2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
40 /* Hardware MMIO register */
41 volatile uint32_t *doorbell
;
45 BlockCompletionFunc
*cb
;
49 uint64_t prp_list_iova
;
54 CoQueue free_req_queue
;
57 /* Fields protected by BQL */
59 uint8_t *prp_list_pages
;
61 /* Fields protected by @lock */
64 NVMeRequest reqs
[NVME_QUEUE_SIZE
];
70 /* Memory mapped registers */
71 typedef volatile struct {
85 uint8_t reserved1
[0xec0];
86 uint8_t cmd_set_specfic
[0x100];
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs
, doorbells
) != 0x1000);
93 AioContext
*aio_context
;
96 /* The submission/completion queue pairs.
100 NVMeQueuePair
**queues
;
103 /* How many uint32_t elements does each doorbell entry take. */
104 size_t doorbell_scale
;
105 bool write_cache_supported
;
106 EventNotifier irq_notifier
;
108 uint64_t nsze
; /* Namespace size reported by identify command */
109 int nsid
; /* The namespace id to read/write data. */
112 uint64_t max_transfer
;
115 bool supports_write_zeroes
;
116 bool supports_discard
;
118 CoMutex dma_map_lock
;
119 CoQueue dma_flush_queue
;
121 /* Total size of mapped qiov, accessed under dma_map_lock */
124 /* PCI address (required for nvme_refresh_filename()) */
128 #define NVME_BLOCK_OPT_DEVICE "device"
129 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
131 static QemuOptsList runtime_opts
= {
133 .head
= QTAILQ_HEAD_INITIALIZER(runtime_opts
.head
),
136 .name
= NVME_BLOCK_OPT_DEVICE
,
137 .type
= QEMU_OPT_STRING
,
138 .help
= "NVMe PCI device address",
141 .name
= NVME_BLOCK_OPT_NAMESPACE
,
142 .type
= QEMU_OPT_NUMBER
,
143 .help
= "NVMe namespace",
145 { /* end of list */ }
149 static void nvme_init_queue(BlockDriverState
*bs
, NVMeQueue
*q
,
150 int nentries
, int entry_bytes
, Error
**errp
)
152 BDRVNVMeState
*s
= bs
->opaque
;
156 bytes
= ROUND_UP(nentries
* entry_bytes
, s
->page_size
);
157 q
->head
= q
->tail
= 0;
158 q
->queue
= qemu_try_blockalign0(bs
, bytes
);
161 error_setg(errp
, "Cannot allocate queue");
164 r
= qemu_vfio_dma_map(s
->vfio
, q
->queue
, bytes
, false, &q
->iova
);
166 error_setg(errp
, "Cannot map queue");
170 static void nvme_free_queue_pair(BlockDriverState
*bs
, NVMeQueuePair
*q
)
172 qemu_vfree(q
->prp_list_pages
);
173 qemu_vfree(q
->sq
.queue
);
174 qemu_vfree(q
->cq
.queue
);
175 qemu_mutex_destroy(&q
->lock
);
179 static void nvme_free_req_queue_cb(void *opaque
)
181 NVMeQueuePair
*q
= opaque
;
183 qemu_mutex_lock(&q
->lock
);
184 while (qemu_co_enter_next(&q
->free_req_queue
, &q
->lock
)) {
185 /* Retry all pending requests */
187 qemu_mutex_unlock(&q
->lock
);
190 static NVMeQueuePair
*nvme_create_queue_pair(BlockDriverState
*bs
,
195 BDRVNVMeState
*s
= bs
->opaque
;
196 Error
*local_err
= NULL
;
197 NVMeQueuePair
*q
= g_new0(NVMeQueuePair
, 1);
198 uint64_t prp_list_iova
;
200 qemu_mutex_init(&q
->lock
);
202 qemu_co_queue_init(&q
->free_req_queue
);
203 q
->prp_list_pages
= qemu_blockalign0(bs
, s
->page_size
* NVME_QUEUE_SIZE
);
204 r
= qemu_vfio_dma_map(s
->vfio
, q
->prp_list_pages
,
205 s
->page_size
* NVME_QUEUE_SIZE
,
206 false, &prp_list_iova
);
210 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
211 NVMeRequest
*req
= &q
->reqs
[i
];
213 req
->prp_list_page
= q
->prp_list_pages
+ i
* s
->page_size
;
214 req
->prp_list_iova
= prp_list_iova
+ i
* s
->page_size
;
216 nvme_init_queue(bs
, &q
->sq
, size
, NVME_SQ_ENTRY_BYTES
, &local_err
);
218 error_propagate(errp
, local_err
);
221 q
->sq
.doorbell
= &s
->regs
->doorbells
[idx
* 2 * s
->doorbell_scale
];
223 nvme_init_queue(bs
, &q
->cq
, size
, NVME_CQ_ENTRY_BYTES
, &local_err
);
225 error_propagate(errp
, local_err
);
228 q
->cq
.doorbell
= &s
->regs
