i8254: Pass alternative IRQ output object on initialization
[qemu.git] / hw / mips_malta.c
blob86a5fbb2d8a36510a253aa9760f56df16cd76966
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "i8254.h"
49 #include "blockdev.h"
50 #include "exec-memory.h"
51 #include "sysbus.h" /* SysBusDevice */
53 //#define DEBUG_BOARD_INIT
55 #define ENVP_ADDR 0x80002000l
56 #define ENVP_NB_ENTRIES 16
57 #define ENVP_ENTRY_SIZE 256
59 #define MAX_IDE_BUS 2
61 typedef struct {
62 MemoryRegion iomem;
63 MemoryRegion iomem_lo; /* 0 - 0x900 */
64 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
65 uint32_t leds;
66 uint32_t brk;
67 uint32_t gpout;
68 uint32_t i2cin;
69 uint32_t i2coe;
70 uint32_t i2cout;
71 uint32_t i2csel;
72 CharDriverState *display;
73 char display_text[9];
74 SerialState *uart;
75 } MaltaFPGAState;
77 typedef struct {
78 SysBusDevice busdev;
79 qemu_irq *i8259;
80 } MaltaState;
82 static ISADevice *pit;
84 static struct _loaderparams {
85 int ram_size;
86 const char *kernel_filename;
87 const char *kernel_cmdline;
88 const char *initrd_filename;
89 } loaderparams;
91 /* Malta FPGA */
92 static void malta_fpga_update_display(void *opaque)
94 char leds_text[9];
95 int i;
96 MaltaFPGAState *s = opaque;
98 for (i = 7 ; i >= 0 ; i--) {
99 if (s->leds & (1 << i))
100 leds_text[i] = '#';
101 else
102 leds_text[i] = ' ';
104 leds_text[8] = '\0';
106 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
107 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
111 * EEPROM 24C01 / 24C02 emulation.
113 * Emulation for serial EEPROMs:
114 * 24C01 - 1024 bit (128 x 8)
115 * 24C02 - 2048 bit (256 x 8)
117 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
120 //~ #define DEBUG
122 #if defined(DEBUG)
123 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
124 #else
125 # define logout(fmt, ...) ((void)0)
126 #endif
128 struct _eeprom24c0x_t {
129 uint8_t tick;
130 uint8_t address;
131 uint8_t command;
132 uint8_t ack;
133 uint8_t scl;
134 uint8_t sda;
135 uint8_t data;
136 //~ uint16_t size;
137 uint8_t contents[256];
140 typedef struct _eeprom24c0x_t eeprom24c0x_t;
142 static eeprom24c0x_t eeprom = {
143 .contents = {
144 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
145 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
146 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
147 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
148 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
149 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
152 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
154 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
155 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
156 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
157 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
158 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
159 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
163 static uint8_t eeprom24c0x_read(void)
165 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
166 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
167 return eeprom.sda;
170 static void eeprom24c0x_write(int scl, int sda)
172 if (eeprom.scl && scl && (eeprom.sda != sda)) {
173 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
174 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
175 if (!sda) {
176 eeprom.tick = 1;
177 eeprom.command = 0;
179 } else if (eeprom.tick == 0 && !eeprom.ack) {
180 /* Waiting for start. */
181 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
182 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
183 } else if (!eeprom.scl && scl) {
184 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
185 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
186 if (eeprom.ack) {
187 logout("\ti2c ack bit = 0\n");
188 sda = 0;
189 eeprom.ack = 0;
190 } else if (eeprom.sda == sda) {
191 uint8_t bit = (sda != 0);
192 logout("\ti2c bit = %d\n", bit);
193 if (eeprom.tick < 9) {
194 eeprom.command <<= 1;
195 eeprom.command += bit;
196 eeprom.tick++;
197 if (eeprom.tick == 9) {
198 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
199 eeprom.ack = 1;
201 } else if (eeprom.tick < 17) {
202 if (eeprom.command & 1) {
203 sda = ((eeprom.data & 0x80) != 0);
205 eeprom.address <<= 1;
206 eeprom.address += bit;
207 eeprom.tick++;
208 eeprom.data <<= 1;
209 if (eeprom.tick == 17) {
210 eeprom.data = eeprom.contents[eeprom.address];
211 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
212 eeprom.ack = 1;
213 eeprom.tick = 0;
215 } else if (eeprom.tick >= 17) {
216 sda = 0;
218 } else {
219 logout("\tsda changed with raising scl\n");
221 } else {
