vhost-net: revert support of cross-endian vnet headers
[qemu.git] / exec.c
blob1f2450002bde41cc621f7b852e4cdd01db2e8e3b
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #ifndef _WIN32
21 #include <sys/mman.h>
22 #endif
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "tcg.h"
27 #include "hw/hw.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
30 #endif
31 #include "hw/qdev.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
55 #include "exec/log.h"
57 #include "qemu/range.h"
58 #ifndef _WIN32
59 #include "qemu/mmap-alloc.h"
60 #endif
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
70 static MemoryRegion *system_memory;
71 static MemoryRegion *system_io;
73 AddressSpace address_space_io;
74 AddressSpace address_space_memory;
76 MemoryRegion io_mem_rom, io_mem_notdirty;
77 static MemoryRegion io_mem_unassigned;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
90 #endif
92 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
93 /* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
95 __thread CPUState *current_cpu;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
99 int use_icount;
101 #if !defined(CONFIG_USER_ONLY)
103 typedef struct PhysPageEntry PhysPageEntry;
105 struct PhysPageEntry {
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
107 uint32_t skip : 6;
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
109 uint32_t ptr : 26;
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
117 #define P_L2_BITS 9
118 #define P_L2_SIZE (1 << P_L2_BITS)
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122 typedef PhysPageEntry Node[P_L2_SIZE];
124 typedef struct PhysPageMap {
125 struct rcu_head rcu;
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133 } PhysPageMap;
135 struct AddressSpaceDispatch {
136 struct rcu_head rcu;
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
141 PhysPageEntry phys_map;
142 PhysPageMap map;
143 AddressSpace *as;
146 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147 typedef struct subpage_t {
148 MemoryRegion iomem;
149 AddressSpace *as;
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152 } subpage_t;
154 #define PHYS_SECTION_UNASSIGNED 0
155 #define PHYS_SECTION_NOTDIRTY 1
156 #define PHYS_SECTION_ROM 2
157 #define PHYS_SECTION_WATCH 3
159 static void io_mem_init(void);
160 static void memory_map_init(void);
161 static void tcg_commit(MemoryListener *listener);
163 static MemoryRegion io_mem_watch;
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
179 #endif
181 #if !defined(CONFIG_USER_ONLY)
183 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
192 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
194 unsigned i;
195 uint32_t ret;
196 PhysPageEntry e;
197 PhysPageEntry *p;
199 ret = map->nodes_nb++;
200 p = map->nodes[ret];
201 assert(ret != PHYS_MAP_NODE_NIL);
202 assert(ret != map->nodes_nb_alloc);
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
206 for (i = 0; i < P_L2_SIZE; ++i) {
207 memcpy(&p[i], &e, sizeof(e));
209 return ret;
212 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
214 int level)
216 PhysPageEntry *p;
217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
220 lp->ptr = phys_map_node_alloc(map, level == 0);
222 p = map->nodes[lp->ptr];
223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
225 while (*nb && lp < &p[P_L2_SIZE]) {
226 if ((*index & (step - 1)) == 0 && *nb >= step) {
227 lp->skip = 0;
228 lp->ptr = leaf;
229 *index += step;
230 *nb -= step;
231 } else {
232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
234 ++lp;
238 static void phys_page_set(AddressSpaceDispatch *d,
239 hwaddr index, hwaddr nb,
240 uint16_t leaf)
242 /* Wildly overreserve - it doesn't matter much. */
243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
251 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
280 assert(valid_ptr < P_L2_SIZE);
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
301 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303 DECLARE_BITMAP(compacted, nodes_nb);
305 if (d->phys_map.skip) {
306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
310 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
311 Node *nodes, MemoryRegionSection *sections)
313 PhysPageEntry *p;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
334 bool memory_region_is_unassigned(MemoryRegion *mr)
336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
337 && mr != &io_mem_watch;
340 /* Called from RCU critical section */
341 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
342 hwaddr addr,
343 bool resolve_subpage)
345 MemoryRegionSection *section;
346 subpage_t *subpage;
348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 return section;
356 /* Called from RCU critical section */
357 static MemoryRegionSection *
358 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
359 hwaddr *plen, bool resolve_subpage)
361 MemoryRegionSection *section;
362 MemoryRegion *mr;
363 Int128 diff;
365 section = address_space_lookup_region(d, addr, resolve_subpage);
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
372 mr = section->mr;
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
385 if (memory_region_is_ram(mr)) {
386 diff = int128_sub(section->size, int128_make64(addr));
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 return section;
392 /* Called from RCU critical section */
393 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
401 for (;;) {
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
404 mr = section->mr;
406 if (!mr->iommu_ops) {
407 break;
410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
419 as = iotlb.target_as;
422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
424 *plen = MIN(page, *plen);
427 *xlat = addr;
428 return mr;
431 /* Called from RCU critical section */
432 MemoryRegionSection *
433 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
434 hwaddr *xlat, hwaddr *plen)
436 MemoryRegionSection *section;
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
441 assert(!section->mr->iommu_ops);
442 return section;
444 #endif
446 #if !defined(CONFIG_USER_ONLY)
448 static int cpu_common_post_load(void *opaque, int version_id)
450 CPUState *cpu = opaque;
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
454 cpu->interrupt_request &= ~0x01;
455 tlb_flush(cpu, 1);
457 return 0;
460 static int cpu_common_pre_load(void *opaque)
462 CPUState *cpu = opaque;
464 cpu->exception_index = -1;
466 return 0;
469 static bool cpu_common_exception_index_needed(void *opaque)
471 CPUState *cpu = opaque;
473 return tcg_enabled() && cpu->exception_index != -1;
476 static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = cpu_common_exception_index_needed,
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
487 static bool cpu_common_crash_occurred_needed(void *opaque)
489 CPUState *cpu = opaque;
491 return cpu->crash_occurred;
494 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
505 const VMStateDescription vmstate_cpu_common = {
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .pre_load = cpu_common_pre_load,
510 .post_load = cpu_common_post_load,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
514 VMSTATE_END_OF_LIST()
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
518 &vmstate_cpu_common_crash_occurred,
519 NULL
523 #endif
525 CPUState *qemu_get_cpu(int index)
527 CPUState *cpu;
529 CPU_FOREACH(cpu) {
530 if (cpu->cpu_index == index) {
531 return cpu;
535 return NULL;
538 #if !defined(CONFIG_USER_ONLY)
539 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
541 CPUAddressSpace *newas;
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
561 if (tcg_enabled()) {
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
567 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
572 #endif
574 #ifndef CONFIG_USER_ONLY
575 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
577 static int cpu_get_free_index(Error **errp)
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
591 void cpu_exec_exit(CPUState *cpu)
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
601 #else
603 static int cpu_get_free_index(Error **errp)
605 CPUState *some_cpu;
606 int cpu_index = 0;
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
611 return cpu_index;
614 void cpu_exec_exit(CPUState *cpu)
617 #endif
619 void cpu_exec_init(CPUState *cpu, Error **errp)
621 CPUClass *cc = CPU_GET_CLASS(cpu);
622 int cpu_index;
623 Error *local_err = NULL;
625 cpu->as = NULL;
626 cpu->num_ases = 0;
628 #ifndef CONFIG_USER_ONLY
629 cpu->thread_id = qemu_get_thread_id();
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
644 #endif
646 #if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648 #endif
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652 #if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654 #endif
655 return;
657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
658 #if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660 #endif
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
669 #if defined(CONFIG_USER_ONLY)
670 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
674 #else
675 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
680 if (phys != -1) {
681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
682 phys | (pc & ~TARGET_PAGE_MASK));
685 #endif
687 #if defined(CONFIG_USER_ONLY)
688 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
693 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
696 return -ENOSYS;
699 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
703 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
704 int flags, CPUWatchpoint **watchpoint)
706 return -ENOSYS;
708 #else
709 /* Add a watchpoint. */
710 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
711 int flags, CPUWatchpoint **watchpoint)
713 CPUWatchpoint *wp;
715 /* forbid ranges which are empty or run off the end of the address space */
716 if (len == 0 || (addr + len - 1) < addr) {
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
719 return -EINVAL;
721 wp = g_malloc(sizeof(*wp));
723 wp->vaddr = addr;
724 wp->len = len;
725 wp->flags = flags;
727 /* keep all GDB-injected watchpoints in front */
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
734 tlb_flush_page(cpu, addr);
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
741 /* Remove a specific watchpoint. */
742 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
745 CPUWatchpoint *wp;
747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
748 if (addr == wp->vaddr && len == wp->len
749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
750 cpu_watchpoint_remove_by_ref(cpu, wp);
751 return 0;
754 return -ENOENT;
757 /* Remove a specific watchpoint by reference. */
758 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
762 tlb_flush_page(cpu, watchpoint->vaddr);
764 g_free(watchpoint);
767 /* Remove all matching watchpoints. */
768 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
770 CPUWatchpoint *wp, *next;
772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
779 /* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
784 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
796 return !(addr > wpend || wp->vaddr > addrend);
799 #endif
801 /* Add a breakpoint. */
802 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
803 CPUBreakpoint **breakpoint)
805 CPUBreakpoint *bp;
807 bp = g_malloc(sizeof(*bp));
809 bp->pc = pc;
810 bp->flags = flags;
812 /* keep all GDB-injected breakpoints in front */
813 if (flags & BP_GDB) {
814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
815 } else {
816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
819 breakpoint_invalidate(cpu, pc);
821 if (breakpoint) {
822 *breakpoint = bp;
824 return 0;
827 /* Remove a specific breakpoint. */
828 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
830 CPUBreakpoint *bp;
832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
833 if (bp->pc == pc && bp->flags == flags) {
834 cpu_breakpoint_remove_by_ref(cpu, bp);
835 return 0;
838 return -ENOENT;
841 /* Remove a specific breakpoint by reference. */
842 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
846 breakpoint_invalidate(cpu, breakpoint->pc);
848 g_free(breakpoint);
851 /* Remove all matching breakpoints. */
852 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
854 CPUBreakpoint *bp, *next;
856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
863 /* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
865 void cpu_single_step(CPUState *cpu, int enabled)
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
870 kvm_update_guest_debug(cpu, 0);
871 } else {
872 /* must flush all the translated code to avoid inconsistencies */
873 /* XXX: only flush what is necessary */
874 tb_flush(cpu);
879 void cpu_abort(CPUState *cpu, const char *fmt, ...)
