block/copy-before-write: relax permission requirements when no parents
[qemu.git] / target / ppc / mmu-hash64.c
blob19832c4b46f2e7bc22393f1b77ea0ad1b770415c
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/error-report.h"
25 #include "qemu/qemu-print.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 #include "hw/hw.h"
31 #include "internal.h"
32 #include "mmu-book3s-v3.h"
33 #include "helper_regs.h"
35 #ifdef CONFIG_TCG
36 #include "exec/helper-proto.h"
37 #endif
39 /* #define DEBUG_SLB */
41 #ifdef DEBUG_SLB
42 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
43 #else
44 # define LOG_SLB(...) do { } while (0)
45 #endif
48 * SLB handling
51 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
53 CPUPPCState *env = &cpu->env;
54 uint64_t esid_256M, esid_1T;
55 int n;
57 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
59 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
60 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
62 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
63 ppc_slb_t *slb = &env->slb[n];
65 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
66 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
68 * We check for 1T matches on all MMUs here - if the MMU
69 * doesn't have 1T segment support, we will have prevented 1T
70 * entries from being inserted in the slbmte code.
72 if (((slb->esid == esid_256M) &&
73 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
74 || ((slb->esid == esid_1T) &&
75 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
76 return slb;
80 return NULL;
83 void dump_slb(PowerPCCPU *cpu)
85 CPUPPCState *env = &cpu->env;
86 int i;
87 uint64_t slbe, slbv;
89 cpu_synchronize_state(CPU(cpu));
91 qemu_printf("SLB\tESID\t\t\tVSID\n");
92 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
93 slbe = env->slb[i].esid;
94 slbv = env->slb[i].vsid;
95 if (slbe == 0 && slbv == 0) {
96 continue;
98 qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
99 i, slbe, slbv);
103 #ifdef CONFIG_TCG
104 void helper_slbia(CPUPPCState *env, uint32_t ih)
106 PowerPCCPU *cpu = env_archcpu(env);
107 int starting_entry;
108 int n;
111 * slbia must always flush all TLB (which is equivalent to ERAT in ppc
112 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
113 * can overwrite a valid SLB without flushing its lookaside information.
115 * It would be possible to keep the TLB in synch with the SLB by flushing
116 * when a valid entry is overwritten by slbmte, and therefore slbia would
117 * not have to flush unless it evicts a valid SLB entry. However it is
118 * expected that slbmte is more common than slbia, and slbia is usually
119 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
120 * good one.
122 * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
123 * the same SLB entries (everything but entry 0), but differ in what
124 * "lookaside information" is invalidated. TCG can ignore this and flush
125 * everything.
127 * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
128 * invalidated.
131 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
133 starting_entry = 1; /* default for IH=0,1,2,6 */
135 if (env->mmu_model == POWERPC_MMU_3_00) {
136 switch (ih) {
137 case 0x7:
138 /* invalidate no SLBs, but all lookaside information */
139 return;
141 case 0x3:
142 case 0x4:
143 /* also considers SLB entry 0 */
144 starting_entry = 0;
145 break;
147 case 0x5:
148 /* treat undefined values as ih==0, and warn */
149 qemu_log_mask(LOG_GUEST_ERROR,
150 "slbia undefined IH field %u.\n", ih);
151 break;
153 default:
154 /* 0,1,2,6 */
155 break;
159 for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
160 ppc_slb_t *slb = &env->slb[n];
162 if (!(slb->esid & SLB_ESID_V)) {
163 continue;
165 if (env->mmu_model == POWERPC_MMU_3_00) {
166 if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
167 /* preserves entries with a class value of 0 */
168 continue;
172 slb->esid &= ~SLB_ESID_V;
176 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
177 target_ulong global)
179 PowerPCCPU *cpu = env_archcpu(env);
180 ppc_slb_t *slb;
182 slb = slb_lookup(cpu, addr);
183 if (!slb) {
184 return;
187 if (slb->esid & SLB_ESID_V) {
188 slb->esid &= ~SLB_ESID_V;
191 * XXX: given the fact that segment size is 256 MB or 1TB,
192 * and we still don't have a tlb_flush_mask(env, n, mask)
193 * in QEMU, we just invalidate all TLBs
195 env->tlb_need_flush |=
196 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
200 void helper_slbie(CPUPPCState *env, target_ulong addr)
202 __helper_slbie(env, addr, false);
205 void helper_slbieg(CPUPPCState *env, target_ulong addr)
207 __helper_slbie(env, addr, true);
209 #endif
211 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
