vhost-user: more master/slave things
[qemu.git] / util / qemu-thread-win32.c
bloba2d5a6e8259f1bf229ebc45e7733c0821d184359
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include "qemu-thread-common.h"
18 #include <process.h>
20 static bool name_threads;
22 void qemu_thread_naming(bool enable)
24 /* But note we don't actually name them on Windows yet */
25 name_threads = enable;
27 fprintf(stderr, "qemu: thread naming not supported on this host\n");
30 static void error_exit(int err, const char *msg)
32 char *pstr;
34 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
35 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
36 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
37 LocalFree(pstr);
38 abort();
41 void qemu_mutex_init(QemuMutex *mutex)
43 InitializeSRWLock(&mutex->lock);
44 qemu_mutex_post_init(mutex);
47 void qemu_mutex_destroy(QemuMutex *mutex)
49 assert(mutex->initialized);
50 mutex->initialized = false;
51 InitializeSRWLock(&mutex->lock);
54 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
56 assert(mutex->initialized);
57 qemu_mutex_pre_lock(mutex, file, line);
58 AcquireSRWLockExclusive(&mutex->lock);
59 qemu_mutex_post_lock(mutex, file, line);
62 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
64 int owned;
66 assert(mutex->initialized);
67 owned = TryAcquireSRWLockExclusive(&mutex->lock);
68 if (owned) {
69 qemu_mutex_post_lock(mutex, file, line);
70 return 0;
72 return -EBUSY;
75 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
77 assert(mutex->initialized);
78 qemu_mutex_pre_unlock(mutex, file, line);
79 ReleaseSRWLockExclusive(&mutex->lock);
82 void qemu_rec_mutex_init(QemuRecMutex *mutex)
84 InitializeCriticalSection(&mutex->lock);
85 mutex->initialized = true;
88 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
90 assert(mutex->initialized);
91 mutex->initialized = false;
92 DeleteCriticalSection(&mutex->lock);
95 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
97 assert(mutex->initialized);
98 EnterCriticalSection(&mutex->lock);
101 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
103 assert(mutex->initialized);
104 return !TryEnterCriticalSection(&mutex->lock);
107 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
109 assert(mutex->initialized);
110 LeaveCriticalSection(&mutex->lock);
113 void qemu_cond_init(QemuCond *cond)
115 memset(cond, 0, sizeof(*cond));
116 InitializeConditionVariable(&cond->var);
117 cond->initialized = true;
120 void qemu_cond_destroy(QemuCond *cond)
122 assert(cond->initialized);
123 cond->initialized = false;
124 InitializeConditionVariable(&cond->var);
127 void qemu_cond_signal(QemuCond *cond)
129 assert(cond->initialized);
130 WakeConditionVariable(&cond->var);
133 void qemu_cond_broadcast(QemuCond *cond)
135 assert(cond->initialized);
136 WakeAllConditionVariable(&cond->var);
139 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
141 assert(cond->initialized);
142 qemu_mutex_pre_unlock(mutex, file, line);
143 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
144 qemu_mutex_post_lock(mutex, file, line);
147 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
148 const char *file, const int line)
150 int rc = 0;
152 assert(cond->initialized);
153 trace_qemu_mutex_unlock(mutex, file, line);
154 if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
155 rc = GetLastError();
157 trace_qemu_mutex_locked(mutex, file, line);
158 if (rc && rc != ERROR_TIMEOUT) {
159 error_exit(rc, __func__);
161 return rc != ERROR_TIMEOUT;
164 void qemu_sem_init(QemuSemaphore *sem, int init)
166 /* Manual reset. */
167 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
168 sem->initialized = true;
171 void qemu_sem_destroy(QemuSemaphore *sem)
173 assert(sem->initialized);
174 sem->initialized = false;
175 CloseHandle(sem->sema);
178 void qemu_sem_post(QemuSemaphore *sem)
180 assert(sem->initialized);
181 ReleaseSemaphore(sem->sema, 1, NULL);
184 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
186 int rc;
188 assert(sem->initialized);
189 rc = WaitForSingleObject(sem->sema, ms);
190 if (rc == WAIT_OBJECT_0) {
191 return 0;
193 if (rc != WAIT_TIMEOUT) {
194 error_exit(GetLastError(), __func__);
196 return -1;
199 void qemu_sem_wait(QemuSemaphore *sem)
201 assert(sem->initialized);
202 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
203 error_exit(GetLastError(), __func__);
207 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
208 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
209 * sequence. Such a sequence is, indeed, how QemuEvents are used by
210 * RCU and other subsystems!
212 * Valid transitions:
213 * - free->set, when setting the event
214 * - busy->set, when setting the event, followed by SetEvent
215 * - set->free, when resetting the event
216 * - free->busy, when waiting
218 * set->busy does not happen (it can be observed from the outside but
219 * it really is set->free->busy).
221 * busy->free provably cannot happen; to enforce it, the set->free transition
222 * is done with an OR, which becomes a no-op if the event has concurrently
223 * transitioned to free or busy (and is faster than cmpxchg).
226 #define EV_SET 0
227 #define EV_FREE 1
228 #define EV_BUSY -1
230 void qemu_event_init(QemuEvent *ev, bool init)
232 /* Manual reset. */
233 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
234 ev->value = (init ? EV_SET : EV_FREE);
235 ev->initialized = true;
238 void qemu_event_destroy(QemuEvent *ev)
240 assert(ev->initialized);
241 ev->initialized = false;
242 CloseHandle(ev->event);
245 void qemu_event_set(QemuEvent *ev)
247 assert(ev->initialized);
248 /* qemu_event_set has release semantics, but because it *loads*
249 * ev->value we need a full memory barrier here.
