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1318 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1319 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1321 /* V7M CFSR bits for UFSR */
1322 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1323 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1324 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1325 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1326 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1327 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1329 /* V7M CFSR bit masks covering all of the subregister bits */
1330 FIELD(V7M_CFSR, MMFSR, 0, 8)
1331 FIELD(V7M_CFSR, BFSR, 8, 8)
1332 FIELD(V7M_CFSR, UFSR, 16, 16)
1334 /* V7M HFSR bits */
1335 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1336 FIELD(V7M_HFSR, FORCED, 30, 1)
1337 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1339 /* V7M DFSR bits */
1340 FIELD(V7M_DFSR, HALTED, 0, 1)
1341 FIELD(V7M_DFSR, BKPT, 1, 1)
1342 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1343 FIELD(V7M_DFSR, VCATCH, 3, 1)
1344 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1346 /* V7M SFSR bits */
1347 FIELD(V7M_SFSR, INVEP, 0, 1)
1348 FIELD(V7M_SFSR, INVIS, 1, 1)
1349 FIELD(V7M_SFSR, INVER, 2, 1)
1350 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1351 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1352 FIELD(V7M_SFSR, LSPERR, 5, 1)
1353 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1354 FIELD(V7M_SFSR, LSERR, 7, 1)
1356 /* v7M MPU_CTRL bits */
1357 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1358 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1359 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1361 /* v7M CLIDR bits */
1362 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1363 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1364 FIELD(V7M_CLIDR, LOC, 24, 3)
1365 FIELD(V7M_CLIDR, LOUU, 27, 3)
1366 FIELD(V7M_CLIDR, ICB, 30, 2)
1368 FIELD(V7M_CSSELR, IND, 0, 1)
1369 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1370 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1371 * define a mask for this and check that it doesn't permit running off
1372 * the end of the array.
1374 FIELD(V7M_CSSELR, INDEX, 0, 4)
1376 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1378 /* If adding a feature bit which corresponds to a Linux ELF
1379 * HWCAP bit, remember to update the feature-bit-to-hwcap
1380 * mapping in linux-user/elfload.c:get_elf_hwcap().
1382 enum arm_features {
1383 ARM_FEATURE_VFP,
1384 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1385 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1386 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1387 ARM_FEATURE_V6,
1388 ARM_FEATURE_V6K,
1389 ARM_FEATURE_V7,
1390 ARM_FEATURE_THUMB2,
1391 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1392 ARM_FEATURE_VFP3,
1393 ARM_FEATURE_VFP_FP16,
1394 ARM_FEATURE_NEON,
1395 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1396 ARM_FEATURE_M, /* Microcontroller profile. */
1397 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1398 ARM_FEATURE_THUMB2EE,
1399 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1400 ARM_FEATURE_V4T,
1401 ARM_FEATURE_V5,
1402 ARM_FEATURE_STRONGARM,
1403 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1404 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1405 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1406 ARM_FEATURE_GENERIC_TIMER,
1407 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1408 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1409 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1410 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1411 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1412 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1413 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1414 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1415 ARM_FEATURE_V8,
1416 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1417 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1418 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1419 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1420 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1421 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1422 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1423 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1424 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1425 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1426 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1427 ARM_FEATURE_PMU, /* has PMU support */
1428 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1429 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1430 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1431 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1432 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1433 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1434 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1435 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1436 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1439 static inline int arm_feature(CPUARMState *env, int feature)
1441 return (env->features & (1ULL << feature)) != 0;
1444 #if !defined(CONFIG_USER_ONLY)
1445 /* Return true if exception levels below EL3 are in secure state,
1446 * or would be following an exception return to that level.
1447 * Unlike arm_is_secure() (which is always a question about the
1448 * _current_ state of the CPU) this doesn't care about the current
1449 * EL or mode.
1451 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1453 if (arm_feature(env, ARM_FEATURE_EL3)) {
1454 return !(env->cp15.scr_el3 & SCR_NS);
1455 } else {
1456 /* If EL3 is not supported then the secure state is implementation
1457 * defined, in which case QEMU defaults to non-secure.
1459 return false;
1463 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1464 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1466 if (arm_feature(env, ARM_FEATURE_EL3)) {
1467 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1468 /* CPU currently in AArch64 state and EL3 */
1469 return true;
1470 } else if (!is_a64(env) &&
1471 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1472 /* CPU currently in AArch32 state and monitor mode */
1473 return true;
1476 return false;
1479 /* Return true if the processor is in secure state */
1480 static inline bool arm_is_secure(CPUARMState *env)
1482 if (arm_is_el3_or_mon(env)) {
1483 return true;
1485 return arm_is_secure_below_el3(env);
1488 #else
1489 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1491 return false;
1494 static inline bool arm_is_secure(CPUARMState *env)
1496 return false;
1498 #endif
1500 /* Return true if the specified exception level is running in AArch64 state. */
1501 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1503 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1504 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1506 assert(el >= 1 && el <= 3);
1507 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1509 /* The highest exception level is always at the maximum supported
1510 * register width, and then lower levels have a register width controlled
1511 * by bits in the SCR or HCR registers.
1513 if (el == 3) {
1514 return aa64;
1517 if (arm_feature(env, ARM_FEATURE_EL3)) {
1518 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1521 if (el == 2) {
1522 return aa64;
1525 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1526 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1529 return aa64;
1532 /* Function for determing whether guest cp register reads and writes should
1533 * access the secure or non-secure bank of a cp register. When EL3 is
1534 * operating in AArch32 state, the NS-bit determines whether the secure
1535 * instance of a cp register should be used. When EL3 is AArch64 (or if
1536 * it doesn't exist at all) then there is no register banking, and all
1537 * accesses are to the non-secure version.
