xenfb: Add [feature|request]-raw-pointer
[qemu.git] / util / hbitmap.c
blob2f9d0fdbd01aefb14832fee5e2834b5e8e38184e
1 /*
2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
18 /* HBitmaps provides an array of bits. The bits are stored as usual in an
19 * array of unsigned longs, but HBitmap is also optimized to provide fast
20 * iteration over set bits; going from one bit to the next is O(logB n)
21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22 * that the number of levels is in fact fixed.
24 * In order to do this, it stacks multiple bitmaps with progressively coarser
25 * granularity; in all levels except the last, bit N is set iff the N-th
26 * unsigned long is nonzero in the immediately next level. When iteration
27 * completes on the last level it can examine the 2nd-last level to quickly
28 * skip entire words, and even do so recursively to skip blocks of 64 words or
29 * powers thereof (32 on 32-bit machines).
31 * Given an index in the bitmap, it can be split in group of bits like
32 * this (for the 64-bit case):
34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
38 * So it is easy to move up simply by shifting the index right by
39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
40 * similarly, and add the word index within the group. Iteration uses
41 * ffs (find first set bit) to find the next word to examine; this
42 * operation can be done in constant time in most current architectures.
44 * Setting or clearing a range of m bits on all levels, the work to perform
45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
47 * When iterating on a bitmap, each bit (on any level) is only visited
48 * once. Hence, The total cost of visiting a bitmap with m bits in it is
49 * the number of bits that are set in all bitmaps. Unless the bitmap is
50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51 * cost of advancing from one bit to the next is usually constant (worst case
52 * O(logB n) as in the non-amortized complexity).
55 struct HBitmap {
56 /* Number of total bits in the bottom level. */
57 uint64_t size;
59 /* Number of set bits in the bottom level. */
60 uint64_t count;
62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
63 * will actually represent a group of 2^G elements. Each operation on a
64 * range of bits first rounds the bits to determine which group they land
65 * in, and then affect the entire page; iteration will only visit the first
66 * bit of each group. Here is an example of operations in a size-16,
67 * granularity-1 HBitmap:
69 * initial state 00000000
70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
73 * reset(start=5, count=5) 00000000
75 * From an implementation point of view, when setting or resetting bits,
76 * the bitmap will scale bit numbers right by this amount of bits. When
77 * iterating, the bitmap will scale bit numbers left by this amount of
78 * bits.
80 int granularity;
82 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
83 HBitmap *meta;
85 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
86 * coarsest). Each bit in level N represents a word in level N+1 that
87 * has a set bit, except the last level where each bit represents the
88 * actual bitmap.
90 * Note that all bitmaps have the same number of levels. Even a 1-bit
91 * bitmap will still allocate HBITMAP_LEVELS arrays.
93 unsigned long *levels[HBITMAP_LEVELS];
95 /* The length of each levels[] array. */
96 uint64_t sizes[HBITMAP_LEVELS];
99 /* Advance hbi to the next nonzero word and return it. hbi->pos
100 * is updated. Returns zero if we reach the end of the bitmap.
102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
104 size_t pos = hbi->pos;
105 const HBitmap *hb = hbi->hb;
106 unsigned i = HBITMAP_LEVELS - 1;
108 unsigned long cur;
109 do {
110 i--;
111 pos >>= BITS_PER_LEVEL;
112 cur = hbi->cur[i] & hb->levels[i][pos];
113 } while (cur == 0);
115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
116 * bits in the level 0 bitmap; thus we can repurpose the most significant
117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
118 * that the above loop ends even without an explicit check on i.
121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122 return 0;
124 for (; i < HBITMAP_LEVELS - 1; i++) {
125 /* Shift back pos to the left, matching the right shifts above.
126 * The index of this word's least significant set bit provides
127 * the low-order bits.
129 assert(cur);
130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131 hbi->cur[i] = cur & (cur - 1);
133 /* Set up next level for iteration. */
134 cur = hb->levels[i + 1][pos];
137 hbi->pos = pos;
138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
140 assert(cur);
141 return cur;
144 int64_t hbitmap_iter_next(HBitmapIter *hbi)
146 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
147 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
148 int64_t item;
150 if (cur == 0) {
151 cur = hbitmap_iter_skip_words(hbi);
152 if (cur == 0) {
153 return -1;
157 /* The next call will resume work from the next bit. */
158 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
159 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
161 return item << hbi->granularity;
164 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
166 unsigned i, bit;
167 uint64_t pos;
169 hbi->hb = hb;
170 pos = first >> hb->granularity;
171 assert(pos < hb->size);
172 hbi->pos = pos >> BITS_PER_LEVEL;
173 hbi->granularity = hb->granularity;
175 for (i = HBITMAP_LEVELS; i-- > 0; ) {
176 bit = pos & (BITS_PER_LONG - 1);
177 pos >>= BITS_PER_LEVEL;
179 /* Drop bits representing items before first. */
180 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
182 /* We have already added level i+1, so the lowest set bit has
183 * been processed. Clear it.