222 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
224 eeprom.scl = scl;
225 eeprom.sda = sda;
228 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
229 unsigned size)
231 MaltaFPGAState *s = opaque;
232 uint32_t val = 0;
233 uint32_t saddr;
235 saddr = (addr & 0xfffff);
237 switch (saddr) {
239 /* SWITCH Register */
240 case 0x00200:
241 val = 0x00000000; /* All switches closed */
242 break;
244 /* STATUS Register */
245 case 0x00208:
246 #ifdef TARGET_WORDS_BIGENDIAN
247 val = 0x00000012;
248 #else
249 val = 0x00000010;
250 #endif
251 break;
253 /* JMPRS Register */
254 case 0x00210:
255 val = 0x00;
256 break;
258 /* LEDBAR Register */
259 case 0x00408:
260 val = s->leds;
261 break;
263 /* BRKRES Register */
264 case 0x00508:
265 val = s->brk;
266 break;
268 /* UART Registers are handled directly by the serial device */
270 /* GPOUT Register */
271 case 0x00a00:
272 val = s->gpout;
273 break;
275 /* XXX: implement a real I2C controller */
277 /* GPINP Register */
278 case 0x00a08:
279 /* IN = OUT until a real I2C control is implemented */
280 if (s->i2csel)
281 val = s->i2cout;
282 else
283 val = 0x00;
284 break;
286 /* I2CINP Register */
287 case 0x00b00:
288 val = ((s->i2cin & ~1) | eeprom24c0x_read());
289 break;
291 /* I2COE Register */
292 case 0x00b08:
293 val = s->i2coe;
294 break;
296 /* I2COUT Register */
297 case 0x00b10:
298 val = s->i2cout;
299 break;
301 /* I2CSEL Register */
302 case 0x00b18:
303 val = s->i2csel;
304 break;
306 default:
307 #if 0
308 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
309 addr);
310 #endif
311 break;
313 return val;
316 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
317 uint64_t val, unsigned size)
319 MaltaFPGAState *s = opaque;
320 uint32_t saddr;
322 saddr = (addr & 0xfffff);
324 switch (saddr) {
326 /* SWITCH Register */
327 case 0x00200:
328 break;
330 /* JMPRS Register */
331 case 0x00210:
332 break;
334 /* LEDBAR Register */
335 /* XXX: implement a 8-LED array */
336 case 0x00408:
337 s->leds = val & 0xff;
338 break;
340 /* ASCIIWORD Register */
341 case 0x00410:
342 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
343 malta_fpga_update_display(s);
344 break;
346 /* ASCIIPOS0 to ASCIIPOS7 Registers */
347 case 0x00418:
348 case 0x00420:
349 case 0x00428:
350 case 0x00430:
351 case 0x00438:
352 case 0x00440:
353 case 0x00448:
354 case 0x00450:
355 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
356 malta_fpga_update_display(s);
357 break;
359 /* SOFTRES Register */
360 case 0x00500:
361 if (val == 0x42)
362 qemu_system_reset_request ();
363 break;
365 /* BRKRES Register */
366 case 0x00508:
367 s->brk = val & 0xff;
368 break;
370 /* UART Registers are handled directly by the serial device */
372 /* GPOUT Register */
373 case 0x00a00:
374 s->gpout = val & 0xff;
375 break;
377 /* I2COE Register */
378 case 0x00b08:
379 s->i2coe = val & 0x03;
380 break;
382 /* I2COUT Register */
383 case 0x00b10:
384 eeprom24c0x_write(val & 0x02, val & 0x01);
385 s->i2cout = val;
386 break;
388 /* I2CSEL Register */
389 case 0x00b18:
390 s->i2csel = val & 0x01;
391 break;
393 default:
394 #if 0
395 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
396 addr);
397 #endif
398 break;
402 static const MemoryRegionOps malta_fpga_ops = {
403 .read = malta_fpga_read,
404 .write = malta_fpga_write,
405 .endianness = DEVICE_NATIVE_ENDIAN,
408 static void malta_fpga_reset(void *opaque)
410 MaltaFPGAState *s = opaque;
412 s->leds = 0x00;
413 s->brk = 0x0a;
414 s->gpout = 0x00;
415 s->i2cin = 0x3;
416 s->i2coe = 0x0;
417 s->i2cout = 0x3;
418 s->i2csel = 0x1;
420 s->display_text[8] = '\0';
421 snprintf(s->display_text, 9, " ");
424 static void malta_fpga_led_init(CharDriverState *chr)
426 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
427 qemu_chr_fe_printf(chr, "+--------+\r\n");
428 qemu_chr_fe_printf(chr, "+ +\r\n");
429 qemu_chr_fe_printf(chr, "+--------+\r\n");
430 qemu_chr_fe_printf(chr, "\n");
431 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
432 qemu_chr_fe_printf(chr, "+--------+\r\n");
433 qemu_chr_fe_printf(chr, "+ +\r\n");
434 qemu_chr_fe_printf(chr, "+--------+\r\n");
437 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
438 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
440 MaltaFPGAState *s;
442 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
444 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
445 "malta-fpga", 0x100000);
446 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
447 &s->iomem, 0, 0x900);
448 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
449 &s->iomem, 0xa00, 0x10000-0xa00);
451 memory_region_add_subregion(address_space, base, &s->iomem_lo);
