2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
35 #if defined(TARGET_RISCV32)
36 # define KERNEL_BOOT_ADDRESS 0x80400000
37 #define fw_dynamic_info_data(__val) cpu_to_le32(__val)
39 # define KERNEL_BOOT_ADDRESS 0x80200000
40 #define fw_dynamic_info_data(__val) cpu_to_le64(__val)
43 void riscv_find_and_load_firmware(MachineState
*machine
,
44 const char *default_machine_firmware
,
45 hwaddr firmware_load_addr
,
48 char *firmware_filename
= NULL
;
50 if ((!machine
->firmware
) || (!strcmp(machine
->firmware
, "default"))) {
52 * The user didn't specify -bios, or has specified "-bios default".
53 * That means we are going to load the OpenSBI binary included in
56 firmware_filename
= riscv_find_firmware(default_machine_firmware
);
57 } else if (strcmp(machine
->firmware
, "none")) {
58 firmware_filename
= riscv_find_firmware(machine
->firmware
);
61 if (firmware_filename
) {
62 /* If not "none" load the firmware */
63 riscv_load_firmware(firmware_filename
, firmware_load_addr
, sym_cb
);
64 g_free(firmware_filename
);
68 char *riscv_find_firmware(const char *firmware_filename
)
72 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, firmware_filename
);
73 if (filename
== NULL
) {
74 if (!qtest_enabled()) {
76 * We only ship plain binary bios images in the QEMU source.
77 * With Spike machine that uses ELF images as the default bios,
78 * running QEMU test will complain hence let's suppress the error
79 * report for QEMU testing.
81 error_report("Unable to load the RISC-V firmware \"%s\"",
90 target_ulong
riscv_load_firmware(const char *firmware_filename
,
91 hwaddr firmware_load_addr
,
94 uint64_t firmware_entry
, firmware_start
, firmware_end
;
96 if (load_elf_ram_sym(firmware_filename
, NULL
, NULL
, NULL
,
97 &firmware_entry
, &firmware_start
, &firmware_end
, NULL
,
98 0, EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
99 return firmware_entry
;
102 if (load_image_targphys_as(firmware_filename
, firmware_load_addr
,
103 ram_size
, NULL
) > 0) {
104 return firmware_load_addr
;
107 error_report("could not load firmware '%s'", firmware_filename
);
111 target_ulong
riscv_load_kernel(const char *kernel_filename
, symbol_fn_t sym_cb
)
113 uint64_t kernel_entry
, kernel_high
;
115 if (load_elf_ram_sym(kernel_filename
, NULL
, NULL
, NULL
,
116 &kernel_entry
, NULL
, &kernel_high
, NULL
, 0,
117 EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
121 if (load_uimage_as(kernel_filename
, &kernel_entry
, NULL
, NULL
,
122 NULL
, NULL
, NULL
) > 0) {
126 if (load_image_targphys_as(kernel_filename
, KERNEL_BOOT_ADDRESS
,
127 ram_size
, NULL
) > 0) {
128 return KERNEL_BOOT_ADDRESS
;
131 error_report("could not load kernel '%s'", kernel_filename
);
135 hwaddr
riscv_load_initrd(const char *filename
, uint64_t mem_size
,
136 uint64_t kernel_entry
, hwaddr
*start
)
141 * We want to put the initrd far enough into RAM that when the
142 * kernel is uncompressed it will not clobber the initrd. However
143 * on boards without much RAM we must ensure that we still leave
144 * enough room for a decent sized initrd, and on boards with large
145 * amounts of RAM we must avoid the initrd being so far up in RAM
146 * that it is outside lowmem and inaccessible to the kernel.
147 * So for boards with less than 256MB of RAM we put the initrd
148 * halfway into RAM, and for boards with 256MB of RAM or more we put
149 * the initrd at 128MB.