->doorbells
[(idx
* 2 + 1) * s
->doorbell_scale
];
232 nvme_free_queue_pair(bs
, q
);
237 static void nvme_kick(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
239 if (s
->plugged
|| !q
->need_kick
) {
242 trace_nvme_kick(s
, q
->index
);
243 assert(!(q
->sq
.tail
& 0xFF00));
244 /* Fence the write to submission queue entry before notifying the device. */
246 *q
->sq
.doorbell
= cpu_to_le32(q
->sq
.tail
);
247 q
->inflight
+= q
->need_kick
;
251 /* Find a free request element if any, otherwise:
252 * a) if in coroutine context, try to wait for one to become available;
253 * b) if not in coroutine, return NULL;
255 static NVMeRequest
*nvme_get_free_req(NVMeQueuePair
*q
)
258 NVMeRequest
*req
= NULL
;
260 qemu_mutex_lock(&q
->lock
);
261 while (q
->inflight
+ q
->need_kick
> NVME_QUEUE_SIZE
- 2) {
262 /* We have to leave one slot empty as that is the full queue case (head
264 if (qemu_in_coroutine()) {
265 trace_nvme_free_req_queue_wait(q
);
266 qemu_co_queue_wait(&q
->free_req_queue
, &q
->lock
);
268 qemu_mutex_unlock(&q
->lock
);
272 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
273 if (!q
->reqs
[i
].busy
) {
274 q
->reqs
[i
].busy
= true;
279 /* We have checked inflight and need_kick while holding q->lock, so one
280 * free req must be available. */
282 qemu_mutex_unlock(&q
->lock
);
286 static inline int nvme_translate_error(const NvmeCqe
*c
)
288 uint16_t status
= (le16_to_cpu(c
->status
) >> 1) & 0xFF;
290 trace_nvme_error(le32_to_cpu(c
->result
),
291 le16_to_cpu(c
->sq_head
),
292 le16_to_cpu(c
->sq_id
),
294 le16_to_cpu(status
));
309 static bool nvme_process_completion(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
311 bool progress
= false;
316 trace_nvme_process_completion(s
, q
->index
, q
->inflight
);
317 if (q
->busy
|| s
->plugged
) {
318 trace_nvme_process_completion_queue_busy(s
, q
->index
);
322 assert(q
->inflight
>= 0);
323 while (q
->inflight
) {
325 c
= (NvmeCqe
*)&q
->cq
.queue
[q
->cq
.head
* NVME_CQ_ENTRY_BYTES
];
326 if ((le16_to_cpu(c
->status
) & 0x1) == q
->cq_phase
) {
329 q
->cq
.head
= (q
->cq
.head
+ 1) % NVME_QUEUE_SIZE
;
331 q
->cq_phase
= !q
->cq_phase
;
333 cid
= le16_to_cpu(c
->cid
);
334 if (cid
== 0 || cid
> NVME_QUEUE_SIZE
) {
335 fprintf(stderr
, "Unexpected CID in completion queue: %" PRIu32
"\n",
339 assert(cid
<= NVME_QUEUE_SIZE
);
340 trace_nvme_complete_command(s
, q
->index
, cid
);
341 preq
= &q
->reqs
[cid
- 1];
343 assert(req
.cid
== cid
);
346 preq
->cb
= preq
->opaque
= NULL
;
347 qemu_mutex_unlock(&q
->lock
);
348 req
.cb(req
.opaque
, nvme_translate_error(c
));
349 qemu_mutex_lock(&q
->lock
);
354 /* Notify the device so it can post more completions. */
356 *q
->cq
.doorbell
= cpu_to_le32(q
->cq
.head
);
357 if (!qemu_co_queue_empty(&q
->free_req_queue
)) {
358 replay_bh_schedule_oneshot_event(s
->aio_context
,
359 nvme_free_req_queue_cb
, q
);
366 static void nvme_trace_command(const NvmeCmd
*cmd
)
370 for (i
= 0; i
< 8; ++i
) {
371 uint8_t *cmdp
= (uint8_t *)cmd
+ i
* 8;
372 trace_nvme_submit_command_raw(cmdp
[0], cmdp
[1], cmdp
[2], cmdp
[3],
373 cmdp
[4], cmdp
[5], cmdp
[6], cmdp
[7]);
377 static void nvme_submit_command(BDRVNVMeState
*s
, NVMeQueuePair
*q
,
379 NvmeCmd
*cmd
, BlockCompletionFunc cb
,
384 req
->opaque
= opaque
;
385 cmd
->cid
= cpu_to_le32(req
->cid
);
387 trace_nvme_submit_command(s
, q
->index
, req
->cid
);
388 nvme_trace_command(cmd
);
389 qemu_mutex_lock(&q
->lock
);
390 memcpy((uint8_t *)q
->sq
.queue
+
391 q
->sq
.tail
* NVME_SQ_ENTRY_BYTES
, cmd
, sizeof(*cmd
));
392 q
->sq
.tail
= (q
->sq
.tail
+ 1) % NVME_QUEUE_SIZE
;
395 nvme_process_completion(s
, q
);
396 qemu_mutex_unlock(&q
->lock
);