1539 static inline bool access_secure_reg(CPUARMState *env)
1541 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1542 !arm_el_is_aa64(env, 3) &&
1543 !(env->cp15.scr_el3 & SCR_NS));
1545 return ret;
1548 /* Macros for accessing a specified CP register bank */
1549 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1550 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1552 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1553 do { \
1554 if (_secure) { \
1555 (_env)->cp15._regname##_s = (_val); \
1556 } else { \
1557 (_env)->cp15._regname##_ns = (_val); \
1559 } while (0)
1561 /* Macros for automatically accessing a specific CP register bank depending on
1562 * the current secure state of the system. These macros are not intended for
1563 * supporting instruction translation reads/writes as these are dependent
1564 * solely on the SCR.NS bit and not the mode.
1566 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1567 A32_BANKED_REG_GET((_env), _regname, \
1568 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1570 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1571 A32_BANKED_REG_SET((_env), _regname, \
1572 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1573 (_val))
1575 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1576 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1577 uint32_t cur_el, bool secure);
1579 /* Interface between CPU and Interrupt controller. */
1580 #ifndef CONFIG_USER_ONLY
1581 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1582 #else
1583 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1585 return true;
1587 #endif
1589 * armv7m_nvic_set_pending: mark the specified exception as pending
1590 * @opaque: the NVIC
1591 * @irq: the exception number to mark pending
1592 * @secure: false for non-banked exceptions or for the nonsecure
1593 * version of a banked exception, true for the secure version of a banked
1594 * exception.
1596 * Marks the specified exception as pending. Note that we will assert()
1597 * if @secure is true and @irq does not specify one of the fixed set
1598 * of architecturally banked exceptions.
1600 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1602 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1603 * @opaque: the NVIC
1604 * @irq: the exception number to mark pending
1605 * @secure: false for non-banked exceptions or for the nonsecure
1606 * version of a banked exception, true for the secure version of a banked
1607 * exception.
1609 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1610 * exceptions (exceptions generated in the course of trying to take
1611 * a different exception).
1613 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1615 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1616 * exception, and whether it targets Secure state
1617 * @opaque: the NVIC
1618 * @pirq: set to pending exception number
1619 * @ptargets_secure: set to whether pending exception targets Secure
1621 * This function writes the number of the highest priority pending
1622 * exception (the one which would be made active by
1623 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1624 * to true if the current highest priority pending exception should
1625 * be taken to Secure state, false for NS.
1627 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1628 bool *ptargets_secure);
1630 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1631 * @opaque: the NVIC
1633 * Move the current highest priority pending exception from the pending
1634 * state to the active state, and update v7m.exception to indicate that
1635 * it is the exception currently being handled.
1637 void armv7m_nvic_acknowledge_irq(void *opaque);
1639 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1640 * @opaque: the NVIC
1641 * @irq: the exception number to complete
1642 * @secure: true if this exception was secure
1644 * Returns: -1 if the irq was not active
1645 * 1 if completing this irq brought us back to base (no active irqs)
1646 * 0 if there is still an irq active after this one was completed
1647 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1649 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1651 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1652 * @opaque: the NVIC
1654 * Returns: the raw execution priority as defined by the v8M architecture.
1655 * This is the execution priority minus the effects of AIRCR.PRIS,
1656 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1657 * (v8M ARM ARM I_PKLD.)
1659 int armv7m_nvic_raw_execution_priority(void *opaque);
1661 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1662 * priority is negative for the specified security state.
1663 * @opaque: the NVIC
1664 * @secure: the security state to test
1665 * This corresponds to the pseudocode IsReqExecPriNeg().
1667 #ifndef CONFIG_USER_ONLY
1668 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1669 #else
1670 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1672 return false;
1674 #endif
1676 /* Interface for defining coprocessor registers.
1677 * Registers are defined in tables of arm_cp_reginfo structs
1678 * which are passed to define_arm_cp_regs().
1681 /* When looking up a coprocessor register we look for it
1682 * via an integer which encodes all of:
1683 * coprocessor number
1684 * Crn, Crm, opc1, opc2 fields
1685 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1686 * or via MRRC/MCRR?)
1687 * non-secure/secure bank (AArch32 only)
1688 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1689 * (In this case crn and opc2 should be zero.)
1690 * For AArch64, there is no 32/64 bit size distinction;
1691 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1692 * and 4 bit CRn and CRm. The encoding patterns are chosen
1693 * to be easy to convert to and from the KVM encodings, and also
1694 * so that the hashtable can contain both AArch32 and AArch64
1695 * registers (to allow for interprocessing where we might run
1696 * 32 bit code on a 64 bit core).
1698 /* This bit is private to our hashtable cpreg; in KVM register
1699 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1700 * in the upper bits of the 64 bit ID.
1702 #define CP_REG_AA64_SHIFT 28
1703 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1705 /* To enable banking of coprocessor registers depending on ns-bit we
1706 * add a bit to distinguish between secure and non-secure cpregs in the
1707 * hashtable.
1709 #define CP_REG_NS_SHIFT 29
1710 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1712 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1713 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1714 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1716 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1717 (CP_REG_AA64_MASK | \
1718 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1719 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1720 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1721 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1722 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1723 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1725 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1726 * version used as a key for the coprocessor register hashtable
1728 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1730 uint32_t cpregid = kvmid;
1731 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1732 cpregid |= CP_REG_AA64_MASK;
1733 } else {
1734 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1735 cpregid |= (1 << 15);
1738 /* KVM is always non-secure so add the NS flag on AArch32 register
1739 * entries.
1741 cpregid |= 1 << CP_REG_NS_SHIFT;
1743 return cpregid;
1746 /* Convert a truncated 32 bit hashtable key into the full
1747 * 64 bit KVM register ID.
