hw/intc/arm_gicv3_common: Move post_load hooks to top-level VMSD
[qemu.git] / hw / intc / arm_gicv3_common.c
blob8175889f1e7c64b714219a766eb04b1ac63cdddf
1 /*
2 * ARM GICv3 support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Copyright (c) 2015 Huawei.
6 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7 * Written by Peter Maydell
8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30 #include "sysemu/kvm.h"
32 static int gicv3_pre_save(void *opaque)
34 GICv3State *s = (GICv3State *)opaque;
35 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
37 if (c->pre_save) {
38 c->pre_save(s);
41 return 0;
44 static int gicv3_post_load(void *opaque, int version_id)
46 GICv3State *s = (GICv3State *)opaque;
47 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
49 if (c->post_load) {
50 c->post_load(s);
52 return 0;
55 static bool virt_state_needed(void *opaque)
57 GICv3CPUState *cs = opaque;
59 return cs->num_list_regs != 0;
62 static const VMStateDescription vmstate_gicv3_cpu_virt = {
63 .name = "arm_gicv3_cpu/virt",
64 .version_id = 1,
65 .minimum_version_id = 1,
66 .needed = virt_state_needed,
67 .fields = (VMStateField[]) {
68 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
69 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
70 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
71 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
72 VMSTATE_END_OF_LIST()
76 static int vmstate_gicv3_cpu_pre_load(void *opaque)
78 GICv3CPUState *cs = opaque;
81 * If the sre_el1 subsection is not transferred this
82 * means SRE_EL1 is 0x7 (which might not be the same as
83 * our reset value).
85 cs->icc_sre_el1 = 0x7;
86 return 0;
89 static bool icc_sre_el1_reg_needed(void *opaque)
91 GICv3CPUState *cs = opaque;
93 return cs->icc_sre_el1 != 7;
96 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
97 .name = "arm_gicv3_cpu/sre_el1",
98 .version_id = 1,
99 .minimum_version_id = 1,
100 .needed = icc_sre_el1_reg_needed,
101 .fields = (VMStateField[]) {
102 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
103 VMSTATE_END_OF_LIST()
107 static const VMStateDescription vmstate_gicv3_cpu = {
108 .name = "arm_gicv3_cpu",
109 .version_id = 1,
110 .minimum_version_id = 1,
111 .pre_load = vmstate_gicv3_cpu_pre_load,
112 .fields = (VMStateField[]) {
113 VMSTATE_UINT32(level, GICv3CPUState),
114 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
115 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
116 VMSTATE_UINT32(gicr_waker, GICv3CPUState),
117 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
118 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
119 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
120 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
121 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
122 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
123 VMSTATE_UINT32(edge_trigger, GICv3CPUState),
124 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
125 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
126 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
127 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
128 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
129 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
130 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
131 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
132 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
133 VMSTATE_END_OF_LIST()
135 .subsections = (const VMStateDescription * []) {
136 &vmstate_gicv3_cpu_virt,
137 &vmstate_gicv3_cpu_sre_el1,
138 NULL
142 static int gicv3_pre_load(void *opaque)
144 GICv3State *cs = opaque;
147 * The gicd_no_migration_shift_bug flag is used for migration compatibility
148 * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
149 * Strictly, what we want to know is whether the migration source is using
150 * KVM. Since we don't have any way to determine that, we look at whether the
151 * destination is using KVM; this is close enough because for the older QEMU
152 * versions with this bug KVM -> TCG migration didn't work anyway. If the
153 * source is a newer QEMU without this bug it will transmit the migration
154 * subsection which sets the flag to true; otherwise it will remain set to
155 * the value we select here.
157 if (kvm_enabled()) {
158 cs->gicd_no_migration_shift_bug = false;
161 return 0;
164 static int gicv3_gicd_no_migration_shift_bug_post_load(void *opaque,
165 int version_id)
167 GICv3State *cs = opaque;
169 if (cs->gicd_no_migration_shift_bug) {
170 return 0;
173 /* Older versions of QEMU had a bug in the handling of state save/restore
174 * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
175 * so that instead of the data for external interrupts 32 and up
176 * starting at bit position 32 in the bitmap, it started at bit
177 * position 64. If we're receiving data from a QEMU with that bug,
178 * we must move the data down into the right place.
180 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
181 sizeof(cs->group) - GIC_INTERNAL / 8);
182 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
183 sizeof(cs->grpmod) - GIC_INTERNAL / 8);
184 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
185 sizeof(cs->enabled) - GIC_INTERNAL / 8);
186 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
187 sizeof(cs->pending) - GIC_INTERNAL / 8);
188 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
189 sizeof(cs->active) - GIC_INTERNAL / 8);
190 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
191 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
194 * While this new version QEMU doesn't have this kind of bug as we fix it,
195 * so it needs to set the flag to true to indicate that and it's necessary
196 * for next migration to work from this new version QEMU.
198 cs->gicd_no_migration_shift_bug = true;
200 return 0;
203 static bool needed_always(void *opaque)
205 return true;
208 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
209 .name = "arm_gicv3/gicd_no_migration_shift_bug",
210 .version_id = 1,
211 .minimum_version_id = 1,
212 .needed = needed_always,
213 .post_load = gicv3_gicd_no_migration_shift_bug_post_load,
214 .fields = (VMStateField[]) {
215 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
216 VMSTATE_END_OF_LIST()
220 static const VMStateDescription vmstate_gicv3 = {
221 .name = "arm_gicv3",
222 .version_id = 1,
223 .minimum_version_id = 1,
224 .pre_load = gicv3_pre_load,
225 .pre_save = gicv3_pre_save,
226 .post_load = gicv3_post_load,
227 .priority = MIG_PRI_GICV3,
228 .fields = (VMStateField[]) {
229 VMSTATE_UINT32(gicd_ctlr, GICv3State),
230 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
231 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
232 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
233 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
234 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
235 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
236 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
237 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
238 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
239 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
240 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
241 DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
242 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
243 vmstate_gicv3_cpu, GICv3CPUState),
244 VMSTATE_END_OF_LIST()
246 .subsections = (const VMStateDescription * []) {
247 &vmstate_gicv3_gicd_no_migration_shift_bug,
248 NULL
252 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
253 const MemoryRegionOps *ops, Error **errp)
255 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
256 int rdist_capacity = 0;
257 int i;
259 for (i = 0; i < s->nb_redist_regions; i++) {
260 rdist_capacity += s->redist_region_count[i];
262 if (rdist_capacity < s->num_cpu) {
263 error_setg(errp, "Capacity of the redist regions(%d) "
264 "is less than number of vcpus(%d)",
265 rdist_capacity, s->num_cpu);
266 return;
269 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
270 * GPIO array layout is thus:
271 * [0..N-1] spi
272 * [N..N+31] PPIs for CPU 0
273 * [N+32..N+63] PPIs for CPU 1
274 * ...
276 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
277 qdev_init_gpio_in(DEVICE(s), handler, i);
279 for (i = 0; i < s->num_cpu; i++) {
280 sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
282 for (i = 0; i < s->num_cpu; i++) {
283 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
285 for (i = 0; i < s->num_cpu; i++) {
286 sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
288 for (i = 0; i < s->num_cpu; i++) {
289 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
292 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
293 "gicv3_dist", 0x10000);
294 sysbus_init_mmio(sbd, &s->iomem_dist);
296 s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions);
297 for (i = 0; i < s->nb_redist_regions; i++) {
298 char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
300 memory_region_init_io(&s->iomem_redist[i], OBJECT(s),
301 ops ? &ops[1] : NULL, s, name,
302 s->redist_region_count[i] * GICV3_REDIST_SIZE);
303 sysbus_init_mmio(sbd, &s->iomem_redist[i]);
304 g_free(name);
308 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
310 GICv3State *s = ARM_GICV3_COMMON(dev);
311 int i;
313 /* revision property is actually reserved and currently used only in order
314 * to keep the interface compatible with GICv2 code, avoiding extra
315 * conditions. However, in future it could be used, for example, if we
316 * implement GICv4.
318 if (s->revision != 3) {
319 error_setg(errp, "unsupported GIC revision %d", s->revision);
320 return;
323 if (s->num_irq > GICV3_MAXIRQ) {
324 error_setg(errp,
325 "requested %u interrupt lines exceeds GIC maximum %d",
326 s->num_irq, GICV3_MAXIRQ);
327 return;
329 if (s->num_irq < GIC_INTERNAL) {
330 error_setg(errp,
331 "requested %u interrupt lines is below GIC minimum %d",
332 s->num_irq, GIC_INTERNAL);
333 return;
336 /* ITLinesNumber is represented as (N / 32) - 1, so this is an
337 * implementation imposed restriction, not an architectural one,
338 * so we don't have to deal with bitfields where only some of the
339 * bits in a 32-bit word should be valid.
341 if (s->num_irq % 32) {
342 error_setg(errp,
343 "%d interrupt lines unsupported: not divisible by 32",
344 s->num_irq);
345 return;
348 s->cpu = g_new0(GICv3CPUState, s->num_cpu);
350 for (i = 0; i < s->num_cpu; i++) {
351 CPUState *cpu = qemu_get_cpu(i);
352 uint64_t cpu_affid;
353 int last;
355 s->cpu[i].cpu = cpu;
356 s->cpu[i].gic = s;
357 /* Store GICv3CPUState in CPUARMState gicv3state pointer */
358 gicv3_set_gicv3state(cpu, &s->cpu[i]);
360 /* Pre-construct the GICR_TYPER:
361 * For our implementation:
362 * Top 32 bits are the affinity value of the associated CPU
363 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
364 * Processor_Number == CPU index starting from 0
365 * DPGS == 0 (GICR_CTLR.DPG* not supported)
366 * Last == 1 if this is the last redistributor in a series of
367 * contiguous redistributor pages
368 * DirectLPI == 0 (direct injection of LPIs not supported)
369 * VLPIS == 0 (virtual LPIs not supported)
370 * PLPIS == 0 (physical LPIs not supported)
372 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
373 last = (i == s->num_cpu - 1);
375 /* The CPU mp-affinity property is in MPIDR register format; squash
376 * the affinity bytes into 32 bits as the GICR_TYPER has them.
378 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
379 (cpu_affid & 0xFFFFFF);
380 s->cpu[i].gicr_typer = (cpu_affid << 32) |
381 (1 << 24) |
382 (i << 8) |
383 (last << 4);
387 static void arm_gicv3_finalize(Object *obj)
389 GICv3State *s = ARM_GICV3_COMMON(obj);
391 g_free(s->redist_region_count);
394 static void arm_gicv3_common_reset(DeviceState *dev)
396 GICv3State *s = ARM_GICV3_COMMON(dev);
397 int i;
399 for (i = 0; i < s->num_cpu; i++) {
400 GICv3CPUState *cs = &s->cpu[i];
402 cs->level = 0;
403 cs->gicr_ctlr = 0;
404 cs->gicr_statusr[GICV3_S] = 0;
405 cs->gicr_statusr[GICV3_NS] = 0;
406 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
407 cs->gicr_propbaser = 0;
408 cs->gicr_pendbaser = 0;
409 /* If we're resetting a TZ-aware GIC as if secure firmware
410 * had set it up ready to start a kernel in non-secure, we
411 * need to set interrupts to group 1 so the kernel can use them.
412 * Otherwise they reset to group 0 like the hardware.
414 if (s->irq_reset_nonsecure) {
415 cs->gicr_igroupr0 = 0xffffffff;
416 } else {
417 cs->gicr_igroupr0 = 0;
420 cs->gicr_ienabler0 = 0;
421 cs->gicr_ipendr0 = 0;
422 cs->gicr_iactiver0 = 0;
423 cs->edge_trigger = 0xffff;
424 cs->gicr_igrpmodr0 = 0;
425 cs->gicr_nsacr = 0;
426 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
428 cs->hppi.prio = 0xff;
430 /* State in the CPU interface must *not* be reset here, because it
431 * is part of the CPU's reset domain, not the GIC device's.
435 /* For our implementation affinity routing is always enabled */
436 if (s->security_extn) {
437 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
438 } else {
439 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
442 s->gicd_statusr[GICV3_S] = 0;
443 s->gicd_statusr[GICV3_NS] = 0;
445 memset(s->group, 0, sizeof(s->group));
446 memset(s->grpmod, 0, sizeof(s->grpmod));
447 memset(s->enabled, 0, sizeof(s->enabled));
448 memset(s->pending, 0, sizeof(s->pending));
449 memset(s->active, 0, sizeof(s->active));
450 memset(s->level, 0, sizeof(s->level));
451 memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
452 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
453 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
454 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
455 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
456 * write these to get sane behaviour and we need not populate the
457 * pointer cache here; however having the cache be different for
458 * "happened to be 0 from reset" and "guest wrote 0" would be
459 * too confusing.
461 gicv3_cache_all_target_cpustates(s);
463 if (s->irq_reset_nonsecure) {
464 /* If we're resetting a TZ-aware GIC as if secure firmware
465 * had set it up ready to start a kernel in non-secure, we
466 * need to set interrupts to group 1 so the kernel can use them.
467 * Otherwise they reset to group 0 like the hardware.
469 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
470 gicv3_gicd_group_set(s, i);
473 s->gicd_no_migration_shift_bug = true;
476 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
477 bool secure_boot)
479 GICv3State *s = ARM_GICV3_COMMON(obj);
481 if (s->security_extn && !secure_boot) {
482 /* We're directly booting a kernel into NonSecure. If this GIC
483 * implements the security extensions then we must configure it
484 * to have all the interrupts be NonSecure (this is a job that
485 * is done by the Secure boot firmware in real hardware, and in
486 * this mode QEMU is acting as a minimalist firmware-and-bootloader
487 * equivalent).
489 s->irq_reset_nonsecure = true;
493 static Property arm_gicv3_common_properties[] = {
494 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
495 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
496 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
497 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
498 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
499 redist_region_count, qdev_prop_uint32, uint32_t),
500 DEFINE_PROP_END_OF_LIST(),
503 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
505 DeviceClass *dc = DEVICE_CLASS(klass);
506 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
508 dc->reset = arm_gicv3_common_reset;
509 dc->realize = arm_gicv3_common_realize;
510 dc->props = arm_gicv3_common_properties;
511 dc->vmsd = &vmstate_gicv3;
512 albifc->arm_linux_init = arm_gic_common_linux_init;
515 static const TypeInfo arm_gicv3_common_type = {
516 .name = TYPE_ARM_GICV3_COMMON,
517 .parent = TYPE_SYS_BUS_DEVICE,
518 .instance_size = sizeof(GICv3State),
519 .class_size = sizeof(ARMGICv3CommonClass),
520 .class_init = arm_gicv3_common_class_init,
521 .instance_finalize = arm_gicv3_finalize,
522 .abstract = true,
523 .interfaces = (InterfaceInfo []) {
524 { TYPE_ARM_LINUX_BOOT_IF },
525 { },
529 static void register_types(void)
531 type_register_static(&arm_gicv3_common_type);
534 type_init(register_types)