399 static void nvme_cmd_sync_cb(void *opaque
, int ret
)
406 static int nvme_cmd_sync(BlockDriverState
*bs
, NVMeQueuePair
*q
,
410 BDRVNVMeState
*s
= bs
->opaque
;
411 int ret
= -EINPROGRESS
;
412 req
= nvme_get_free_req(q
);
416 nvme_submit_command(s
, q
, req
, cmd
, nvme_cmd_sync_cb
, &ret
);
418 BDRV_POLL_WHILE(bs
, ret
== -EINPROGRESS
);
422 static void nvme_identify(BlockDriverState
*bs
, int namespace, Error
**errp
)
424 BDRVNVMeState
*s
= bs
->opaque
;
433 .opcode
= NVME_ADM_CMD_IDENTIFY
,
434 .cdw10
= cpu_to_le32(0x1),
437 resp
= qemu_try_blockalign0(bs
, sizeof(NvmeIdCtrl
));
439 error_setg(errp
, "Cannot allocate buffer for identify response");
442 idctrl
= (NvmeIdCtrl
*)resp
;
443 idns
= (NvmeIdNs
*)resp
;
444 r
= qemu_vfio_dma_map(s
->vfio
, resp
, sizeof(NvmeIdCtrl
), true, &iova
);
446 error_setg(errp
, "Cannot map buffer for DMA");
449 cmd
.prp1
= cpu_to_le64(iova
);
451 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
452 error_setg(errp
, "Failed to identify controller");
456 if (le32_to_cpu(idctrl
->nn
) < namespace) {
457 error_setg(errp
, "Invalid namespace");
460 s
->write_cache_supported
= le32_to_cpu(idctrl
->vwc
) & 0x1;
461 s
->max_transfer
= (idctrl
->mdts
? 1 << idctrl
->mdts
: 0) * s
->page_size
;
462 /* For now the page list buffer per command is one page, to hold at most
463 * s->page_size / sizeof(uint64_t) entries. */
464 s
->max_transfer
= MIN_NON_ZERO(s
->max_transfer
,
465 s
->page_size
/ sizeof(uint64_t) * s
->page_size
);
467 oncs
= le16_to_cpu(idctrl
->oncs
);
468 s
->supports_write_zeroes
= !!(oncs
& NVME_ONCS_WRITE_ZEROS
);
469 s
->supports_discard
= !!(oncs
& NVME_ONCS_DSM
);
471 memset(resp
, 0, 4096);
474 cmd
.nsid
= cpu_to_le32(namespace);
475 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
476 error_setg(errp
, "Failed to identify namespace");
480 s
->nsze
= le64_to_cpu(idns
->nsze
);
481 lbaf
= &idns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(idns
->flbas
)];
483 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns
->dlfeat
) &&
484 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns
->dlfeat
) ==
485 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES
) {
486 bs
->supported_write_flags
|= BDRV_REQ_MAY_UNMAP
;
490 error_setg(errp
, "Namespaces with metadata are not yet supported");
494 if (lbaf
->ds
< BDRV_SECTOR_BITS
|| lbaf
->ds
> 12 ||
495 (1 << lbaf
->ds
) > s
->page_size
)
497 error_setg(errp
, "Namespace has unsupported block size (2^%d)",
502 s
->blkshift
= lbaf
->ds
;
504 qemu_vfio_dma_unmap(s
->vfio
, resp
);
508 static bool nvme_poll_queues(BDRVNVMeState
*s
)
510 bool progress
= false;
513 for (i
= 0; i
< s
->nr_queues
; i
++) {
514 NVMeQueuePair
*q
= s
->queues
[i
];
515 qemu_mutex_lock(&q
->lock
);
516 while (nvme_process_completion(s
, q
)) {
520 qemu_mutex_unlock(&q
->lock
);
525 static void nvme_handle_event(EventNotifier
*n
)
527 BDRVNVMeState
*s
= container_of(n
, BDRVNVMeState
, irq_notifier
);
529 trace_nvme_handle_event(s
);
530 event_notifier_test_and_clear(n
);
534 static bool nvme_add_io_queue(BlockDriverState
*bs
, Error
**errp
)
536 BDRVNVMeState
*s
= bs
->opaque
;
537 int n
= s
->nr_queues
;
540 int queue_size
= NVME_QUEUE_SIZE
;
542 q
= nvme_create_queue_pair(bs
, n
, queue_size
, errp
);
547 .opcode
= NVME_ADM_CMD_CREATE_CQ
,
548 .prp1
= cpu_to_le64(q
->cq
.iova
),
549 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
550 .cdw11
= cpu_to_le32(0x3),
552 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
553 error_setg(errp
, "Failed to create io queue [%d]", n
);
554 nvme_free_queue_pair(bs
, q
);
558 .opcode
= NVME_ADM_CMD_CREATE_SQ
,
559 .prp1
= cpu_to_le64(q
->sq
.iova
),
560 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
