Merge remote branch 'qemu-kvm/uq/master' into staging
[qemu.git] / target-arm / neon_helper.c
blob002a9c11a63f2581bcd9000cf1bfda29bf96ccca
1 /*
2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GNU GPL v2.
8 */
9 #include <stdlib.h>
10 #include <stdio.h>
12 #include "cpu.h"
13 #include "exec-all.h"
14 #include "helpers.h"
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
21 static float_status neon_float_status;
22 #define NFS &neon_float_status
24 /* Helper routines to perform bitwise copies between float and int. */
25 static inline float32 vfp_itos(uint32_t i)
27 union {
28 uint32_t i;
29 float32 s;
30 } v;
32 v.i = i;
33 return v.s;
36 static inline uint32_t vfp_stoi(float32 s)
38 union {
39 uint32_t i;
40 float32 s;
41 } v;
43 v.s = s;
44 return v.i;
47 #define NEON_TYPE1(name, type) \
48 typedef struct \
49 { \
50 type v1; \
51 } neon_##name;
52 #ifdef HOST_WORDS_BIGENDIAN
53 #define NEON_TYPE2(name, type) \
54 typedef struct \
55 { \
56 type v2; \
57 type v1; \
58 } neon_##name;
59 #define NEON_TYPE4(name, type) \
60 typedef struct \
61 { \
62 type v4; \
63 type v3; \
64 type v2; \
65 type v1; \
66 } neon_##name;
67 #else
68 #define NEON_TYPE2(name, type) \
69 typedef struct \
70 { \
71 type v1; \
72 type v2; \
73 } neon_##name;
74 #define NEON_TYPE4(name, type) \
75 typedef struct \
76 { \
77 type v1; \
78 type v2; \
79 type v3; \
80 type v4; \
81 } neon_##name;
82 #endif
84 NEON_TYPE4(s8, int8_t)
85 NEON_TYPE4(u8, uint8_t)
86 NEON_TYPE2(s16, int16_t)
87 NEON_TYPE2(u16, uint16_t)
88 NEON_TYPE1(s32, int32_t)
89 NEON_TYPE1(u32, uint32_t)
90 #undef NEON_TYPE4
91 #undef NEON_TYPE2
92 #undef NEON_TYPE1
94 /* Copy from a uint32_t to a vector structure type. */
95 #define NEON_UNPACK(vtype, dest, val) do { \
96 union { \
97 vtype v; \
98 uint32_t i; \
99 } conv_u; \
100 conv_u.i = (val); \
101 dest = conv_u.v; \
102 } while(0)
104 /* Copy from a vector structure type to a uint32_t. */
105 #define NEON_PACK(vtype, dest, val) do { \
106 union { \
107 vtype v; \
108 uint32_t i; \
109 } conv_u; \
110 conv_u.v = (val); \
111 dest = conv_u.i; \
112 } while(0)
114 #define NEON_DO1 \
115 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
116 #define NEON_DO2 \
117 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
118 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
119 #define NEON_DO4 \
120 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
121 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
122 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
123 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
125 #define NEON_VOP_BODY(vtype, n) \
127 uint32_t res; \
128 vtype vsrc1; \
129 vtype vsrc2; \
130 vtype vdest; \
131 NEON_UNPACK(vtype, vsrc1, arg1); \
132 NEON_UNPACK(vtype, vsrc2, arg2); \
133 NEON_DO##n; \
134 NEON_PACK(vtype, res, vdest); \
135 return res; \
138 #define NEON_VOP(name, vtype, n) \
139 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
140 NEON_VOP_BODY(vtype, n)
142 #define NEON_VOP_ENV(name, vtype, n) \
143 uint32_t HELPER(glue(neon_,name))(CPUState *env, uint32_t arg1, uint32_t arg2) \
144 NEON_VOP_BODY(vtype, n)
146 /* Pairwise operations. */
147 /* For 32-bit elements each segment only contains a single element, so
148 the elementwise and pairwise operations are the same. */
149 #define NEON_PDO2 \
150 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
151 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
152 #define NEON_PDO4 \
153 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
154 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
155 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
156 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
158 #define NEON_POP(name, vtype, n) \
159 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
161 uint32_t res; \
162 vtype vsrc1; \
163 vtype vsrc2; \
164 vtype vdest; \
165 NEON_UNPACK(vtype, vsrc1, arg1); \
166 NEON_UNPACK(vtype, vsrc2, arg2); \
167 NEON_PDO##n; \
168 NEON_PACK(vtype, res, vdest); \
169 return res; \
172 /* Unary operators. */
173 #define NEON_VOP1(name, vtype, n) \
174 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
176 vtype vsrc1; \
177 vtype vdest; \
178 NEON_UNPACK(vtype, vsrc1, arg); \
179 NEON_DO##n; \
180 NEON_PACK(vtype, arg, vdest); \
181 return arg; \
185 #define NEON_USAT(dest, src1, src2, type) do { \
186 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
187 if (tmp != (type)tmp) { \
188 SET_QC(); \
189 dest = ~0; \
190 } else { \
191 dest = tmp; \
192 }} while(0)
193 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
194 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
195 #undef NEON_FN
196 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
197 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
198 #undef NEON_FN
199 #undef NEON_USAT
201 uint32_t HELPER(neon_qadd_u32)(CPUState *env, uint32_t a, uint32_t b)
203 uint32_t res = a + b;
204 if (res < a) {
205 SET_QC();
206 res = ~0;
208 return res;
211 uint64_t HELPER(neon_qadd_u64)(CPUState *env, uint64_t src1, uint64_t src2)
213 uint64_t res;
215 res = src1 + src2;
216 if (res < src1) {
217 SET_QC();
218 res = ~(uint64_t)0;
220 return res;
223 #define NEON_SSAT(dest, src1, src2, type) do { \
224 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
225 if (tmp != (type)tmp) { \
226 SET_QC(); \
227 if (src2 > 0) { \
228 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
229 } else { \
230 tmp = 1 << (sizeof(type) * 8 - 1); \
233 dest = tmp; \
234 } while(0)
235 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
236 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
237 #undef NEON_FN
238 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
239 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
240 #undef NEON_FN
241 #undef NEON_SSAT
243 uint32_t HELPER(neon_qadd_s32)(CPUState *env, uint32_t a, uint32_t b)
245 uint32_t res = a + b;
246 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
247 SET_QC();
248 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
250 return res;
253 uint64_t HELPER(neon_qadd_s64)(CPUState *env, uint64_t src1, uint64_t src2)
255 uint64_t res;
257 res = src1 + src2;
258 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
259 SET_QC();
260 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
262 return res;
265 #define NEON_USAT(dest, src1, src2, type) do { \
266 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
267 if (tmp != (type)tmp) { \
268 SET_QC(); \
269 dest = 0; \
270 } else { \
271 dest = tmp; \
272 }} while(0)
273 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
274 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
275 #undef NEON_FN