1749 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1751 uint64_t kvmid;
1753 if (cpregid & CP_REG_AA64_MASK) {
1754 kvmid = cpregid & ~CP_REG_AA64_MASK;
1755 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1756 } else {
1757 kvmid = cpregid & ~(1 << 15);
1758 if (cpregid & (1 << 15)) {
1759 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1760 } else {
1761 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1764 return kvmid;
1767 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1768 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1769 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1770 * TCG can assume the value to be constant (ie load at translate time)
1771 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1772 * indicates that the TB should not be ended after a write to this register
1773 * (the default is that the TB ends after cp writes). OVERRIDE permits
1774 * a register definition to override a previous definition for the
1775 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1776 * old must have the OVERRIDE bit set.
1777 * ALIAS indicates that this register is an alias view of some underlying
1778 * state which is also visible via another register, and that the other
1779 * register is handling migration and reset; registers marked ALIAS will not be
1780 * migrated but may have their state set by syncing of register state from KVM.
1781 * NO_RAW indicates that this register has no underlying state and does not
1782 * support raw access for state saving/loading; it will not be used for either
1783 * migration or KVM state synchronization. (Typically this is for "registers"
1784 * which are actually used as instructions for cache maintenance and so on.)
1785 * IO indicates that this register does I/O and therefore its accesses
1786 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1787 * registers which implement clocks or timers require this.
1789 #define ARM_CP_SPECIAL 0x0001
1790 #define ARM_CP_CONST 0x0002
1791 #define ARM_CP_64BIT 0x0004
1792 #define ARM_CP_SUPPRESS_TB_END 0x0008
1793 #define ARM_CP_OVERRIDE 0x0010
1794 #define ARM_CP_ALIAS 0x0020
1795 #define ARM_CP_IO 0x0040
1796 #define ARM_CP_NO_RAW 0x0080
1797 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1798 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1799 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1800 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1801 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1802 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1803 #define ARM_CP_FPU 0x1000
1804 #define ARM_CP_SVE 0x2000
1805 /* Used only as a terminator for ARMCPRegInfo lists */
1806 #define ARM_CP_SENTINEL 0xffff
1807 /* Mask of only the flag bits in a type field */
1808 #define ARM_CP_FLAG_MASK 0x30ff
1810 /* Valid values for ARMCPRegInfo state field, indicating which of
1811 * the AArch32 and AArch64 execution states this register is visible in.
1812 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1813 * If the reginfo is declared to be visible in both states then a second
1814 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1815 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1816 * Note that we rely on the values of these enums as we iterate through
1817 * the various states in some places.
1819 enum {
1820 ARM_CP_STATE_AA32 = 0,
1821 ARM_CP_STATE_AA64 = 1,
1822 ARM_CP_STATE_BOTH = 2,
1825 /* ARM CP register secure state flags. These flags identify security state
1826 * attributes for a given CP register entry.
1827 * The existence of both or neither secure and non-secure flags indicates that
1828 * the register has both a secure and non-secure hash entry. A single one of
1829 * these flags causes the register to only be hashed for the specified
1830 * security state.
1831 * Although definitions may have any combination of the S/NS bits, each
1832 * registered entry will only have one to identify whether the entry is secure
1833 * or non-secure.
1835 enum {
1836 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1837 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1840 /* Return true if cptype is a valid type field. This is used to try to
1841 * catch errors where the sentinel has been accidentally left off the end
1842 * of a list of registers.
1844 static inline bool cptype_valid(int cptype)
1846 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1847 || ((cptype & ARM_CP_SPECIAL) &&
1848 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1851 /* Access rights:
1852 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1853 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1854 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1855 * (ie any of the privileged modes in Secure state, or Monitor mode).
1856 * If a register is accessible in one privilege level it's always accessible
1857 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1858 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1859 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1860 * terminology a little and call this PL3.
1861 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1862 * with the ELx exception levels.
1864 * If access permissions for a register are more complex than can be
1865 * described with these bits, then use a laxer set of restrictions, and
1866 * do the more restrictive/complex check inside a helper function.
1868 #define PL3_R 0x80
1869 #define PL3_W 0x40
1870 #define PL2_R (0x20 | PL3_R)
1871 #define PL2_W (0x10 | PL3_W)
1872 #define PL1_R (0x08 | PL2_R)
1873 #define PL1_W (0x04 | PL2_W)
1874 #define PL0_R (0x02 | PL1_R)
1875 #define PL0_W (0x01 | PL1_W)
1877 #define PL3_RW (PL3_R | PL3_W)
1878 #define PL2_RW (PL2_R | PL2_W)
1879 #define PL1_RW (PL1_R | PL1_W)
1880 #define PL0_RW (PL0_R | PL0_W)
1882 /* Return the highest implemented Exception Level */
1883 static inline int arm_highest_el(CPUARMState *env)
1885 if (arm_feature(env, ARM_FEATURE_EL3)) {
1886 return 3;
1888 if (arm_feature(env, ARM_FEATURE_EL2)) {
1889 return 2;
1891 return 1;
1894 /* Return true if a v7M CPU is in Handler mode */
1895 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1897 return env->v7m.exception != 0;
1900 /* Return the current Exception Level (as per ARMv8; note that this differs
1901 * from the ARMv7 Privilege Level).