452 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
454 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
456 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
457 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
459 malta_fpga_reset(s);
460 qemu_register_reset(malta_fpga_reset, s);
462 return s;
465 /* Network support */
466 static void network_init(void)
468 int i;
470 for(i = 0; i < nb_nics; i++) {
471 NICInfo *nd = &nd_table[i];
472 const char *default_devaddr = NULL;
474 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
475 /* The malta board has a PCNet card using PCI SLOT 11 */
476 default_devaddr = "0b";
478 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
482 /* ROM and pseudo bootloader
484 The following code implements a very very simple bootloader. It first
485 loads the registers a0 to a3 to the values expected by the OS, and
486 then jump at the kernel address.
488 The bootloader should pass the locations of the kernel arguments and
489 environment variables tables. Those tables contain the 32-bit address
490 of NULL terminated strings. The environment variables table should be
491 terminated by a NULL address.
493 For a simpler implementation, the number of kernel arguments is fixed
494 to two (the name of the kernel and the command line), and the two
495 tables are actually the same one.
497 The registers a0 to a3 should contain the following values:
498 a0 - number of kernel arguments
499 a1 - 32-bit address of the kernel arguments table
500 a2 - 32-bit address of the environment variables table
501 a3 - RAM size in bytes
504 static void write_bootloader (CPUState *env, uint8_t *base,
505 int64_t kernel_entry)
507 uint32_t *p;
509 /* Small bootloader */
510 p = (uint32_t *)base;
511 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
512 stl_raw(p++, 0x00000000); /* nop */
514 /* YAMON service vector */
515 stl_raw(base + 0x500, 0xbfc00580); /* start: */
516 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
517 stl_raw(base + 0x520, 0xbfc00580); /* start: */
518 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
519 stl_raw(base + 0x534, 0xbfc00808); /* print: */
520 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
521 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
522 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
523 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
524 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
525 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
526 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
527 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
530 /* Second part of the bootloader */
531 p = (uint32_t *) (base + 0x580);
532 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
533 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
534 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
535 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
536 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
537 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
538 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
539 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
540 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
542 /* Load BAR registers as done by YAMON */
543 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
545 #ifdef TARGET_WORDS_BIGENDIAN
546 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
547 #else
548 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
549 #endif
550 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
552 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
554 #ifdef TARGET_WORDS_BIGENDIAN
555 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
556 #else
557 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
558 #endif
559 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
560 #ifdef TARGET_WORDS_BIGENDIAN
561 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
562 #else
563 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
564 #endif
565 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
567 #ifdef TARGET_WORDS_BIGENDIAN
568 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
569 #else
570 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
571 #endif
572 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
573 #ifdef TARGET_WORDS_BIGENDIAN
574 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
575 #else
576 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
577 #endif
578 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
580 #ifdef TARGET_WORDS_BIGENDIAN
581 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