561 .cdw11
= cpu_to_le32(0x1 | (n
<< 16)),
563 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
564 error_setg(errp
, "Failed to create io queue [%d]", n
);
565 nvme_free_queue_pair(bs
, q
);
568 s
->queues
= g_renew(NVMeQueuePair
*, s
->queues
, n
+ 1);
574 static bool nvme_poll_cb(void *opaque
)
576 EventNotifier
*e
= opaque
;
577 BDRVNVMeState
*s
= container_of(e
, BDRVNVMeState
, irq_notifier
);
578 bool progress
= false;
580 trace_nvme_poll_cb(s
);
581 progress
= nvme_poll_queues(s
);
585 static int nvme_init(BlockDriverState
*bs
, const char *device
, int namespace,
588 BDRVNVMeState
*s
= bs
->opaque
;
592 uint64_t deadline
, now
;
593 Error
*local_err
= NULL
;
595 qemu_co_mutex_init(&s
->dma_map_lock
);
596 qemu_co_queue_init(&s
->dma_flush_queue
);
597 s
->device
= g_strdup(device
);
599 s
->aio_context
= bdrv_get_aio_context(bs
);
600 ret
= event_notifier_init(&s
->irq_notifier
, 0);
602 error_setg(errp
, "Failed to init event notifier");
606 s
->vfio
= qemu_vfio_open_pci(device
, errp
);
612 s
->regs
= qemu_vfio_pci_map_bar(s
->vfio
, 0, 0, NVME_BAR_SIZE
, errp
);
618 /* Perform initialize sequence as described in NVMe spec "7.6.1
619 * Initialization". */
621 cap
= le64_to_cpu(s
->regs
->cap
);
622 if (!(cap
& (1ULL << 37))) {
623 error_setg(errp
, "Device doesn't support NVMe command set");
628 s
->page_size
= MAX(4096, 1 << (12 + ((cap
>> 48) & 0xF)));
629 s
->doorbell_scale
= (4 << (((cap
>> 32) & 0xF))) / sizeof(uint32_t);
630 bs
->bl
.opt_mem_alignment
= s
->page_size
;
631 timeout_ms
= MIN(500 * ((cap
>> 24) & 0xFF), 30000);
633 /* Reset device to get a clean state. */
634 s
->regs
->cc
= cpu_to_le32(le32_to_cpu(s
->regs
->cc
) & 0xFE);
635 /* Wait for CSTS.RDY = 0. */
636 deadline
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) + timeout_ms
* 1000000ULL;
637 while (le32_to_cpu(s
->regs
->csts
) & 0x1) {
638 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
639 error_setg(errp
, "Timeout while waiting for device to reset (%"
647 /* Set up admin queue. */
648 s
->queues
= g_new(NVMeQueuePair
*, 1);
649 s
->queues
[0] = nvme_create_queue_pair(bs
, 0, NVME_QUEUE_SIZE
, errp
);
655 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE
& 0xF000);
656 s
->regs
->aqa
= cpu_to_le32((NVME_QUEUE_SIZE
<< 16) | NVME_QUEUE_SIZE
);
657 s
->regs
->asq
= cpu_to_le64(s
->queues
[0]->sq
.iova
);
658 s
->regs
->acq
= cpu_to_le64(s
->queues
[0]->cq
.iova
);
660 /* After setting up all control registers we can enable device now. */
661 s
->regs
->cc
= cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES
) << 20) |
662 (ctz32(NVME_SQ_ENTRY_BYTES
) << 16) |
664 /* Wait for CSTS.RDY = 1. */
665 now
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
666 deadline
= now
+ timeout_ms
* 1000000;
667 while (!(le32_to_cpu(s
->regs
->csts
) & 0x1)) {
668 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
669 error_setg(errp
, "Timeout while waiting for device to start (%"
677 ret
= qemu_vfio_pci_init_irq(s
->vfio
, &s
->irq_notifier
,
678 VFIO_PCI_MSIX_IRQ_INDEX
, errp
);
682 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
683 false, nvme_handle_event
, nvme_poll_cb
);
685 nvme_identify(bs
, namespace, &local_err
);
687 error_propagate(errp
, local_err
);
692 /* Set up command queues. */
693 if (!nvme_add_io_queue(bs
, errp
)) {
697 /* Cleaning up is done in nvme_file_open() upon error. */
701 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
703 * nvme://0000:44:00.0/1
705 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
706 * is the PCI address, and the last part is the namespace number starting from
707 * 1 according to the NVMe spec. */