276 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
277 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
278 #undef NEON_FN
279 #undef NEON_USAT
281 uint32_t HELPER(neon_qsub_u32)(CPUState *env, uint32_t a, uint32_t b)
283 uint32_t res = a - b;
284 if (res > a) {
285 SET_QC();
286 res = 0;
288 return res;
291 uint64_t HELPER(neon_qsub_u64)(CPUState *env, uint64_t src1, uint64_t src2)
293 uint64_t res;
295 if (src1 < src2) {
296 SET_QC();
297 res = 0;
298 } else {
299 res = src1 - src2;
301 return res;
304 #define NEON_SSAT(dest, src1, src2, type) do { \
305 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
306 if (tmp != (type)tmp) { \
307 SET_QC(); \
308 if (src2 < 0) { \
309 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
310 } else { \
311 tmp = 1 << (sizeof(type) * 8 - 1); \
314 dest = tmp; \
315 } while(0)
316 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
317 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
318 #undef NEON_FN
319 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
320 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
321 #undef NEON_FN
322 #undef NEON_SSAT
324 uint32_t HELPER(neon_qsub_s32)(CPUState *env, uint32_t a, uint32_t b)
326 uint32_t res = a - b;
327 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
328 SET_QC();
329 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
331 return res;
334 uint64_t HELPER(neon_qsub_s64)(CPUState *env, uint64_t src1, uint64_t src2)
336 uint64_t res;
338 res = src1 - src2;
339 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
340 SET_QC();
341 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
343 return res;
346 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
347 NEON_VOP(hadd_s8, neon_s8, 4)
348 NEON_VOP(hadd_u8, neon_u8, 4)
349 NEON_VOP(hadd_s16, neon_s16, 2)
350 NEON_VOP(hadd_u16, neon_u16, 2)
351 #undef NEON_FN
353 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
355 int32_t dest;
357 dest = (src1 >> 1) + (src2 >> 1);
358 if (src1 & src2 & 1)
359 dest++;
360 return dest;
363 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
365 uint32_t dest;
367 dest = (src1 >> 1) + (src2 >> 1);
368 if (src1 & src2 & 1)
369 dest++;
370 return dest;
373 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
374 NEON_VOP(rhadd_s8, neon_s8, 4)
375 NEON_VOP(rhadd_u8, neon_u8, 4)
376 NEON_VOP(rhadd_s16, neon_s16, 2)
377 NEON_VOP(rhadd_u16, neon_u16, 2)
378 #undef NEON_FN
380 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
382 int32_t dest;
384 dest = (src1 >> 1) + (src2 >> 1);
385 if ((src1 | src2) & 1)
386 dest++;
387 return dest;
390 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
392 uint32_t dest;
394 dest = (src1 >> 1) + (src2 >> 1);
395 if ((src1 | src2) & 1)
396 dest++;
397 return dest;
400 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
401 NEON_VOP(hsub_s8, neon_s8, 4)
402 NEON_VOP(hsub_u8, neon_u8, 4)
403 NEON_VOP(hsub_s16, neon_s16, 2)
404 NEON_VOP(hsub_u16, neon_u16, 2)
405 #undef NEON_FN
407 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
409 int32_t dest;
411 dest = (src1 >> 1) - (src2 >> 1);
412 if ((~src1) & src2 & 1)
413 dest--;
414 return dest;
417 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
419 uint32_t dest;
421 dest = (src1 >> 1) - (src2 >> 1);
422 if ((~src1) & src2 & 1)
423 dest--;
424 return dest;
427 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
428 NEON_VOP(cgt_s8, neon_s8, 4)
429 NEON_VOP(cgt_u8, neon_u8, 4)
430 NEON_VOP(cgt_s16, neon_s16, 2)
431 NEON_VOP(cgt_u16, neon_u16, 2)
432 NEON_VOP(cgt_s32, neon_s32, 1)
433 NEON_VOP(cgt_u32, neon_u32, 1)
434 #undef NEON_FN
436 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
437 NEON_VOP(cge_s8, neon_s8, 4)
438 NEON_VOP(cge_u8, neon_u8, 4)
439 NEON_VOP(cge_s16, neon_s16, 2)
440 NEON_VOP(cge_u16, neon_u16, 2)
441 NEON_VOP(cge_s32, neon_s32, 1)
442 NEON_VOP(cge_u32, neon_u32, 1)
443 #undef NEON_FN
445 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
446 NEON_VOP(min_s8, neon_s8, 4)
447 NEON_VOP(min_u8, neon_u8, 4)
448 NEON_VOP(min_s16, neon_s16, 2)
449 NEON_VOP(min_u16, neon_u16, 2)
450 NEON_VOP(min_s32, neon_s32, 1)
451 NEON_VOP(min_u32, neon_u32, 1)
452 NEON_POP(pmin_s8, neon_s8, 4)
453 NEON_POP(pmin_u8, neon_u8, 4)
454 NEON_POP(pmin_s16, neon_s16, 2)
455 NEON_POP(pmin_u16, neon_u16, 2)
456 #undef NEON_FN
458 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
459 NEON_VOP(max_s8, neon_s8, 4)
460 NEON_VOP(max_u8, neon_u8, 4)
461 NEON_VOP(max_s16, neon_s16, 2)
462 NEON_VOP(max_u16, neon_u16, 2)
463 NEON_VOP(max_s32, neon_s32, 1)
464 NEON_VOP(max_u32, neon_u32, 1)
465 NEON_POP(pmax_s8, neon_s8, 4)
466 NEON_POP(pmax_u8, neon_u8, 4)
467 NEON_POP(pmax_s16, neon_s16, 2)
468 NEON_POP(pmax_u16, neon_u16, 2)
469 #undef NEON_FN
471 #define NEON_FN(dest, src1, src2) \
472 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
473 NEON_VOP(abd_s8, neon_s8, 4)
474 NEON_VOP(abd_u8, neon_u8, 4)
475 NEON_VOP(abd_s16, neon_s16, 2)
476 NEON_VOP(abd_u16, neon_u16, 2)
477 NEON_VOP(abd_s32, neon_s32, 1)
478 NEON_VOP(abd_u32, neon_u32, 1)
479 #undef NEON_FN
481 #define NEON_FN(dest, src1, src2) do { \
482 int8_t tmp; \
483 tmp = (int8_t)src2; \
484 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
485 tmp <= -(ssize_t)sizeof(src1) * 8) { \
486 dest = 0; \
487 } else if (tmp < 0) { \
488 dest = src1 >> -tmp; \
489 } else { \
490 dest = src1 << tmp; \
491 }} while (0)
492 NEON_VOP(shl_u8, neon_u8, 4)
493 NEON_VOP(shl_u16, neon_u16, 2)
494 NEON_VOP(shl_u32, neon_u32, 1)
495 #undef NEON_FN
497 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
499 int8_t shift = (int8_t)shiftop;
500 if (shift >= 64 || shift <= -64) {
501 val = 0;
502 } else if (shift < 0) {
503 val >>= -shift;
504 } else {
505 val <<= shift;
507 return val;
510 #define NEON_FN(dest, src1, src2) do { \
511 int8_t tmp; \
512 tmp = (int8_t)src2; \
513 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
514 dest = 0; \
515 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
516 dest = src1 >> (sizeof(src1) * 8 - 1); \
517 } else if (tmp < 0) { \
518 dest = src1 >> -tmp; \
519 } else { \
520 dest = src1 << tmp; \
521 }} while (0)
522 NEON_VOP(shl_s8, neon_s8, 4)
523 NEON_VOP(shl_s16, neon_s16, 2)
524 NEON_VOP(shl_s32, neon_s32, 1)
525 #undef NEON_FN
527 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
529 int8_t shift = (int8_t)shiftop;
530 int64_t val = valop;
531 if (shift >= 64) {
532 val = 0;
533 } else if (shift <= -64) {
534 val >>= 63;
535 } else if (shift < 0) {
536 val >>= -shift;
537 } else {
538 val <<= shift;
540 return val;
543 #define NEON_FN(dest, src1, src2) do { \
544 int8_t tmp; \
545 tmp = (int8_t)src2; \
546 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