212 target_ulong esid, target_ulong vsid)
214 CPUPPCState *env = &cpu->env;
215 ppc_slb_t *slb = &env->slb[slot];
216 const PPCHash64SegmentPageSizes *sps = NULL;
217 int i;
219 if (slot >= cpu->hash64_opts->slb_size) {
220 return -1; /* Bad slot number */
222 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
223 return -1; /* Reserved bits set */
225 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
226 return -1; /* Bad segment size */
228 if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
229 return -1; /* 1T segment on MMU that doesn't support it */
232 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
233 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
235 if (!sps1->page_shift) {
236 break;
239 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
240 sps = sps1;
241 break;
245 if (!sps) {
246 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
247 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
248 slot, esid, vsid);
249 return -1;
252 slb->esid = esid;
253 slb->vsid = vsid;
254 slb->sps = sps;
256 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
257 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
258 slb->esid, slb->vsid);
260 return 0;
263 #ifdef CONFIG_TCG
264 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
265 target_ulong *rt)
267 CPUPPCState *env = &cpu->env;
268 int slot = rb & 0xfff;
269 ppc_slb_t *slb = &env->slb[slot];
271 if (slot >= cpu->hash64_opts->slb_size) {
272 return -1;
275 *rt = slb->esid;
276 return 0;
279 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
280 target_ulong *rt)
282 CPUPPCState *env = &cpu->env;
283 int slot = rb & 0xfff;
284 ppc_slb_t *slb = &env->slb[slot];
286 if (slot >= cpu->hash64_opts->slb_size) {
287 return -1;
290 *rt = slb->vsid;
291 return 0;
294 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
295 target_ulong *rt)
297 CPUPPCState *env = &cpu->env;
298 ppc_slb_t *slb;
300 if (!msr_is_64bit(env, env->msr)) {
301 rb &= 0xffffffff;
303 slb = slb_lookup(cpu, rb);
304 if (slb == NULL) {
305 *rt = (target_ulong)-1ul;
306 } else {
307 *rt = slb->vsid;
309 return 0;
312 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
314 PowerPCCPU *cpu = env_archcpu(env);
316 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
317 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
318 POWERPC_EXCP_INVAL, GETPC());
322 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
324 PowerPCCPU *cpu = env_archcpu(env);
325 target_ulong rt = 0;
327 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
328 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
329 POWERPC_EXCP_INVAL, GETPC());
331 return rt;
334 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
336 PowerPCCPU *cpu = env_archcpu(env);
337 target_ulong rt = 0;
339 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
340 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
341 POWERPC_EXCP_INVAL, GETPC());
343 return rt;
346 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
348 PowerPCCPU *cpu = env_archcpu(env);
349 target_ulong rt = 0;
351 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
352 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
353 POWERPC_EXCP_INVAL, GETPC());
355 return rt;
357 #endif
359 /* Check No-Execute or Guarded Storage */
360 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
361 ppc_hash_pte64_t pte)
363 /* Exec permissions CANNOT take away read or write permissions */
364 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
365 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
368 /* Check Basic Storage Protection */
369 static int ppc_hash64_pte_prot(int mmu_idx,
370 ppc_slb_t *slb, ppc_hash_pte64_t pte)
372 unsigned pp, key;
374 * Some pp bit combinations have undefined behaviour, so default
375 * to no access in those cases
377 int prot = 0;
379 key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP)
380 : (slb->vsid & SLB_VSID_KS));
381 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
383 if (key == 0) {
384 switch (pp) {
385 case 0x0:
386 case 0x1:
387 case 0x2:
388 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
389 break;
391 case 0x3:
392 case 0x6:
393 prot = PAGE_READ | PAGE_EXEC;
394 break;
396 } else {
397 switch (pp) {
398 case 0x0:
399 case 0x6:
400 break;
402 case 0x1:
403 case 0x3:
404 prot = PAGE_READ | PAGE_EXEC;
405 break;
407 case 0x2:
408 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
409 break;
413 return prot;
416 /* Check the instruction access permissions specified in the IAMR */
417 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
419 CPUPPCState *env = &cpu->env;
420 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
423 * An instruction fetch is permitted if the IAMR bit is 0.