708 static void nvme_parse_filename(const char *filename
, QDict
*options
,
711 int pref
= strlen("nvme://");
713 if (strlen(filename
) > pref
&& !strncmp(filename
, "nvme://", pref
)) {
714 const char *tmp
= filename
+ pref
;
716 const char *namespace;
718 const char *slash
= strchr(tmp
, '/');
720 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, tmp
);
723 device
= g_strndup(tmp
, slash
- tmp
);
724 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, device
);
726 namespace = slash
+ 1;
727 if (*namespace && qemu_strtoul(namespace, NULL
, 10, &ns
)) {
728 error_setg(errp
, "Invalid namespace '%s', positive number expected",
732 qdict_put_str(options
, NVME_BLOCK_OPT_NAMESPACE
,
733 *namespace ? namespace : "1");
737 static int nvme_enable_disable_write_cache(BlockDriverState
*bs
, bool enable
,
741 BDRVNVMeState
*s
= bs
->opaque
;
743 .opcode
= NVME_ADM_CMD_SET_FEATURES
,
744 .nsid
= cpu_to_le32(s
->nsid
),
745 .cdw10
= cpu_to_le32(0x06),
746 .cdw11
= cpu_to_le32(enable
? 0x01 : 0x00),
749 ret
= nvme_cmd_sync(bs
, s
->queues
[0], &cmd
);
751 error_setg(errp
, "Failed to configure NVMe write cache");
756 static void nvme_close(BlockDriverState
*bs
)
759 BDRVNVMeState
*s
= bs
->opaque
;
761 for (i
= 0; i
< s
->nr_queues
; ++i
) {
762 nvme_free_queue_pair(bs
, s
->queues
[i
]);
765 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
767 event_notifier_cleanup(&s
->irq_notifier
);
768 qemu_vfio_pci_unmap_bar(s
->vfio
, 0, (void *)s
->regs
, 0, NVME_BAR_SIZE
);
769 qemu_vfio_close(s
->vfio
);
774 static int nvme_file_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
781 BDRVNVMeState
*s
= bs
->opaque
;
783 bs
->supported_write_flags
= BDRV_REQ_FUA
;
785 opts
= qemu_opts_create(&runtime_opts
, NULL
, 0, &error_abort
);
786 qemu_opts_absorb_qdict(opts
, options
, &error_abort
);
787 device
= qemu_opt_get(opts
, NVME_BLOCK_OPT_DEVICE
);
789 error_setg(errp
, "'" NVME_BLOCK_OPT_DEVICE
"' option is required");
794 namespace = qemu_opt_get_number(opts
, NVME_BLOCK_OPT_NAMESPACE
, 1);
795 ret
= nvme_init(bs
, device
, namespace, errp
);
800 if (flags
& BDRV_O_NOCACHE
) {
801 if (!s
->write_cache_supported
) {
803 "NVMe controller doesn't support write cache configuration");
806 ret
= nvme_enable_disable_write_cache(bs
, !(flags
& BDRV_O_NOCACHE
),
819 static int64_t nvme_getlength(BlockDriverState
*bs
)
821 BDRVNVMeState
*s
= bs
->opaque
;
822 return s
->nsze
<< s
->blkshift
;
825 static uint32_t nvme_get_blocksize(BlockDriverState
*bs
)
827 BDRVNVMeState
*s
= bs
->opaque
;
828 assert(s
->blkshift
>= BDRV_SECTOR_BITS
&& s
->blkshift
<= 12);
829 return UINT32_C(1) << s
->blkshift
;
832 static int nvme_probe_blocksizes(BlockDriverState
*bs
, BlockSizes
*bsz
)
834 uint32_t blocksize
= nvme_get_blocksize(bs
);
835 bsz
->phys
= blocksize
;
836 bsz
->log
= blocksize
;
840 /* Called with s->dma_map_lock */
841 static coroutine_fn
int nvme_cmd_unmap_qiov(BlockDriverState
*bs
,
845 BDRVNVMeState
*s
= bs
->opaque
;
847 s
->dma_map_count
-= qiov
->size
;
848 if (!s
->dma_map_count
&& !qemu_co_queue_empty(&s
->dma_flush_queue
)) {
849 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
851 qemu_co_queue_restart_all(&s
->dma_flush_queue
);
857 /* Called with s->dma_map_lock */
858 static coroutine_fn
int nvme_cmd_map_qiov(BlockDriverState
*bs
, NvmeCmd
*cmd
,
859 NVMeRequest
*req
, QEMUIOVector
*qiov
)
861 BDRVNVMeState
*s
= bs
->opaque
;
862 uint64_t *pagelist
= req
->prp_list_page
;
867 assert(QEMU_IS_ALIGNED(qiov
->size
, s
->page_size
));
868 assert(qiov
->size
/ s
->page_size
<= s
->page_size
/ sizeof(uint64_t));
869 for (i
= 0; i
< qiov
->niov
; ++i
) {
873 r
= qemu_vfio_dma_map(s
->vfio
,
874 qiov
->iov
[i
].iov_base