251 smp_mb();
252 if (qatomic_read(&ev->value) != EV_SET) {
253 if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
254 /* There were waiters, wake them up. */
255 SetEvent(ev->event);
260 void qemu_event_reset(QemuEvent *ev)
262 unsigned value;
264 assert(ev->initialized);
265 value = qatomic_read(&ev->value);
266 smp_mb_acquire();
267 if (value == EV_SET) {
268 /* If there was a concurrent reset (or even reset+wait),
269 * do nothing. Otherwise change EV_SET->EV_FREE.
271 qatomic_or(&ev->value, EV_FREE);
275 void qemu_event_wait(QemuEvent *ev)
277 unsigned value;
279 assert(ev->initialized);
280 value = qatomic_read(&ev->value);
281 smp_mb_acquire();
282 if (value != EV_SET) {
283 if (value == EV_FREE) {
284 /* qemu_event_set is not yet going to call SetEvent, but we are
285 * going to do another check for EV_SET below when setting EV_BUSY.
286 * At that point it is safe to call WaitForSingleObject.
288 ResetEvent(ev->event);
290 /* Tell qemu_event_set that there are waiters. No need to retry
291 * because there cannot be a concurrent busy->free transition.
292 * After the CAS, the event will be either set or busy.
294 if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
295 value = EV_SET;
296 } else {
297 value = EV_BUSY;
300 if (value == EV_BUSY) {
301 WaitForSingleObject(ev->event, INFINITE);
306 struct QemuThreadData {
307 /* Passed to win32_start_routine. */
308 void *(*start_routine)(void *);
309 void *arg;
310 short mode;
311 NotifierList exit;
313 /* Only used for joinable threads. */
314 bool exited;
315 void *ret;
316 CRITICAL_SECTION cs;
319 static bool atexit_registered;
320 static NotifierList main_thread_exit;
322 static __thread QemuThreadData *qemu_thread_data;
324 static void run_main_thread_exit(void)
326 notifier_list_notify(&main_thread_exit, NULL);
329 void qemu_thread_atexit_add(Notifier *notifier)
331 if (!qemu_thread_data) {
332 if (!atexit_registered) {
333 atexit_registered = true;
334 atexit(run_main_thread_exit);
336 notifier_list_add(&main_thread_exit, notifier);
337 } else {
338 notifier_list_add(&qemu_thread_data->exit, notifier);
342 void qemu_thread_atexit_remove(Notifier *notifier)
344 notifier_remove(notifier);
347 static unsigned __stdcall win32_start_routine(void *arg)
349 QemuThreadData *data = (QemuThreadData *) arg;
350 void *(*start_routine)(void *) = data->start_routine;
351 void *thread_arg = data->arg;
353 qemu_thread_data = data;
354 qemu_thread_exit(start_routine(thread_arg));
355 abort();
358 void qemu_thread_exit(void *arg)
360 QemuThreadData *data = qemu_thread_data;
362 notifier_list_notify(&data->exit, NULL);
363 if (data->mode == QEMU_THREAD_JOINABLE) {
364 data->ret = arg;
365 EnterCriticalSection(&data->cs);
366 data->exited = true;
367 LeaveCriticalSection(&data->cs);
368 } else {
369 g_free(data);
371 _endthreadex(0);
374 void *qemu_thread_join(QemuThread *thread)
376 QemuThreadData *data;
377 void *ret;
378 HANDLE handle;
380 data = thread->data;
381 if (data->mode == QEMU_THREAD_DETACHED) {
382 return NULL;
386 * Because multiple copies of the QemuThread can exist via
387 * qemu_thread_get_self, we need to store a value that cannot
388 * leak there. The simplest, non racy way is to store the TID,
389 * discard the handle that _beginthreadex gives back, and
390 * get another copy of the handle here.
392 handle = qemu_thread_get_handle(thread);
393 if (handle) {
394 WaitForSingleObject(handle, INFINITE);
395 CloseHandle(handle);
397 ret = data->ret;
398 DeleteCriticalSection(&data->cs);
399 g_free(data);
400 return ret;
403 void qemu_thread_create(QemuThread *thread, const char *name,
404 void *(*start_routine)(void *),
405 void *arg, int mode)
407 HANDLE hThread;
408 struct QemuThreadData *data;
410 data = g_malloc(sizeof *data);
411 data->start_routine = start_routine;
412 data->arg = arg;
413 data->mode = mode;
414 data->exited = false;
415 notifier_list_init(&data->exit);
417 if (data->mode != QEMU_THREAD_DETACHED) {
418 InitializeCriticalSection(&data->cs);
421 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
422 data, 0, &thread->tid);
423 if (!hThread) {
424 error_exit(GetLastError(), __func__);
426 CloseHandle(hThread);
427 thread->data = data;
430 void qemu_thread_get_self(QemuThread *thread)
432 thread->data = qemu_thread_data;
433 thread->tid = GetCurrentThreadId();
436 HANDLE qemu_thread_get_handle(QemuThread *thread)
438 QemuThreadData *data;
439 HANDLE handle;
441 data = thread->data;
442 if (data->mode == QEMU_THREAD_DETACHED) {
443 return NULL;
446 EnterCriticalSection(&data->cs);
447 if (!data->exited) {
448 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
449 THREAD_SET_CONTEXT, FALSE, thread->tid);
450 } else {
451 handle = NULL;
453 LeaveCriticalSection(&data->cs);
454 return handle;
457 bool qemu_thread_is_self(QemuThread *thread)
459 return GetCurrentThreadId() == thread->tid;