1903 static inline int arm_current_el(CPUARMState *env)
1905 if (arm_feature(env, ARM_FEATURE_M)) {
1906 return arm_v7m_is_handler_mode(env) ||
1907 !(env->v7m.control[env->v7m.secure] & 1);
1910 if (is_a64(env)) {
1911 return extract32(env->pstate, 2, 2);
1914 switch (env->uncached_cpsr & 0x1f) {
1915 case ARM_CPU_MODE_USR:
1916 return 0;
1917 case ARM_CPU_MODE_HYP:
1918 return 2;
1919 case ARM_CPU_MODE_MON:
1920 return 3;
1921 default:
1922 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1923 /* If EL3 is 32-bit then all secure privileged modes run in
1924 * EL3
1926 return 3;
1929 return 1;
1933 typedef struct ARMCPRegInfo ARMCPRegInfo;
1935 typedef enum CPAccessResult {
1936 /* Access is permitted */
1937 CP_ACCESS_OK = 0,
1938 /* Access fails due to a configurable trap or enable which would
1939 * result in a categorized exception syndrome giving information about
1940 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1941 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1942 * PL1 if in EL0, otherwise to the current EL).
1944 CP_ACCESS_TRAP = 1,
1945 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1946 * Note that this is not a catch-all case -- the set of cases which may
1947 * result in this failure is specifically defined by the architecture.
1949 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1950 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1951 CP_ACCESS_TRAP_EL2 = 3,
1952 CP_ACCESS_TRAP_EL3 = 4,
1953 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1954 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1955 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1956 /* Access fails and results in an exception syndrome for an FP access,
1957 * trapped directly to EL2 or EL3
1959 CP_ACCESS_TRAP_FP_EL2 = 7,
1960 CP_ACCESS_TRAP_FP_EL3 = 8,
1961 } CPAccessResult;
1963 /* Access functions for coprocessor registers. These cannot fail and
1964 * may not raise exceptions.
1966 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1967 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1968 uint64_t value);
1969 /* Access permission check functions for coprocessor registers. */
1970 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1971 const ARMCPRegInfo *opaque,
1972 bool isread);
1973 /* Hook function for register reset */
1974 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1976 #define CP_ANY 0xff
1978 /* Definition of an ARM coprocessor register */
1979 struct ARMCPRegInfo {
1980 /* Name of register (useful mainly for debugging, need not be unique) */
1981 const char *name;
1982 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1983 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1984 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1985 * will be decoded to this register. The register read and write
1986 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1987 * used by the program, so it is possible to register a wildcard and
1988 * then behave differently on read/write if necessary.
1989 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1990 * must both be zero.
1991 * For AArch64-visible registers, opc0 is also used.
1992 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1993 * way to distinguish (for KVM's benefit) guest-visible system registers
1994 * from demuxed ones provided to preserve the "no side effects on
1995 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1996 * visible (to match KVM's encoding); cp==0 will be converted to
1997 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1999 uint8_t cp;
2000 uint8_t crn;
2001 uint8_t crm;
2002 uint8_t opc0;
2003 uint8_t opc1;
2004 uint8_t opc2;
2005 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2006 int state;
2007 /* Register type: ARM_CP_* bits/values */
2008 int type;
2009 /* Access rights: PL*_[RW] */
2010 int access;
2011 /* Security state: ARM_CP_SECSTATE_* bits/values */
2012 int secure;
2013 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2014 * this register was defined: can be used to hand data through to the
2015 * register read/write functions, since they are passed the ARMCPRegInfo*.
2017 void *opaque;
2018 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2019 * fieldoffset is non-zero, the reset value of the register.
2021 uint64_t resetvalue;
2022 /* Offset of the field in CPUARMState for this register.
2024 * This is not needed if either:
2025 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2026 * 2. both readfn and writefn are specified
2028 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2030 /* Offsets of the secure and non-secure fields in CPUARMState for the
2031 * register if it is banked. These fields are only used during the static
2032 * registration of a register. During hashing the bank associated
2033 * with a given security state is copied to fieldoffset which is used from
2034 * there on out.
2036 * It is expected that register definitions use either fieldoffset or
2037 * bank_fieldoffsets in the definition but not both. It is also expected
2038 * that both bank offsets are set when defining a banked register. This
2039 * use indicates that a register is banked.
2041 ptrdiff_t bank_fieldoffsets[2];
2043 /* Function for making any access checks for this register in addition to
2044 * those specified by the 'access' permissions bits. If NULL, no extra
2045 * checks required. The access check is performed at runtime, not at
2046 * translate time.
2048 CPAccessFn *accessfn;
2049 /* Function for handling reads of this register. If NULL, then reads
2050 * will be done by loading from the offset into CPUARMState specified
2051 * by fieldoffset.
2053 CPReadFn *readfn;
2054 /* Function for handling writes of this register. If NULL, then writes
2055 * will be done by writing to the offset into CPUARMState specified
2056 * by fieldoffset.
2058 CPWriteFn *writefn;
2059 /* Function for doing a "raw" read; used when we need to copy
2060 * coprocessor state to the kernel for KVM or out for
2061 * migration. This only needs to be provided if there is also a
2062 * readfn and it has side effects (for instance clear-on-read bits).
2064 CPReadFn *raw_readfn;
2065 /* Function for doing a "raw" write; used when we need to copy KVM
2066 * kernel coprocessor state into userspace, or for inbound
2067 * migration. This only needs to be provided if there is also a
2068 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2069 * or similar behaviour.
2071 CPWriteFn *raw_writefn;
2072 /* Function for resetting the register. If NULL, then reset will be done
2073 * by writing resetvalue to the field specified in fieldoffset. If
2074 * fieldoffset is 0 then no reset will be done.
2076 CPResetFn *resetfn;
2079 /* Macros which are lvalues for the field in CPUARMState for the
2080 * ARMCPRegInfo *ri.