881 va_list ap;
882 va_list ap2;
884 va_start(ap, fmt);
885 va_copy(ap2, ap);
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
890 if (qemu_log_separate()) {
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
895 qemu_log_flush();
896 qemu_log_close();
898 va_end(ap2);
899 va_end(ap);
900 replay_finish();
901 #if defined(CONFIG_USER_ONLY)
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
908 #endif
909 abort();
912 #if !defined(CONFIG_USER_ONLY)
913 /* Called from RCU critical section */
914 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
916 RAMBlock *block;
918 block = atomic_rcu_read(&ram_list.mru_block);
919 if (block && addr - block->offset < block->max_length) {
920 return block;
922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
923 if (addr - block->offset < block->max_length) {
924 goto found;
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
931 found:
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
948 ram_list.mru_block = block;
949 return block;
952 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
954 CPUState *cpu;
955 ram_addr_t start1;
956 RAMBlock *block;
957 ram_addr_t end;
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
962 rcu_read_lock();
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
969 rcu_read_unlock();
972 /* Note: start and end must be within the same ram block. */
973 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
977 DirtyMemoryBlocks *blocks;
978 unsigned long end, page;
979 bool dirty = false;
981 if (length == 0) {
982 return false;
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
988 rcu_read_lock();
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1002 rcu_read_unlock();
1004 if (dirty && tcg_enabled()) {
1005 tlb_reset_dirty_range_all(start, length);
1008 return dirty;
1011 /* Called from RCU critical section */
1012 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
1019 hwaddr iotlb;
1020 CPUWatchpoint *wp;
1022 if (memory_region_is_ram(section->mr)) {
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1025 + xlat;
1026 if (!section->readonly) {
1027 iotlb |= PHYS_SECTION_NOTDIRTY;
1028 } else {
1029 iotlb |= PHYS_SECTION_ROM;
1031 } else {
1032 AddressSpaceDispatch *d;
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
1036 iotlb += xlat;
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1045 iotlb = PHYS_SECTION_WATCH + paddr;
1046 *address |= TLB_MMIO;
1047 break;
1052 return iotlb;
1054 #endif /* defined(CONFIG_USER_ONLY) */
1056 #if !defined(CONFIG_USER_ONLY)
1058 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1059 uint16_t section);
1060 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1062 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1070 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1072 phys_mem_alloc = alloc;
1075 static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
1089 map->sections[map->sections_nb] = *section;
1090 memory_region_ref(section->mr);
1091 return map->sections_nb++;
1094 static void phys_section_destroy(MemoryRegion *mr)
1096 bool have_sub_page = mr->subpage;
1098 memory_region_unref(mr);
1100 if (have_sub_page) {
1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1102 object_unref(OBJECT(&subpage->iomem));
1103 g_free(subpage);
1107 static void phys_sections_free(PhysPageMap *map)
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1111 phys_section_destroy(section->mr);
1113 g_free(map->sections);
1114 g_free(map->nodes);
1117 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1119 subpage_t *subpage;
1120 hwaddr base = section->offset_within_address_space
1121 & TARGET_PAGE_MASK;
1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1123 d->map.nodes, d->map.sections);
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
1126 .size = int128_make64(TARGET_PAGE_SIZE),
1128 hwaddr start, end;
1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1132 if (!(existing->mr->subpage)) {
1133 subpage = subpage_init(d->as, base);
1134 subsection.address_space = d->as;
1135 subsection.mr = &subpage->iomem;
1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1137 phys_section_add(&d->map, &subsection));
1138 } else {
1139 subpage = container_of(existing->mr, subpage_t, iomem);
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1142 end = start + int128_get64(section->size) - 1;
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
1148 static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
1151 hwaddr start_addr = section->offset_within_address_space;
1152 uint16_t section_index = phys_section_add(&d->map, section);
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1160 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1163 AddressSpaceDispatch *d = as->next_dispatch;
1164 MemoryRegionSection now = *section, remain = *section;
1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1171 now.size = int128_min(int128_make64(left), now.size);
1172 register_subpage(d, &now);
1173 } else {
1174 now.size = int128_zero();
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
1180 now = remain;
1181 if (int128_lt(remain.size, page_size)) {
1182 register_subpage(d, &now);
1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1184 now.size = page_size;
1185 register_subpage(d, &now);
1186 } else {
1187 now.size = int128_and(now.size, int128_neg(page_size));
1188 register_multipage(d, &now);
1193 void qemu_flush_coalesced_mmio_buffer(void)
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1199 void qemu_mutex_lock_ramlist(void)
1201 qemu_mutex_lock(&ram_list.mutex);
1204 void qemu_mutex_unlock_ramlist(void)
1206 qemu_mutex_unlock(&ram_list.mutex);
1209 #ifdef __linux__
1211 #include <sys/vfs.h>
1213 #define HUGETLBFS_MAGIC 0x958458f6
1215 static long gethugepagesize(const char *path, Error **errp)
1217 struct statfs fs;
1218 int ret;
1220 do {
1221 ret = statfs(path, &fs);
1222 } while (ret != 0 && errno == EINTR);
1224 if (ret != 0) {
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
1227 return 0;
1230 return fs.f_bsize;
1233 static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
1235 const char *path,
1236 Error **errp)
1238 struct stat st;
1239 char *filename;
1240 char *sanitized_name;
1241 char *c;
1242 void *area;
1243 int fd;
1244 uint64_t hpagesize;
1245 Error *local_err = NULL;
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
1250 goto error;
1252 block->mr->align = hpagesize;
1254 if (memory < hpagesize) {
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
1264 goto error;
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1289 if (fd < 0) {
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
1292 goto error;
1295 memory = ROUND_UP(memory, hpagesize);
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1303 if (ftruncate(fd, memory)) {
1304 perror("ftruncate");
1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
1308 if (area == MAP_FAILED) {
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
1311 close(fd);
1312 goto error;
1315 if (mem_prealloc) {
1316 os_mem_prealloc(fd, area, memory);
1319 block->fd = fd;
1320 return area;
1322 error:
1323 return NULL;
1325 #endif
1327 /* Called with the ramlist lock held. */
1328 static ram_addr_t find_ram_offset(ram_addr_t size)
1330 RAMBlock *block, *next_block;
1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1333 assert(size != 0); /* it would hand out same offset multiple times */
1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1336 return 0;
1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1340 ram_addr_t end, next = RAM_ADDR_MAX;
1342 end = block->offset + block->max_length;
1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1349 if (next - end >= size && next - end < mingap) {
1350 offset = end;
1351 mingap = next - end;
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1361 return offset;
1364 ram_addr_t last_ram_offset(void)
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1371 last = MAX(last, block->offset + block->max_length);
1373 rcu_read_unlock();
1374 return last;
1377 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1379 int ret;
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1382 if (!machine_dump_guest_core(current_machine)) {
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1392 /* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1395 static RAMBlock *find_ram_block(ram_addr_t addr)
1397 RAMBlock *block;
1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1400 if (block->offset == addr) {
1401 return block;
1405 return NULL;
1408 const char *qemu_ram_get_idstr(RAMBlock *rb)
1410 return rb->idstr;
1413 /* Called with iothread lock held. */
1414 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1416 RAMBlock *new_block, *block;
1418 rcu_read_lock();
1419 new_block = find_ram_block(addr);
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1427 g_free(id);
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1439 rcu_read_unlock();
1442 /* Called with iothread lock held. */
1443 void qemu_ram_unset_idstr(ram_addr_t addr)
1445 RAMBlock *block;
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1452 rcu_read_lock();
1453 block = find_ram_block(addr);
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1457 rcu_read_unlock();
1460 static int memory_try_enable_merging(void *addr, size_t len)
1462 if (!machine_mem_merge(current_machine)) {
1463 /* disabled by the user */
1464 return 0;
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1470 /* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1477 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1479 RAMBlock *block = find_ram_block(base);
1481 assert(block);
1483 newsize = HOST_PAGE_ALIGN(newsize);
1485 if (block->used_length == newsize) {
1486 return 0;
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1513 return 0;
1516 /* Called with ram_list.mutex held */
1517 static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1557 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1559 RAMBlock *block;
1560 RAMBlock *last_block = NULL;
1561 ram_addr_t old_ram_size, new_ram_size;
1562 Error *err = NULL;
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1566 qemu_mutex_lock_ramlist();
1567 new_block->offset = find_ram_offset(new_block->max_length);
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
1571 xen_ram_alloc(new_block->offset, new_block->max_length,
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
1576 return -1;
1578 } else {
1579 new_block->host = phys_mem_alloc(new_block->max_length,
1580 &new_block->mr->align);
1581 if (!new_block->host) {
1582 error_setg_errno(errp, errno,
1583 "cannot set up guest memory '%s'",
1584 memory_region_name(new_block->mr));
1585 qemu_mutex_unlock_ramlist();
1586 return -1;
1588 memory_try_enable_merging(new_block->host, new_block->max_length);
1592 new_ram_size = MAX(old_ram_size,
1593 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1594 if (new_ram_size > old_ram_size) {
1595 migration_bitmap_extend(old_ram_size, new_ram_size);
1596 dirty_memory_extend(old_ram_size, new_ram_size);
1598 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1599 * QLIST (which has an RCU-friendly variant) does not have insertion at
1600 * tail, so save the last element in last_block.