582 #else
583 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
584 #endif
585 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
586 #ifdef TARGET_WORDS_BIGENDIAN
587 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
588 #else
589 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
590 #endif
591 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
593 /* Jump to kernel code */
594 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
595 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
596 stl_raw(p++, 0x03e00008); /* jr ra */
597 stl_raw(p++, 0x00000000); /* nop */
599 /* YAMON subroutines */
600 p = (uint32_t *) (base + 0x800);
601 stl_raw(p++, 0x03e00008); /* jr ra */
602 stl_raw(p++, 0x24020000); /* li v0,0 */
603 /* 808 YAMON print */
604 stl_raw(p++, 0x03e06821); /* move t5,ra */
605 stl_raw(p++, 0x00805821); /* move t3,a0 */
606 stl_raw(p++, 0x00a05021); /* move t2,a1 */
607 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
608 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
609 stl_raw(p++, 0x10800005); /* beqz a0,834 */
610 stl_raw(p++, 0x00000000); /* nop */
611 stl_raw(p++, 0x0ff0021c); /* jal 870 */
612 stl_raw(p++, 0x00000000); /* nop */
613 stl_raw(p++, 0x08000205); /* j 814 */
614 stl_raw(p++, 0x00000000); /* nop */
615 stl_raw(p++, 0x01a00008); /* jr t5 */
616 stl_raw(p++, 0x01602021); /* move a0,t3 */
617 /* 0x83c YAMON print_count */
618 stl_raw(p++, 0x03e06821); /* move t5,ra */
619 stl_raw(p++, 0x00805821); /* move t3,a0 */
620 stl_raw(p++, 0x00a05021); /* move t2,a1 */
621 stl_raw(p++, 0x00c06021); /* move t4,a2 */
622 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
623 stl_raw(p++, 0x0ff0021c); /* jal 870 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
626 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
627 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x01a00008); /* jr t5 */
630 stl_raw(p++, 0x01602021); /* move a0,t3 */
631 /* 0x870 */
632 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
633 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
634 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
635 stl_raw(p++, 0x00000000); /* nop */
636 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
637 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
638 stl_raw(p++, 0x00000000); /* nop */
639 stl_raw(p++, 0x03e00008); /* jr ra */
640 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
644 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
645 const char *string, ...)
647 va_list ap;
648 int32_t table_addr;
650 if (index >= ENVP_NB_ENTRIES)
651 return;
653 if (string == NULL) {
654 prom_buf[index] = 0;
655 return;
658 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
659 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
661 va_start(ap, string);
662 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
663 va_end(ap);
666 /* Kernel */
667 static int64_t load_kernel (void)
669 int64_t kernel_entry, kernel_high;
670 long initrd_size;
671 ram_addr_t initrd_offset;
672 int big_endian;
673 uint32_t *prom_buf;
674 long prom_size;
675 int prom_index = 0;
677 #ifdef TARGET_WORDS_BIGENDIAN
678 big_endian = 1;
679 #else
680 big_endian = 0;
681 #endif
683 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
684 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
685 big_endian, ELF_MACHINE, 1) < 0) {
686 fprintf(stderr, "qemu: could not load kernel '%s'\n",
687 loaderparams.kernel_filename);
688 exit(1);
691 /* load initrd */
692 initrd_size = 0;
693 initrd_offset = 0;
694 if (loaderparams.initrd_filename) {
695 initrd_size = get_image_size (loaderparams.initrd_filename);
696 if (initrd_size > 0) {
697 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
698 if (initrd_offset + initrd_size > ram_size) {
699 fprintf(stderr,
700 "qemu: memory too small for initial ram disk '%s'\n",
701 loaderparams.initrd_filename);
702 exit(1);
704 initrd_size = load_image_targphys(loaderparams.initrd_filename,
705 initrd_offset,
706 ram_size - initrd_offset);
708 if (initrd_size == (target_ulong) -1) {
709 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
710 loaderparams.initrd_filename);
711 exit(1);
715 /* Setup prom parameters. */
716 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
717 prom_buf = g_malloc(prom_size);
719 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
720 if (initrd_size > 0) {
721 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
722 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
723 loaderparams.kernel_cmdline);
724 } else {
725 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