2082 #define CPREG_FIELD32(env, ri) \
2083 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2084 #define CPREG_FIELD64(env, ri) \
2085 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2087 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2089 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2090 const ARMCPRegInfo *regs, void *opaque);
2091 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2092 const ARMCPRegInfo *regs, void *opaque);
2093 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2095 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2097 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2099 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2101 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2103 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2104 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2105 uint64_t value);
2106 /* CPReadFn that can be used for read-as-zero behaviour */
2107 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2109 /* CPResetFn that does nothing, for use if no reset is required even
2110 * if fieldoffset is non zero.
2112 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2114 /* Return true if this reginfo struct's field in the cpu state struct
2115 * is 64 bits wide.
2117 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2119 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2122 static inline bool cp_access_ok(int current_el,
2123 const ARMCPRegInfo *ri, int isread)
2125 return (ri->access >> ((current_el * 2) + isread)) & 1;
2128 /* Raw read of a coprocessor register (as needed for migration, etc) */
2129 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2132 * write_list_to_cpustate
2133 * @cpu: ARMCPU
2135 * For each register listed in the ARMCPU cpreg_indexes list, write
2136 * its value from the cpreg_values list into the ARMCPUState structure.
2137 * This updates TCG's working data structures from KVM data or
2138 * from incoming migration state.
2140 * Returns: true if all register values were updated correctly,
2141 * false if some register was unknown or could not be written.
2142 * Note that we do not stop early on failure -- we will attempt
2143 * writing all registers in the list.
2145 bool write_list_to_cpustate(ARMCPU *cpu);
2148 * write_cpustate_to_list:
2149 * @cpu: ARMCPU
2151 * For each register listed in the ARMCPU cpreg_indexes list, write
2152 * its value from the ARMCPUState structure into the cpreg_values list.
2153 * This is used to copy info from TCG's working data structures into
2154 * KVM or for outbound migration.
2156 * Returns: true if all register values were read correctly,
2157 * false if some register was unknown or could not be read.
2158 * Note that we do not stop early on failure -- we will attempt
2159 * reading all registers in the list.
2161 bool write_cpustate_to_list(ARMCPU *cpu);
2163 #define ARM_CPUID_TI915T 0x54029152
2164 #define ARM_CPUID_TI925T 0x54029252
2166 #if defined(CONFIG_USER_ONLY)
2167 #define TARGET_PAGE_BITS 12
2168 #else
2169 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2170 * have to support 1K tiny pages.
2172 #define TARGET_PAGE_BITS_VARY
2173 #define TARGET_PAGE_BITS_MIN 10
2174 #endif
2176 #if defined(TARGET_AARCH64)
2177 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2178 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2179 #else
2180 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2181 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2182 #endif
2184 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2185 unsigned int target_el)
2187 CPUARMState *env = cs->env_ptr;
2188 unsigned int cur_el = arm_current_el(env);
2189 bool secure = arm_is_secure(env);
2190 bool pstate_unmasked;
2191 int8_t unmasked = 0;
2193 /* Don't take exceptions if they target a lower EL.
2194 * This check should catch any exceptions that would not be taken but left
2195 * pending.
2197 if (cur_el > target_el) {
2198 return false;
2201 switch (excp_idx) {
2202 case EXCP_FIQ:
2203 pstate_unmasked = !(env->daif & PSTATE_F);
2204 break;
2206 case EXCP_IRQ:
2207 pstate_unmasked = !(env->daif & PSTATE_I);
2208 break;
2210 case EXCP_VFIQ:
2211 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2212 /* VFIQs are only taken when hypervized and non-secure. */
2213 return false;
2215 return !(env->daif & PSTATE_F);
2216 case EXCP_VIRQ:
2217 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2218 /* VIRQs are only taken when hypervized and non-secure. */
2219 return false;
2221 return !(env->daif & PSTATE_I);
2222 default:
2223 g_assert_not_reached();
2226 /* Use the target EL, current execution state and SCR/HCR settings to
2227 * determine whether the corresponding CPSR bit is used to mask the
2228 * interrupt.
2230 if ((target_el > cur_el) && (target_el != 1)) {
2231 /* Exceptions targeting a higher EL may not be maskable */
2232 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2233 /* 64-bit masking rules are simple: exceptions to EL3
2234 * can't be masked, and exceptions to EL2 can only be
2235 * masked from Secure state. The HCR and SCR settings
2236 * don't affect the masking logic, only the interrupt routing.
2238 if (target_el == 3 || !secure) {
2239 unmasked = 1;
2241 } else {
2242 /* The old 32-bit-only environment has a more complicated
2243 * masking setup. HCR and SCR bits not only affect interrupt
2244 * routing but also change the behaviour of masking.
2246 bool hcr, scr;
2248 switch (excp_idx) {
2249 case EXCP_FIQ:
2250 /* If FIQs are routed to EL3 or EL2 then there are cases where
2251 * we override the CPSR.F in determining if the exception is
2252 * masked or not. If neither of these are set then we fall back
2253 * to the CPSR.F setting otherwise we further assess the state
2254 * below.
2256 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2257 scr = (env->cp15.scr_el3 & SCR_FIQ);
2259 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2260 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2261 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2262 * when non-secure but only when FIQs are only routed to EL3.
2264 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2265 break;
2266 case EXCP_IRQ:
2267 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2268 * we may override the CPSR.I masking when in non-secure state.
2269 * The SCR.IRQ setting has already been taken into consideration
2270 * when setting the target EL, so it does not have a further
2271 * affect here.
2273 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2274 scr = false;
2275 break;
2276 default:
2277 g_assert_not_reached();
2280 if ((scr || hcr) && !secure) {
2281 unmasked = 1;
2286 /* The PSTATE bits only mask the interrupt if we have not overriden the
2287 * ability above.