424 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
425 * can only take away EXEC permissions not READ or WRITE permissions.
426 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
427 * EXEC permissions are allowed.
429 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
430 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
433 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
435 CPUPPCState *env = &cpu->env;
436 int key, amrbits;
437 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
439 /* Only recent MMUs implement Virtual Page Class Key Protection */
440 if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
441 return prot;
444 key = HPTE64_R_KEY(pte.pte1);
445 amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
447 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
448 /* env->spr[SPR_AMR]); */
451 * A store is permitted if the AMR bit is 0. Remove write
452 * protection if it is set.
454 if (amrbits & 0x2) {
455 prot &= ~PAGE_WRITE;
458 * A load is permitted if the AMR bit is 0. Remove read
459 * protection if it is set.
461 if (amrbits & 0x1) {
462 prot &= ~PAGE_READ;
465 switch (env->mmu_model) {
467 * MMU version 2.07 and later support IAMR
468 * Check if the IAMR allows the instruction access - it will return
469 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
470 * if it does (and prot will be unchanged indicating execution support).
472 case POWERPC_MMU_2_07:
473 case POWERPC_MMU_3_00:
474 prot &= ppc_hash64_iamr_prot(cpu, key);
475 break;
476 default:
477 break;
480 return prot;
483 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
484 hwaddr ptex, int n)
486 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
487 hwaddr base;
488 hwaddr plen = n * HASH_PTE_SIZE_64;
489 const ppc_hash_pte64_t *hptes;
491 if (cpu->vhyp) {
492 PPCVirtualHypervisorClass *vhc =
493 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
494 return vhc->map_hptes(cpu->vhyp, ptex, n);
496 base = ppc_hash64_hpt_base(cpu);
498 if (!base) {
499 return NULL;
502 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
503 MEMTXATTRS_UNSPECIFIED);
504 if (plen < (n * HASH_PTE_SIZE_64)) {
505 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
507 return hptes;
510 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
511 hwaddr ptex, int n)
513 if (cpu->vhyp) {
514 PPCVirtualHypervisorClass *vhc =
515 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
516 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
517 return;
520 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
521 false, n * HASH_PTE_SIZE_64);
524 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
525 uint64_t pte0, uint64_t pte1)
527 int i;
529 if (!(pte0 & HPTE64_V_LARGE)) {
530 if (sps->page_shift != 12) {
531 /* 4kiB page in a non 4kiB segment */
532 return 0;
534 /* Normal 4kiB page */
535 return 12;
538 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
539 const PPCHash64PageSize *ps = &sps->enc[i];
540 uint64_t mask;
542 if (!ps->page_shift) {
543 break;
546 if (ps->page_shift == 12) {
547 /* L bit is set so this can't be a 4kiB page */
548 continue;
551 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
553 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
554 return ps->page_shift;
558 return 0; /* Bad page size encoding */
561 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
563 /* Insert B into pte0 */
564 *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
565 ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
566 (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
568 /* Remove B from pte1 */
569 *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
573 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
574 const PPCHash64SegmentPageSizes *sps,
575 target_ulong ptem,
576 ppc_hash_pte64_t *pte, unsigned *pshift)
578 int i;
579 const ppc_hash_pte64_t *pteg;
580 target_ulong pte0, pte1;
581 target_ulong ptex;
583 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
584 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
585 if (!pteg) {
586 return -1;
588 for (i = 0; i < HPTES_PER_GROUP; i++) {
589 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
591 * pte0 contains the valid bit and must be read before pte1,
592 * otherwise we might see an old pte1 with a new valid bit and
593 * thus an inconsistent hpte value
595 smp_rmb();
596 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
598 /* Convert format if necessary */
599 if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
600 ppc64_v3_new_to_old_hpte(&pte0, &pte1);
603 /* This compares V, B, H (secondary) and the AVPN */
604 if (HPTE64_V_COMPARE(pte0, ptem)) {
605 *pshift = hpte_page_shift(sps, pte0, pte1);
607 * If there is no match, ignore the PTE, it could simply
608 * be for a different segment size encoding and the
609 * architecture specifies we should not match. Linux will
610 * potentially leave behind PTEs for the wrong base page
611 * size when demoting segments.