1602 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1603 last_block = block;
1604 if (block->max_length < new_block->max_length) {
1605 break;
1608 if (block) {
1609 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1610 } else if (last_block) {
1611 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1612 } else { /* list is empty */
1613 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1615 ram_list.mru_block = NULL;
1617 /* Write list before version */
1618 smp_wmb();
1619 ram_list.version++;
1620 qemu_mutex_unlock_ramlist();
1622 cpu_physical_memory_set_dirty_range(new_block->offset,
1623 new_block->used_length,
1624 DIRTY_CLIENTS_ALL);
1626 if (new_block->host) {
1627 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1628 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1629 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1630 if (kvm_enabled()) {
1631 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1635 return new_block->offset;
1638 #ifdef __linux__
1639 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1640 bool share, const char *mem_path,
1641 Error **errp)
1643 RAMBlock *new_block;
1644 ram_addr_t addr;
1645 Error *local_err = NULL;
1647 if (xen_enabled()) {
1648 error_setg(errp, "-mem-path not supported with Xen");
1649 return -1;
1652 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1654 * file_ram_alloc() needs to allocate just like
1655 * phys_mem_alloc, but we haven't bothered to provide
1656 * a hook there.
1658 error_setg(errp,
1659 "-mem-path not supported with this accelerator");
1660 return -1;
1663 size = HOST_PAGE_ALIGN(size);
1664 new_block = g_malloc0(sizeof(*new_block));
1665 new_block->mr = mr;
1666 new_block->used_length = size;
1667 new_block->max_length = size;
1668 new_block->flags = share ? RAM_SHARED : 0;
1669 new_block->host = file_ram_alloc(new_block, size,
1670 mem_path, errp);
1671 if (!new_block->host) {
1672 g_free(new_block);
1673 return -1;
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1682 return addr;
1684 #endif
1686 static
1687 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1688 void (*resized)(const char*,
1689 uint64_t length,
1690 void *host),
1691 void *host, bool resizeable,
1692 MemoryRegion *mr, Error **errp)
1694 RAMBlock *new_block;
1695 ram_addr_t addr;
1696 Error *local_err = NULL;
1698 size = HOST_PAGE_ALIGN(size);
1699 max_size = HOST_PAGE_ALIGN(max_size);
1700 new_block = g_malloc0(sizeof(*new_block));
1701 new_block->mr = mr;
1702 new_block->resized = resized;
1703 new_block->used_length = size;
1704 new_block->max_length = max_size;
1705 assert(max_size >= size);
1706 new_block->fd = -1;
1707 new_block->host = host;
1708 if (host) {
1709 new_block->flags |= RAM_PREALLOC;
1711 if (resizeable) {
1712 new_block->flags |= RAM_RESIZEABLE;
1714 addr = ram_block_add(new_block, &local_err);
1715 if (local_err) {
1716 g_free(new_block);
1717 error_propagate(errp, local_err);
1718 return -1;
1720 return addr;
1723 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1724 MemoryRegion *mr, Error **errp)
1726 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1729 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1731 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1734 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1735 void (*resized)(const char*,
1736 uint64_t length,
1737 void *host),
1738 MemoryRegion *mr, Error **errp)
1740 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1743 static void reclaim_ramblock(RAMBlock *block)
1745 if (block->flags & RAM_PREALLOC) {
1747 } else if (xen_enabled()) {
1748 xen_invalidate_map_cache_entry(block->host);
1749 #ifndef _WIN32
1750 } else if (block->fd >= 0) {
1751 qemu_ram_munmap(block->host, block->max_length);
1752 close(block->fd);
1753 #endif
1754 } else {
1755 qemu_anon_ram_free(block->host, block->max_length);
1757 g_free(block);
1760 void qemu_ram_free(ram_addr_t addr)
1762 RAMBlock *block;
1764 qemu_mutex_lock_ramlist();
1765 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1766 if (addr == block->offset) {
1767 QLIST_REMOVE_RCU(block, next);
1768 ram_list.mru_block = NULL;
1769 /* Write list before version */
1770 smp_wmb();
1771 ram_list.version++;
1772 call_rcu(block, reclaim_ramblock, rcu);
1773 break;
1776 qemu_mutex_unlock_ramlist();
1779 #ifndef _WIN32
1780 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1782 RAMBlock *block;
1783 ram_addr_t offset;
1784 int flags;
1785 void *area, *vaddr;
1787 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1788 offset = addr - block->offset;
1789 if (offset < block->max_length) {
1790 vaddr = ramblock_ptr(block, offset);
1791 if (block->flags & RAM_PREALLOC) {
1793 } else if (xen_enabled()) {
1794 abort();
1795 } else {
1796 flags = MAP_FIXED;
1797 if (block->fd >= 0) {
1798 flags |= (block->flags & RAM_SHARED ?
1799 MAP_SHARED : MAP_PRIVATE);
1800 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1801 flags, block->fd, offset);
1802 } else {
1804 * Remap needs to match alloc. Accelerators that
1805 * set phys_mem_alloc never remap. If they did,
1806 * we'd need a remap hook here.
1808 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1810 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1811 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1812 flags, -1, 0);
1814 if (area != vaddr) {
1815 fprintf(stderr, "Could not remap addr: "
1816 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1817 length, addr);
1818 exit(1);
1820 memory_try_enable_merging(vaddr, length);
1821 qemu_ram_setup_dump(vaddr, length);
1826 #endif /* !_WIN32 */
1828 int qemu_get_ram_fd(ram_addr_t addr)
1830 RAMBlock *block;
1831 int fd;
1833 rcu_read_lock();
1834 block = qemu_get_ram_block(addr);
1835 fd = block->fd;
1836 rcu_read_unlock();
1837 return fd;
1840 void qemu_set_ram_fd(ram_addr_t addr, int fd)
1842 RAMBlock *block;
1844 rcu_read_lock();
1845 block = qemu_get_ram_block(addr);
1846 block->fd = fd;
1847 rcu_read_unlock();
1850 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1852 RAMBlock *block;
1853 void *ptr;
1855 rcu_read_lock();
1856 block = qemu_get_ram_block(addr);
1857 ptr = ramblock_ptr(block, 0);
1858 rcu_read_unlock();
1859 return ptr;
1862 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1863 * This should not be used for general purpose DMA. Use address_space_map
1864 * or address_space_rw instead. For local memory (e.g. video ram) that the
1865 * device owns, use memory_region_get_ram_ptr.
1867 * Called within RCU critical section.
1869 void *qemu_get_ram_ptr(ram_addr_t addr)
1871 RAMBlock *block = qemu_get_ram_block(addr);
1873 if (xen_enabled() && block->host == NULL) {
1874 /* We need to check if the requested address is in the RAM
1875 * because we don't want to map the entire memory in QEMU.
1876 * In that case just map until the end of the page.
1878 if (block->offset == 0) {
1879 return xen_map_cache(addr, 0, 0);
1882 block->host = xen_map_cache(block->offset, block->max_length, 1);
1884 return ramblock_ptr(block, addr - block->offset);
1887 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1888 * but takes a size argument.
1890 * Called within RCU critical section.
1892 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1894 RAMBlock *block;
1895 ram_addr_t offset_inside_block;
1896 if (*size == 0) {
1897 return NULL;
1900 block = qemu_get_ram_block(addr);
1901 offset_inside_block = addr - block->offset;
1902 *size = MIN(*size, block->max_length - offset_inside_block);
1904 if (xen_enabled() && block->host == NULL) {
1905 /* We need to check if the requested address is in the RAM
1906 * because we don't want to map the entire memory in QEMU.