185 if (i != HBITMAP_LEVELS - 1) {
186 hbi->cur[i] &= ~(1UL << bit);
191 bool hbitmap_empty(const HBitmap *hb)
193 return hb->count == 0;
196 int hbitmap_granularity(const HBitmap *hb)
198 return hb->granularity;
201 uint64_t hbitmap_count(const HBitmap *hb)
203 return hb->count << hb->granularity;
206 /* Count the number of set bits between start and end, not accounting for
207 * the granularity. Also an example of how to use hbitmap_iter_next_word.
209 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
211 HBitmapIter hbi;
212 uint64_t count = 0;
213 uint64_t end = last + 1;
214 unsigned long cur;
215 size_t pos;
217 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
218 for (;;) {
219 pos = hbitmap_iter_next_word(&hbi, &cur);
220 if (pos >= (end >> BITS_PER_LEVEL)) {
221 break;
223 count += ctpopl(cur);
226 if (pos == (end >> BITS_PER_LEVEL)) {
227 /* Drop bits representing the END-th and subsequent items. */
228 int bit = end & (BITS_PER_LONG - 1);
229 cur &= (1UL << bit) - 1;
230 count += ctpopl(cur);
233 return count;
236 /* Setting starts at the last layer and propagates up if an element
237 * changes.
239 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
241 unsigned long mask;
242 unsigned long old;
244 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
245 assert(start <= last);
247 mask = 2UL << (last & (BITS_PER_LONG - 1));
248 mask -= 1UL << (start & (BITS_PER_LONG - 1));
249 old = *elem;
250 *elem |= mask;
251 return old != *elem;
254 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
255 * Returns true if at least one bit is changed. */
256 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
257 uint64_t last)
259 size_t pos = start >> BITS_PER_LEVEL;
260 size_t lastpos = last >> BITS_PER_LEVEL;
261 bool changed = false;
262 size_t i;
264 i = pos;
265 if (i < lastpos) {
266 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
267 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
268 for (;;) {
269 start = next;
270 next += BITS_PER_LONG;
271 if (++i == lastpos) {
272 break;
274 changed |= (hb->levels[level][i] == 0);
275 hb->levels[level][i] = ~0UL;
278 changed |= hb_set_elem(&hb->levels[level][i], start, last);
280 /* If there was any change in this layer, we may have to update
281 * the one above.
283 if (level > 0 && changed) {
284 hb_set_between(hb, level - 1, pos, lastpos);
286 return changed;
289 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
291 /* Compute range in the last layer. */
292 uint64_t first, n;
293 uint64_t last = start + count - 1;
295 trace_hbitmap_set(hb, start, count,
296 start >> hb->granularity, last >> hb->granularity);
298 first = start >> hb->granularity;
299 last >>= hb->granularity;
300 assert(last < hb->size);
301 n = last - first + 1;
303 hb->count += n - hb_count_between(hb, first, last);
304 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
305 hb->meta) {
306 hbitmap_set(hb->meta, start, count);
310 /* Resetting works the other way round: propagate up if the new
311 * value is zero.
313 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
315 unsigned long mask;
316 bool blanked;
318 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
319 assert(start <= last);
321 mask = 2UL << (last & (BITS_PER_LONG - 1));
322 mask -= 1UL << (start & (BITS_PER_LONG - 1));
323 blanked = *elem != 0 && ((*elem & ~mask) == 0);
324 *elem &= ~mask;
325 return blanked;
328 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
329 * Returns true if at least one bit is changed. */
330 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
331 uint64_t last)
333 size_t pos = start >> BITS_PER_LEVEL;
334 size_t lastpos = last >> BITS_PER_LEVEL;
335 bool changed = false;
336 size_t i;
338 i = pos;
339 if (i < lastpos) {
340 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
342 /* Here we need a more complex test than when setting bits. Even if
343 * something was changed, we must not blank bits in the upper level
344 * unless the lower-level word became entirely zero. So, remove pos
345 * from the upper-level range if bits remain set.