,
875 qiov
->iov
[i
].iov_len
,
877 if (r
== -ENOMEM
&& retry
) {
879 trace_nvme_dma_flush_queue_wait(s
);
880 if (s
->dma_map_count
) {
881 trace_nvme_dma_map_flush(s
);
882 qemu_co_queue_wait(&s
->dma_flush_queue
, &s
->dma_map_lock
);
884 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
895 for (j
= 0; j
< qiov
->iov
[i
].iov_len
/ s
->page_size
; j
++) {
896 pagelist
[entries
++] = cpu_to_le64(iova
+ j
* s
->page_size
);
898 trace_nvme_cmd_map_qiov_iov(s
, i
, qiov
->iov
[i
].iov_base
,
899 qiov
->iov
[i
].iov_len
/ s
->page_size
);
902 s
->dma_map_count
+= qiov
->size
;
904 assert(entries
<= s
->page_size
/ sizeof(uint64_t));
909 cmd
->prp1
= pagelist
[0];
913 cmd
->prp1
= pagelist
[0];
914 cmd
->prp2
= pagelist
[1];
917 cmd
->prp1
= pagelist
[0];
918 cmd
->prp2
= cpu_to_le64(req
->prp_list_iova
+ sizeof(uint64_t));
921 trace_nvme_cmd_map_qiov(s
, cmd
, req
, qiov
, entries
);
922 for (i
= 0; i
< entries
; ++i
) {
923 trace_nvme_cmd_map_qiov_pages(s
, i
, pagelist
[i
]);
927 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
928 * increment s->dma_map_count. This is okay for fixed mapping memory areas
929 * because they are already mapped before calling this function; for
930 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
931 * calling qemu_vfio_dma_reset_temporary when necessary. */
941 static void nvme_rw_cb_bh(void *opaque
)
943 NVMeCoData
*data
= opaque
;
944 qemu_coroutine_enter(data
->co
);
947 static void nvme_rw_cb(void *opaque
, int ret
)
949 NVMeCoData
*data
= opaque
;
952 /* The rw coroutine hasn't yielded, don't try to enter. */
955 replay_bh_schedule_oneshot_event(data
->ctx
, nvme_rw_cb_bh
, data
);
958 static coroutine_fn
int nvme_co_prw_aligned(BlockDriverState
*bs
,
959 uint64_t offset
, uint64_t bytes
,
965 BDRVNVMeState
*s
= bs
->opaque
;
966 NVMeQueuePair
*ioq
= s
->queues
[1];
969 uint32_t cdw12
= (((bytes
>> s
->blkshift
) - 1) & 0xFFFF) |
970 (flags
& BDRV_REQ_FUA
? 1 << 30 : 0);
972 .opcode
= is_write
? NVME_CMD_WRITE
: NVME_CMD_READ
,
973 .nsid
= cpu_to_le32(s
->nsid
),
974 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
975 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
976 .cdw12
= cpu_to_le32(cdw12
),
979 .ctx
= bdrv_get_aio_context(bs
),
983 trace_nvme_prw_aligned(s
, is_write
, offset
, bytes
, flags
, qiov
->niov
);
984 assert(s
->nr_queues
> 1);
985 req
= nvme_get_free_req(ioq
);
988 qemu_co_mutex_lock(&s
->dma_map_lock
);
989 r
= nvme_cmd_map_qiov(bs
, &cmd
, req
, qiov
);
990 qemu_co_mutex_unlock(&s
->dma_map_lock
);
995 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
997 data
.co
= qemu_coroutine_self();
998 while (data
.ret
== -EINPROGRESS
) {
999 qemu_coroutine_yield();
1002 qemu_co_mutex_lock(&s
->dma_map_lock
);
1003 r
= nvme_cmd_unmap_qiov(bs
, qiov
);
1004 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1009 trace_nvme_rw_done(s
, is_write
, offset
, bytes
, data
.ret
);
1013 static inline bool nvme_qiov_aligned(BlockDriverState
*bs
,
1014 const QEMUIOVector
*qiov
)
1017 BDRVNVMeState
*s
= bs
->opaque
;
1019 for (i
= 0; i
< qiov
->niov
; ++i
) {
1020 if (!QEMU_PTR_IS_ALIGNED(qiov
->iov
[i
].iov_base
, s
->page_size
) ||
1021 !QEMU_IS_ALIGNED(qiov
->iov
[i
].iov_len
, s
->page_size
)) {
1022 trace_nvme_qiov_unaligned(qiov
, i
, qiov
->iov
[i
].iov_base
,
1023 qiov
->iov
[i
].iov_len
, s
->page_size
);
1030 static int nvme_co_prw(BlockDriverState
*bs
, uint64_t offset
, uint64_t bytes
,
1031 QEMUIOVector
*qiov
, bool is_write
, int flags
)
1033 BDRVNVMeState
*s
= bs
->opaque
;
1035 uint8_t *buf
= NULL
;
1036 QEMUIOVector local_qiov
;
1038 assert(QEMU_IS_ALIGNED(offset
, s
->page_size
));
1039 assert(QEMU_IS_ALIGNED(bytes