728 prom_set(prom_buf, prom_index++, "memsize");
729 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
730 prom_set(prom_buf, prom_index++, "modetty0");
731 prom_set(prom_buf, prom_index++, "38400n8r");
732 prom_set(prom_buf, prom_index++, NULL);
734 rom_add_blob_fixed("prom", prom_buf, prom_size,
735 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
737 return kernel_entry;
740 static void malta_mips_config(CPUState *env)
742 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
743 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
746 static void main_cpu_reset(void *opaque)
748 CPUState *env = opaque;
749 cpu_reset(env);
751 /* The bootloader does not need to be rewritten as it is located in a
752 read only location. The kernel location and the arguments table
753 location does not change. */
754 if (loaderparams.kernel_filename) {
755 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
758 malta_mips_config(env);
761 static void cpu_request_exit(void *opaque, int irq, int level)
763 CPUState *env = cpu_single_env;
765 if (env && level) {
766 cpu_exit(env);
770 static
771 void mips_malta_init (ram_addr_t ram_size,
772 const char *boot_device,
773 const char *kernel_filename, const char *kernel_cmdline,
774 const char *initrd_filename, const char *cpu_model)
776 char *filename;
777 pflash_t *fl;
778 MemoryRegion *system_memory = get_system_memory();
779 MemoryRegion *ram = g_new(MemoryRegion, 1);
780 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
781 target_long bios_size;
782 int64_t kernel_entry;
783 PCIBus *pci_bus;
784 ISABus *isa_bus;
785 CPUState *env;
786 qemu_irq *isa_irq;
787 qemu_irq *cpu_exit_irq;
788 int piix4_devfn;
789 i2c_bus *smbus;
790 int i;
791 DriveInfo *dinfo;
792 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
793 DriveInfo *fd[MAX_FD];
794 int fl_idx = 0;
795 int fl_sectors = 0;
796 int be;
798 DeviceState *dev = qdev_create(NULL, "mips-malta");
799 MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev);
801 qdev_init_nofail(dev);
803 /* Make sure the first 3 serial ports are associated with a device. */
804 for(i = 0; i < 3; i++) {
805 if (!serial_hds[i]) {
806 char label[32];
807 snprintf(label, sizeof(label), "serial%d", i);
808 serial_hds[i] = qemu_chr_new(label, "null", NULL);
812 /* init CPUs */
813 if (cpu_model == NULL) {
814 #ifdef TARGET_MIPS64
815 cpu_model = "20Kc";
816 #else
817 cpu_model = "24Kf";
818 #endif
821 for (i = 0; i < smp_cpus; i++) {
822 env = cpu_init(cpu_model);
823 if (!env) {
824 fprintf(stderr, "Unable to find CPU definition\n");
825 exit(1);
827 /* Init internal devices */
828 cpu_mips_irq_init_cpu(env);
829 cpu_mips_clock_init(env);
830 qemu_register_reset(main_cpu_reset, env);
832 env = first_cpu;
834 /* allocate RAM */
835 if (ram_size > (256 << 20)) {
836 fprintf(stderr,
837 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
838 ((unsigned int)ram_size / (1 << 20)));
839 exit(1);
841 memory_region_init_ram(ram, "mips_malta.ram", ram_size);
842 vmstate_register_ram_global(ram);
843 memory_region_add_subregion(system_memory, 0, ram);
845 #ifdef TARGET_WORDS_BIGENDIAN
846 be = 1;
847 #else
848 be = 0;
849 #endif
850 /* FPGA */
851 malta_fpga_init(system_memory, 0x1f000000LL, env->irq[2], serial_hds[2]);
853 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
854 if (kernel_filename) {
855 /* Write a small bootloader to the flash location. */
856 bios = g_new(MemoryRegion, 1);
857 memory_region_init_ram(bios, "mips_malta.bios", BIOS_SIZE);
858 vmstate_register_ram_global(bios);
859 memory_region_set_readonly(bios, true);
860 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
861 /* Map the bios at two physical locations, as on the real board. */
862 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
863 memory_region_add_subregion(system_memory, 0x1fc00000LL, bios_alias);
864 loaderparams.ram_size = ram_size;
865 loaderparams.kernel_filename = kernel_filename;
866 loaderparams.kernel_cmdline = kernel_cmdline;
867 loaderparams.initrd_filename = initrd_filename;
868 kernel_entry = load_kernel();
869 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
870 } else {
871 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
872 if (dinfo) {
873 /* Load firmware from flash. */
874 bios_size = 0x400000;
875 fl_sectors = bios_size >> 16;
876 #ifdef DEBUG_BOARD_INIT
877 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
878 "addr %08llx '%s' %x\n",
879 fl_idx, bios_size, 0x1e000000LL,
880 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
881 #endif
882 fl = pflash_cfi01_register(0x1e000000LL,
883 NULL, "mips_malta.bios", BIOS_SIZE,
884 dinfo->bdrv, 65536, fl_sectors,