1907 * In that case just map the requested area.
1909 if (block->offset == 0) {
1910 return xen_map_cache(addr, *size, 1);
1913 block->host = xen_map_cache(block->offset, block->max_length, 1);
1916 return ramblock_ptr(block, offset_inside_block);
1920 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1921 * in that RAMBlock.
1923 * ptr: Host pointer to look up
1924 * round_offset: If true round the result offset down to a page boundary
1925 * *ram_addr: set to result ram_addr
1926 * *offset: set to result offset within the RAMBlock
1928 * Returns: RAMBlock (or NULL if not found)
1930 * By the time this function returns, the returned pointer is not protected
1931 * by RCU anymore. If the caller is not within an RCU critical section and
1932 * does not hold the iothread lock, it must have other means of protecting the
1933 * pointer, such as a reference to the region that includes the incoming
1934 * ram_addr_t.
1936 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1937 ram_addr_t *ram_addr,
1938 ram_addr_t *offset)
1940 RAMBlock *block;
1941 uint8_t *host = ptr;
1943 if (xen_enabled()) {
1944 rcu_read_lock();
1945 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1946 block = qemu_get_ram_block(*ram_addr);
1947 if (block) {
1948 *offset = (host - block->host);
1950 rcu_read_unlock();
1951 return block;
1954 rcu_read_lock();
1955 block = atomic_rcu_read(&ram_list.mru_block);
1956 if (block && block->host && host - block->host < block->max_length) {
1957 goto found;
1960 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1961 /* This case append when the block is not mapped. */
1962 if (block->host == NULL) {
1963 continue;
1965 if (host - block->host < block->max_length) {
1966 goto found;
1970 rcu_read_unlock();
1971 return NULL;
1973 found:
1974 *offset = (host - block->host);
1975 if (round_offset) {
1976 *offset &= TARGET_PAGE_MASK;
1978 *ram_addr = block->offset + *offset;
1979 rcu_read_unlock();
1980 return block;
1984 * Finds the named RAMBlock
1986 * name: The name of RAMBlock to find
1988 * Returns: RAMBlock (or NULL if not found)
1990 RAMBlock *qemu_ram_block_by_name(const char *name)
1992 RAMBlock *block;
1994 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1995 if (!strcmp(name, block->idstr)) {
1996 return block;
2000 return NULL;
2003 /* Some of the softmmu routines need to translate from a host pointer
2004 (typically a TLB entry) back to a ram offset. */
2005 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2007 RAMBlock *block;
2008 ram_addr_t offset; /* Not used */
2010 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2012 if (!block) {
2013 return NULL;
2016 return block->mr;
2019 /* Called within RCU critical section. */
2020 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2021 uint64_t val, unsigned size)
2023 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2024 tb_invalidate_phys_page_fast(ram_addr, size);
2026 switch (size) {
2027 case 1:
2028 stb_p(qemu_get_ram_ptr(ram_addr), val);
2029 break;
2030 case 2:
2031 stw_p(qemu_get_ram_ptr(ram_addr), val);
2032 break;
2033 case 4:
2034 stl_p(qemu_get_ram_ptr(ram_addr), val);
2035 break;
2036 default:
2037 abort();
2039 /* Set both VGA and migration bits for simplicity and to remove
2040 * the notdirty callback faster.
2042 cpu_physical_memory_set_dirty_range(ram_addr, size,
2043 DIRTY_CLIENTS_NOCODE);
2044 /* we remove the notdirty callback only if the code has been
2045 flushed */
2046 if (!cpu_physical_memory_is_clean(ram_addr)) {
2047 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2051 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2052 unsigned size, bool is_write)
2054 return is_write;
2057 static const MemoryRegionOps notdirty_mem_ops = {
2058 .write = notdirty_mem_write,
2059 .valid.accepts = notdirty_mem_accepts,
2060 .endianness = DEVICE_NATIVE_ENDIAN,
2063 /* Generate a debug exception if a watchpoint has been hit. */
2064 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2066 CPUState *cpu = current_cpu;
2067 CPUClass *cc = CPU_GET_CLASS(cpu);
2068 CPUArchState *env = cpu->env_ptr;
2069 target_ulong pc, cs_base;
2070 target_ulong vaddr;
2071 CPUWatchpoint *wp;
2072 int cpu_flags;
2074 if (cpu->watchpoint_hit) {
2075 /* We re-entered the check after replacing the TB. Now raise
2076 * the debug interrupt so that is will trigger after the
2077 * current instruction. */
2078 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2079 return;
2081 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2082 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2083 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2084 && (wp->flags & flags)) {
2085 if (flags == BP_MEM_READ) {
2086 wp->flags |= BP_WATCHPOINT_HIT_READ;
2087 } else {
2088 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2090 wp->hitaddr = vaddr;
2091 wp->hitattrs = attrs;
2092 if (!cpu->watchpoint_hit) {
2093 if (wp->flags & BP_CPU &&
2094 !cc->debug_check_watchpoint(cpu, wp)) {
2095 wp->flags &= ~BP_WATCHPOINT_HIT;
2096 continue;
2098 cpu->watchpoint_hit = wp;
2099 tb_check_watchpoint(cpu);
2100 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2101 cpu->exception_index = EXCP_DEBUG;
2102 cpu_loop_exit(cpu);
2103 } else {
2104 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2105 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2106 cpu_resume_from_signal(cpu, NULL);
2109 } else {
2110 wp->flags &= ~BP_WATCHPOINT_HIT;
2115 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2116 so these check for a hit then pass through to the normal out-of-line
2117 phys routines. */
2118 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2119 unsigned size, MemTxAttrs attrs)
2121 MemTxResult res;
2122 uint64_t data;
2123 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2124 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2126 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2127 switch (size) {
2128 case 1:
2129 data = address_space_ldub(as, addr, attrs, &res);
2130 break;
2131 case 2:
2132 data = address_space_lduw(as, addr, attrs, &res);
2133 break;
2134 case 4:
2135 data = address_space_ldl(as, addr, attrs, &res);
2136 break;
2137 default: abort();
2139 *pdata = data;
2140 return res;
2143 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2144 uint64_t val, unsigned size,
2145 MemTxAttrs attrs)
2147 MemTxResult res;
2148 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2149 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2151 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2152 switch (size) {
2153 case 1:
2154 address_space_stb(as, addr, val, attrs, &res);
2155 break;
2156 case 2:
2157 address_space_stw(as, addr, val, attrs, &res);
2158 break;
2159 case 4:
2160 address_space_stl(as, addr, val, attrs, &res);
2161 break;
2162 default: abort();
2164 return res;
2167 static const MemoryRegionOps watch_mem_ops = {
2168 .read_with_attrs = watch_mem_read,
2169 .write_with_attrs = watch_mem_write,
2170 .endianness = DEVICE_NATIVE_ENDIAN,
2173 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2174 unsigned len, MemTxAttrs attrs)
2176 subpage_t *subpage = opaque;
2177 uint8_t buf[8];
2178 MemTxResult res;
2180 #if defined(DEBUG_SUBPAGE)
2181 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2182 subpage, len, addr);
2183 #endif
2184 res = address_space_read(subpage->as, addr + subpage->base,
2185 attrs, buf, len);
2186 if (res) {
2187 return res;
2189 switch (len) {
2190 case 1:
2191 *data = ldub_p(buf);
2192 return MEMTX_OK;
2193 case 2:
2194 *data = lduw_p(buf);
2195 return MEMTX_OK;
2196 case 4:
2197 *data = ldl_p(buf);
2198 return MEMTX_OK;
2199 case 8:
2200 *data = ldq_p(buf);
2201 return MEMTX_OK;
2202 default:
2203 abort();
2207 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2208 uint64_t value, unsigned len, MemTxAttrs attrs)
2210 subpage_t *subpage = opaque;
2211 uint8_t buf[8];
2213 #if defined(DEBUG_SUBPAGE)
2214 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2215 " value %"PRIx64"\n",
2216 __func__, subpage, len, addr, value);
2217 #endif
2218 switch (len) {
2219 case 1:
2220 stb_p(buf, value);
2221 break;
2222 case 2:
2223 stw_p(buf, value);
2224 break;
2225 case 4:
2226 stl_p(buf, value);
2227 break;
2228 case 8:
2229 stq_p(buf, value);
2230 break;
2231 default:
2232 abort();
2234 return address_space_write(subpage->as, addr + subpage->base,
2235 attrs, buf, len);
2238 static bool subpage_accepts(void *opaque, hwaddr addr,
2239 unsigned len, bool is_write)
2241 subpage_t *subpage = opaque;
2242 #if defined(DEBUG_SUBPAGE)
2243 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2244 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2245 #endif
2247 return address_space_access_valid(subpage->as, addr + subpage->base,
2248 len, is_write);
2251 static const MemoryRegionOps subpage_ops = {
2252 .read_with_attrs = subpage_read,
2253 .write_with_attrs = subpage_write,
2254 .impl.min_access_size = 1,
2255 .impl.max_access_size = 8,
2256 .valid.min_access_size = 1,