151 *start
= kernel_entry
+ MIN(mem_size
/ 2, 128 * MiB
);
153 size
= load_ramdisk(filename
, *start
, mem_size
- *start
);
155 size
= load_image_targphys(filename
, *start
, mem_size
- *start
);
157 error_report("could not load ramdisk '%s'", filename
);
162 return *start
+ size
;
165 uint32_t riscv_load_fdt(hwaddr dram_base
, uint64_t mem_size
, void *fdt
)
167 uint32_t temp
, fdt_addr
;
168 hwaddr dram_end
= dram_base
+ mem_size
;
169 int fdtsize
= fdt_totalsize(fdt
);
172 error_report("invalid device-tree");
177 * We should put fdt as far as possible to avoid kernel/initrd overwriting
178 * its content. But it should be addressable by 32 bit system as well.
179 * Thus, put it at an aligned address that less than fdt size from end of
180 * dram or 4GB whichever is lesser.
182 temp
= MIN(dram_end
, 4096 * MiB
);
183 fdt_addr
= QEMU_ALIGN_DOWN(temp
- fdtsize
, 2 * MiB
);
186 /* copy in the device tree */
187 qemu_fdt_dumpdtb(fdt
, fdtsize
);
189 rom_add_blob_fixed_as("fdt", fdt
, fdtsize
, fdt_addr
,
190 &address_space_memory
);
195 void riscv_rom_copy_firmware_info(hwaddr rom_base
, hwaddr rom_size
,
196 uint32_t reset_vec_size
, uint64_t kernel_entry
)
198 struct fw_dynamic_info dinfo
;
201 dinfo
.magic
= fw_dynamic_info_data(FW_DYNAMIC_INFO_MAGIC_VALUE
);
202 dinfo
.version
= fw_dynamic_info_data(FW_DYNAMIC_INFO_VERSION
);
203 dinfo
.next_mode
= fw_dynamic_info_data(FW_DYNAMIC_INFO_NEXT_MODE_S
);
204 dinfo
.next_addr
= fw_dynamic_info_data(kernel_entry
);
207 dinfo_len
= sizeof(dinfo
);
210 * copy the dynamic firmware info. This information is specific to
211 * OpenSBI but doesn't break any other firmware as long as they don't
212 * expect any certain value in "a2" register.
214 if (dinfo_len
> (rom_size
- reset_vec_size
)) {
215 error_report("not enough space to store dynamic firmware info");
219 rom_add_blob_fixed_as("mrom.finfo", &dinfo
, dinfo_len
,
220 rom_base
+ reset_vec_size
,
221 &address_space_memory
);
224 void riscv_setup_rom_reset_vec(hwaddr start_addr
, hwaddr rom_base
,
225 hwaddr rom_size
, uint64_t kernel_entry
,
226 uint32_t fdt_load_addr
, void *fdt
)
229 uint32_t start_addr_hi32
= 0x00000000;
231 #if defined(TARGET_RISCV64)
232 start_addr_hi32
= start_addr
>> 32;
235 uint32_t reset_vec
[10] = {
236 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
237 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
238 0xf1402573, /* csrr a0, mhartid */
239 #if defined(TARGET_RISCV32)
240 0x0202a583, /* lw a1, 32(t0) */
241 0x0182a283, /* lw t0, 24(t0) */
242 #elif defined(TARGET_RISCV64)
243 0x0202b583, /* ld a1, 32(t0) */
244 0x0182b283, /* ld t0, 24(t0) */
246 0x00028067, /* jr t0 */
247 start_addr
, /* start: .dword */
249 fdt_load_addr
, /* fdt_laddr: .dword */
254 /* copy in the reset vector in little_endian byte order */
255 for (i
= 0; i
< ARRAY_SIZE(reset_vec
); i
++) {
256 reset_vec
[i
] = cpu_to_le32(reset_vec
[i
]);
258 rom_add_blob_fixed_as("mrom.reset", reset_vec
, sizeof(reset_vec
),
259 rom_base
, &address_space_memory
);
260 riscv_rom_copy_firmware_info(rom_base
, rom_size
, sizeof(reset_vec
),