885 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
886 bios = pflash_cfi01_get_memory(fl);
887 /* Map the bios at two physical locations, as on the real board. */
888 memory_region_init_alias(bios_alias, "bios.1fc",
889 bios, 0, BIOS_SIZE);
890 memory_region_add_subregion(system_memory, 0x1fc00000LL,
891 bios_alias);
892 fl_idx++;
893 } else {
894 bios = g_new(MemoryRegion, 1);
895 memory_region_init_ram(bios, "mips_malta.bios", BIOS_SIZE);
896 vmstate_register_ram_global(bios);
897 memory_region_set_readonly(bios, true);
898 memory_region_init_alias(bios_alias, "bios.1fc",
899 bios, 0, BIOS_SIZE);
900 /* Map the bios at two physical locations, as on the real board. */
901 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
902 memory_region_add_subregion(system_memory, 0x1fc00000LL,
903 bios_alias);
904 /* Load a BIOS image. */
905 if (bios_name == NULL)
906 bios_name = BIOS_FILENAME;
907 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
908 if (filename) {
909 bios_size = load_image_targphys(filename, 0x1fc00000LL,
910 BIOS_SIZE);
911 g_free(filename);
912 } else {
913 bios_size = -1;
915 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
916 fprintf(stderr,
917 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
918 bios_name);
919 exit(1);
922 /* In little endian mode the 32bit words in the bios are swapped,
923 a neat trick which allows bi-endian firmware. */
924 #ifndef TARGET_WORDS_BIGENDIAN
926 uint32_t *addr = memory_region_get_ram_ptr(bios);
927 uint32_t *end = addr + bios_size;
928 while (addr < end) {
929 bswap32s(addr);
930 addr++;
933 #endif
936 /* Board ID = 0x420 (Malta Board with CoreLV)
937 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
938 map to the board ID. */
939 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
941 /* Init internal devices */
942 cpu_mips_irq_init_cpu(env);
943 cpu_mips_clock_init(env);
946 * We have a circular dependency problem: pci_bus depends on isa_irq,
947 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
948 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
949 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
950 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
952 isa_irq = qemu_irq_proxy(&s->i8259, 16);
954 /* Northbridge */
955 pci_bus = gt64120_register(isa_irq);
957 /* Southbridge */
958 ide_drive_get(hd, MAX_IDE_BUS);
960 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
962 /* Interrupt controller */
963 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
964 s->i8259 = i8259_init(isa_bus, env->irq[2]);
966 isa_bus_irqs(isa_bus, s->i8259);
967 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
968 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
969 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
970 isa_get_irq(NULL, 9), NULL, NULL, 0);
971 /* TODO: Populate SPD eeprom data. */
972 smbus_eeprom_init(smbus, 8, NULL, 0);
973 pit = pit_init(isa_bus, 0x40, 0, NULL);
974 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
975 DMA_init(0, cpu_exit_irq);
977 /* Super I/O */
978 isa_create_simple(isa_bus, "i8042");
980 rtc_init(isa_bus, 2000, NULL);
981 serial_isa_init(isa_bus, 0, serial_hds[0]);
982 serial_isa_init(isa_bus, 1, serial_hds[1]);
983 if (parallel_hds[0])
984 parallel_init(isa_bus, 0, parallel_hds[0]);
985 for(i = 0; i < MAX_FD; i++) {
986 fd[i] = drive_get(IF_FLOPPY, 0, i);
988 fdctrl_init_isa(isa_bus, fd);
990 /* Sound card */
991 audio_init(isa_bus, pci_bus);
993 /* Network card */
994 network_init();
996 /* Optional PCI video card */
997 if (cirrus_vga_enabled) {
998 pci_cirrus_vga_init(pci_bus);
999 } else if (vmsvga_enabled) {
1000 pci_vmsvga_init(pci_bus);
1001 } else if (std_vga_enabled) {
1002 pci_vga_init(pci_bus);
1006 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1008 return 0;
1011 static void mips_malta_class_init(ObjectClass *klass, void *data)
1013 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1015 k->init = mips_malta_sysbus_device_init;
1018 static TypeInfo mips_malta_device = {
1019 .name = "mips-malta",
1020 .parent = TYPE_SYS_BUS_DEVICE,
1021 .instance_size = sizeof(MaltaState),
1022 .class_init = mips_malta_class_init,
1025 static QEMUMachine mips_malta_machine = {
1026 .name = "malta",
1027 .desc = "MIPS Malta Core LV",
1028 .init = mips_malta_init,
1029 .max_cpus = 16,
1030 .is_default = 1,
1033 static void mips_malta_register_types(void)
1035 type_register_static(&mips_malta_device);
1038 static void mips_malta_machine_init(void)
1040 qemu_register_machine(&mips_malta_machine);
1043 type_init(mips_malta_register_types)
1044 machine_init(mips_malta_machine_init);