547 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
548 dest = 0; \
549 } else if (tmp < 0) { \
550 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
551 } else { \
552 dest = src1 << tmp; \
553 }} while (0)
554 NEON_VOP(rshl_s8, neon_s8, 4)
555 NEON_VOP(rshl_s16, neon_s16, 2)
556 #undef NEON_FN
558 /* The addition of the rounding constant may overflow, so we use an
559 * intermediate 64 bits accumulator. */
560 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
562 int32_t dest;
563 int32_t val = (int32_t)valop;
564 int8_t shift = (int8_t)shiftop;
565 if ((shift >= 32) || (shift <= -32)) {
566 dest = 0;
567 } else if (shift < 0) {
568 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
569 dest = big_dest >> -shift;
570 } else {
571 dest = val << shift;
573 return dest;
576 /* Handling addition overflow with 64 bits inputs values is more
577 * tricky than with 32 bits values. */
578 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
580 int8_t shift = (int8_t)shiftop;
581 int64_t val = valop;
582 if ((shift >= 64) || (shift <= -64)) {
583 val = 0;
584 } else if (shift < 0) {
585 val >>= (-shift - 1);
586 if (val == INT64_MAX) {
587 /* In this case, it means that the rounding constant is 1,
588 * and the addition would overflow. Return the actual
589 * result directly. */
590 val = 0x4000000000000000LL;
591 } else {
592 val++;
593 val >>= 1;
595 } else {
596 val <<= shift;
598 return val;
601 #define NEON_FN(dest, src1, src2) do { \
602 int8_t tmp; \
603 tmp = (int8_t)src2; \
604 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
605 tmp < -(ssize_t)sizeof(src1) * 8) { \
606 dest = 0; \
607 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
608 dest = src1 >> (-tmp - 1); \
609 } else if (tmp < 0) { \
610 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
611 } else { \
612 dest = src1 << tmp; \
613 }} while (0)
614 NEON_VOP(rshl_u8, neon_u8, 4)
615 NEON_VOP(rshl_u16, neon_u16, 2)
616 #undef NEON_FN
618 /* The addition of the rounding constant may overflow, so we use an
619 * intermediate 64 bits accumulator. */
620 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
622 uint32_t dest;
623 int8_t shift = (int8_t)shiftop;
624 if (shift >= 32 || shift < -32) {
625 dest = 0;
626 } else if (shift == -32) {
627 dest = val >> 31;
628 } else if (shift < 0) {
629 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
630 dest = big_dest >> -shift;
631 } else {
632 dest = val << shift;
634 return dest;
637 /* Handling addition overflow with 64 bits inputs values is more
638 * tricky than with 32 bits values. */
639 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
641 int8_t shift = (uint8_t)shiftop;
642 if (shift >= 64 || shift < -64) {
643 val = 0;
644 } else if (shift == -64) {
645 /* Rounding a 1-bit result just preserves that bit. */
646 val >>= 63;
647 } else if (shift < 0) {
648 val >>= (-shift - 1);
649 if (val == UINT64_MAX) {
650 /* In this case, it means that the rounding constant is 1,
651 * and the addition would overflow. Return the actual
652 * result directly. */
653 val = 0x8000000000000000ULL;
654 } else {
655 val++;
656 val >>= 1;
658 } else {
659 val <<= shift;
661 return val;
664 #define NEON_FN(dest, src1, src2) do { \
665 int8_t tmp; \
666 tmp = (int8_t)src2; \
667 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
668 if (src1) { \
669 SET_QC(); \
670 dest = ~0; \
671 } else { \
672 dest = 0; \
674 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
675 dest = 0; \
676 } else if (tmp < 0) { \
677 dest = src1 >> -tmp; \
678 } else { \
679 dest = src1 << tmp; \
680 if ((dest >> tmp) != src1) { \
681 SET_QC(); \
682 dest = ~0; \
684 }} while (0)
685 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
686 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
687 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
688 #undef NEON_FN
690 uint64_t HELPER(neon_qshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
692 int8_t shift = (int8_t)shiftop;
693 if (shift >= 64) {
694 if (val) {
695 val = ~(uint64_t)0;
696 SET_QC();
698 } else if (shift <= -64) {
699 val = 0;
700 } else if (shift < 0) {
701 val >>= -shift;
702 } else {
703 uint64_t tmp = val;
704 val <<= shift;
705 if ((val >> shift) != tmp) {
706 SET_QC();
707 val = ~(uint64_t)0;
710 return val;
713 #define NEON_FN(dest, src1, src2) do { \
714 int8_t tmp; \
715 tmp = (int8_t)src2; \
716 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
717 if (src1) { \
718 SET_QC(); \
719 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
720 if (src1 > 0) { \
721 dest--; \
723 } else { \
724 dest = src1; \
726 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
727 dest = src1 >> 31; \
728 } else if (tmp < 0) { \
729 dest = src1 >> -tmp; \
730 } else { \
731 dest = src1 << tmp; \
732 if ((dest >> tmp) != src1) { \
733 SET_QC(); \
734 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
735 if (src1 > 0) { \
736 dest--; \
739 }} while (0)
740 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
741 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
742 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
743 #undef NEON_FN
745 uint64_t HELPER(neon_qshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
747 int8_t shift = (uint8_t)shiftop;
748 int64_t val = valop;
749 if (shift >= 64) {
750 if (val) {
751 SET_QC();
752 val = (val >> 63) ^ ~SIGNBIT64;
754 } else if (shift <= -64) {
755 val >>= 63;
756 } else if (shift < 0) {
757 val >>= -shift;
758 } else {
759 int64_t tmp = val;
760 val <<= shift;
761 if ((val >> shift) != tmp) {
762 SET_QC();
763 val = (tmp >> 63) ^ ~SIGNBIT64;
766 return val;
769 #define NEON_FN(dest, src1, src2) do { \
770 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
771 SET_QC(); \
772 dest = 0; \
773 } else { \
774 int8_t tmp; \
775 tmp = (int8_t)src2; \
776 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
777 if (src1) { \
778 SET_QC(); \
779 dest = ~0; \
780 } else { \
781 dest = 0; \
783 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
784 dest = 0; \
785 } else if (tmp < 0) { \
786 dest = src1 >> -tmp; \
787 } else { \
788 dest = src1 << tmp; \
789 if ((dest >> tmp) != src1) { \
790 SET_QC(); \
791 dest = ~0; \
794 }} while (0)
795 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
796 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
797 #undef NEON_FN
799 uint32_t HELPER(neon_qshlu_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
801 if ((int32_t)valop < 0) {
802 SET_QC();
803 return 0;
805 return helper_neon_qshl_u32(env, valop, shiftop);
808 uint64_t HELPER(neon_qshlu_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
810 if ((int64_t)valop < 0) {
811 SET_QC();