2289 return unmasked || pstate_unmasked;
2292 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2294 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2295 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2297 #define cpu_signal_handler cpu_arm_signal_handler
2298 #define cpu_list arm_cpu_list
2300 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2302 * If EL3 is 64-bit:
2303 * + NonSecure EL1 & 0 stage 1
2304 * + NonSecure EL1 & 0 stage 2
2305 * + NonSecure EL2
2306 * + Secure EL1 & EL0
2307 * + Secure EL3
2308 * If EL3 is 32-bit:
2309 * + NonSecure PL1 & 0 stage 1
2310 * + NonSecure PL1 & 0 stage 2
2311 * + NonSecure PL2
2312 * + Secure PL0 & PL1
2313 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2315 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2316 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2317 * may differ in access permissions even if the VA->PA map is the same
2318 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2319 * translation, which means that we have one mmu_idx that deals with two
2320 * concatenated translation regimes [this sort of combined s1+2 TLB is
2321 * architecturally permitted]
2322 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2323 * handling via the TLB. The only way to do a stage 1 translation without
2324 * the immediate stage 2 translation is via the ATS or AT system insns,
2325 * which can be slow-pathed and always do a page table walk.
2326 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2327 * translation regimes, because they map reasonably well to each other
2328 * and they can't both be active at the same time.
2329 * This gives us the following list of mmu_idx values:
2331 * NS EL0 (aka NS PL0) stage 1+2
2332 * NS EL1 (aka NS PL1) stage 1+2
2333 * NS EL2 (aka NS PL2)
2334 * S EL3 (aka S PL1)
2335 * S EL0 (aka S PL0)
2336 * S EL1 (not used if EL3 is 32 bit)
2337 * NS EL0+1 stage 2
2339 * (The last of these is an mmu_idx because we want to be able to use the TLB
2340 * for the accesses done as part of a stage 1 page table walk, rather than
2341 * having to walk the stage 2 page table over and over.)
2343 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2344 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2345 * NS EL2 if we ever model a Cortex-R52).
2347 * M profile CPUs are rather different as they do not have a true MMU.
2348 * They have the following different MMU indexes:
2349 * User
2350 * Privileged
2351 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2352 * Privileged, execution priority negative (ditto)
2353 * If the CPU supports the v8M Security Extension then there are also:
2354 * Secure User
2355 * Secure Privileged
2356 * Secure User, execution priority negative
2357 * Secure Privileged, execution priority negative
2359 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2360 * are not quite the same -- different CPU types (most notably M profile
2361 * vs A/R profile) would like to use MMU indexes with different semantics,
2362 * but since we don't ever need to use all of those in a single CPU we
2363 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2364 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2365 * the same for any particular CPU.
2366 * Variables of type ARMMUIdx are always full values, and the core
2367 * index values are in variables of type 'int'.
2369 * Our enumeration includes at the end some entries which are not "true"
2370 * mmu_idx values in that they don't have corresponding TLBs and are only
2371 * valid for doing slow path page table walks.
2373 * The constant names here are patterned after the general style of the names
2374 * of the AT/ATS operations.
2375 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2376 * For M profile we arrange them to have a bit for priv, a bit for negpri
2377 * and a bit for secure.
2379 #define ARM_MMU_IDX_A 0x10 /* A profile */
2380 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2381 #define ARM_MMU_IDX_M 0x40 /* M profile */
2383 /* meanings of the bits for M profile mmu idx values */
2384 #define ARM_MMU_IDX_M_PRIV 0x1
2385 #define ARM_MMU_IDX_M_NEGPRI 0x2
2386 #define ARM_MMU_IDX_M_S 0x4
2388 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2389 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2391 typedef enum ARMMMUIdx {
2392 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2393 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2394 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2395 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2396 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2397 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2398 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2399 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2400 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2401 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2402 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2403 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2404 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2405 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2406 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2407 /* Indexes below here don't have TLBs and are used only for AT system
2408 * instructions or for the first stage of an S12 page table walk.
2410 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2411 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2412 } ARMMMUIdx;
2414 /* Bit macros for the core-mmu-index values for each index,
2415 * for use when calling tlb_flush_by_mmuidx() and friends.
2417 typedef enum ARMMMUIdxBit {
2418 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2419 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2420 ARMMMUIdxBit_S1E2 = 1 << 2,
2421 ARMMMUIdxBit_S1E3 = 1 << 3,
2422 ARMMMUIdxBit_S1SE0 = 1 << 4,
2423 ARMMMUIdxBit_S1SE1 = 1 << 5,
2424 ARMMMUIdxBit_S2NS = 1 << 6,
2425 ARMMMUIdxBit_MUser = 1 << 0,
2426 ARMMMUIdxBit_MPriv = 1 << 1,
2427 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2428 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2429 ARMMMUIdxBit_MSUser = 1 << 4,
2430 ARMMMUIdxBit_MSPriv = 1 << 5,
2431 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2432 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2433 } ARMMMUIdxBit;
2435 #define MMU_USER_IDX 0
2437 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2439 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2442 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2444 if (arm_feature(env, ARM_FEATURE_M)) {
2445 return mmu_idx | ARM_MMU_IDX_M;
2446 } else {
2447 return mmu_idx | ARM_MMU_IDX_A;
2451 /* Return the exception level we're running at if this is our mmu_idx */
2452 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2454 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2455 case ARM_MMU_IDX_A:
2456 return mmu_idx & 3;
2457 case ARM_MMU_IDX_M:
2458 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2459 default:
2460 g_assert_not_reached();
2464 /* Return the MMU index for a v7M CPU in the specified security and
2465 * privilege state
2467 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2468 bool secstate,
2469 bool priv)
2471 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2473 if (priv) {
2474 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2477 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2478 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2481 if (secstate) {
2482 mmu_idx |= ARM_MMU_IDX_M_S;
2485 return mmu_idx;
2488 /* Return the MMU index for a v7M CPU in the specified security state */
2489 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2490 bool secstate)
2492 bool priv = arm_current_el(env) != 0;
2494 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2497 /* Determine the current mmu_idx to use for normal loads/stores */
2498 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2500 int el = arm_current_el(env);
2502 if (arm_feature(env, ARM_FEATURE_M)) {
2503 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2505 return arm_to_core_mmu_idx(mmu_idx);
2508 if (el < 2 && arm_is_secure_below_el3(env)) {
2509 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2511 return el;
2514 /* Indexes used when registering address spaces with cpu_address_space_init */
2515 typedef enum ARMASIdx {
2516 ARMASIdx_NS = 0,
2517 ARMASIdx_S = 1,
2518 } ARMASIdx;
2520 /* Return the Exception Level targeted by debug exceptions. */
2521 static inline int arm_debug_target_el(CPUARMState *env)
2523 bool secure = arm_is_secure(env);
2524 bool route_to_el2 = false;
2526 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2527 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2528 env->cp15.mdcr_el2 & (1 << 8);
2531 if (route_to_el2) {
2532 return 2;
2533 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2534 !arm_el_is_aa64(env, 3) && secure) {
2535 return 3;
2536 } else {
2537 return 1;
2541 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2543 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2544 * CSSELR is RAZ/WI.