, s
->page_size
));
1040 assert(bytes
<= s
->max_transfer
);
1041 if (nvme_qiov_aligned(bs
, qiov
)) {
1042 return nvme_co_prw_aligned(bs
, offset
, bytes
, qiov
, is_write
, flags
);
1044 trace_nvme_prw_buffered(s
, offset
, bytes
, qiov
->niov
, is_write
);
1045 buf
= qemu_try_blockalign(bs
, bytes
);
1050 qemu_iovec_init(&local_qiov
, 1);
1052 qemu_iovec_to_buf(qiov
, 0, buf
, bytes
);
1054 qemu_iovec_add(&local_qiov
, buf
, bytes
);
1055 r
= nvme_co_prw_aligned(bs
, offset
, bytes
, &local_qiov
, is_write
, flags
);
1056 qemu_iovec_destroy(&local_qiov
);
1057 if (!r
&& !is_write
) {
1058 qemu_iovec_from_buf(qiov
, 0, buf
, bytes
);
1064 static coroutine_fn
int nvme_co_preadv(BlockDriverState
*bs
,
1065 uint64_t offset
, uint64_t bytes
,
1066 QEMUIOVector
*qiov
, int flags
)
1068 return nvme_co_prw(bs
, offset
, bytes
, qiov
, false, flags
);
1071 static coroutine_fn
int nvme_co_pwritev(BlockDriverState
*bs
,
1072 uint64_t offset
, uint64_t bytes
,
1073 QEMUIOVector
*qiov
, int flags
)
1075 return nvme_co_prw(bs
, offset
, bytes
, qiov
, true, flags
);
1078 static coroutine_fn
int nvme_co_flush(BlockDriverState
*bs
)
1080 BDRVNVMeState
*s
= bs
->opaque
;
1081 NVMeQueuePair
*ioq
= s
->queues
[1];
1084 .opcode
= NVME_CMD_FLUSH
,
1085 .nsid
= cpu_to_le32(s
->nsid
),
1088 .ctx
= bdrv_get_aio_context(bs
),
1089 .ret
= -EINPROGRESS
,
1092 assert(s
->nr_queues
> 1);
1093 req
= nvme_get_free_req(ioq
);
1095 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1097 data
.co
= qemu_coroutine_self();
1098 if (data
.ret
== -EINPROGRESS
) {
1099 qemu_coroutine_yield();
1106 static coroutine_fn
int nvme_co_pwrite_zeroes(BlockDriverState
*bs
,
1109 BdrvRequestFlags flags
)
1111 BDRVNVMeState
*s
= bs
->opaque
;
1112 NVMeQueuePair
*ioq
= s
->queues
[1];
1115 uint32_t cdw12
= ((bytes
>> s
->blkshift
) - 1) & 0xFFFF;
1117 if (!s
->supports_write_zeroes
) {
1122 .opcode
= NVME_CMD_WRITE_ZEROS
,
1123 .nsid
= cpu_to_le32(s
->nsid
),
1124 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
1125 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
1129 .ctx
= bdrv_get_aio_context(bs
),
1130 .ret
= -EINPROGRESS
,
1133 if (flags
& BDRV_REQ_MAY_UNMAP
) {
1137 if (flags
& BDRV_REQ_FUA
) {
1141 cmd
.cdw12
= cpu_to_le32(cdw12
);
1143 trace_nvme_write_zeroes(s
, offset
, bytes
, flags
);
1144 assert(s
->nr_queues
> 1);
1145 req
= nvme_get_free_req(ioq
);
1148 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1150 data
.co
= qemu_coroutine_self();
1151 while (data
.ret
== -EINPROGRESS
) {
1152 qemu_coroutine_yield();
1155 trace_nvme_rw_done(s
, true, offset
, bytes
, data
.ret
);
1160 static int coroutine_fn
nvme_co_pdiscard(BlockDriverState
*bs
,
1164 BDRVNVMeState
*s
= bs
->opaque
;
1165 NVMeQueuePair
*ioq
= s
->queues
[1];
1168 QEMUIOVector local_qiov
;
1172 .opcode
= NVME_CMD_DSM
,
1173 .nsid
= cpu_to_le32(s
->nsid
),
1174 .cdw10
= cpu_to_le32(0), /*number of ranges - 0 based*/
1175 .cdw11
= cpu_to_le32(1 << 2), /*deallocate bit*/
1179 .ctx
= bdrv_get_aio_context(bs
),
1180 .ret
= -EINPROGRESS
,
1183 if (!s
->supports_discard
) {
1187 assert(s
->nr_queues
> 1);
1189 buf
= qemu_try_blockalign0(bs
, s
->page_size
);
1194 buf
->nlb
= cpu_to_le32(bytes
>> s
->blkshift
);
1195 buf
->slba
= cpu_to_le64(offset
>> s
->blkshift
);
1198 qemu_iovec_init(&local_qiov
, 1);
1199 qemu_iovec_add(&local_qiov
, buf
, 4096);
1201 req
= nvme_get_free_req(ioq
);
1204 qemu_co_mutex_lock(&s
->dma_map_lock
);
1205 ret
= nvme_cmd_map_qiov(bs
, &cmd
, req
, &local_qiov
);
1206 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1213 trace_nvme_dsm(s
, offset
, bytes
);
1215 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1217 data
.co