613 if (*pshift == 0) {
614 continue;
617 * We don't do anything with pshift yet as qemu TLB only
618 * deals with 4K pages anyway
620 pte->pte0 = pte0;
621 pte->pte1 = pte1;
622 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
623 return ptex + i;
626 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
628 * We didn't find a valid entry.
630 return -1;
633 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
634 ppc_slb_t *slb, target_ulong eaddr,
635 ppc_hash_pte64_t *pte, unsigned *pshift)
637 CPUPPCState *env = &cpu->env;
638 hwaddr hash, ptex;
639 uint64_t vsid, epnmask, epn, ptem;
640 const PPCHash64SegmentPageSizes *sps = slb->sps;
643 * The SLB store path should prevent any bad page size encodings
644 * getting in there, so:
646 assert(sps);
648 /* If ISL is set in LPCR we need to clamp the page size to 4K */
649 if (env->spr[SPR_LPCR] & LPCR_ISL) {
650 /* We assume that when using TCG, 4k is first entry of SPS */
651 sps = &cpu->hash64_opts->sps[0];
652 assert(sps->page_shift == 12);
655 epnmask = ~((1ULL << sps->page_shift) - 1);
657 if (slb->vsid & SLB_VSID_B) {
658 /* 1TB segment */
659 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
660 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
661 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
662 } else {
663 /* 256M segment */
664 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
665 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
666 hash = vsid ^ (epn >> sps->page_shift);
668 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
669 ptem |= HPTE64_V_VALID;
671 /* Page address translation */
672 qemu_log_mask(CPU_LOG_MMU,
673 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
674 " hash " TARGET_FMT_plx "\n",
675 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
677 /* Primary PTEG lookup */
678 qemu_log_mask(CPU_LOG_MMU,
679 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
680 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
681 " hash=" TARGET_FMT_plx "\n",
682 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
683 vsid, ptem, hash);
684 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
686 if (ptex == -1) {
687 /* Secondary PTEG lookup */
688 ptem |= HPTE64_V_SECONDARY;
689 qemu_log_mask(CPU_LOG_MMU,
690 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
691 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
692 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
693 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
695 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
698 return ptex;
701 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
702 uint64_t pte0, uint64_t pte1)
704 int i;
706 if (!(pte0 & HPTE64_V_LARGE)) {
707 return 12;
711 * The encodings in env->sps need to be carefully chosen so that
712 * this gives an unambiguous result.