2257 .valid.max_access_size = 8,
2258 .valid.accepts = subpage_accepts,
2259 .endianness = DEVICE_NATIVE_ENDIAN,
2262 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2263 uint16_t section)
2265 int idx, eidx;
2267 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2268 return -1;
2269 idx = SUBPAGE_IDX(start);
2270 eidx = SUBPAGE_IDX(end);
2271 #if defined(DEBUG_SUBPAGE)
2272 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2273 __func__, mmio, start, end, idx, eidx, section);
2274 #endif
2275 for (; idx <= eidx; idx++) {
2276 mmio->sub_section[idx] = section;
2279 return 0;
2282 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2284 subpage_t *mmio;
2286 mmio = g_malloc0(sizeof(subpage_t));
2288 mmio->as = as;
2289 mmio->base = base;
2290 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2291 NULL, TARGET_PAGE_SIZE);
2292 mmio->iomem.subpage = true;
2293 #if defined(DEBUG_SUBPAGE)
2294 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2295 mmio, base, TARGET_PAGE_SIZE);
2296 #endif
2297 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2299 return mmio;
2302 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2303 MemoryRegion *mr)
2305 assert(as);
2306 MemoryRegionSection section = {
2307 .address_space = as,
2308 .mr = mr,
2309 .offset_within_address_space = 0,
2310 .offset_within_region = 0,
2311 .size = int128_2_64(),
2314 return phys_section_add(map, &section);
2317 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2319 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2320 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2321 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2322 MemoryRegionSection *sections = d->map.sections;
2324 return sections[index & ~TARGET_PAGE_MASK].mr;
2327 static void io_mem_init(void)
2329 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2330 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2331 NULL, UINT64_MAX);
2332 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2333 NULL, UINT64_MAX);
2334 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2335 NULL, UINT64_MAX);
2338 static void mem_begin(MemoryListener *listener)
2340 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2341 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2342 uint16_t n;
2344 n = dummy_section(&d->map, as, &io_mem_unassigned);
2345 assert(n == PHYS_SECTION_UNASSIGNED);
2346 n = dummy_section(&d->map, as, &io_mem_notdirty);
2347 assert(n == PHYS_SECTION_NOTDIRTY);
2348 n = dummy_section(&d->map, as, &io_mem_rom);
2349 assert(n == PHYS_SECTION_ROM);
2350 n = dummy_section(&d->map, as, &io_mem_watch);
2351 assert(n == PHYS_SECTION_WATCH);
2353 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2354 d->as = as;
2355 as->next_dispatch = d;
2358 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2360 phys_sections_free(&d->map);
2361 g_free(d);
2364 static void mem_commit(MemoryListener *listener)
2366 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2367 AddressSpaceDispatch *cur = as->dispatch;
2368 AddressSpaceDispatch *next = as->next_dispatch;
2370 phys_page_compact_all(next, next->map.nodes_nb);
2372 atomic_rcu_set(&as->dispatch, next);
2373 if (cur) {
2374 call_rcu(cur, address_space_dispatch_free, rcu);
2378 static void tcg_commit(MemoryListener *listener)
2380 CPUAddressSpace *cpuas;
2381 AddressSpaceDispatch *d;
2383 /* since each CPU stores ram addresses in its TLB cache, we must
2384 reset the modified entries */
2385 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2386 cpu_reloading_memory_map();
2387 /* The CPU and TLB are protected by the iothread lock.
2388 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2389 * may have split the RCU critical section.
2391 d = atomic_rcu_read(&cpuas->as->dispatch);
2392 cpuas->memory_dispatch = d;
2393 tlb_flush(cpuas->cpu, 1);
2396 void address_space_init_dispatch(AddressSpace *as)
2398 as->dispatch = NULL;
2399 as->dispatch_listener = (MemoryListener) {
2400 .begin = mem_begin,
2401 .commit = mem_commit,
2402 .region_add = mem_add,
2403 .region_nop = mem_add,
2404 .priority = 0,
2406 memory_listener_register(&as->dispatch_listener, as);
2409 void address_space_unregister(AddressSpace *as)
2411 memory_listener_unregister(&as->dispatch_listener);
2414 void address_space_destroy_dispatch(AddressSpace *as)
2416 AddressSpaceDispatch *d = as->dispatch;
2418 atomic_rcu_set(&as->dispatch, NULL);
2419 if (d) {
2420 call_rcu(d, address_space_dispatch_free, rcu);
2424 static void memory_map_init(void)
2426 system_memory = g_malloc(sizeof(*system_memory));
2428 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2429 address_space_init(&address_space_memory, system_memory, "memory");
2431 system_io = g_malloc(sizeof(*system_io));
2432 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2433 65536);
2434 address_space_init(&address_space_io, system_io, "I/O");
2437 MemoryRegion *get_system_memory(void)
2439 return system_memory;
2442 MemoryRegion *get_system_io(void)
2444 return system_io;
2447 #endif /* !defined(CONFIG_USER_ONLY) */
2449 /* physical memory access (slow version, mainly for debug) */
2450 #if defined(CONFIG_USER_ONLY)
2451 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2452 uint8_t *buf, int len, int is_write)
2454 int l, flags;
2455 target_ulong page;
2456 void * p;
2458 while (len > 0) {
2459 page = addr & TARGET_PAGE_MASK;
2460 l = (page + TARGET_PAGE_SIZE) - addr;
2461 if (l > len)
2462 l = len;
2463 flags = page_get_flags(page);
2464 if (!(flags & PAGE_VALID))
2465 return -1;
2466 if (is_write) {
2467 if (!(flags & PAGE_WRITE))
2468 return -1;
2469 /* XXX: this code should not depend on lock_user */
2470 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2471 return -1;
2472 memcpy(p, buf, l);
2473 unlock_user(p, addr, l);
2474 } else {
2475 if (!(flags & PAGE_READ))
2476 return -1;
2477 /* XXX: this code should not depend on lock_user */
2478 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2479 return -1;
2480 memcpy(buf, p, l);
2481 unlock_user(p, addr, 0);
2483 len -= l;
2484 buf += l;
2485 addr += l;
2487 return 0;
2490 #else
2492 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2493 hwaddr length)
2495 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2496 /* No early return if dirty_log_mask is or becomes 0, because
2497 * cpu_physical_memory_set_dirty_range will still call
2498 * xen_modified_memory.
2500 if (dirty_log_mask) {
2501 dirty_log_mask =
2502 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2504 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2505 tb_invalidate_phys_range(addr, addr + length);
2506 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2508 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2511 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2513 unsigned access_size_max = mr->ops->valid.max_access_size;
2515 /* Regions are assumed to support 1-4 byte accesses unless
2516 otherwise specified. */
2517 if (access_size_max == 0) {
2518 access_size_max = 4;
2521 /* Bound the maximum access by the alignment of the address. */
2522 if (!mr->ops->impl.unaligned) {
2523 unsigned align_size_max = addr & -addr;
2524 if (align_size_max != 0 && align_size_max < access_size_max) {
2525 access_size_max = align_size_max;
2529 /* Don't attempt accesses larger than the maximum. */
2530 if (l > access_size_max) {
2531 l = access_size_max;
2533 l = pow2floor(l);
2535 return l;
2538 static bool prepare_mmio_access(MemoryRegion *mr)
2540 bool unlocked = !qemu_mutex_iothread_locked();
2541 bool release_lock = false;
2543 if (unlocked && mr->global_locking) {
2544 qemu_mutex_lock_iothread();
2545 unlocked = false;
2546 release_lock = true;
2548 if (mr->flush_coalesced_mmio) {
2549 if (unlocked) {
2550 qemu_mutex_lock_iothread();
2552 qemu_flush_coalesced_mmio_buffer();
2553 if (unlocked) {
2554 qemu_mutex_unlock_iothread();
2558 return release_lock;
2561 /* Called within RCU critical section. */
2562 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2563 MemTxAttrs attrs,
2564 const uint8_t *buf,
2565 int len, hwaddr addr1,
2566 hwaddr l, MemoryRegion *mr)
2568 uint8_t *ptr;
2569 uint64_t val;
2570 MemTxResult result = MEMTX_OK;
2571 bool release_lock = false;
2573 for (;;) {
2574 if (!memory_access_is_direct(mr, true)) {
2575 release_lock |= prepare_mmio_access(mr);
2576 l = memory_access_size(mr, l, addr1);
2577 /* XXX: could force current_cpu to NULL to avoid
2578 potential bugs */
2579 switch (l) {
2580 case 8:
2581 /* 64 bit write access */
2582 val = ldq_p(buf);
2583 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2584 attrs);
2585 break;
2586 case 4:
2587 /* 32 bit write access */
2588 val = ldl_p(buf);
2589 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2590 attrs);
2591 break;
2592 case 2:
2593 /* 16 bit write access */
2594 val = lduw_p(buf);
2595 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2596 attrs);
2597 break;
2598 case 1:
2599 /* 8 bit write access */
2600 val = ldub_p(buf);