2546 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2549 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2551 if (arm_is_secure(env)) {
2552 /* MDCR_EL3.SDD disables debug events from Secure state */
2553 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2554 || arm_current_el(env) == 3) {
2555 return false;
2559 if (arm_current_el(env) == arm_debug_target_el(env)) {
2560 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2561 || (env->daif & PSTATE_D)) {
2562 return false;
2565 return true;
2568 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2570 int el = arm_current_el(env);
2572 if (el == 0 && arm_el_is_aa64(env, 1)) {
2573 return aa64_generate_debug_exceptions(env);
2576 if (arm_is_secure(env)) {
2577 int spd;
2579 if (el == 0 && (env->cp15.sder & 1)) {
2580 /* SDER.SUIDEN means debug exceptions from Secure EL0
2581 * are always enabled. Otherwise they are controlled by
2582 * SDCR.SPD like those from other Secure ELs.
2584 return true;
2587 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2588 switch (spd) {
2589 case 1:
2590 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2591 case 0:
2592 /* For 0b00 we return true if external secure invasive debug
2593 * is enabled. On real hardware this is controlled by external
2594 * signals to the core. QEMU always permits debug, and behaves
2595 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2597 return true;
2598 case 2:
2599 return false;
2600 case 3:
2601 return true;
2605 return el != 2;
2608 /* Return true if debugging exceptions are currently enabled.
2609 * This corresponds to what in ARM ARM pseudocode would be
2610 * if UsingAArch32() then
2611 * return AArch32.GenerateDebugExceptions()
2612 * else
2613 * return AArch64.GenerateDebugExceptions()
2614 * We choose to push the if() down into this function for clarity,
2615 * since the pseudocode has it at all callsites except for the one in
2616 * CheckSoftwareStep(), where it is elided because both branches would
2617 * always return the same value.
2619 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2620 * don't yet implement those exception levels or their associated trap bits.
2622 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2624 if (env->aarch64) {
2625 return aa64_generate_debug_exceptions(env);
2626 } else {
2627 return aa32_generate_debug_exceptions(env);
2631 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2632 * implicitly means this always returns false in pre-v8 CPUs.)
2634 static inline bool arm_singlestep_active(CPUARMState *env)
2636 return extract32(env->cp15.mdscr_el1, 0, 1)
2637 && arm_el_is_aa64(env, arm_debug_target_el(env))
2638 && arm_generate_debug_exceptions(env);
2641 static inline bool arm_sctlr_b(CPUARMState *env)
2643 return
2644 /* We need not implement SCTLR.ITD in user-mode emulation, so
2645 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2646 * This lets people run BE32 binaries with "-cpu any".
2648 #ifndef CONFIG_USER_ONLY
2649 !arm_feature(env, ARM_FEATURE_V7) &&
2650 #endif
2651 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2654 /* Return true if the processor is in big-endian mode. */
2655 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2657 int cur_el;
2659 /* In 32bit endianness is determined by looking at CPSR's E bit */
2660 if (!is_a64(env)) {
2661 return
2662 #ifdef CONFIG_USER_ONLY
2663 /* In system mode, BE32 is modelled in line with the
2664 * architecture (as word-invariant big-endianness), where loads
2665 * and stores are done little endian but from addresses which
2666 * are adjusted by XORing with the appropriate constant. So the
2667 * endianness to use for the raw data access is not affected by
2668 * SCTLR.B.
2669 * In user mode, however, we model BE32 as byte-invariant
2670 * big-endianness (because user-only code cannot tell the
2671 * difference), and so we need to use a data access endianness
2672 * that depends on SCTLR.B.
2674 arm_sctlr_b(env) ||
2675 #endif
2676 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2679 cur_el = arm_current_el(env);
2681 if (cur_el == 0) {
2682 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2685 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2688 #include "exec/cpu-all.h"
2690 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2691 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2692 * We put flags which are shared between 32 and 64 bit mode at the top
2693 * of the word, and flags which apply to only one mode at the bottom.
