SPARC64: introduce a convenience function for getting physical addresses
[qemu.git] / hw / e1000.c
blob96d84f91ae1633fda0c4c3402e943ec94de4967c
1 /*
2 * QEMU e1000 emulation
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include "hw.h"
29 #include "pci.h"
30 #include "net.h"
31 #include "net/checksum.h"
32 #include "loader.h"
33 #include "sysemu.h"
35 #include "e1000_hw.h"
37 #define E1000_DEBUG
39 #ifdef E1000_DEBUG
40 enum {
41 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
42 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
43 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
44 DEBUG_RXFILTER, DEBUG_NOTYET,
46 #define DBGBIT(x) (1<<DEBUG_##x)
47 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
49 #define DBGOUT(what, fmt, ...) do { \
50 if (debugflags & DBGBIT(what)) \
51 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
52 } while (0)
53 #else
54 #define DBGOUT(what, fmt, ...) do {} while (0)
55 #endif
57 #define IOPORT_SIZE 0x40
58 #define PNPMMIO_SIZE 0x20000
59 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
62 * HW models:
63 * E1000_DEV_ID_82540EM works with Windows and Linux
64 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
65 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
66 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
67 * Others never tested
69 enum { E1000_DEVID = E1000_DEV_ID_82540EM };
72 * May need to specify additional MAC-to-PHY entries --
73 * Intel's Windows driver refuses to initialize unless they match
75 enum {
76 PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
77 E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
78 /* default to E1000_DEV_ID_82540EM */ 0xc20
81 typedef struct E1000State_st {
82 PCIDevice dev;
83 NICState *nic;
84 NICConf conf;
85 int mmio_index;
87 uint32_t mac_reg[0x8000];
88 uint16_t phy_reg[0x20];
89 uint16_t eeprom_data[64];
91 uint32_t rxbuf_size;
92 uint32_t rxbuf_min_shift;
93 int check_rxov;
94 struct e1000_tx {
95 unsigned char header[256];
96 unsigned char vlan_header[4];
97 /* Fields vlan and data must not be reordered or separated. */
98 unsigned char vlan[4];
99 unsigned char data[0x10000];
100 uint16_t size;
101 unsigned char sum_needed;
102 unsigned char vlan_needed;
103 uint8_t ipcss;
104 uint8_t ipcso;
105 uint16_t ipcse;
106 uint8_t tucss;
107 uint8_t tucso;
108 uint16_t tucse;
109 uint8_t hdr_len;
110 uint16_t mss;
111 uint32_t paylen;
112 uint16_t tso_frames;
113 char tse;
114 int8_t ip;
115 int8_t tcp;
116 char cptse; // current packet tse bit
117 } tx;
119 struct {
120 uint32_t val_in; // shifted in from guest driver
121 uint16_t bitnum_in;
122 uint16_t bitnum_out;
123 uint16_t reading;
124 uint32_t old_eecd;
125 } eecd_state;
126 } E1000State;
128 #define defreg(x) x = (E1000_##x>>2)
129 enum {
130 defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
131 defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
132 defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
133 defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
134 defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
135 defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
136 defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
137 defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
138 defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
139 defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
140 defreg(VET),
143 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
144 static const char phy_regcap[0x20] = {
145 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
146 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
147 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
148 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
149 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
150 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
153 static void
154 ioport_map(PCIDevice *pci_dev, int region_num, pcibus_t addr,
155 pcibus_t size, int type)
157 DBGOUT(IO, "e1000_ioport_map addr=0x%04"FMT_PCIBUS
158 " size=0x%08"FMT_PCIBUS"\n", addr, size);
161 static void
162 set_interrupt_cause(E1000State *s, int index, uint32_t val)
164 if (val)
165 val |= E1000_ICR_INT_ASSERTED;
166 s->mac_reg[ICR] = val;
167 s->mac_reg[ICS] = val;
168 qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
171 static void
172 set_ics(E1000State *s, int index, uint32_t val)
174 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
175 s->mac_reg[IMS]);
176 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
179 static int
180 rxbufsize(uint32_t v)
182 v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
183 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
184 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
185 switch (v) {
186 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
187 return 16384;
188 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
189 return 8192;
190 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
191 return 4096;
192 case E1000_RCTL_SZ_1024:
193 return 1024;
194 case E1000_RCTL_SZ_512:
195 return 512;
196 case E1000_RCTL_SZ_256:
197 return 256;
199 return 2048;
202 static void
203 set_ctrl(E1000State *s, int index, uint32_t val)
205 /* RST is self clearing */
206 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
209 static void
210 set_rx_control(E1000State *s, int index, uint32_t val)
212 s->mac_reg[RCTL] = val;
213 s->rxbuf_size = rxbufsize(val);
214 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
215 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
216 s->mac_reg[RCTL]);
219 static void
220 set_mdic(E1000State *s, int index, uint32_t val)
222 uint32_t data = val & E1000_MDIC_DATA_MASK;
223 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
225 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
226 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
227 else if (val & E1000_MDIC_OP_READ) {
228 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
229 if (!(phy_regcap[addr] & PHY_R)) {
230 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
231 val |= E1000_MDIC_ERROR;
232 } else
233 val = (val ^ data) | s->phy_reg[addr];
234 } else if (val & E1000_MDIC_OP_WRITE) {
235 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
236 if (!(phy_regcap[addr] & PHY_W)) {
237 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
238 val |= E1000_MDIC_ERROR;
239 } else
240 s->phy_reg[addr] = data;
242 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
243 set_ics(s, 0, E1000_ICR_MDAC);
246 static uint32_t
247 get_eecd(E1000State *s, int index)
249 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
251 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
252 s->eecd_state.bitnum_out, s->eecd_state.reading);
253 if (!s->eecd_state.reading ||
254 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
255 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
256 ret |= E1000_EECD_DO;
257 return ret;
260 static void
261 set_eecd(E1000State *s, int index, uint32_t val)
263 uint32_t oldval = s->eecd_state.old_eecd;
265 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
266 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
267 if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
268 return;
269 if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
270 s->eecd_state.val_in = 0;
271 s->eecd_state.bitnum_in = 0;
272 s->eecd_state.bitnum_out = 0;
273 s->eecd_state.reading = 0;
275 if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
276 return;
277 if (!(E1000_EECD_SK & val)) { // falling edge
278 s->eecd_state.bitnum_out++;
279 return;
281 s->eecd_state.val_in <<= 1;
282 if (val & E1000_EECD_DI)
283 s->eecd_state.val_in |= 1;
284 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
285 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
286 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
287 EEPROM_READ_OPCODE_MICROWIRE);
289 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
290 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
291 s->eecd_state.reading);
294 static uint32_t
295 flash_eerd_read(E1000State *s, int x)
297 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
299 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
300 return (s->mac_reg[EERD]);
302 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
303 return (E1000_EEPROM_RW_REG_DONE | r);
305 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
306 E1000_EEPROM_RW_REG_DONE | r);
309 static void
310 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
312 uint32_t sum;
314 if (cse && cse < n)
315 n = cse + 1;
316 if (sloc < n-1) {
317 sum = net_checksum_add(n-css, data+css);
318 cpu_to_be16wu((uint16_t *)(data + sloc),
319 net_checksum_finish(sum));
323 static inline int
324 vlan_enabled(E1000State *s)
326 return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
329 static inline int
330 vlan_rx_filter_enabled(E1000State *s)
332 return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
335 static inline int
336 is_vlan_packet(E1000State *s, const uint8_t *buf)
338 return (be16_to_cpup((uint16_t *)(buf + 12)) ==
339 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
342 static inline int
343 is_vlan_txd(uint32_t txd_lower)
345 return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
348 /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
349 * fill it in, just pad descriptor length by 4 bytes unless guest
350 * told us to strip it off the packet. */
351 static inline int
352 fcs_len(E1000State *s)
354 return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
357 static void
358 xmit_seg(E1000State *s)
360 uint16_t len, *sp;
361 unsigned int frames = s->tx.tso_frames, css, sofar, n;
362 struct e1000_tx *tp = &s->tx;
364 if (tp->tse && tp->cptse) {
365 css = tp->ipcss;
366 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
367 frames, tp->size, css);
368 if (tp->ip) { // IPv4
369 cpu_to_be16wu((uint16_t *)(tp->data+css+2),
370 tp->size - css);
371 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
372 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
373 } else // IPv6
374 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
375 tp->size - css);
376 css = tp->tucss;
377 len = tp->size - css;
378 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
379 if (tp->tcp) {
380 sofar = frames * tp->mss;
381 cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
382 be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
383 if (tp->paylen - sofar > tp->mss)
384 tp->data[css + 13] &= ~9; // PSH, FIN
385 } else // UDP
386 cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
387 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
388 unsigned int phsum;
389 // add pseudo-header length before checksum calculation
390 sp = (uint16_t *)(tp->data + tp->tucso);
391 phsum = be16_to_cpup(sp) + len;
392 phsum = (phsum >> 16) + (phsum & 0xffff);
393 cpu_to_be16wu(sp, phsum);
395 tp->tso_frames++;
398 if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
399 putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
400 if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
401 putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
402 if (tp->vlan_needed) {
403 memmove(tp->vlan, tp->data, 4);
404 memmove(tp->data, tp->data + 4, 8);
405 memcpy(tp->data + 8, tp->vlan_header, 4);
406 qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4);
407 } else
408 qemu_send_packet(&s->nic->nc, tp->data, tp->size);
409 s->mac_reg[TPT]++;
410 s->mac_reg[GPTC]++;
411 n = s->mac_reg[TOTL];
412 if ((s->mac_reg[TOTL] += s->tx.size) < n)
413 s->mac_reg[TOTH]++;
416 static void
417 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
419 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
420 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
421 unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
422 unsigned int msh = 0xfffff, hdr = 0;
423 uint64_t addr;
424 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
425 struct e1000_tx *tp = &s->tx;
427 if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
428 op = le32_to_cpu(xp->cmd_and_length);
429 tp->ipcss = xp->lower_setup.ip_fields.ipcss;
430 tp->ipcso = xp->lower_setup.ip_fields.ipcso;
431 tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
432 tp->tucss = xp->upper_setup.tcp_fields.tucss;
433 tp->tucso = xp->upper_setup.tcp_fields.tucso;
434 tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
435 tp->paylen = op & 0xfffff;
436 tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
437 tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
438 tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
439 tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
440 tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
441 tp->tso_frames = 0;
442 if (tp->tucso == 0) { // this is probably wrong
443 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
444 tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
446 return;
447 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
448 // data descriptor
449 if (tp->size == 0) {
450 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
452 tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
453 } else {
454 // legacy descriptor
455 tp->cptse = 0;
458 if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
459 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
460 tp->vlan_needed = 1;
461 cpu_to_be16wu((uint16_t *)(tp->vlan_header),
462 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
463 cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
464 le16_to_cpu(dp->upper.fields.special));
467 addr = le64_to_cpu(dp->buffer_addr);
468 if (tp->tse && tp->cptse) {
469 hdr = tp->hdr_len;
470 msh = hdr + tp->mss;
471 do {
472 bytes = split_size;
473 if (tp->size + bytes > msh)
474 bytes = msh - tp->size;
475 cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
476 if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
477 memmove(tp->header, tp->data, hdr);
478 tp->size = sz;
479 addr += bytes;
480 if (sz == msh) {
481 xmit_seg(s);
482 memmove(tp->data, tp->header, hdr);
483 tp->size = hdr;
485 } while (split_size -= bytes);
486 } else if (!tp->tse && tp->cptse) {
487 // context descriptor TSE is not set, while data descriptor TSE is set
488 DBGOUT(TXERR, "TCP segmentaion Error\n");
489 } else {
490 cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
491 tp->size += split_size;
494 if (!(txd_lower & E1000_TXD_CMD_EOP))
495 return;
496 if (!(tp->tse && tp->cptse && tp->size < hdr))
497 xmit_seg(s);
498 tp->tso_frames = 0;
499 tp->sum_needed = 0;
500 tp->vlan_needed = 0;
501 tp->size = 0;
502 tp->cptse = 0;
505 static uint32_t
506 txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
508 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
510 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
511 return 0;
512 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
513 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
514 dp->upper.data = cpu_to_le32(txd_upper);
515 cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
516 (void *)&dp->upper, sizeof(dp->upper));
517 return E1000_ICR_TXDW;
520 static uint64_t tx_desc_base(E1000State *s)
522 uint64_t bah = s->mac_reg[TDBAH];
523 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
525 return (bah << 32) + bal;
528 static void
529 start_xmit(E1000State *s)
531 target_phys_addr_t base;
532 struct e1000_tx_desc desc;
533 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
535 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
536 DBGOUT(TX, "tx disabled\n");
537 return;
540 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
541 base = tx_desc_base(s) +
542 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
543 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
545 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
546 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
547 desc.upper.data);
549 process_tx_desc(s, &desc);
550 cause |= txdesc_writeback(base, &desc);
552 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
553 s->mac_reg[TDH] = 0;
555 * the following could happen only if guest sw assigns
556 * bogus values to TDT/TDLEN.
557 * there's nothing too intelligent we could do about this.
559 if (s->mac_reg[TDH] == tdh_start) {
560 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
561 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
562 break;
565 set_ics(s, 0, cause);
568 static int
569 receive_filter(E1000State *s, const uint8_t *buf, int size)
571 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
572 static const int mta_shift[] = {4, 3, 2, 0};
573 uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
575 if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
576 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
577 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
578 ((vid >> 5) & 0x7f));
579 if ((vfta & (1 << (vid & 0x1f))) == 0)
580 return 0;
583 if (rctl & E1000_RCTL_UPE) // promiscuous
584 return 1;
586 if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
587 return 1;
589 if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
590 return 1;
592 for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
593 if (!(rp[1] & E1000_RAH_AV))
594 continue;
595 ra[0] = cpu_to_le32(rp[0]);
596 ra[1] = cpu_to_le32(rp[1]);
597 if (!memcmp(buf, (uint8_t *)ra, 6)) {
598 DBGOUT(RXFILTER,
599 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
600 (int)(rp - s->mac_reg - RA)/2,
601 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
602 return 1;
605 DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
606 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
608 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
609 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
610 if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
611 return 1;
612 DBGOUT(RXFILTER,
613 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
614 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
615 (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
616 s->mac_reg[MTA + (f >> 5)]);
618 return 0;
621 static void
622 e1000_set_link_status(VLANClientState *nc)
624 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
625 uint32_t old_status = s->mac_reg[STATUS];
627 if (nc->link_down)
628 s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
629 else
630 s->mac_reg[STATUS] |= E1000_STATUS_LU;
632 if (s->mac_reg[STATUS] != old_status)
633 set_ics(s, 0, E1000_ICR_LSC);
636 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
638 int bufs;
639 /* Fast-path short packets */
640 if (total_size <= s->rxbuf_size) {
641 return s->mac_reg[RDH] != s->mac_reg[RDT] || !s->check_rxov;
643 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
644 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
645 } else if (s->mac_reg[RDH] > s->mac_reg[RDT] || !s->check_rxov) {
646 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
647 s->mac_reg[RDT] - s->mac_reg[RDH];
648 } else {
649 return false;
651 return total_size <= bufs * s->rxbuf_size;
654 static int
655 e1000_can_receive(VLANClientState *nc)
657 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
659 return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
662 static uint64_t rx_desc_base(E1000State *s)
664 uint64_t bah = s->mac_reg[RDBAH];
665 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
667 return (bah << 32) + bal;
670 static ssize_t
671 e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
673 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
674 struct e1000_rx_desc desc;
675 target_phys_addr_t base;
676 unsigned int n, rdt;
677 uint32_t rdh_start;
678 uint16_t vlan_special = 0;
679 uint8_t vlan_status = 0, vlan_offset = 0;
680 uint8_t min_buf[MIN_BUF_SIZE];
681 size_t desc_offset;
682 size_t desc_size;
683 size_t total_size;
685 if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
686 return -1;
688 /* Pad to minimum Ethernet frame length */
689 if (size < sizeof(min_buf)) {
690 memcpy(min_buf, buf, size);
691 memset(&min_buf[size], 0, sizeof(min_buf) - size);
692 buf = min_buf;
693 size = sizeof(min_buf);
696 if (!receive_filter(s, buf, size))
697 return size;
699 if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
700 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
701 memmove((uint8_t *)buf + 4, buf, 12);
702 vlan_status = E1000_RXD_STAT_VP;
703 vlan_offset = 4;
704 size -= 4;
707 rdh_start = s->mac_reg[RDH];
708 desc_offset = 0;
709 total_size = size + fcs_len(s);
710 if (!e1000_has_rxbufs(s, total_size)) {
711 set_ics(s, 0, E1000_ICS_RXO);
712 return -1;
714 do {
715 desc_size = total_size - desc_offset;
716 if (desc_size > s->rxbuf_size) {
717 desc_size = s->rxbuf_size;
719 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
720 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
721 desc.special = vlan_special;
722 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
723 if (desc.buffer_addr) {
724 if (desc_offset < size) {
725 size_t copy_size = size - desc_offset;
726 if (copy_size > s->rxbuf_size) {
727 copy_size = s->rxbuf_size;
729 cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
730 (void *)(buf + desc_offset + vlan_offset),
731 copy_size);
733 desc_offset += desc_size;
734 desc.length = cpu_to_le16(desc_size);
735 if (desc_offset >= total_size) {
736 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
737 } else {
738 /* Guest zeroing out status is not a hardware requirement.
739 Clear EOP in case guest didn't do it. */
740 desc.status &= ~E1000_RXD_STAT_EOP;
742 } else { // as per intel docs; skip descriptors with null buf addr
743 DBGOUT(RX, "Null RX descriptor!!\n");
745 cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
747 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
748 s->mac_reg[RDH] = 0;
749 s->check_rxov = 1;
750 /* see comment in start_xmit; same here */
751 if (s->mac_reg[RDH] == rdh_start) {
752 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
753 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
754 set_ics(s, 0, E1000_ICS_RXO);
755 return -1;
757 } while (desc_offset < total_size);
759 s->mac_reg[GPRC]++;
760 s->mac_reg[TPR]++;
761 /* TOR - Total Octets Received:
762 * This register includes bytes received in a packet from the <Destination
763 * Address> field through the <CRC> field, inclusively.
765 n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
766 if (n < s->mac_reg[TORL])
767 s->mac_reg[TORH]++;
768 s->mac_reg[TORL] = n;
770 n = E1000_ICS_RXT0;
771 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
772 rdt += s->mac_reg[RDLEN] / sizeof(desc);
773 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
774 s->rxbuf_min_shift)
775 n |= E1000_ICS_RXDMT0;
777 set_ics(s, 0, n);
779 return size;
782 static uint32_t
783 mac_readreg(E1000State *s, int index)
785 return s->mac_reg[index];
788 static uint32_t
789 mac_icr_read(E1000State *s, int index)
791 uint32_t ret = s->mac_reg[ICR];
793 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
794 set_interrupt_cause(s, 0, 0);
795 return ret;
798 static uint32_t
799 mac_read_clr4(E1000State *s, int index)
801 uint32_t ret = s->mac_reg[index];
803 s->mac_reg[index] = 0;
804 return ret;
807 static uint32_t
808 mac_read_clr8(E1000State *s, int index)
810 uint32_t ret = s->mac_reg[index];
812 s->mac_reg[index] = 0;
813 s->mac_reg[index-1] = 0;
814 return ret;
817 static void
818 mac_writereg(E1000State *s, int index, uint32_t val)
820 s->mac_reg[index] = val;
823 static void
824 set_rdt(E1000State *s, int index, uint32_t val)
826 s->check_rxov = 0;
827 s->mac_reg[index] = val & 0xffff;
830 static void
831 set_16bit(E1000State *s, int index, uint32_t val)
833 s->mac_reg[index] = val & 0xffff;
836 static void
837 set_dlen(E1000State *s, int index, uint32_t val)
839 s->mac_reg[index] = val & 0xfff80;
842 static void
843 set_tctl(E1000State *s, int index, uint32_t val)
845 s->mac_reg[index] = val;
846 s->mac_reg[TDT] &= 0xffff;
847 start_xmit(s);
850 static void
851 set_icr(E1000State *s, int index, uint32_t val)
853 DBGOUT(INTERRUPT, "set_icr %x\n", val);
854 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
857 static void
858 set_imc(E1000State *s, int index, uint32_t val)
860 s->mac_reg[IMS] &= ~val;
861 set_ics(s, 0, 0);
864 static void
865 set_ims(E1000State *s, int index, uint32_t val)
867 s->mac_reg[IMS] |= val;
868 set_ics(s, 0, 0);
871 #define getreg(x) [x] = mac_readreg
872 static uint32_t (*macreg_readops[])(E1000State *, int) = {
873 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
874 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
875 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
876 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
877 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
878 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
879 getreg(TDLEN), getreg(RDLEN),
881 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
882 [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
883 [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
884 [CRCERRS ... MPC] = &mac_readreg,
885 [RA ... RA+31] = &mac_readreg,
886 [MTA ... MTA+127] = &mac_readreg,
887 [VFTA ... VFTA+127] = &mac_readreg,
889 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
891 #define putreg(x) [x] = mac_writereg
892 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
893 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
894 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
895 putreg(RDBAL), putreg(LEDCTL), putreg(VET),
896 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
897 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
898 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
899 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
900 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
901 [RA ... RA+31] = &mac_writereg,
902 [MTA ... MTA+127] = &mac_writereg,
903 [VFTA ... VFTA+127] = &mac_writereg,
905 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
907 static void
908 e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
910 E1000State *s = opaque;
911 unsigned int index = (addr & 0x1ffff) >> 2;
913 if (index < NWRITEOPS && macreg_writeops[index]) {
914 macreg_writeops[index](s, index, val);
915 } else if (index < NREADOPS && macreg_readops[index]) {
916 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
917 } else {
918 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
919 index<<2, val);
923 static void
924 e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
926 // emulate hw without byte enables: no RMW
927 e1000_mmio_writel(opaque, addr & ~3,
928 (val & 0xffff) << (8*(addr & 3)));
931 static void
932 e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
934 // emulate hw without byte enables: no RMW
935 e1000_mmio_writel(opaque, addr & ~3,
936 (val & 0xff) << (8*(addr & 3)));
939 static uint32_t
940 e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
942 E1000State *s = opaque;
943 unsigned int index = (addr & 0x1ffff) >> 2;
945 if (index < NREADOPS && macreg_readops[index])
947 return macreg_readops[index](s, index);
949 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
950 return 0;
953 static uint32_t
954 e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
956 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
957 (8 * (addr & 3))) & 0xff;
960 static uint32_t
961 e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
963 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
964 (8 * (addr & 3))) & 0xffff;
967 static bool is_version_1(void *opaque, int version_id)
969 return version_id == 1;
972 static const VMStateDescription vmstate_e1000 = {
973 .name = "e1000",
974 .version_id = 2,
975 .minimum_version_id = 1,
976 .minimum_version_id_old = 1,
977 .fields = (VMStateField []) {
978 VMSTATE_PCI_DEVICE(dev, E1000State),
979 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
980 VMSTATE_UNUSED(4), /* Was mmio_base. */
981 VMSTATE_UINT32(rxbuf_size, E1000State),
982 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
983 VMSTATE_UINT32(eecd_state.val_in, E1000State),
984 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
985 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
986 VMSTATE_UINT16(eecd_state.reading, E1000State),
987 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
988 VMSTATE_UINT8(tx.ipcss, E1000State),
989 VMSTATE_UINT8(tx.ipcso, E1000State),
990 VMSTATE_UINT16(tx.ipcse, E1000State),
991 VMSTATE_UINT8(tx.tucss, E1000State),
992 VMSTATE_UINT8(tx.tucso, E1000State),
993 VMSTATE_UINT16(tx.tucse, E1000State),
994 VMSTATE_UINT32(tx.paylen, E1000State),
995 VMSTATE_UINT8(tx.hdr_len, E1000State),
996 VMSTATE_UINT16(tx.mss, E1000State),
997 VMSTATE_UINT16(tx.size, E1000State),
998 VMSTATE_UINT16(tx.tso_frames, E1000State),
999 VMSTATE_UINT8(tx.sum_needed, E1000State),
1000 VMSTATE_INT8(tx.ip, E1000State),
1001 VMSTATE_INT8(tx.tcp, E1000State),
1002 VMSTATE_BUFFER(tx.header, E1000State),
1003 VMSTATE_BUFFER(tx.data, E1000State),
1004 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1005 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1006 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1007 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1008 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1009 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1010 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1011 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1012 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1013 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1014 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1015 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1016 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1017 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1018 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1019 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1020 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1021 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1022 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1023 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1024 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1025 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1026 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1027 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1028 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1029 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1030 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1031 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1032 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1033 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1034 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1035 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1036 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1037 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1038 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1039 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1040 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1041 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1042 VMSTATE_UINT32(mac_reg[VET], E1000State),
1043 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1044 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1045 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1046 VMSTATE_END_OF_LIST()
1050 static const uint16_t e1000_eeprom_template[64] = {
1051 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1052 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
1053 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1054 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1055 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1056 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1057 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1058 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1061 static const uint16_t phy_reg_init[] = {
1062 [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
1063 [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
1064 [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
1065 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
1066 [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
1067 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
1070 static const uint32_t mac_reg_init[] = {
1071 [PBA] = 0x00100030,
1072 [LEDCTL] = 0x602,
1073 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
1074 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
1075 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
1076 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
1077 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
1078 E1000_STATUS_LU,
1079 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
1080 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
1081 E1000_MANC_RMCP_EN,
1084 /* PCI interface */
1086 static CPUWriteMemoryFunc * const e1000_mmio_write[] = {
1087 e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
1090 static CPUReadMemoryFunc * const e1000_mmio_read[] = {
1091 e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
1094 static void
1095 e1000_mmio_map(PCIDevice *pci_dev, int region_num,
1096 pcibus_t addr, pcibus_t size, int type)
1098 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1099 int i;
1100 const uint32_t excluded_regs[] = {
1101 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1102 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1106 DBGOUT(MMIO, "e1000_mmio_map addr=0x%08"FMT_PCIBUS" 0x%08"FMT_PCIBUS"\n",
1107 addr, size);
1109 cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
1110 qemu_register_coalesced_mmio(addr, excluded_regs[0]);
1112 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1113 qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4,
1114 excluded_regs[i + 1] -
1115 excluded_regs[i] - 4);
1118 static void
1119 e1000_cleanup(VLANClientState *nc)
1121 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1123 s->nic = NULL;
1126 static int
1127 pci_e1000_uninit(PCIDevice *dev)
1129 E1000State *d = DO_UPCAST(E1000State, dev, dev);
1131 cpu_unregister_io_memory(d->mmio_index);
1132 qemu_del_vlan_client(&d->nic->nc);
1133 return 0;
1136 static void e1000_reset(void *opaque)
1138 E1000State *d = opaque;
1140 memset(d->phy_reg, 0, sizeof d->phy_reg);
1141 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
1142 memset(d->mac_reg, 0, sizeof d->mac_reg);
1143 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
1144 d->rxbuf_min_shift = 1;
1145 memset(&d->tx, 0, sizeof d->tx);
1148 static NetClientInfo net_e1000_info = {
1149 .type = NET_CLIENT_TYPE_NIC,
1150 .size = sizeof(NICState),
1151 .can_receive = e1000_can_receive,
1152 .receive = e1000_receive,
1153 .cleanup = e1000_cleanup,
1154 .link_status_changed = e1000_set_link_status,
1157 static int pci_e1000_init(PCIDevice *pci_dev)
1159 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1160 uint8_t *pci_conf;
1161 uint16_t checksum = 0;
1162 int i;
1163 uint8_t *macaddr;
1165 pci_conf = d->dev.config;
1167 /* TODO: we have no capabilities, so why is this bit set? */
1168 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_CAP_LIST);
1169 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1170 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1172 /* TODO: RST# value should be 0 if programmable, PCI spec 6.2.4 */
1173 pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
1175 d->mmio_index = cpu_register_io_memory(e1000_mmio_read,
1176 e1000_mmio_write, d, DEVICE_LITTLE_ENDIAN);
1178 pci_register_bar(&d->dev, 0, PNPMMIO_SIZE,
1179 PCI_BASE_ADDRESS_SPACE_MEMORY, e1000_mmio_map);
1181 pci_register_bar(&d->dev, 1, IOPORT_SIZE,
1182 PCI_BASE_ADDRESS_SPACE_IO, ioport_map);
1184 memmove(d->eeprom_data, e1000_eeprom_template,
1185 sizeof e1000_eeprom_template);
1186 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1187 macaddr = d->conf.macaddr.a;
1188 for (i = 0; i < 3; i++)
1189 d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
1190 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1191 checksum += d->eeprom_data[i];
1192 checksum = (uint16_t) EEPROM_SUM - checksum;
1193 d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
1195 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1196 d->dev.qdev.info->name, d->dev.qdev.id, d);
1198 qemu_format_nic_info_str(&d->nic->nc, macaddr);
1200 add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1202 return 0;
1205 static void qdev_e1000_reset(DeviceState *dev)
1207 E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
1208 e1000_reset(d);
1211 static PCIDeviceInfo e1000_info = {
1212 .qdev.name = "e1000",
1213 .qdev.desc = "Intel Gigabit Ethernet",
1214 .qdev.size = sizeof(E1000State),
1215 .qdev.reset = qdev_e1000_reset,
1216 .qdev.vmsd = &vmstate_e1000,
1217 .init = pci_e1000_init,
1218 .exit = pci_e1000_uninit,
1219 .romfile = "pxe-e1000.rom",
1220 .vendor_id = PCI_VENDOR_ID_INTEL,
1221 .device_id = E1000_DEVID,
1222 .revision = 0x03,
1223 .class_id = PCI_CLASS_NETWORK_ETHERNET,
1224 .qdev.props = (Property[]) {
1225 DEFINE_NIC_PROPERTIES(E1000State, conf),
1226 DEFINE_PROP_END_OF_LIST(),
1230 static void e1000_register_devices(void)
1232 pci_qdev_register(&e1000_info);
1235 device_init(e1000_register_devices)