2601 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2602 attrs);
2603 break;
2604 default:
2605 abort();
2607 } else {
2608 addr1 += memory_region_get_ram_addr(mr);
2609 /* RAM case */
2610 ptr = qemu_get_ram_ptr(addr1);
2611 memcpy(ptr, buf, l);
2612 invalidate_and_set_dirty(mr, addr1, l);
2615 if (release_lock) {
2616 qemu_mutex_unlock_iothread();
2617 release_lock = false;
2620 len -= l;
2621 buf += l;
2622 addr += l;
2624 if (!len) {
2625 break;
2628 l = len;
2629 mr = address_space_translate(as, addr, &addr1, &l, true);
2632 return result;
2635 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2636 const uint8_t *buf, int len)
2638 hwaddr l;
2639 hwaddr addr1;
2640 MemoryRegion *mr;
2641 MemTxResult result = MEMTX_OK;
2643 if (len > 0) {
2644 rcu_read_lock();
2645 l = len;
2646 mr = address_space_translate(as, addr, &addr1, &l, true);
2647 result = address_space_write_continue(as, addr, attrs, buf, len,
2648 addr1, l, mr);
2649 rcu_read_unlock();
2652 return result;
2655 /* Called within RCU critical section. */
2656 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2657 MemTxAttrs attrs, uint8_t *buf,
2658 int len, hwaddr addr1, hwaddr l,
2659 MemoryRegion *mr)
2661 uint8_t *ptr;
2662 uint64_t val;
2663 MemTxResult result = MEMTX_OK;
2664 bool release_lock = false;
2666 for (;;) {
2667 if (!memory_access_is_direct(mr, false)) {
2668 /* I/O case */
2669 release_lock |= prepare_mmio_access(mr);
2670 l = memory_access_size(mr, l, addr1);
2671 switch (l) {
2672 case 8:
2673 /* 64 bit read access */
2674 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2675 attrs);
2676 stq_p(buf, val);
2677 break;
2678 case 4:
2679 /* 32 bit read access */
2680 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2681 attrs);
2682 stl_p(buf, val);
2683 break;
2684 case 2:
2685 /* 16 bit read access */
2686 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2687 attrs);
2688 stw_p(buf, val);
2689 break;
2690 case 1:
2691 /* 8 bit read access */
2692 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2693 attrs);
2694 stb_p(buf, val);
2695 break;
2696 default:
2697 abort();
2699 } else {
2700 /* RAM case */
2701 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2702 memcpy(buf, ptr, l);
2705 if (release_lock) {
2706 qemu_mutex_unlock_iothread();
2707 release_lock = false;
2710 len -= l;
2711 buf += l;
2712 addr += l;
2714 if (!len) {
2715 break;
2718 l = len;
2719 mr = address_space_translate(as, addr, &addr1, &l, false);
2722 return result;
2725 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2726 MemTxAttrs attrs, uint8_t *buf, int len)
2728 hwaddr l;
2729 hwaddr addr1;
2730 MemoryRegion *mr;
2731 MemTxResult result = MEMTX_OK;
2733 if (len > 0) {
2734 rcu_read_lock();
2735 l = len;
2736 mr = address_space_translate(as, addr, &addr1, &l, false);
2737 result = address_space_read_continue(as, addr, attrs, buf, len,
2738 addr1, l, mr);
2739 rcu_read_unlock();
2742 return result;
2745 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2746 uint8_t *buf, int len, bool is_write)
2748 if (is_write) {
2749 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2750 } else {
2751 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2755 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2756 int len, int is_write)
2758 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2759 buf, len, is_write);
2762 enum write_rom_type {
2763 WRITE_DATA,
2764 FLUSH_CACHE,
2767 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2768 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2770 hwaddr l;
2771 uint8_t *ptr;
2772 hwaddr addr1;
2773 MemoryRegion *mr;
2775 rcu_read_lock();
2776 while (len > 0) {
2777 l = len;
2778 mr = address_space_translate(as, addr, &addr1, &l, true);
2780 if (!(memory_region_is_ram(mr) ||
2781 memory_region_is_romd(mr))) {
2782 l = memory_access_size(mr, l, addr1);
2783 } else {
2784 addr1 += memory_region_get_ram_addr(mr);
2785 /* ROM/RAM case */
2786 ptr = qemu_get_ram_ptr(addr1);
2787 switch (type) {
2788 case WRITE_DATA:
2789 memcpy(ptr, buf, l);
2790 invalidate_and_set_dirty(mr, addr1, l);
2791 break;
2792 case FLUSH_CACHE:
2793 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2794 break;
2797 len -= l;
2798 buf += l;
2799 addr += l;
2801 rcu_read_unlock();
2804 /* used for ROM loading : can write in RAM and ROM */
2805 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2806 const uint8_t *buf, int len)
2808 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2811 void cpu_flush_icache_range(hwaddr start, int len)
2814 * This function should do the same thing as an icache flush that was
2815 * triggered from within the guest. For TCG we are always cache coherent,
2816 * so there is no need to flush anything. For KVM / Xen we need to flush
2817 * the host's instruction cache at least.
2819 if (tcg_enabled()) {
2820 return;
2823 cpu_physical_memory_write_rom_internal(&address_space_memory,
2824 start, NULL, len, FLUSH_CACHE);
2827 typedef struct {
2828 MemoryRegion *mr;
2829 void *buffer;
2830 hwaddr addr;
2831 hwaddr len;
2832 bool in_use;
2833 } BounceBuffer;
2835 static BounceBuffer bounce;
2837 typedef struct MapClient {
2838 QEMUBH *bh;
2839 QLIST_ENTRY(MapClient) link;
2840 } MapClient;
2842 QemuMutex map_client_list_lock;
2843 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2844 = QLIST_HEAD_INITIALIZER(map_client_list);
2846 static void cpu_unregister_map_client_do(MapClient *client)
2848 QLIST_REMOVE(client, link);
2849 g_free(client);
2852 static void cpu_notify_map_clients_locked(void)
2854 MapClient *client;
2856 while (!QLIST_EMPTY(&map_client_list)) {
2857 client = QLIST_FIRST(&map_client_list);
2858 qemu_bh_schedule(client->bh);
2859 cpu_unregister_map_client_do(client);
2863 void cpu_register_map_client(QEMUBH *bh)
2865 MapClient *client = g_malloc(sizeof(*client));
2867 qemu_mutex_lock(&map_client_list_lock);
2868 client->bh = bh;
2869 QLIST_INSERT_HEAD(&map_client_list, client, link);
2870 if (!atomic_read(&bounce.in_use)) {
2871 cpu_notify_map_clients_locked();
2873 qemu_mutex_unlock(&map_client_list_lock);
2876 void cpu_exec_init_all(void)
2878 qemu_mutex_init(&ram_list.mutex);
2879 io_mem_init();
2880 memory_map_init();
2881 qemu_mutex_init(&map_client_list_lock);
2884 void cpu_unregister_map_client(QEMUBH *bh)
2886 MapClient *client;
2888 qemu_mutex_lock(&map_client_list_lock);
2889 QLIST_FOREACH(client, &map_client_list, link) {
2890 if (client->bh == bh) {
2891 cpu_unregister_map_client_do(client);
2892 break;
2895 qemu_mutex_unlock(&map_client_list_lock);
2898 static void cpu_notify_map_clients(void)
2900 qemu_mutex_lock(&map_client_list_lock);
2901 cpu_notify_map_clients_locked();
2902 qemu_mutex_unlock(&map_client_list_lock);
2905 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2907 MemoryRegion *mr;
2908 hwaddr l, xlat;
2910 rcu_read_lock();
2911 while (len > 0) {
2912 l = len;
2913 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2914 if (!memory_access_is_direct(mr, is_write)) {
2915 l = memory_access_size(mr, l, addr);
2916 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2917 return false;
2921 len -= l;
2922 addr += l;
2924 rcu_read_unlock();
2925 return true;
2928 /* Map a physical memory region into a host virtual address.
2929 * May map a subset of the requested range, given by and returned in *plen.
2930 * May return NULL if resources needed to perform the mapping are exhausted.
2931 * Use only for reads OR writes - not for read-modify-write operations.
2932 * Use cpu_register_map_client() to know when retrying the map operation is
2933 * likely to succeed.
2935 void *address_space_map(AddressSpace *as,
2936 hwaddr addr,
2937 hwaddr *plen,
2938 bool is_write)
2940 hwaddr len = *plen;
2941 hwaddr done = 0;
2942 hwaddr l, xlat, base;
2943 MemoryRegion *mr, *this_mr;
2944 ram_addr_t raddr;
2945 void *ptr;
2947 if (len == 0) {
2948 return NULL;
2951 l = len;
2952 rcu_read_lock();
2953 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2955 if (!memory_access_is_direct(mr, is_write)) {
2956 if (atomic_xchg(&bounce.in_use, true)) {
2957 rcu_read_unlock();
2958 return NULL;
2960 /* Avoid unbounded allocations */
2961 l = MIN(l, TARGET_PAGE_SIZE);
2962 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2963 bounce.addr = addr;
2964 bounce.len = l;
2966 memory_region_ref(mr);
2967 bounce.mr = mr;
2968 if (!is_write) {
2969 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2970 bounce.buffer, l);
2973 rcu_read_unlock();
2974 *plen = l;
2975 return bounce.buffer;
2978 base = xlat;
2979 raddr = memory_region_get_ram_addr(mr);
2981 for (;;) {
2982 len -= l;
2983 addr += l;
2984 done += l;
2985 if (len == 0) {
2986 break;
2989 l = len;
2990 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2991 if (this_mr != mr || xlat != base + done) {
2992 break;
2996 memory_region_ref(mr);
2997 *plen = done;
2998 ptr = qemu_ram_ptr_length(raddr + base, plen);
2999 rcu_read_unlock();
3001 return ptr;
3004 /* Unmaps a memory region previously mapped by address_space_map().