812 return 0;
814 return helper_neon_qshl_u64(env, valop, shiftop);
817 /* FIXME: This is wrong. */
818 #define NEON_FN(dest, src1, src2) do { \
819 int8_t tmp; \
820 tmp = (int8_t)src2; \
821 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
822 if (src1) { \
823 SET_QC(); \
824 dest = ~0; \
825 } else { \
826 dest = 0; \
828 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
829 dest = 0; \
830 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
831 dest = src1 >> (sizeof(src1) * 8 - 1); \
832 } else if (tmp < 0) { \
833 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
834 } else { \
835 dest = src1 << tmp; \
836 if ((dest >> tmp) != src1) { \
837 SET_QC(); \
838 dest = ~0; \
840 }} while (0)
841 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
842 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
843 #undef NEON_FN
845 /* The addition of the rounding constant may overflow, so we use an
846 * intermediate 64 bits accumulator. */
847 uint32_t HELPER(neon_qrshl_u32)(CPUState *env, uint32_t val, uint32_t shiftop)
849 uint32_t dest;
850 int8_t shift = (int8_t)shiftop;
851 if (shift >= 32) {
852 if (val) {
853 SET_QC();
854 dest = ~0;
855 } else {
856 dest = 0;
858 } else if (shift < -32) {
859 dest = 0;
860 } else if (shift == -32) {
861 dest = val >> 31;
862 } else if (shift < 0) {
863 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
864 dest = big_dest >> -shift;
865 } else {
866 dest = val << shift;
867 if ((dest >> shift) != val) {
868 SET_QC();
869 dest = ~0;
872 return dest;
875 /* Handling addition overflow with 64 bits inputs values is more
876 * tricky than with 32 bits values. */
877 uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
879 int8_t shift = (int8_t)shiftop;
880 if (shift >= 64) {
881 if (val) {
882 SET_QC();
883 val = ~0;
885 } else if (shift < -64) {
886 val = 0;
887 } else if (shift == -64) {
888 val >>= 63;
889 } else if (shift < 0) {
890 val >>= (-shift - 1);
891 if (val == UINT64_MAX) {
892 /* In this case, it means that the rounding constant is 1,
893 * and the addition would overflow. Return the actual
894 * result directly. */
895 val = 0x8000000000000000ULL;
896 } else {
897 val++;
898 val >>= 1;
900 } else { \
901 uint64_t tmp = val;
902 val <<= shift;
903 if ((val >> shift) != tmp) {
904 SET_QC();
905 val = ~0;
908 return val;
911 #define NEON_FN(dest, src1, src2) do { \
912 int8_t tmp; \
913 tmp = (int8_t)src2; \
914 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
915 if (src1) { \
916 SET_QC(); \
917 dest = (1 << (sizeof(src1) * 8 - 1)); \
918 if (src1 > 0) { \
919 dest--; \
921 } else { \
922 dest = 0; \
924 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
925 dest = 0; \
926 } else if (tmp < 0) { \
927 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
928 } else { \
929 dest = src1 << tmp; \
930 if ((dest >> tmp) != src1) { \
931 SET_QC(); \
932 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
933 if (src1 > 0) { \
934 dest--; \
937 }} while (0)
938 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
939 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
940 #undef NEON_FN
942 /* The addition of the rounding constant may overflow, so we use an
943 * intermediate 64 bits accumulator. */
944 uint32_t HELPER(neon_qrshl_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
946 int32_t dest;
947 int32_t val = (int32_t)valop;
948 int8_t shift = (int8_t)shiftop;
949 if (shift >= 32) {
950 if (val) {
951 SET_QC();
952 dest = (val >> 31) ^ ~SIGNBIT;
953 } else {
954 dest = 0;
956 } else if (shift <= -32) {
957 dest = 0;
958 } else if (shift < 0) {
959 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
960 dest = big_dest >> -shift;
961 } else {
962 dest = val << shift;
963 if ((dest >> shift) != val) {
964 SET_QC();
965 dest = (val >> 31) ^ ~SIGNBIT;
968 return dest;
971 /* Handling addition overflow with 64 bits inputs values is more
972 * tricky than with 32 bits values. */
973 uint64_t HELPER(neon_qrshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
975 int8_t shift = (uint8_t)shiftop;
976 int64_t val = valop;
978 if (shift >= 64) {
979 if (val) {
980 SET_QC();
981 val = (val >> 63) ^ ~SIGNBIT64;
983 } else if (shift <= -64) {
984 val = 0;
985 } else if (shift < 0) {
986 val >>= (-shift - 1);
987 if (val == INT64_MAX) {
988 /* In this case, it means that the rounding constant is 1,
989 * and the addition would overflow. Return the actual
990 * result directly. */
991 val = 0x4000000000000000ULL;
992 } else {
993 val++;
994 val >>= 1;
996 } else {
997 int64_t tmp = val;
998 val <<= shift;
999 if ((val >> shift) != tmp) {
1000 SET_QC();
1001 val = (tmp >> 63) ^ ~SIGNBIT64;
1004 return val;
1007 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1009 uint32_t mask;
1010 mask = (a ^ b) & 0x80808080u;
1011 a &= ~0x80808080u;
1012 b &= ~0x80808080u;
1013 return (a + b) ^ mask;
1016 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1018 uint32_t mask;
1019 mask = (a ^ b) & 0x80008000u;
1020 a &= ~0x80008000u;
1021 b &= ~0x80008000u;
1022 return (a + b) ^ mask;
1025 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1026 NEON_POP(padd_u8, neon_u8, 4)
1027 NEON_POP(padd_u16, neon_u16, 2)
1028 #undef NEON_FN
1030 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1031 NEON_VOP(sub_u8, neon_u8, 4)
1032 NEON_VOP(sub_u16, neon_u16, 2)
1033 #undef NEON_FN
1035 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1036 NEON_VOP(mul_u8, neon_u8, 4)
1037 NEON_VOP(mul_u16, neon_u16, 2)
1038 #undef NEON_FN
1040 /* Polynomial multiplication is like integer multiplication except the
1041 partial products are XORed, not added. */
1042 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1044 uint32_t mask;
1045 uint32_t result;
1046 result = 0;
1047 while (op1) {
1048 mask = 0;
1049 if (op1 & 1)
1050 mask |= 0xff;
1051 if (op1 & (1 << 8))
1052 mask |= (0xff << 8);
1053 if (op1 & (1 << 16))
1054 mask |= (0xff << 16);
1055 if (op1 & (1 << 24))
1056 mask |= (0xff << 24);
1057 result ^= op2 & mask;
1058 op1 = (op1 >> 1) & 0x7f7f7f7f;
1059 op2 = (op2 << 1) & 0xfefefefe;
1061 return result;
1064 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1066 uint64_t result = 0;
1067 uint64_t mask;
1068 uint64_t op2ex = op2;
1069 op2ex = (op2ex & 0xff) |
1070 ((op2ex & 0xff00) << 8) |
1071 ((op2ex & 0xff0000) << 16) |
1072 ((op2ex & 0xff000000) << 24);
1073 while (op1) {
1074 mask = 0;
1075 if (op1 & 1) {
1076 mask |= 0xffff;
1078 if (op1 & (1 << 8)) {
1079 mask |= (0xffffU << 16);
1081 if (op1 & (1 << 16)) {
1082 mask |= (0xffffULL << 32);
1084 if (op1 & (1 << 24)) {
1085 mask |= (0xffffULL << 48);
1087 result ^= op2ex & mask;
1088 op1 = (op1 >> 1) & 0x7f7f7f7f;