714 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
715 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
716 unsigned shift;
718 if (!sps->page_shift) {
719 break;
722 shift = hpte_page_shift(sps, pte0, pte1);
723 if (shift) {
724 return shift;
728 return 0;
731 static bool ppc_hash64_use_vrma(CPUPPCState *env)
733 switch (env->mmu_model) {
734 case POWERPC_MMU_3_00:
736 * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
737 * register no longer exist
739 return true;
741 default:
742 return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
746 static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t error_code)
748 CPUPPCState *env = &POWERPC_CPU(cs)->env;
749 bool vpm;
751 if (!mmuidx_real(mmu_idx)) {
752 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
753 } else {
754 vpm = ppc_hash64_use_vrma(env);
756 if (vpm && !mmuidx_hv(mmu_idx)) {
757 cs->exception_index = POWERPC_EXCP_HISI;
758 } else {
759 cs->exception_index = POWERPC_EXCP_ISI;
761 env->error_code = error_code;
764 static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t dar, uint64_t dsisr)
766 CPUPPCState *env = &POWERPC_CPU(cs)->env;
767 bool vpm;
769 if (!mmuidx_real(mmu_idx)) {
770 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
771 } else {
772 vpm = ppc_hash64_use_vrma(env);
774 if (vpm && !mmuidx_hv(mmu_idx)) {
775 cs->exception_index = POWERPC_EXCP_HDSI;
776 env->spr[SPR_HDAR] = dar;
777 env->spr[SPR_HDSISR] = dsisr;
778 } else {
779 cs->exception_index = POWERPC_EXCP_DSI;
780 env->spr[SPR_DAR] = dar;
781 env->spr[SPR_DSISR] = dsisr;
783 env->error_code = 0;
787 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
789 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;
791 if (cpu->vhyp) {
792 PPCVirtualHypervisorClass *vhc =
793 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
794 vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
795 return;
797 base = ppc_hash64_hpt_base(cpu);
800 /* The HW performs a non-atomic byte update */
801 stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
804 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
806 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;
808 if (cpu->vhyp) {
809 PPCVirtualHypervisorClass *vhc =
810 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
811 vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
812 return;
814 base = ppc_hash64_hpt_base(cpu);
816 /* The HW performs a non-atomic byte update */
817 stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
820 static target_ulong rmls_limit(PowerPCCPU *cpu)
822 CPUPPCState *env = &cpu->env;
824 * In theory the meanings of RMLS values are implementation
825 * dependent. In practice, this seems to have been the set from
826 * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
828 * Unsupported values mean the OS has shot itself in the
829 * foot. Return a 0-sized RMA in this case, which we expect
830 * to trigger an immediate DSI or ISI
832 static const target_ulong rma_sizes[16] = {
833 [0] = 256 * GiB,
834 [1] = 16 * GiB,
835 [2] = 1 * GiB,
836 [3] = 64 * MiB,
837 [4] = 256 * MiB,
838 [7] = 128 * MiB,
839 [8] = 32 * MiB,
841 target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
843 return rma_sizes[rmls];
846 static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
848 CPUPPCState *env = &cpu->env;
849 target_ulong lpcr = env->spr[SPR_LPCR];
850 uint32_t vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
851 target_ulong vsid = SLB_VSID_VRMA | ((vrmasd << 4) & SLB_VSID_LLP_MASK);
852 int i;
854 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
855 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
857 if (!sps->page_shift) {
858 break;
861 if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
862 slb->esid = SLB_ESID_V;
863 slb->vsid = vsid;
864 slb->sps = sps;
865 return 0;
869 error_report("Bad page size encoding in LPCR[VRMASD]; LPCR=0x"
870 TARGET_FMT_lx, lpcr);
872 return -1;
875 bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
876 hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
877 bool guest_visible)
879 CPUState *cs = CPU(cpu);
880 CPUPPCState *env = &cpu->env;
881 ppc_slb_t vrma_slbe;
882 ppc_slb_t *slb;
883 unsigned apshift;
884 hwaddr ptex;
885 ppc_hash_pte64_t pte;
886 int exec_prot, pp_prot, amr_prot, prot;
887 int need_prot;
888 hwaddr raddr;
891 * Note on LPCR usage: 970 uses HID4, but our special variant of
892 * store_spr copies relevant fields into env->spr[SPR_LPCR].
893 * Similarly we filter unimplemented bits when storing into LPCR
894 * depending on the MMU version. This code can thus just use the
895 * LPCR "as-is".