3005 * Will also mark the memory as dirty if is_write == 1. access_len gives
3006 * the amount of memory that was actually read or written by the caller.
3008 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3009 int is_write, hwaddr access_len)
3011 if (buffer != bounce.buffer) {
3012 MemoryRegion *mr;
3013 ram_addr_t addr1;
3015 mr = qemu_ram_addr_from_host(buffer, &addr1);
3016 assert(mr != NULL);
3017 if (is_write) {
3018 invalidate_and_set_dirty(mr, addr1, access_len);
3020 if (xen_enabled()) {
3021 xen_invalidate_map_cache_entry(buffer);
3023 memory_region_unref(mr);
3024 return;
3026 if (is_write) {
3027 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3028 bounce.buffer, access_len);
3030 qemu_vfree(bounce.buffer);
3031 bounce.buffer = NULL;
3032 memory_region_unref(bounce.mr);
3033 atomic_mb_set(&bounce.in_use, false);
3034 cpu_notify_map_clients();
3037 void *cpu_physical_memory_map(hwaddr addr,
3038 hwaddr *plen,
3039 int is_write)
3041 return address_space_map(&address_space_memory, addr, plen, is_write);
3044 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3045 int is_write, hwaddr access_len)
3047 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3050 /* warning: addr must be aligned */
3051 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3052 MemTxAttrs attrs,
3053 MemTxResult *result,
3054 enum device_endian endian)
3056 uint8_t *ptr;
3057 uint64_t val;
3058 MemoryRegion *mr;
3059 hwaddr l = 4;
3060 hwaddr addr1;
3061 MemTxResult r;
3062 bool release_lock = false;
3064 rcu_read_lock();
3065 mr = address_space_translate(as, addr, &addr1, &l, false);
3066 if (l < 4 || !memory_access_is_direct(mr, false)) {
3067 release_lock |= prepare_mmio_access(mr);
3069 /* I/O case */
3070 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
3071 #if defined(TARGET_WORDS_BIGENDIAN)
3072 if (endian == DEVICE_LITTLE_ENDIAN) {
3073 val = bswap32(val);
3075 #else
3076 if (endian == DEVICE_BIG_ENDIAN) {
3077 val = bswap32(val);
3079 #endif
3080 } else {
3081 /* RAM case */
3082 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3083 & TARGET_PAGE_MASK)
3084 + addr1);
3085 switch (endian) {
3086 case DEVICE_LITTLE_ENDIAN:
3087 val = ldl_le_p(ptr);
3088 break;
3089 case DEVICE_BIG_ENDIAN:
3090 val = ldl_be_p(ptr);
3091 break;
3092 default:
3093 val = ldl_p(ptr);
3094 break;
3096 r = MEMTX_OK;
3098 if (result) {
3099 *result = r;
3101 if (release_lock) {
3102 qemu_mutex_unlock_iothread();
3104 rcu_read_unlock();
3105 return val;
3108 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3109 MemTxAttrs attrs, MemTxResult *result)
3111 return address_space_ldl_internal(as, addr, attrs, result,
3112 DEVICE_NATIVE_ENDIAN);
3115 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3116 MemTxAttrs attrs, MemTxResult *result)
3118 return address_space_ldl_internal(as, addr, attrs, result,
3119 DEVICE_LITTLE_ENDIAN);
3122 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3123 MemTxAttrs attrs, MemTxResult *result)
3125 return address_space_ldl_internal(as, addr, attrs, result,
3126 DEVICE_BIG_ENDIAN);
3129 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3131 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3134 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3136 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3139 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3141 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3144 /* warning: addr must be aligned */
3145 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3146 MemTxAttrs attrs,
3147 MemTxResult *result,
3148 enum device_endian endian)
3150 uint8_t *ptr;
3151 uint64_t val;
3152 MemoryRegion *mr;
3153 hwaddr l = 8;
3154 hwaddr addr1;
3155 MemTxResult r;
3156 bool release_lock = false;
3158 rcu_read_lock();
3159 mr = address_space_translate(as, addr, &addr1, &l,
3160 false);
3161 if (l < 8 || !memory_access_is_direct(mr, false)) {
3162 release_lock |= prepare_mmio_access(mr);
3164 /* I/O case */
3165 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3166 #if defined(TARGET_WORDS_BIGENDIAN)
3167 if (endian == DEVICE_LITTLE_ENDIAN) {
3168 val = bswap64(val);
3170 #else
3171 if (endian == DEVICE_BIG_ENDIAN) {
3172 val = bswap64(val);
3174 #endif
3175 } else {
3176 /* RAM case */
3177 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3178 & TARGET_PAGE_MASK)
3179 + addr1);
3180 switch (endian) {
3181 case DEVICE_LITTLE_ENDIAN:
3182 val = ldq_le_p(ptr);
3183 break;
3184 case DEVICE_BIG_ENDIAN:
3185 val = ldq_be_p(ptr);
3186 break;
3187 default:
3188 val = ldq_p(ptr);
3189 break;
3191 r = MEMTX_OK;
3193 if (result) {
3194 *result = r;
3196 if (release_lock) {
3197 qemu_mutex_unlock_iothread();
3199 rcu_read_unlock();
3200 return val;
3203 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3204 MemTxAttrs attrs, MemTxResult *result)
3206 return address_space_ldq_internal(as, addr, attrs, result,
3207 DEVICE_NATIVE_ENDIAN);
3210 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3211 MemTxAttrs attrs, MemTxResult *result)
3213 return address_space_ldq_internal(as, addr, attrs, result,
3214 DEVICE_LITTLE_ENDIAN);
3217 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3218 MemTxAttrs attrs, MemTxResult *result)
3220 return address_space_ldq_internal(as, addr, attrs, result,
3221 DEVICE_BIG_ENDIAN);
3224 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3226 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3229 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3231 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3234 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3236 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3239 /* XXX: optimize */
3240 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3241 MemTxAttrs attrs, MemTxResult *result)
3243 uint8_t val;
3244 MemTxResult r;
3246 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3247 if (result) {
3248 *result = r;
3250 return val;
3253 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3255 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3258 /* warning: addr must be aligned */
3259 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3260 hwaddr addr,
3261 MemTxAttrs attrs,
3262 MemTxResult *result,
3263 enum device_endian endian)
3265 uint8_t *ptr;
3266 uint64_t val;
3267 MemoryRegion *mr;
3268 hwaddr l = 2;
3269 hwaddr addr1;
3270 MemTxResult r;
3271 bool release_lock = false;
3273 rcu_read_lock();
3274 mr = address_space_translate(as, addr, &addr1, &l,
3275 false);
3276 if (l < 2 || !memory_access_is_direct(mr, false)) {
3277 release_lock |= prepare_mmio_access(mr);
3279 /* I/O case */
3280 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3281 #if defined(TARGET_WORDS_BIGENDIAN)
3282 if (endian == DEVICE_LITTLE_ENDIAN) {
3283 val = bswap16(val);
3285 #else
3286 if (endian == DEVICE_BIG_ENDIAN) {
3287 val = bswap16(val);
3289 #endif
3290 } else {
3291 /* RAM case */
3292 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3293 & TARGET_PAGE_MASK)
3294 + addr1);
3295 switch (endian) {
3296 case DEVICE_LITTLE_ENDIAN:
3297 val = lduw_le_p(ptr);
3298 break;
3299 case DEVICE_BIG_ENDIAN:
3300 val = lduw_be_p(ptr);
3301 break;
3302 default:
3303 val = lduw_p(ptr);
3304 break;
3306 r = MEMTX_OK;
3308 if (result) {
3309 *result = r;
3311 if (release_lock) {
3312 qemu_mutex_unlock_iothread();
3314 rcu_read_unlock();
3315 return val;
3318 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3319 MemTxAttrs attrs, MemTxResult *result)
3321 return address_space_lduw_internal(as, addr, attrs, result,
3322 DEVICE_NATIVE_ENDIAN);
3325 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3326 MemTxAttrs attrs, MemTxResult *result)
3328 return address_space_lduw_internal(as, addr, attrs, result,
3329 DEVICE_LITTLE_ENDIAN);
3332 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3333 MemTxAttrs attrs, MemTxResult *result)
3335 return address_space_lduw_internal(as, addr, attrs, result,
3336 DEVICE_BIG_ENDIAN);
3339 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3341 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3344 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3346 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3349 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3351 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3354 /* warning: addr must be aligned. The ram page is not masked as dirty
3355 and the code inside is not invalidated. It is useful if the dirty
3356 bits are used to track modified PTEs */
3357 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3358 MemTxAttrs attrs, MemTxResult *result)
3360 uint8_t *ptr;
3361 MemoryRegion *mr;
3362 hwaddr l = 4;
3363 hwaddr addr1;
3364 MemTxResult r;
3365 uint8_t dirty_log_mask;
3366 bool release_lock = false;
3368 rcu_read_lock();
3369 mr = address_space_translate(as, addr, &addr1, &l,
3370 true);
3371 if (l < 4 || !memory_access_is_direct(mr, true)) {
3372 release_lock |= prepare_mmio_access(mr);
3374 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3375 } else {
3376 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3377 ptr = qemu_get_ram_ptr(addr1);
3378 stl_p(ptr, val);
3380 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3381 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3382 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3383 r = MEMTX_OK;
3385 if (result) {
3386 *result = r;
3388 if (release_lock) {
3389 qemu_mutex_unlock_iothread();
3391 rcu_read_unlock();
3394 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3396 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3399 /* warning: addr must be aligned */
3400 static inline void address_space_stl_internal(AddressSpace *as,
3401 hwaddr addr, uint32_t val,
3402 MemTxAttrs attrs,
3403 MemTxResult *result,
3404 enum device_endian endian)
3406 uint8_t *ptr;
3407 MemoryRegion *mr;
3408 hwaddr l = 4;
3409 hwaddr addr1;
3410 MemTxResult r;
3411 bool release_lock = false;
3413 rcu_read_lock();
3414 mr = address_space_translate(as, addr, &addr1, &l,
3415 true);
3416 if (l < 4 || !memory_access_is_direct(mr, true)) {
3417 release_lock |= prepare_mmio_access(mr);
3419 #if defined(TARGET_WORDS_BIGENDIAN)
3420 if (endian == DEVICE_LITTLE_ENDIAN) {
3421 val = bswap32(val);
3423 #else
3424 if (endian == DEVICE_BIG_ENDIAN) {
3425 val = bswap32(val);
3427 #endif
3428 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3429 } else {
3430 /* RAM case */
3431 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3432 ptr = qemu_get_ram_ptr(addr1);
3433 switch (endian) {
3434 case DEVICE_LITTLE_ENDIAN:
3435 stl_le_p(ptr, val);
3436 break;
3437 case DEVICE_BIG_ENDIAN:
3438 stl_be_p(ptr, val);
3439 break;
3440 default:
3441 stl_p(ptr, val);
3442 break;
3444 invalidate_and_set_dirty(mr, addr1, 4);
3445 r = MEMTX_OK;
3447 if (result) {
3448 *result = r;
3450 if (release_lock) {
3451 qemu_mutex_unlock_iothread();
3453 rcu_read_unlock();
3456 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3457 MemTxAttrs attrs, MemTxResult *result)
3459 address_space_stl_internal(as, addr, val, attrs, result,
3460 DEVICE_NATIVE_ENDIAN);
3463 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3464 MemTxAttrs attrs, MemTxResult *result)
3466 address_space_stl_internal(as, addr, val, attrs, result,
3467 DEVICE_LITTLE_ENDIAN);
3470 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3471 MemTxAttrs attrs, MemTxResult *result)
3473 address_space_stl_internal(as, addr, val, attrs, result,
3474 DEVICE_BIG_ENDIAN);
3477 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3479 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3482 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3484 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3487 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3489 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3492 /* XXX: optimize */
3493 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3494 MemTxAttrs attrs, MemTxResult *result)
3496 uint8_t v = val;
3497 MemTxResult r;
3499 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3500 if (result) {
3501 *result = r;
3505 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3507 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3510 /* warning: addr must be aligned */
3511 static inline void address_space_stw_internal(AddressSpace *as,
3512 hwaddr addr, uint32_t val,
3513 MemTxAttrs attrs,
3514 MemTxResult *result,
3515 enum device_endian endian)
3517 uint8_t *ptr;
3518 MemoryRegion *mr;
3519 hwaddr l = 2;
3520 hwaddr addr1;
3521 MemTxResult r;
3522 bool release_lock = false;
3524 rcu_read_lock();
3525 mr = address_space_translate(as, addr, &addr1, &l, true);
3526 if (l < 2 || !memory_access_is_direct(mr, true)) {
3527 release_lock |= prepare_mmio_access(mr);
3529 #if defined(TARGET_WORDS_BIGENDIAN)
3530 if (endian == DEVICE_LITTLE_ENDIAN) {
3531 val = bswap16(val);
3533 #else
3534 if (endian == DEVICE_BIG_ENDIAN) {
3535 val = bswap16(val);
3537 #endif
3538 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3539 } else {
3540 /* RAM case */
3541 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3542 ptr = qemu_get_ram_ptr(addr1);
3543 switch (endian) {
3544 case DEVICE_LITTLE_ENDIAN:
3545 stw_le_p(ptr, val);
3546 break;
3547 case DEVICE_BIG_ENDIAN:
3548 stw_be_p(ptr, val);
3549 break;
3550 default:
3551 stw_p(ptr, val);
3552 break;
3554 invalidate_and_set_dirty(mr, addr1, 2);
3555 r = MEMTX_OK;
3557 if (result) {
3558 *result = r;
3560 if (release_lock) {
3561 qemu_mutex_unlock_iothread();
3563 rcu_read_unlock();
3566 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3567 MemTxAttrs attrs, MemTxResult *result)
3569 address_space_stw_internal(as, addr, val, attrs, result,
3570 DEVICE_NATIVE_ENDIAN);
3573 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3574 MemTxAttrs attrs, MemTxResult *result)
3576 address_space_stw_internal(as, addr, val, attrs, result,
3577 DEVICE_LITTLE_ENDIAN);
3580 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3581 MemTxAttrs attrs, MemTxResult *result)
3583 address_space_stw_internal(as, addr, val, attrs, result,
3584 DEVICE_BIG_ENDIAN);
3587 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3589 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3592 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3594 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3597 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3599 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3602 /* XXX: optimize */
3603 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3604 MemTxAttrs attrs, MemTxResult *result)
3606 MemTxResult r;
3607 val = tswap64(val);
3608 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3609 if (result) {
3610 *result = r;
3614 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3615 MemTxAttrs attrs, MemTxResult *result)
3617 MemTxResult r;
3618 val = cpu_to_le64(val);
3619 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3620 if (result) {
3621 *result = r;
3624 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3625 MemTxAttrs attrs, MemTxResult *result)
3627 MemTxResult r;
3628 val = cpu_to_be64(val);
3629 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3630 if (result) {
3631 *result = r;
3635 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3637 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3640 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3642 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3645 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3647 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3650 /* virtual memory access for debug (includes writing to ROM) */
3651 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3652 uint8_t *buf, int len, int is_write)
3654 int l;
3655 hwaddr phys_addr;
3656 target_ulong page;
3658 while (len > 0) {
3659 int asidx;
3660 MemTxAttrs attrs;
3662 page = addr & TARGET_PAGE_MASK;
3663 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3664 asidx = cpu_asidx_from_attrs(cpu, attrs);
3665 /* if no physical page mapped, return an error */
3666 if (phys_addr == -1)
3667 return -1;
3668 l = (page + TARGET_PAGE_SIZE) - addr;
3669 if (l > len)
3670 l = len;
3671 phys_addr += (addr & ~TARGET_PAGE_MASK);
3672 if (is_write) {
3673 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3674 phys_addr, buf, l);
3675 } else {
3676 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3677 MEMTXATTRS_UNSPECIFIED,
3678 buf, l, 0);
3680 len -= l;
3681 buf += l;
3682 addr += l;
3684 return 0;
3688 * Allows code that needs to deal with migration bitmaps etc to still be built
3689 * target independent.
3691 size_t qemu_target_page_bits(void)
3693 return TARGET_PAGE_BITS;
3696 #endif
3699 * A helper function for the _utterly broken_ virtio device model to find out if
3700 * it's running on a big endian machine. Don't do this at home kids!
3702 bool target_words_bigendian(void);
3703 bool target_words_bigendian(void)
3705 #if defined(TARGET_WORDS_BIGENDIAN)
3706 return true;
3707 #else
3708 return false;
3709 #endif
3712 #ifndef CONFIG_USER_ONLY
3713 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3715 MemoryRegion*mr;
3716 hwaddr l = 1;
3717 bool res;
3719 rcu_read_lock();
3720 mr = address_space_translate(&address_space_memory,
3721 phys_addr, &phys_addr, &l, false);
3723 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3724 rcu_read_unlock();
3725 return res;
3728 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3730 RAMBlock *block;
3731 int ret = 0;
3733 rcu_read_lock();
3734 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3735 ret = func(block->idstr, block->host, block->offset,
3736 block->used_length, opaque);
3737 if (ret) {
3738 break;
3741 rcu_read_unlock();
3742 return ret;
3744 #endif