= qemu_coroutine_self();
1218 while (data
.ret
== -EINPROGRESS
) {
1219 qemu_coroutine_yield();
1222 qemu_co_mutex_lock(&s
->dma_map_lock
);
1223 ret
= nvme_cmd_unmap_qiov(bs
, &local_qiov
);
1224 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1231 trace_nvme_dsm_done(s
, offset
, bytes
, ret
);
1233 qemu_iovec_destroy(&local_qiov
);
1240 static int nvme_reopen_prepare(BDRVReopenState
*reopen_state
,
1241 BlockReopenQueue
*queue
, Error
**errp
)
1246 static void nvme_refresh_filename(BlockDriverState
*bs
)
1248 BDRVNVMeState
*s
= bs
->opaque
;
1250 snprintf(bs
->exact_filename
, sizeof(bs
->exact_filename
), "nvme://%s/%i",
1251 s
->device
, s
->nsid
);
1254 static void nvme_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
1256 BDRVNVMeState
*s
= bs
->opaque
;
1258 bs
->bl
.opt_mem_alignment
= s
->page_size
;
1259 bs
->bl
.request_alignment
= s
->page_size
;
1260 bs
->bl
.max_transfer
= s
->max_transfer
;
1263 static void nvme_detach_aio_context(BlockDriverState
*bs
)
1265 BDRVNVMeState
*s
= bs
->opaque
;
1267 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
1271 static void nvme_attach_aio_context(BlockDriverState
*bs
,
1272 AioContext
*new_context
)
1274 BDRVNVMeState
*s
= bs
->opaque
;
1276 s
->aio_context
= new_context
;
1277 aio_set_event_notifier(new_context
, &s
->irq_notifier
,
1278 false, nvme_handle_event
, nvme_poll_cb
);
1281 static void nvme_aio_plug(BlockDriverState
*bs
)
1283 BDRVNVMeState
*s
= bs
->opaque
;
1284 assert(!s
->plugged
);
1288 static void nvme_aio_unplug(BlockDriverState
*bs
)
1291 BDRVNVMeState
*s
= bs
->opaque
;
1294 for (i
= 1; i
< s
->nr_queues
; i
++) {
1295 NVMeQueuePair
*q
= s
->queues
[i
];
1296 qemu_mutex_lock(&q
->lock
);
1298 nvme_process_completion(s
, q
);
1299 qemu_mutex_unlock(&q
->lock
);
1303 static void nvme_register_buf(BlockDriverState
*bs
, void *host
, size_t size
)
1306 BDRVNVMeState
*s
= bs
->opaque
;
1308 ret
= qemu_vfio_dma_map(s
->vfio
, host
, size
, false, NULL
);
1310 /* FIXME: we may run out of IOVA addresses after repeated
1311 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1312 * doesn't reclaim addresses for fixed mappings. */
1313 error_report("nvme_register_buf failed: %s", strerror(-ret
));
1317 static void nvme_unregister_buf(BlockDriverState
*bs
, void *host
)
1319 BDRVNVMeState
*s
= bs
->opaque
;
1321 qemu_vfio_dma_unmap(s
->vfio
, host
);
1324 static const char *const nvme_strong_runtime_opts
[] = {
1325 NVME_BLOCK_OPT_DEVICE
,
1326 NVME_BLOCK_OPT_NAMESPACE
,
1331 static BlockDriver bdrv_nvme
= {
1332 .format_name
= "nvme",
1333 .protocol_name
= "nvme",
1334 .instance_size
= sizeof(BDRVNVMeState
),
1336 .bdrv_parse_filename
= nvme_parse_filename
,
1337 .bdrv_file_open
= nvme_file_open
,
1338 .bdrv_close
= nvme_close
,
1339 .bdrv_getlength
= nvme_getlength
,
1340 .bdrv_probe_blocksizes
= nvme_probe_blocksizes
,
1342 .bdrv_co_preadv
= nvme_co_preadv
,
1343 .bdrv_co_pwritev
= nvme_co_pwritev
,
1345 .bdrv_co_pwrite_zeroes
= nvme_co_pwrite_zeroes
,
1346 .bdrv_co_pdiscard
= nvme_co_pdiscard
,
1348 .bdrv_co_flush_to_disk
= nvme_co_flush
,
1349 .bdrv_reopen_prepare
= nvme_reopen_prepare
,
1351 .bdrv_refresh_filename
= nvme_refresh_filename
,
1352 .bdrv_refresh_limits
= nvme_refresh_limits
,
1353 .strong_runtime_opts
= nvme_strong_runtime_opts
,
1355 .bdrv_detach_aio_context
= nvme_detach_aio_context
,
1356 .bdrv_attach_aio_context
= nvme_attach_aio_context
,
1358 .bdrv_io_plug
= nvme_aio_plug
,
1359 .bdrv_io_unplug
= nvme_aio_unplug
,
1361 .bdrv_register_buf
= nvme_register_buf
,
1362 .bdrv_unregister_buf
= nvme_unregister_buf
,
1365 static void bdrv_nvme_init(void)
1367 bdrv_register(&bdrv_nvme
);
1370 block_init(bdrv_nvme_init
);