1089 op2ex <<= 1;
1091 return result;
1094 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1095 NEON_VOP(tst_u8, neon_u8, 4)
1096 NEON_VOP(tst_u16, neon_u16, 2)
1097 NEON_VOP(tst_u32, neon_u32, 1)
1098 #undef NEON_FN
1100 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1101 NEON_VOP(ceq_u8, neon_u8, 4)
1102 NEON_VOP(ceq_u16, neon_u16, 2)
1103 NEON_VOP(ceq_u32, neon_u32, 1)
1104 #undef NEON_FN
1106 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1107 NEON_VOP1(abs_s8, neon_s8, 4)
1108 NEON_VOP1(abs_s16, neon_s16, 2)
1109 #undef NEON_FN
1111 /* Count Leading Sign/Zero Bits. */
1112 static inline int do_clz8(uint8_t x)
1114 int n;
1115 for (n = 8; x; n--)
1116 x >>= 1;
1117 return n;
1120 static inline int do_clz16(uint16_t x)
1122 int n;
1123 for (n = 16; x; n--)
1124 x >>= 1;
1125 return n;
1128 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1129 NEON_VOP1(clz_u8, neon_u8, 4)
1130 #undef NEON_FN
1132 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1133 NEON_VOP1(clz_u16, neon_u16, 2)
1134 #undef NEON_FN
1136 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1137 NEON_VOP1(cls_s8, neon_s8, 4)
1138 #undef NEON_FN
1140 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1141 NEON_VOP1(cls_s16, neon_s16, 2)
1142 #undef NEON_FN
1144 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1146 int count;
1147 if ((int32_t)x < 0)
1148 x = ~x;
1149 for (count = 32; x; count--)
1150 x = x >> 1;
1151 return count - 1;
1154 /* Bit count. */
1155 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1157 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1158 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1159 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1160 return x;
1163 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1164 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1165 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1166 SET_QC(); \
1167 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1168 } else { \
1169 tmp <<= 1; \
1171 if (round) { \
1172 int32_t old = tmp; \
1173 tmp += 1 << 15; \
1174 if ((int32_t)tmp < old) { \
1175 SET_QC(); \
1176 tmp = SIGNBIT - 1; \
1179 dest = tmp >> 16; \
1180 } while(0)
1181 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1182 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1183 #undef NEON_FN
1184 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1185 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1186 #undef NEON_FN
1187 #undef NEON_QDMULH16
1189 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1190 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1191 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1192 SET_QC(); \
1193 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1194 } else { \
1195 tmp <<= 1; \
1197 if (round) { \
1198 int64_t old = tmp; \
1199 tmp += (int64_t)1 << 31; \
1200 if ((int64_t)tmp < old) { \
1201 SET_QC(); \
1202 tmp = SIGNBIT64 - 1; \
1205 dest = tmp >> 32; \
1206 } while(0)
1207 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1208 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1209 #undef NEON_FN
1210 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1211 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1212 #undef NEON_FN
1213 #undef NEON_QDMULH32
1215 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1217 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1218 | ((x >> 24) & 0xff000000u);
1221 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1223 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1226 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1228 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1229 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1232 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1234 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1237 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1239 x &= 0xff80ff80ff80ff80ull;
1240 x += 0x0080008000800080ull;
1241 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1242 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1245 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1247 x &= 0xffff8000ffff8000ull;
1248 x += 0x0000800000008000ull;
1249 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1252 uint32_t HELPER(neon_unarrow_sat8)(CPUState *env, uint64_t x)
1254 uint16_t s;
1255 uint8_t d;
1256 uint32_t res = 0;
1257 #define SAT8(n) \
1258 s = x >> n; \
1259 if (s & 0x8000) { \
1260 SET_QC(); \
1261 } else { \
1262 if (s > 0xff) { \
1263 d = 0xff; \
1264 SET_QC(); \
1265 } else { \
1266 d = s; \
1268 res |= (uint32_t)d << (n / 2); \
1271 SAT8(0);
1272 SAT8(16);
1273 SAT8(32);
1274 SAT8(48);
1275 #undef SAT8
1276 return res;
1279 uint32_t HELPER(neon_narrow_sat_u8)(CPUState *env, uint64_t x)
1281 uint16_t s;
1282 uint8_t d;
1283 uint32_t res = 0;
1284 #define SAT8(n) \
1285 s = x >> n; \
1286 if (s > 0xff) { \
1287 d = 0xff; \
1288 SET_QC(); \
1289 } else { \
1290 d = s; \
1292 res |= (uint32_t)d << (n / 2);
1294 SAT8(0);
1295 SAT8(16);
1296 SAT8(32);
1297 SAT8(48);
1298 #undef SAT8
1299 return res;
1302 uint32_t HELPER(neon_narrow_sat_s8)(CPUState *env, uint64_t x)
1304 int16_t s;
1305 uint8_t d;
1306 uint32_t res = 0;
1307 #define SAT8(n) \
1308 s = x >> n; \
1309 if (s != (int8_t)s) { \
1310 d = (s >> 15) ^ 0x7f; \
1311 SET_QC(); \
1312 } else { \
1313 d = s; \
1315 res |= (uint32_t)d << (n / 2);
1317 SAT8(0);
1318 SAT8(16);
1319 SAT8(32);
1320 SAT8(48);
1321 #undef SAT8
1322 return res;
1325 uint32_t HELPER(neon_unarrow_sat16)(CPUState *env, uint64_t x)
1327 uint32_t high;
1328 uint32_t low;
1329 low = x;
1330 if (low & 0x80000000) {
1331 low = 0;
1332 SET_QC();
1333 } else if (low > 0xffff) {
1334 low = 0xffff;
1335 SET_QC();
1337 high = x >> 32;
1338 if (high & 0x80000000) {
1339 high = 0;
1340 SET_QC();
1341 } else if (high > 0xffff) {
1342 high = 0xffff;
1343 SET_QC();
1345 return low | (high << 16);
1348 uint32_t HELPER(neon_narrow_sat_u16)(CPUState *env, uint64_t x)
1350 uint32_t high;
1351 uint32_t low;
1352 low = x;
1353 if (low > 0xffff) {
1354 low = 0xffff;
1355 SET_QC();
1357 high = x >> 32;
1358 if (high > 0xffff) {
1359 high = 0xffff;
1360 SET_QC();
1362 return low | (high << 16);
1365 uint32_t HELPER(neon_narrow_sat_s16)(CPUState *env, uint64_t x)
1367 int32_t low;
1368 int32_t high;
1369 low = x;
1370 if (low != (int16_t)low) {
1371 low = (low >> 31) ^ 0x7fff;
1372 SET_QC();
1374 high = x >> 32;
1375 if (high != (int16_t)high) {
1376 high = (high >> 31) ^ 0x7fff;
1377 SET_QC();
1379 return (uint16_t)low | (high << 16);
1382 uint32_t HELPER(neon_unarrow_sat32)(CPUState *env, uint64_t x)
1384 if (x & 0x8000000000000000ull) {
1385 SET_QC();
1386 return 0;