898 /* 1. Handle real mode accesses */
899 if (mmuidx_real(mmu_idx)) {
901 * Translation is supposedly "off", but in real mode the top 4
902 * effective address bits are (mostly) ignored
904 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
906 if (cpu->vhyp) {
908 * In virtual hypervisor mode, there's nothing to do:
909 * EA == GPA == qemu guest address
911 } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
912 /* In HV mode, add HRMOR if top EA bit is clear */
913 if (!(eaddr >> 63)) {
914 raddr |= env->spr[SPR_HRMOR];
916 } else if (ppc_hash64_use_vrma(env)) {
917 /* Emulated VRMA mode */
918 slb = &vrma_slbe;
919 if (build_vrma_slbe(cpu, slb) != 0) {
920 /* Invalid VRMA setup, machine check */
921 if (guest_visible) {
922 cs->exception_index = POWERPC_EXCP_MCHECK;
923 env->error_code = 0;
925 return false;
928 goto skip_slb_search;
929 } else {
930 target_ulong limit = rmls_limit(cpu);
932 /* Emulated old-style RMO mode, bounds check against RMLS */
933 if (raddr >= limit) {
934 if (!guest_visible) {
935 return false;
937 switch (access_type) {
938 case MMU_INST_FETCH:
939 ppc_hash64_set_isi(cs, mmu_idx, SRR1_PROTFAULT);
940 break;
941 case MMU_DATA_LOAD:
942 ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_PROTFAULT);
943 break;
944 case MMU_DATA_STORE:
945 ppc_hash64_set_dsi(cs, mmu_idx, eaddr,
946 DSISR_PROTFAULT | DSISR_ISSTORE);
947 break;
948 default:
949 g_assert_not_reached();
951 return false;
954 raddr |= env->spr[SPR_RMOR];
957 *raddrp = raddr;
958 *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
959 *psizep = TARGET_PAGE_BITS;
960 return true;
963 /* 2. Translation is on, so look up the SLB */
964 slb = slb_lookup(cpu, eaddr);
965 if (!slb) {
966 /* No entry found, check if in-memory segment tables are in use */
967 if (ppc64_use_proc_tbl(cpu)) {
968 /* TODO - Unsupported */
969 error_report("Segment Table Support Unimplemented");
970 exit(1);
972 /* Segment still not found, generate the appropriate interrupt */
973 if (!guest_visible) {
974 return false;
976 switch (access_type) {
977 case MMU_INST_FETCH:
978 cs->exception_index = POWERPC_EXCP_ISEG;
979 env->error_code = 0;
980 break;
981 case MMU_DATA_LOAD:
982 case MMU_DATA_STORE:
983 cs->exception_index = POWERPC_EXCP_DSEG;
984 env->error_code = 0;
985 env->spr[SPR_DAR] = eaddr;
986 break;
987 default:
988 g_assert_not_reached();
990 return false;
993 skip_slb_search:
995 /* 3. Check for segment level no-execute violation */
996 if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
997 if (guest_visible) {
998 ppc_hash64_set_isi(cs, mmu_idx, SRR1_NOEXEC_GUARD);
1000 return false;
1003 /* 4. Locate the PTE in the hash table */
1004 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
1005 if (ptex == -1) {
1006 if (!guest_visible) {
1007 return false;
1009 switch (access_type) {
1010 case MMU_INST_FETCH:
1011 ppc_hash64_set_isi(cs, mmu_idx, SRR1_NOPTE);
1012 break;
1013 case MMU_DATA_LOAD:
1014 ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_NOPTE);
1015 break;
1016 case MMU_DATA_STORE:
1017 ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_NOPTE | DSISR_ISSTORE);
1018 break;
1019 default:
1020 g_assert_not_reached();
1022 return false;
1024 qemu_log_mask(CPU_LOG_MMU,
1025 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
1027 /* 5. Check access permissions */
1029 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
1030 pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte);
1031 amr_prot = ppc_hash64_amr_prot(cpu, pte);
1032 prot = exec_prot & pp_prot & amr_prot;