2695 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2696 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2697 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2698 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2699 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2700 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2701 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2702 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2703 /* Target EL if we take a floating-point-disabled exception */
2704 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2705 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2707 /* Bit usage when in AArch32 state: */
2708 #define ARM_TBFLAG_THUMB_SHIFT 0
2709 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2710 #define ARM_TBFLAG_VECLEN_SHIFT 1
2711 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2712 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2713 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2714 #define ARM_TBFLAG_VFPEN_SHIFT 7
2715 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2716 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2717 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2718 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2719 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2720 /* We store the bottom two bits of the CPAR as TB flags and handle
2721 * checks on the other bits at runtime
2723 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2724 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2725 /* Indicates whether cp register reads and writes by guest code should access
2726 * the secure or nonsecure bank of banked registers; note that this is not
2727 * the same thing as the current security state of the processor!
2729 #define ARM_TBFLAG_NS_SHIFT 19
2730 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2731 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2732 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2733 /* For M profile only, Handler (ie not Thread) mode */
2734 #define ARM_TBFLAG_HANDLER_SHIFT 21
2735 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2737 /* Bit usage when in AArch64 state */
2738 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2739 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2740 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2741 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2742 #define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2743 #define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2744 #define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2745 #define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2747 /* some convenience accessor macros */
2748 #define ARM_TBFLAG_AARCH64_STATE(F) \
2749 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2750 #define ARM_TBFLAG_MMUIDX(F) \
2751 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2752 #define ARM_TBFLAG_SS_ACTIVE(F) \
2753 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2754 #define ARM_TBFLAG_PSTATE_SS(F) \
2755 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2756 #define ARM_TBFLAG_FPEXC_EL(F) \
2757 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2758 #define ARM_TBFLAG_THUMB(F) \
2759 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2760 #define ARM_TBFLAG_VECLEN(F) \
2761 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2762 #define ARM_TBFLAG_VECSTRIDE(F) \
2763 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2764 #define ARM_TBFLAG_VFPEN(F) \
2765 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2766 #define ARM_TBFLAG_CONDEXEC(F) \
2767 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2768 #define ARM_TBFLAG_SCTLR_B(F) \
2769 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2770 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2771 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2772 #define ARM_TBFLAG_NS(F) \
2773 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2774 #define ARM_TBFLAG_BE_DATA(F) \
2775 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2776 #define ARM_TBFLAG_HANDLER(F) \
2777 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2778 #define ARM_TBFLAG_TBI0(F) \
2779 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2780 #define ARM_TBFLAG_TBI1(F) \
2781 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2782 #define ARM_TBFLAG_SVEEXC_EL(F) \
2783 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2784 #define ARM_TBFLAG_ZCR_LEN(F) \
2785 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2787 static inline bool bswap_code(bool sctlr_b)
2789 #ifdef CONFIG_USER_ONLY
2790 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2791 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2792 * would also end up as a mixed-endian mode with BE code, LE data.
2794 return
2795 #ifdef TARGET_WORDS_BIGENDIAN
2797 #endif
2798 sctlr_b;
2799 #else
2800 /* All code access in ARM is little endian, and there are no loaders
2801 * doing swaps that need to be reversed
2803 return 0;
2804 #endif
2807 #ifdef CONFIG_USER_ONLY
2808 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2810 return
2811 #ifdef TARGET_WORDS_BIGENDIAN
2813 #endif
2814 arm_cpu_data_is_big_endian(env);
2816 #endif
2818 #ifndef CONFIG_USER_ONLY
2820 * arm_regime_tbi0:
2821 * @env: CPUARMState
2822 * @mmu_idx: MMU index indicating required translation regime
2824 * Extracts the TBI0 value from the appropriate TCR for the current EL
2826 * Returns: the TBI0 value.
2828 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2831 * arm_regime_tbi1:
2832 * @env: CPUARMState
2833 * @mmu_idx: MMU index indicating required translation regime
2835 * Extracts the TBI1 value from the appropriate TCR for the current EL
2837 * Returns: the TBI1 value.
2839 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2840 #else
2841 /* We can't handle tagged addresses properly in user-only mode */
2842 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2844 return 0;
2847 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2849 return 0;
2851 #endif
2853 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2854 target_ulong *cs_base, uint32_t *flags);
2856 enum {
2857 QEMU_PSCI_CONDUIT_DISABLED = 0,
2858 QEMU_PSCI_CONDUIT_SMC = 1,
2859 QEMU_PSCI_CONDUIT_HVC = 2,
2862 #ifndef CONFIG_USER_ONLY
2863 /* Return the address space index to use for a memory access */
2864 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2866 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2869 /* Return the AddressSpace to use for a memory access
2870 * (which depends on whether the access is S or NS, and whether
2871 * the board gave us a separate AddressSpace for S accesses).
2873 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2875 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2877 #endif
2880 * arm_register_el_change_hook:
2881 * Register a hook function which will be called back whenever this
2882 * CPU changes exception level or mode. The hook function will be
2883 * passed a pointer to the ARMCPU and the opaque data pointer passed
2884 * to this function when the hook was registered.
2886 * Note that we currently only support registering a single hook function,
2887 * and will assert if this function is called twice.
2888 * This facility is intended for the use of the GICv3 emulation.
2890 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2891 void *opaque);
2894 * arm_get_el_change_hook_opaque:
2895 * Return the opaque data that will be used by the el_change_hook
2896 * for this CPU.
2898 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2900 return cpu->el_change_hook_opaque;
2904 * aa32_vfp_dreg:
2905 * Return a pointer to the Dn register within env in 32-bit mode.
2907 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2909 return &env->vfp.zregs[regno >> 1].d[regno & 1];
2913 * aa32_vfp_qreg:
2914 * Return a pointer to the Qn register within env in 32-bit mode.
2916 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2918 return &env->vfp.zregs[regno].d[0];
2922 * aa64_vfp_qreg:
2923 * Return a pointer to the Qn register within env in 64-bit mode.
2925 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2927 return &env->vfp.zregs[regno].d[0];
2930 #endif