1388 if (x > 0xffffffffu) {
1389 SET_QC();
1390 return 0xffffffffu;
1392 return x;
1395 uint32_t HELPER(neon_narrow_sat_u32)(CPUState *env, uint64_t x)
1397 if (x > 0xffffffffu) {
1398 SET_QC();
1399 return 0xffffffffu;
1401 return x;
1404 uint32_t HELPER(neon_narrow_sat_s32)(CPUState *env, uint64_t x)
1406 if ((int64_t)x != (int32_t)x) {
1407 SET_QC();
1408 return ((int64_t)x >> 63) ^ 0x7fffffff;
1410 return x;
1413 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1415 uint64_t tmp;
1416 uint64_t ret;
1417 ret = (uint8_t)x;
1418 tmp = (uint8_t)(x >> 8);
1419 ret |= tmp << 16;
1420 tmp = (uint8_t)(x >> 16);
1421 ret |= tmp << 32;
1422 tmp = (uint8_t)(x >> 24);
1423 ret |= tmp << 48;
1424 return ret;
1427 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1429 uint64_t tmp;
1430 uint64_t ret;
1431 ret = (uint16_t)(int8_t)x;
1432 tmp = (uint16_t)(int8_t)(x >> 8);
1433 ret |= tmp << 16;
1434 tmp = (uint16_t)(int8_t)(x >> 16);
1435 ret |= tmp << 32;
1436 tmp = (uint16_t)(int8_t)(x >> 24);
1437 ret |= tmp << 48;
1438 return ret;
1441 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1443 uint64_t high = (uint16_t)(x >> 16);
1444 return ((uint16_t)x) | (high << 32);
1447 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1449 uint64_t high = (int16_t)(x >> 16);
1450 return ((uint32_t)(int16_t)x) | (high << 32);
1453 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1455 uint64_t mask;
1456 mask = (a ^ b) & 0x8000800080008000ull;
1457 a &= ~0x8000800080008000ull;
1458 b &= ~0x8000800080008000ull;
1459 return (a + b) ^ mask;
1462 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1464 uint64_t mask;
1465 mask = (a ^ b) & 0x8000000080000000ull;
1466 a &= ~0x8000000080000000ull;
1467 b &= ~0x8000000080000000ull;
1468 return (a + b) ^ mask;
1471 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1473 uint64_t tmp;
1474 uint64_t tmp2;
1476 tmp = a & 0x0000ffff0000ffffull;
1477 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1478 tmp2 = b & 0xffff0000ffff0000ull;
1479 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1480 return ( tmp & 0xffff)
1481 | ((tmp >> 16) & 0xffff0000ull)
1482 | ((tmp2 << 16) & 0xffff00000000ull)
1483 | ( tmp2 & 0xffff000000000000ull);
1486 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1488 uint32_t low = a + (a >> 32);
1489 uint32_t high = b + (b >> 32);
1490 return low + ((uint64_t)high << 32);
1493 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1495 uint64_t mask;
1496 mask = (a ^ ~b) & 0x8000800080008000ull;
1497 a |= 0x8000800080008000ull;
1498 b &= ~0x8000800080008000ull;
1499 return (a - b) ^ mask;
1502 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1504 uint64_t mask;
1505 mask = (a ^ ~b) & 0x8000000080000000ull;
1506 a |= 0x8000000080000000ull;
1507 b &= ~0x8000000080000000ull;
1508 return (a - b) ^ mask;
1511 uint64_t HELPER(neon_addl_saturate_s32)(CPUState *env, uint64_t a, uint64_t b)
1513 uint32_t x, y;
1514 uint32_t low, high;
1516 x = a;
1517 y = b;
1518 low = x + y;
1519 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1520 SET_QC();
1521 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1523 x = a >> 32;
1524 y = b >> 32;
1525 high = x + y;
1526 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1527 SET_QC();
1528 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1530 return low | ((uint64_t)high << 32);
1533 uint64_t HELPER(neon_addl_saturate_s64)(CPUState *env, uint64_t a, uint64_t b)
1535 uint64_t result;
1537 result = a + b;
1538 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1539 SET_QC();
1540 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1542 return result;
1545 #define DO_ABD(dest, x, y, type) do { \
1546 type tmp_x = x; \
1547 type tmp_y = y; \
1548 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1549 } while(0)
1551 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1553 uint64_t tmp;
1554 uint64_t result;
1555 DO_ABD(result, a, b, uint8_t);
1556 DO_ABD(tmp, a >> 8, b >> 8, uint8_t);
1557 result |= tmp << 16;
1558 DO_ABD(tmp, a >> 16, b >> 16, uint8_t);
1559 result |= tmp << 32;
1560 DO_ABD(tmp, a >> 24, b >> 24, uint8_t);
1561 result |= tmp << 48;
1562 return result;
1565 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1567 uint64_t tmp;
1568 uint64_t result;
1569 DO_ABD(result, a, b, int8_t);
1570 DO_ABD(tmp, a >> 8, b >> 8, int8_t);
1571 result |= tmp << 16;
1572 DO_ABD(tmp, a >> 16, b >> 16, int8_t);
1573 result |= tmp << 32;
1574 DO_ABD(tmp, a >> 24, b >> 24, int8_t);
1575 result |= tmp << 48;
1576 return result;
1579 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1581 uint64_t tmp;
1582 uint64_t result;
1583 DO_ABD(result, a, b, uint16_t);
1584 DO_ABD(tmp, a >> 16, b >> 16, uint16_t);
1585 return result | (tmp << 32);
1588 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1590 uint64_t tmp;
1591 uint64_t result;
1592 DO_ABD(result, a, b, int16_t);
1593 DO_ABD(tmp, a >> 16, b >> 16, int16_t);
1594 return result | (tmp << 32);
1597 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1599 uint64_t result;
1600 DO_ABD(result, a, b, uint32_t);
1601 return result;
1604 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1606 uint64_t result;
1607 DO_ABD(result, a, b, int32_t);
1608 return result;
1610 #undef DO_ABD
1612 /* Widening multiply. Named type is the source type. */
1613 #define DO_MULL(dest, x, y, type1, type2) do { \
1614 type1 tmp_x = x; \
1615 type1 tmp_y = y; \
1616 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1617 } while(0)
1619 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1621 uint64_t tmp;
1622 uint64_t result;
1624 DO_MULL(result, a, b, uint8_t, uint16_t);
1625 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1626 result |= tmp << 16;
1627 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1628 result |= tmp << 32;
1629 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1630 result |= tmp << 48;
1631 return result;
1634 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1636 uint64_t tmp;
1637 uint64_t result;
1639 DO_MULL(result, a, b, int8_t, uint16_t);
1640 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1641 result |= tmp << 16;
1642 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1643 result |= tmp << 32;
1644 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1645 result |= tmp << 48;
1646 return result;
1649 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1651 uint64_t tmp;
1652 uint64_t result;
1654 DO_MULL(result, a, b, uint16_t, uint32_t);
1655 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1656 return result | (tmp << 32);
1659 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1661 uint64_t tmp;
1662 uint64_t result;
1664 DO_MULL(result, a, b, int16_t, uint32_t);
1665 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1666 return result | (tmp << 32);
1669 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1671 uint16_t tmp;
1672 uint64_t result;
1673 result = (uint16_t)-x;
1674 tmp = -(x >> 16);
1675 result |= (uint64_t)tmp << 16;
1676 tmp = -(x >> 32);
1677 result |= (uint64_t)tmp << 32;
1678 tmp = -(x >> 48);
1679 result |= (uint64_t)tmp << 48;
1680 return result;
1683 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1685 uint32_t low = -x;
1686 uint32_t high = -(x >> 32);
1687 return low | ((uint64_t)high << 32);
1690 /* FIXME: There should be a native op for this. */
1691 uint64_t HELPER(neon_negl_u64)(uint64_t x)
1693 return -x;
1696 /* Saturnating sign manuipulation. */
1697 /* ??? Make these use NEON_VOP1 */
1698 #define DO_QABS8(x) do { \
1699 if (x == (int8_t)0x80) { \
1700 x = 0x7f; \
1701 SET_QC(); \
1702 } else if (x < 0) { \
1703 x = -x; \
1704 }} while (0)
1705 uint32_t HELPER(neon_qabs_s8)(CPUState *env, uint32_t x)
1707 neon_s8 vec;
1708 NEON_UNPACK(neon_s8, vec, x);
1709 DO_QABS8(vec.v1);
1710 DO_QABS8(vec.v2);
1711 DO_QABS8(vec.v3);
1712 DO_QABS8(vec.v4);
1713 NEON_PACK(neon_s8, x, vec);
1714 return x;
1716 #undef DO_QABS8
1718 #define DO_QNEG8(x) do { \
1719 if (x == (int8_t)0x80) { \
1720 x = 0x7f; \
1721 SET_QC(); \
1722 } else { \
1723 x = -x; \
1724 }} while (0)
1725 uint32_t HELPER(neon_qneg_s8)(CPUState *env, uint32_t x)
1727 neon_s8 vec;
1728 NEON_UNPACK(neon_s8, vec, x);
1729 DO_QNEG8(vec.v1);
1730 DO_QNEG8(vec.v2);
1731 DO_QNEG8(vec.v3);
1732 DO_QNEG8(vec.v4);
1733 NEON_PACK(neon_s8, x, vec);
1734 return x;
1736 #undef DO_QNEG8
1738 #define DO_QABS16(x) do { \
1739 if (x == (int16_t)0x8000) { \
1740 x = 0x7fff; \
1741 SET_QC(); \
1742 } else if (x < 0) { \
1743 x = -x; \
1744 }} while (0)
1745 uint32_t HELPER(neon_qabs_s16)(CPUState *env, uint32_t x)
1747 neon_s16 vec;
1748 NEON_UNPACK(neon_s16, vec, x);
1749 DO_QABS16(vec.v1);
1750 DO_QABS16(vec.v2);
1751 NEON_PACK(neon_s16, x, vec);
1752 return x;
1754 #undef DO_QABS16
1756 #define DO_QNEG16(x) do { \
1757 if (x == (int16_t)0x8000) { \
1758 x = 0x7fff; \
1759 SET_QC(); \
1760 } else { \
1761 x = -x; \
1762 }} while (0)
1763 uint32_t HELPER(neon_qneg_s16)(CPUState *env, uint32_t x)
1765 neon_s16 vec;
1766 NEON_UNPACK(neon_s16, vec, x);
1767 DO_QNEG16(vec.v1);
1768 DO_QNEG16(vec.v2);
1769 NEON_PACK(neon_s16, x, vec);
1770 return x;
1772 #undef DO_QNEG16
1774 uint32_t HELPER(neon_qabs_s32)(CPUState *env, uint32_t x)
1776 if (x == SIGNBIT) {
1777 SET_QC();
1778 x = ~SIGNBIT;
1779 } else if ((int32_t)x < 0) {
1780 x = -x;
1782 return x;
1785 uint32_t HELPER(neon_qneg_s32)(CPUState *env, uint32_t x)
1787 if (x == SIGNBIT) {
1788 SET_QC();
1789 x = ~SIGNBIT;
1790 } else {
1791 x = -x;
1793 return x;
1796 /* NEON Float helpers. */
1797 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b)
1799 float32 f0 = vfp_itos(a);
1800 float32 f1 = vfp_itos(b);
1801 return (float32_compare_quiet(f0, f1, NFS) == -1) ? a : b;
1804 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
1806 float32 f0 = vfp_itos(a);
1807 float32 f1 = vfp_itos(b);
1808 return (float32_compare_quiet(f0, f1, NFS) == 1) ? a : b;
1811 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b)
1813 float32 f0 = vfp_itos(a);
1814 float32 f1 = vfp_itos(b);
1815 return vfp_stoi((float32_compare_quiet(f0, f1, NFS) == 1)
1816 ? float32_sub(f0, f1, NFS)
1817 : float32_sub(f1, f0, NFS));
1820 uint32_t HELPER(neon_add_f32)(uint32_t a, uint32_t b)
1822 return vfp_stoi(float32_add(vfp_itos(a), vfp_itos(b), NFS));
1825 uint32_t HELPER(neon_sub_f32)(uint32_t a, uint32_t b)
1827 return vfp_stoi(float32_sub(vfp_itos(a), vfp_itos(b), NFS));
1830 uint32_t HELPER(neon_mul_f32)(uint32_t a, uint32_t b)
1832 return vfp_stoi(float32_mul(vfp_itos(a), vfp_itos(b), NFS));
1835 /* Floating point comparisons produce an integer result. */
1836 #define NEON_VOP_FCMP(name, cmp) \
1837 uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1839 if (float32_compare_quiet(vfp_itos(a), vfp_itos(b), NFS) cmp 0) \
1840 return ~0; \
1841 else \
1842 return 0; \
1845 NEON_VOP_FCMP(ceq_f32, ==)
1846 NEON_VOP_FCMP(cge_f32, >=)
1847 NEON_VOP_FCMP(cgt_f32, >)
1849 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b)
1851 float32 f0 = float32_abs(vfp_itos(a));
1852 float32 f1 = float32_abs(vfp_itos(b));
1853 return (float32_compare_quiet(f0, f1,NFS) >= 0) ? ~0 : 0;
1856 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b)
1858 float32 f0 = float32_abs(vfp_itos(a));
1859 float32 f1 = float32_abs(vfp_itos(b));
1860 return (float32_compare_quiet(f0, f1, NFS) > 0) ? ~0 : 0;
1863 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1865 void HELPER(neon_qunzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1867 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1868 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1869 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1870 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1871 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1872 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1873 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1874 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1875 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1876 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1877 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1878 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1879 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1880 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1881 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1882 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1883 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1884 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1885 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1886 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1887 env->vfp.regs[rm] = make_float64(m0);
1888 env->vfp.regs[rm + 1] = make_float64(m1);
1889 env->vfp.regs[rd] = make_float64(d0);
1890 env->vfp.regs[rd + 1] = make_float64(d1);
1893 void HELPER(neon_qunzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1895 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1896 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1897 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1898 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1899 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1900 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1901 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1902 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1903 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1904 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1905 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1906 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1907 env->vfp.regs[rm] = make_float64(m0);
1908 env->vfp.regs[rm + 1] = make_float64(m1);
1909 env->vfp.regs[rd] = make_float64(d0);
1910 env->vfp.regs[rd + 1] = make_float64(d1);
1913 void HELPER(neon_qunzip32)(CPUState *env, uint32_t rd, uint32_t rm)
1915 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1916 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1917 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1918 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1919 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1920 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1921 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1922 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1923 env->vfp.regs[rm] = make_float64(m0);
1924 env->vfp.regs[rm + 1] = make_float64(m1);
1925 env->vfp.regs[rd] = make_float64(d0);
1926 env->vfp.regs[rd + 1] = make_float64(d1);
1929 void HELPER(neon_unzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1931 uint64_t zm = float64_val(env->vfp.regs[rm]);
1932 uint64_t zd = float64_val(env->vfp.regs[rd]);
1933 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1934 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1935 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1936 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1937 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1938 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1939 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1940 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1941 env->vfp.regs[rm] = make_float64(m0);
1942 env->vfp.regs[rd] = make_float64(d0);
1945 void HELPER(neon_unzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1947 uint64_t zm = float64_val(env->vfp.regs[rm]);
1948 uint64_t zd = float64_val(env->vfp.regs[rd]);
1949 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1950 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1951 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1952 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1953 env->vfp.regs[rm] = make_float64(m0);
1954 env->vfp.regs[rd] = make_float64(d0);
1957 void HELPER(neon_qzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1959 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1960 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1961 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1962 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1963 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1964 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1965 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1966 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1967 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1968 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1969 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1970 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1971 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1972 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1973 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1974 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1975 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1976 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1977 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1978 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1979 env->vfp.regs[rm] = make_float64(m0);
1980 env->vfp.regs[rm + 1] = make_float64(m1);
1981 env->vfp.regs[rd] = make_float64(d0);
1982 env->vfp.regs[rd + 1] = make_float64(d1);
1985 void HELPER(neon_qzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1987 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1988 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1989 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1990 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1991 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1992 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1993 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1994 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1995 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1996 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1997 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1998 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1999 env->vfp.regs[rm] = make_float64(m0);
2000 env->vfp.regs[rm + 1] = make_float64(m1);
2001 env->vfp.regs[rd] = make_float64(d0);
2002 env->vfp.regs[rd + 1] = make_float64(d1);
2005 void HELPER(neon_qzip32)(CPUState *env, uint32_t rd, uint32_t rm)
2007 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
2008 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
2009 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
2010 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
2011 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2012 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2013 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2014 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2015 env->vfp.regs[rm] = make_float64(m0);
2016 env->vfp.regs[rm + 1] = make_float64(m1);
2017 env->vfp.regs[rd] = make_float64(d0);
2018 env->vfp.regs[rd + 1] = make_float64(d1);
2021 void HELPER(neon_zip8)(CPUState *env, uint32_t rd, uint32_t rm)
2023 uint64_t zm = float64_val(env->vfp.regs[rm]);
2024 uint64_t zd = float64_val(env->vfp.regs[rd]);
2025 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2026 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2027 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2028 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2029 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2030 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2031 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2032 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2033 env->vfp.regs[rm] = make_float64(m0);
2034 env->vfp.regs[rd] = make_float64(d0);
2037 void HELPER(neon_zip16)(CPUState *env, uint32_t rd, uint32_t rm)
2039 uint64_t zm = float64_val(env->vfp.regs[rm]);
2040 uint64_t zd = float64_val(env->vfp.regs[rd]);
2041 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2042 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2043 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2044 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2045 env->vfp.regs[rm] = make_float64(m0);
2046 env->vfp.regs[rd] = make_float64(d0);