1034 need_prot = prot_for_access_type(access_type);
1035 if (need_prot & ~prot) {
1036 /* Access right violation */
1037 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1038 if (!guest_visible) {
1039 return false;
1041 if (access_type == MMU_INST_FETCH) {
1042 int srr1 = 0;
1043 if (PAGE_EXEC & ~exec_prot) {
1044 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1045 } else if (PAGE_EXEC & ~pp_prot) {
1046 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1048 if (PAGE_EXEC & ~amr_prot) {
1049 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1051 ppc_hash64_set_isi(cs, mmu_idx, srr1);
1052 } else {
1053 int dsisr = 0;
1054 if (need_prot & ~pp_prot) {
1055 dsisr |= DSISR_PROTFAULT;
1057 if (access_type == MMU_DATA_STORE) {
1058 dsisr |= DSISR_ISSTORE;
1060 if (need_prot & ~amr_prot) {
1061 dsisr |= DSISR_AMR;
1063 ppc_hash64_set_dsi(cs, mmu_idx, eaddr, dsisr);
1065 return false;
1068 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1070 /* 6. Update PTE referenced and changed bits if necessary */
1072 if (!(pte.pte1 & HPTE64_R_R)) {
1073 ppc_hash64_set_r(cpu, ptex, pte.pte1);
1075 if (!(pte.pte1 & HPTE64_R_C)) {
1076 if (access_type == MMU_DATA_STORE) {
1077 ppc_hash64_set_c(cpu, ptex, pte.pte1);
1078 } else {
1080 * Treat the page as read-only for now, so that a later write
1081 * will pass through this function again to set the C bit
1083 prot &= ~PAGE_WRITE;
1087 /* 7. Determine the real address from the PTE */
1089 *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1090 *protp = prot;
1091 *psizep = apshift;
1092 return true;
1095 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1096 target_ulong pte0, target_ulong pte1)
1099 * XXX: given the fact that there are too many segments to
1100 * invalidate, and we still don't have a tlb_flush_mask(env, n,
1101 * mask) in QEMU, we just invalidate all TLBs
1103 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1106 #ifdef CONFIG_TCG
1107 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1109 PowerPCCPU *cpu = env_archcpu(env);
1111 ppc_store_lpcr(cpu, val);
1113 #endif
1115 void ppc_hash64_init(PowerPCCPU *cpu)
1117 CPUPPCState *env = &cpu->env;
1118 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1120 if (!pcc->hash64_opts) {
1121 assert(!mmu_is_64bit(env->mmu_model));
1122 return;
1125 cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1128 void ppc_hash64_finalize(PowerPCCPU *cpu)
1130 g_free(cpu->hash64_opts);
1133 const PPCHash64Options ppc_hash64_opts_basic = {
1134 .flags = 0,
1135 .slb_size = 64,
1136 .sps = {
1137 { .page_shift = 12, /* 4K */
1138 .slb_enc = 0,
1139 .enc = { { .page_shift = 12, .pte_enc = 0 } }
1141 { .page_shift = 24, /* 16M */
1142 .slb_enc = 0x100,
1143 .enc = { { .page_shift = 24, .pte_enc = 0 } }
1148 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1149 .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1150 .slb_size = 32,
1151 .sps = {
1153 .page_shift = 12, /* 4K */
1154 .slb_enc = 0,
1155 .enc = { { .page_shift = 12, .pte_enc = 0 },
1156 { .page_shift = 16, .pte_enc = 0x7 },
1157 { .page_shift = 24, .pte_enc = 0x38 }, },
1160 .page_shift = 16, /* 64K */
1161 .slb_enc = SLB_VSID_64K,
1162 .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1163 { .page_shift = 24, .pte_enc = 0x8 }, },
1166 .page_shift = 24, /* 16M */
1167 .slb_enc = SLB_VSID_16M,
1168 .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1171 .page_shift = 34, /* 16G */
1172 .slb_enc = SLB_VSID_16G,
1173 .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },