virtio-serial: save/restore new fields in port struct
[qemu.git] / hw / pflash_cfi02.c
blob3594a36f8d7d7460c8b66e5d320dafaaf0512076
1 /*
2 * CFI parallel flash with AMD command set emulation
4 * Copyright (c) 2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22 * Supported commands/modes are:
23 * - flash read
24 * - flash write
25 * - flash ID read
26 * - sector erase
27 * - chip erase
28 * - unlock bypass command
29 * - CFI queries
31 * It does not support flash interleaving.
32 * It does not implement boot blocs with reduced size
33 * It does not implement software data protection as found in many real chips
34 * It does not implement erase suspend/resume commands
35 * It does not implement multiple sectors erase
38 #include "hw.h"
39 #include "flash.h"
40 #include "qemu-timer.h"
41 #include "block.h"
43 //#define PFLASH_DEBUG
44 #ifdef PFLASH_DEBUG
45 #define DPRINTF(fmt, ...) \
46 do { \
47 printf("PFLASH: " fmt , ## __VA_ARGS__); \
48 } while (0)
49 #else
50 #define DPRINTF(fmt, ...) do { } while (0)
51 #endif
53 struct pflash_t {
54 BlockDriverState *bs;
55 target_phys_addr_t base;
56 uint32_t sector_len;
57 uint32_t chip_len;
58 int mappings;
59 int width;
60 int wcycle; /* if 0, the flash is read normally */
61 int bypass;
62 int ro;
63 uint8_t cmd;
64 uint8_t status;
65 uint16_t ident[4];
66 uint16_t unlock_addr[2];
67 uint8_t cfi_len;
68 uint8_t cfi_table[0x52];
69 QEMUTimer *timer;
70 ram_addr_t off;
71 int fl_mem;
72 int rom_mode;
73 void *storage;
76 static void pflash_register_memory(pflash_t *pfl, int rom_mode)
78 unsigned long phys_offset = pfl->fl_mem;
79 int i;
81 if (rom_mode)
82 phys_offset |= pfl->off | IO_MEM_ROMD;
83 pfl->rom_mode = rom_mode;
85 for (i = 0; i < pfl->mappings; i++)
86 cpu_register_physical_memory(pfl->base + i * pfl->chip_len,
87 pfl->chip_len, phys_offset);
90 static void pflash_timer (void *opaque)
92 pflash_t *pfl = opaque;
94 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
95 /* Reset flash */
96 pfl->status ^= 0x80;
97 if (pfl->bypass) {
98 pfl->wcycle = 2;
99 } else {
100 pflash_register_memory(pfl, 1);
101 pfl->wcycle = 0;
103 pfl->cmd = 0;
106 static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
107 int width, int be)
109 target_phys_addr_t boff;
110 uint32_t ret;
111 uint8_t *p;
113 DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
114 ret = -1;
115 if (pfl->rom_mode) {
116 /* Lazy reset of to ROMD mode */
117 if (pfl->wcycle == 0)
118 pflash_register_memory(pfl, 1);
120 offset &= pfl->chip_len - 1;
121 boff = offset & 0xFF;
122 if (pfl->width == 2)
123 boff = boff >> 1;
124 else if (pfl->width == 4)
125 boff = boff >> 2;
126 switch (pfl->cmd) {
127 default:
128 /* This should never happen : reset state & treat it as a read*/
129 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
130 pfl->wcycle = 0;
131 pfl->cmd = 0;
132 case 0x80:
133 /* We accept reads during second unlock sequence... */
134 case 0x00:
135 flash_read:
136 /* Flash area read */
137 p = pfl->storage;
138 switch (width) {
139 case 1:
140 ret = p[offset];
141 // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
142 break;
143 case 2:
144 if (be) {
145 ret = p[offset] << 8;
146 ret |= p[offset + 1];
147 } else {
148 ret = p[offset];
149 ret |= p[offset + 1] << 8;
151 // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
152 break;
153 case 4:
154 if (be) {
155 ret = p[offset] << 24;
156 ret |= p[offset + 1] << 16;
157 ret |= p[offset + 2] << 8;
158 ret |= p[offset + 3];
159 } else {
160 ret = p[offset];
161 ret |= p[offset + 1] << 8;
162 ret |= p[offset + 2] << 16;
163 ret |= p[offset + 3] << 24;
165 // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
166 break;
168 break;
169 case 0x90:
170 /* flash ID read */
171 switch (boff) {
172 case 0x00:
173 case 0x01:
174 ret = pfl->ident[boff & 0x01];
175 break;
176 case 0x02:
177 ret = 0x00; /* Pretend all sectors are unprotected */
178 break;
179 case 0x0E:
180 case 0x0F:
181 if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
182 goto flash_read;
183 ret = pfl->ident[2 + (boff & 0x01)];
184 break;
185 default:
186 goto flash_read;
188 DPRINTF("%s: ID " TARGET_FMT_pld " %x\n", __func__, boff, ret);
189 break;
190 case 0xA0:
191 case 0x10:
192 case 0x30:
193 /* Status register read */
194 ret = pfl->status;
195 DPRINTF("%s: status %x\n", __func__, ret);
196 /* Toggle bit 6 */
197 pfl->status ^= 0x40;
198 break;
199 case 0x98:
200 /* CFI query mode */
201 if (boff > pfl->cfi_len)
202 ret = 0;
203 else
204 ret = pfl->cfi_table[boff];
205 break;
208 return ret;
211 /* update flash content on disk */
212 static void pflash_update(pflash_t *pfl, int offset,
213 int size)
215 int offset_end;
216 if (pfl->bs) {
217 offset_end = offset + size;
218 /* round to sectors */
219 offset = offset >> 9;
220 offset_end = (offset_end + 511) >> 9;
221 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
222 offset_end - offset);
226 static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
227 uint32_t value, int width, int be)
229 target_phys_addr_t boff;
230 uint8_t *p;
231 uint8_t cmd;
233 cmd = value;
234 if (pfl->cmd != 0xA0 && cmd == 0xF0) {
235 #if 0
236 DPRINTF("%s: flash reset asked (%02x %02x)\n",
237 __func__, pfl->cmd, cmd);
238 #endif
239 goto reset_flash;
241 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
242 offset, value, width, pfl->wcycle);
243 offset &= pfl->chip_len - 1;
245 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
246 offset, value, width);
247 boff = offset & (pfl->sector_len - 1);
248 if (pfl->width == 2)
249 boff = boff >> 1;
250 else if (pfl->width == 4)
251 boff = boff >> 2;
252 switch (pfl->wcycle) {
253 case 0:
254 /* Set the device in I/O access mode if required */
255 if (pfl->rom_mode)
256 pflash_register_memory(pfl, 0);
257 /* We're in read mode */
258 check_unlock0:
259 if (boff == 0x55 && cmd == 0x98) {
260 enter_CFI_mode:
261 /* Enter CFI query mode */
262 pfl->wcycle = 7;
263 pfl->cmd = 0x98;
264 return;
266 if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
267 DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
268 __func__, boff, cmd, pfl->unlock_addr[0]);
269 goto reset_flash;
271 DPRINTF("%s: unlock sequence started\n", __func__);
272 break;
273 case 1:
274 /* We started an unlock sequence */
275 check_unlock1:
276 if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
277 DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
278 boff, cmd);
279 goto reset_flash;
281 DPRINTF("%s: unlock sequence done\n", __func__);
282 break;
283 case 2:
284 /* We finished an unlock sequence */
285 if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
286 DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
287 boff, cmd);
288 goto reset_flash;
290 switch (cmd) {
291 case 0x20:
292 pfl->bypass = 1;
293 goto do_bypass;
294 case 0x80:
295 case 0x90:
296 case 0xA0:
297 pfl->cmd = cmd;
298 DPRINTF("%s: starting command %02x\n", __func__, cmd);
299 break;
300 default:
301 DPRINTF("%s: unknown command %02x\n", __func__, cmd);
302 goto reset_flash;
304 break;
305 case 3:
306 switch (pfl->cmd) {
307 case 0x80:
308 /* We need another unlock sequence */
309 goto check_unlock0;
310 case 0xA0:
311 DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
312 __func__, offset, value, width);
313 p = pfl->storage;
314 switch (width) {
315 case 1:
316 p[offset] &= value;
317 pflash_update(pfl, offset, 1);
318 break;
319 case 2:
320 if (be) {
321 p[offset] &= value >> 8;
322 p[offset + 1] &= value;
323 } else {
324 p[offset] &= value;
325 p[offset + 1] &= value >> 8;
327 pflash_update(pfl, offset, 2);
328 break;
329 case 4:
330 if (be) {
331 p[offset] &= value >> 24;
332 p[offset + 1] &= value >> 16;
333 p[offset + 2] &= value >> 8;
334 p[offset + 3] &= value;
335 } else {
336 p[offset] &= value;
337 p[offset + 1] &= value >> 8;
338 p[offset + 2] &= value >> 16;
339 p[offset + 3] &= value >> 24;
341 pflash_update(pfl, offset, 4);
342 break;
344 pfl->status = 0x00 | ~(value & 0x80);
345 /* Let's pretend write is immediate */
346 if (pfl->bypass)
347 goto do_bypass;
348 goto reset_flash;
349 case 0x90:
350 if (pfl->bypass && cmd == 0x00) {
351 /* Unlock bypass reset */
352 goto reset_flash;
354 /* We can enter CFI query mode from autoselect mode */
355 if (boff == 0x55 && cmd == 0x98)
356 goto enter_CFI_mode;
357 /* No break here */
358 default:
359 DPRINTF("%s: invalid write for command %02x\n",
360 __func__, pfl->cmd);
361 goto reset_flash;
363 case 4:
364 switch (pfl->cmd) {
365 case 0xA0:
366 /* Ignore writes while flash data write is occuring */
367 /* As we suppose write is immediate, this should never happen */
368 return;
369 case 0x80:
370 goto check_unlock1;
371 default:
372 /* Should never happen */
373 DPRINTF("%s: invalid command state %02x (wc 4)\n",
374 __func__, pfl->cmd);
375 goto reset_flash;
377 break;
378 case 5:
379 switch (cmd) {
380 case 0x10:
381 if (boff != pfl->unlock_addr[0]) {
382 DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
383 __func__, offset);
384 goto reset_flash;
386 /* Chip erase */
387 DPRINTF("%s: start chip erase\n", __func__);
388 memset(pfl->storage, 0xFF, pfl->chip_len);
389 pfl->status = 0x00;
390 pflash_update(pfl, 0, pfl->chip_len);
391 /* Let's wait 5 seconds before chip erase is done */
392 qemu_mod_timer(pfl->timer,
393 qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 5));
394 break;
395 case 0x30:
396 /* Sector erase */
397 p = pfl->storage;
398 offset &= ~(pfl->sector_len - 1);
399 DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
400 offset);
401 memset(p + offset, 0xFF, pfl->sector_len);
402 pflash_update(pfl, offset, pfl->sector_len);
403 pfl->status = 0x00;
404 /* Let's wait 1/2 second before sector erase is done */
405 qemu_mod_timer(pfl->timer,
406 qemu_get_clock(vm_clock) + (get_ticks_per_sec() / 2));
407 break;
408 default:
409 DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
410 goto reset_flash;
412 pfl->cmd = cmd;
413 break;
414 case 6:
415 switch (pfl->cmd) {
416 case 0x10:
417 /* Ignore writes during chip erase */
418 return;
419 case 0x30:
420 /* Ignore writes during sector erase */
421 return;
422 default:
423 /* Should never happen */
424 DPRINTF("%s: invalid command state %02x (wc 6)\n",
425 __func__, pfl->cmd);
426 goto reset_flash;
428 break;
429 case 7: /* Special value for CFI queries */
430 DPRINTF("%s: invalid write in CFI query mode\n", __func__);
431 goto reset_flash;
432 default:
433 /* Should never happen */
434 DPRINTF("%s: invalid write state (wc 7)\n", __func__);
435 goto reset_flash;
437 pfl->wcycle++;
439 return;
441 /* Reset flash */
442 reset_flash:
443 pfl->bypass = 0;
444 pfl->wcycle = 0;
445 pfl->cmd = 0;
446 return;
448 do_bypass:
449 pfl->wcycle = 2;
450 pfl->cmd = 0;
451 return;
455 static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
457 return pflash_read(opaque, addr, 1, 1);
460 static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
462 return pflash_read(opaque, addr, 1, 0);
465 static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
467 pflash_t *pfl = opaque;
469 return pflash_read(pfl, addr, 2, 1);
472 static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
474 pflash_t *pfl = opaque;
476 return pflash_read(pfl, addr, 2, 0);
479 static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
481 pflash_t *pfl = opaque;
483 return pflash_read(pfl, addr, 4, 1);
486 static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
488 pflash_t *pfl = opaque;
490 return pflash_read(pfl, addr, 4, 0);
493 static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
494 uint32_t value)
496 pflash_write(opaque, addr, value, 1, 1);
499 static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
500 uint32_t value)
502 pflash_write(opaque, addr, value, 1, 0);
505 static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
506 uint32_t value)
508 pflash_t *pfl = opaque;
510 pflash_write(pfl, addr, value, 2, 1);
513 static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
514 uint32_t value)
516 pflash_t *pfl = opaque;
518 pflash_write(pfl, addr, value, 2, 0);
521 static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
522 uint32_t value)
524 pflash_t *pfl = opaque;
526 pflash_write(pfl, addr, value, 4, 1);
529 static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
530 uint32_t value)
532 pflash_t *pfl = opaque;
534 pflash_write(pfl, addr, value, 4, 0);
537 static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
538 &pflash_writeb_be,
539 &pflash_writew_be,
540 &pflash_writel_be,
543 static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
544 &pflash_readb_be,
545 &pflash_readw_be,
546 &pflash_readl_be,
549 static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
550 &pflash_writeb_le,
551 &pflash_writew_le,
552 &pflash_writel_le,
555 static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
556 &pflash_readb_le,
557 &pflash_readw_le,
558 &pflash_readl_le,
561 /* Count trailing zeroes of a 32 bits quantity */
562 static int ctz32 (uint32_t n)
564 int ret;
566 ret = 0;
567 if (!(n & 0xFFFF)) {
568 ret += 16;
569 n = n >> 16;
571 if (!(n & 0xFF)) {
572 ret += 8;
573 n = n >> 8;
575 if (!(n & 0xF)) {
576 ret += 4;
577 n = n >> 4;
579 if (!(n & 0x3)) {
580 ret += 2;
581 n = n >> 2;
583 if (!(n & 0x1)) {
584 ret++;
585 #if 0 /* This is not necessary as n is never 0 */
586 n = n >> 1;
587 #endif
589 #if 0 /* This is not necessary as n is never 0 */
590 if (!n)
591 ret++;
592 #endif
594 return ret;
597 pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
598 BlockDriverState *bs, uint32_t sector_len,
599 int nb_blocs, int nb_mappings, int width,
600 uint16_t id0, uint16_t id1,
601 uint16_t id2, uint16_t id3,
602 uint16_t unlock_addr0, uint16_t unlock_addr1,
603 int be)
605 pflash_t *pfl;
606 int32_t chip_len;
607 int ret;
609 chip_len = sector_len * nb_blocs;
610 /* XXX: to be fixed */
611 #if 0
612 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
613 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
614 return NULL;
615 #endif
616 pfl = qemu_mallocz(sizeof(pflash_t));
617 /* FIXME: Allocate ram ourselves. */
618 pfl->storage = qemu_get_ram_ptr(off);
619 if (be) {
620 pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
621 pflash_write_ops_be,
622 pfl, DEVICE_NATIVE_ENDIAN);
623 } else {
624 pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
625 pflash_write_ops_le,
626 pfl, DEVICE_NATIVE_ENDIAN);
628 pfl->off = off;
629 pfl->base = base;
630 pfl->chip_len = chip_len;
631 pfl->mappings = nb_mappings;
632 pflash_register_memory(pfl, 1);
633 pfl->bs = bs;
634 if (pfl->bs) {
635 /* read the initial flash content */
636 ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
637 if (ret < 0) {
638 cpu_unregister_io_memory(pfl->fl_mem);
639 qemu_free(pfl);
640 return NULL;
643 #if 0 /* XXX: there should be a bit to set up read-only,
644 * the same way the hardware does (with WP pin).
646 pfl->ro = 1;
647 #else
648 pfl->ro = 0;
649 #endif
650 pfl->timer = qemu_new_timer(vm_clock, pflash_timer, pfl);
651 pfl->sector_len = sector_len;
652 pfl->width = width;
653 pfl->wcycle = 0;
654 pfl->cmd = 0;
655 pfl->status = 0;
656 pfl->ident[0] = id0;
657 pfl->ident[1] = id1;
658 pfl->ident[2] = id2;
659 pfl->ident[3] = id3;
660 pfl->unlock_addr[0] = unlock_addr0;
661 pfl->unlock_addr[1] = unlock_addr1;
662 /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
663 pfl->cfi_len = 0x52;
664 /* Standard "QRY" string */
665 pfl->cfi_table[0x10] = 'Q';
666 pfl->cfi_table[0x11] = 'R';
667 pfl->cfi_table[0x12] = 'Y';
668 /* Command set (AMD/Fujitsu) */
669 pfl->cfi_table[0x13] = 0x02;
670 pfl->cfi_table[0x14] = 0x00;
671 /* Primary extended table address */
672 pfl->cfi_table[0x15] = 0x31;
673 pfl->cfi_table[0x16] = 0x00;
674 /* Alternate command set (none) */
675 pfl->cfi_table[0x17] = 0x00;
676 pfl->cfi_table[0x18] = 0x00;
677 /* Alternate extended table (none) */
678 pfl->cfi_table[0x19] = 0x00;
679 pfl->cfi_table[0x1A] = 0x00;
680 /* Vcc min */
681 pfl->cfi_table[0x1B] = 0x27;
682 /* Vcc max */
683 pfl->cfi_table[0x1C] = 0x36;
684 /* Vpp min (no Vpp pin) */
685 pfl->cfi_table[0x1D] = 0x00;
686 /* Vpp max (no Vpp pin) */
687 pfl->cfi_table[0x1E] = 0x00;
688 /* Reserved */
689 pfl->cfi_table[0x1F] = 0x07;
690 /* Timeout for min size buffer write (NA) */
691 pfl->cfi_table[0x20] = 0x00;
692 /* Typical timeout for block erase (512 ms) */
693 pfl->cfi_table[0x21] = 0x09;
694 /* Typical timeout for full chip erase (4096 ms) */
695 pfl->cfi_table[0x22] = 0x0C;
696 /* Reserved */
697 pfl->cfi_table[0x23] = 0x01;
698 /* Max timeout for buffer write (NA) */
699 pfl->cfi_table[0x24] = 0x00;
700 /* Max timeout for block erase */
701 pfl->cfi_table[0x25] = 0x0A;
702 /* Max timeout for chip erase */
703 pfl->cfi_table[0x26] = 0x0D;
704 /* Device size */
705 pfl->cfi_table[0x27] = ctz32(chip_len);
706 /* Flash device interface (8 & 16 bits) */
707 pfl->cfi_table[0x28] = 0x02;
708 pfl->cfi_table[0x29] = 0x00;
709 /* Max number of bytes in multi-bytes write */
710 /* XXX: disable buffered write as it's not supported */
711 // pfl->cfi_table[0x2A] = 0x05;
712 pfl->cfi_table[0x2A] = 0x00;
713 pfl->cfi_table[0x2B] = 0x00;
714 /* Number of erase block regions (uniform) */
715 pfl->cfi_table[0x2C] = 0x01;
716 /* Erase block region 1 */
717 pfl->cfi_table[0x2D] = nb_blocs - 1;
718 pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
719 pfl->cfi_table[0x2F] = sector_len >> 8;
720 pfl->cfi_table[0x30] = sector_len >> 16;
722 /* Extended */
723 pfl->cfi_table[0x31] = 'P';
724 pfl->cfi_table[0x32] = 'R';
725 pfl->cfi_table[0x33] = 'I';
727 pfl->cfi_table[0x34] = '1';
728 pfl->cfi_table[0x35] = '0';
730 pfl->cfi_table[0x36] = 0x00;
731 pfl->cfi_table[0x37] = 0x00;
732 pfl->cfi_table[0x38] = 0x00;
733 pfl->cfi_table[0x39] = 0x00;
735 pfl->cfi_table[0x3a] = 0x00;
737 pfl->cfi_table[0x3b] = 0x00;
738 pfl->cfi_table[0x3c] = 0x00;
740 return pfl;