347 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
348 changed = true;
349 } else {
350 pos++;
353 for (;;) {
354 start = next;
355 next += BITS_PER_LONG;
356 if (++i == lastpos) {
357 break;
359 changed |= (hb->levels[level][i] != 0);
360 hb->levels[level][i] = 0UL;
364 /* Same as above, this time for lastpos. */
365 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
366 changed = true;
367 } else {
368 lastpos--;
371 if (level > 0 && changed) {
372 hb_reset_between(hb, level - 1, pos, lastpos);
375 return changed;
379 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
381 /* Compute range in the last layer. */
382 uint64_t first;
383 uint64_t last = start + count - 1;
385 trace_hbitmap_reset(hb, start, count,
386 start >> hb->granularity, last >> hb->granularity);
388 first = start >> hb->granularity;
389 last >>= hb->granularity;
390 assert(last < hb->size);
392 hb->count -= hb_count_between(hb, first, last);
393 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
394 hb->meta) {
395 hbitmap_set(hb->meta, start, count);
399 void hbitmap_reset_all(HBitmap *hb)
401 unsigned int i;
403 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
404 for (i = HBITMAP_LEVELS; --i >= 1; ) {
405 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
408 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
409 hb->count = 0;
412 bool hbitmap_is_serializable(const HBitmap *hb)
414 /* Every serialized chunk must be aligned to 64 bits so that endianness
415 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
416 * We have hbitmap_serialization_align() which converts this
417 * alignment requirement from bitmap bits to items covered (e.g. sectors).
418 * That value is:
419 * 64 << hb->granularity
420 * Since this value must not exceed UINT64_MAX, hb->granularity must be
421 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
423 * In order for hbitmap_serialization_align() to always return a
424 * meaningful value, bitmaps that are to be serialized must have a
425 * granularity of less than 58. */
427 return hb->granularity < 58;
430 bool hbitmap_get(const HBitmap *hb, uint64_t item)
432 /* Compute position and bit in the last layer. */
433 uint64_t pos = item >> hb->granularity;
434 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
435 assert(pos < hb->size);
437 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
440 uint64_t hbitmap_serialization_align(const HBitmap *hb)
442 assert(hbitmap_is_serializable(hb));
444 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
445 * hosts. */
446 return UINT64_C(64) << hb->granularity;
449 /* Start should be aligned to serialization granularity, chunk size should be
450 * aligned to serialization granularity too, except for last chunk.
452 static void serialization_chunk(const HBitmap *hb,
453 uint64_t start, uint64_t count,
454 unsigned long **first_el, uint64_t *el_count)
456 uint64_t last = start + count - 1;
457 uint64_t gran = hbitmap_serialization_align(hb);
459 assert((start & (gran - 1)) == 0);
460 assert((last >> hb->granularity) < hb->size);
461 if ((last >> hb->granularity) != hb->size - 1) {
462 assert((count & (gran - 1)) == 0);
465 start = (start >> hb->granularity) >> BITS_PER_LEVEL;
466 last = (last >> hb->granularity) >> BITS_PER_LEVEL;
468 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
469 *el_count = last - start + 1;
472 uint64_t hbitmap_serialization_size(const HBitmap *hb,
473 uint64_t start, uint64_t count)
475 uint64_t el_count;
476 unsigned long *cur;
478 if (!count) {
479 return 0;
481 serialization_chunk(hb, start, count, &cur, &el_count);
483 return el_count * sizeof(unsigned long);
486 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
487 uint64_t start, uint64_t count)
489 uint64_t el_count;
490 unsigned long *cur, *end;
492 if (!count) {
493 return;
495 serialization_chunk(hb, start, count, &cur, &el_count);
496 end = cur + el_count;
498 while (cur != end) {
499 unsigned long el =
500 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
502 memcpy(buf, &el, sizeof(el));
503 buf += sizeof(el);
504 cur++;
508 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
509 uint64_t start, uint64_t count,
510 bool finish)
512 uint64_t el_count;
513 unsigned long *cur, *end;
515 if (!count) {
516 return;
518 serialization_chunk(hb, start, count, &cur, &el_count);
519 end = cur + el_count;
521 while (cur != end) {
522 memcpy(cur, buf, sizeof(*cur));
524 if (BITS_PER_LONG == 32) {
525 le32_to_cpus((uint32_t *)cur);
526 } else {
527 le64_to_cpus((uint64_t *)cur);
530 buf += sizeof(unsigned long);
531 cur++;
533 if (finish) {
534 hbitmap_deserialize_finish(hb);
538 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
539 bool finish)
541 uint64_t el_count;
542 unsigned long *first;
544 if (!count) {
545 return;
547 serialization_chunk(hb, start, count, &first, &el_count);
549 memset(first, 0, el_count * sizeof(unsigned long));
550 if (finish) {
551 hbitmap_deserialize_finish(hb);
555 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
556 bool finish)
558 uint64_t el_count;
559 unsigned long *first;
561 if (!count) {
562 return;
564 serialization_chunk(hb, start, count, &first, &el_count);
566 memset(first, 0xff, el_count * sizeof(unsigned long));
567 if (finish) {
568 hbitmap_deserialize_finish(hb);
572 void hbitmap_deserialize_finish(HBitmap *bitmap)
574 int64_t i, size, prev_size;
575 int lev;
577 /* restore levels starting from penultimate to zero level, assuming
578 * that the last level is ok */
579 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
580 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
581 prev_size = size;
582 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
583 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
585 for (i = 0; i < prev_size; ++i) {
586 if (bitmap->levels[lev + 1][i]) {
587 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
588 1UL << (i & (BITS_PER_LONG - 1));
593 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
596 void hbitmap_free(HBitmap *hb)
598 unsigned i;
599 assert(!hb->meta);
600 for (i = HBITMAP_LEVELS; i-- > 0; ) {
601 g_free(hb->levels[i]);
603 g_free(hb);
606 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
608 HBitmap *hb = g_new0(struct HBitmap, 1);
609 unsigned i;
611 assert(granularity >= 0 && granularity < 64);
612 size = (size + (1ULL << granularity) - 1) >> granularity;
613 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
615 hb->size = size;
616 hb->granularity = granularity;
617 for (i = HBITMAP_LEVELS; i-- > 0; ) {
618 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
619 hb->sizes[i] = size;
620 hb->levels[i] = g_new0(unsigned long, size);
623 /* We necessarily have free bits in level 0 due to the definition
624 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
625 * hbitmap_iter_skip_words.
627 assert(size == 1);
628 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
629 return hb;
632 void hbitmap_truncate(HBitmap *hb, uint64_t size)
634 bool shrink;
635 unsigned i;
636 uint64_t num_elements = size;
637 uint64_t old;
639 /* Size comes in as logical elements, adjust for granularity. */
640 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
641 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
642 shrink = size < hb->size;
644 /* bit sizes are identical; nothing to do. */
645 if (size == hb->size) {
646 return;
649 /* If we're losing bits, let's clear those bits before we invalidate all of
650 * our invariants. This helps keep the bitcount consistent, and will prevent
651 * us from carrying around garbage bits beyond the end of the map.
653 if (shrink) {
654 /* Don't clear partial granularity groups;
655 * start at the first full one. */
656 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
657 uint64_t fix_count = (hb->size << hb->granularity) - start;
659 assert(fix_count);
660 hbitmap_reset(hb, start, fix_count);
663 hb->size = size;
664 for (i = HBITMAP_LEVELS; i-- > 0; ) {
665 size = MAX(BITS_TO_LONGS(size), 1);
666 if (hb->sizes[i] == size) {
667 break;
669 old = hb->sizes[i];
670 hb->sizes[i] = size;
671 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
672 if (!shrink) {
673 memset(&hb->levels[i][old], 0x00,
674 (size - old) * sizeof(*hb->levels[i]));
677 if (hb->meta) {
678 hbitmap_truncate(hb->meta, hb->size << hb->granularity);
684 * Given HBitmaps A and B, let A := A (BITOR) B.
685 * Bitmap B will not be modified.
687 * @return true if the merge was successful,
688 * false if it was not attempted.
690 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
692 int i;
693 uint64_t j;
695 if ((a->size != b->size) || (a->granularity != b->granularity)) {
696 return false;
699 if (hbitmap_count(b) == 0) {
700 return true;
703 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
704 * It may be possible to improve running times for sparsely populated maps
705 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
707 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
708 for (j = 0; j < a->sizes[i]; j++) {
709 a->levels[i][j] |= b->levels[i][j];
713 return true;
716 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
718 assert(!(chunk_size & (chunk_size - 1)));
719 assert(!hb->meta);
720 hb->meta = hbitmap_alloc(hb->size << hb->granularity,
721 hb->granularity + ctz32(chunk_size));
722 return hb->meta;
725 void hbitmap_free_meta(HBitmap *hb)
727 assert(hb->meta);
728 hbitmap_free(hb->meta);
729 hb->meta = NULL;
732 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
734 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
735 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
736 char *hash = NULL;
737 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
739 return hash;