cris: Add interrupt signals to the CPU device
[qemu.git] / target-ppc / mmu-hash64.c
blob67fc1b5dec5ef7d29e3542d0b3a83b803b2bc751
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
22 #include "sysemu/kvm.h"
23 #include "kvm_ppc.h"
24 #include "mmu-hash64.h"
26 //#define DEBUG_MMU
27 //#define DEBUG_SLB
29 #ifdef DEBUG_MMU
30 # define LOG_MMU(...) qemu_log(__VA_ARGS__)
31 # define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0)
32 #else
33 # define LOG_MMU(...) do { } while (0)
34 # define LOG_MMU_STATE(cpu) do { } while (0)
35 #endif
37 #ifdef DEBUG_SLB
38 # define LOG_SLB(...) qemu_log(__VA_ARGS__)
39 #else
40 # define LOG_SLB(...) do { } while (0)
41 #endif
44 * SLB handling
47 static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
49 uint64_t esid_256M, esid_1T;
50 int n;
52 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
54 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
55 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
57 for (n = 0; n < env->slb_nr; n++) {
58 ppc_slb_t *slb = &env->slb[n];
60 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
61 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
62 /* We check for 1T matches on all MMUs here - if the MMU
63 * doesn't have 1T segment support, we will have prevented 1T
64 * entries from being inserted in the slbmte code. */
65 if (((slb->esid == esid_256M) &&
66 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
67 || ((slb->esid == esid_1T) &&
68 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
69 return slb;
73 return NULL;
76 void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
78 int i;
79 uint64_t slbe, slbv;
81 cpu_synchronize_state(CPU(ppc_env_get_cpu(env)));
83 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
84 for (i = 0; i < env->slb_nr; i++) {
85 slbe = env->slb[i].esid;
86 slbv = env->slb[i].vsid;
87 if (slbe == 0 && slbv == 0) {
88 continue;
90 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
91 i, slbe, slbv);
95 void helper_slbia(CPUPPCState *env)
97 int n, do_invalidate;
99 do_invalidate = 0;
100 /* XXX: Warning: slbia never invalidates the first segment */
101 for (n = 1; n < env->slb_nr; n++) {
102 ppc_slb_t *slb = &env->slb[n];
104 if (slb->esid & SLB_ESID_V) {
105 slb->esid &= ~SLB_ESID_V;
106 /* XXX: given the fact that segment size is 256 MB or 1TB,
107 * and we still don't have a tlb_flush_mask(env, n, mask)
108 * in QEMU, we just invalidate all TLBs
110 do_invalidate = 1;
113 if (do_invalidate) {
114 tlb_flush(env, 1);
118 void helper_slbie(CPUPPCState *env, target_ulong addr)
120 ppc_slb_t *slb;
122 slb = slb_lookup(env, addr);
123 if (!slb) {
124 return;
127 if (slb->esid & SLB_ESID_V) {
128 slb->esid &= ~SLB_ESID_V;
130 /* XXX: given the fact that segment size is 256 MB or 1TB,
131 * and we still don't have a tlb_flush_mask(env, n, mask)
132 * in QEMU, we just invalidate all TLBs
134 tlb_flush(env, 1);
138 int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
140 int slot = rb & 0xfff;
141 ppc_slb_t *slb = &env->slb[slot];
143 if (rb & (0x1000 - env->slb_nr)) {
144 return -1; /* Reserved bits set or slot too high */
146 if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
147 return -1; /* Bad segment size */
149 if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
150 return -1; /* 1T segment on MMU that doesn't support it */
153 /* Mask out the slot number as we store the entry */
154 slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
155 slb->vsid = rs;
157 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
158 " %016" PRIx64 "\n", __func__, slot, rb, rs,
159 slb->esid, slb->vsid);
161 return 0;
164 static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
165 target_ulong *rt)
167 int slot = rb & 0xfff;
168 ppc_slb_t *slb = &env->slb[slot];
170 if (slot >= env->slb_nr) {
171 return -1;
174 *rt = slb->esid;
175 return 0;
178 static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
179 target_ulong *rt)
181 int slot = rb & 0xfff;
182 ppc_slb_t *slb = &env->slb[slot];
184 if (slot >= env->slb_nr) {
185 return -1;
188 *rt = slb->vsid;
189 return 0;
192 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
194 if (ppc_store_slb(env, rb, rs) < 0) {
195 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
196 POWERPC_EXCP_INVAL);
200 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
202 target_ulong rt = 0;
204 if (ppc_load_slb_esid(env, rb, &rt) < 0) {
205 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
206 POWERPC_EXCP_INVAL);
208 return rt;
211 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
213 target_ulong rt = 0;
215 if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
216 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
217 POWERPC_EXCP_INVAL);
219 return rt;
223 * 64-bit hash table MMU handling
226 static int ppc_hash64_pte_prot(CPUPPCState *env,
227 ppc_slb_t *slb, ppc_hash_pte64_t pte)
229 unsigned pp, key;
230 /* Some pp bit combinations have undefined behaviour, so default
231 * to no access in those cases */
232 int prot = 0;
234 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
235 : (slb->vsid & SLB_VSID_KS));
236 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
238 if (key == 0) {
239 switch (pp) {
240 case 0x0:
241 case 0x1:
242 case 0x2:
243 prot = PAGE_READ | PAGE_WRITE;
244 break;
246 case 0x3:
247 case 0x6:
248 prot = PAGE_READ;
249 break;
251 } else {
252 switch (pp) {
253 case 0x0:
254 case 0x6:
255 prot = 0;
256 break;
258 case 0x1:
259 case 0x3:
260 prot = PAGE_READ;
261 break;
263 case 0x2:
264 prot = PAGE_READ | PAGE_WRITE;
265 break;
269 /* No execute if either noexec or guarded bits set */
270 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
271 || (slb->vsid & SLB_VSID_N)) {
272 prot |= PAGE_EXEC;
275 return prot;
278 static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte)
280 int key, amrbits;
281 int prot = PAGE_EXEC;
284 /* Only recent MMUs implement Virtual Page Class Key Protection */
285 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
286 return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
289 key = HPTE64_R_KEY(pte.pte1);
290 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
292 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
293 /* env->spr[SPR_AMR]); */
295 if (amrbits & 0x2) {
296 prot |= PAGE_WRITE;
298 if (amrbits & 0x1) {
299 prot |= PAGE_READ;
302 return prot;
305 static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr pteg_off,
306 bool secondary, target_ulong ptem,
307 ppc_hash_pte64_t *pte)
309 hwaddr pte_offset = pteg_off;
310 target_ulong pte0, pte1;
311 int i;
313 for (i = 0; i < HPTES_PER_GROUP; i++) {
314 pte0 = ppc_hash64_load_hpte0(env, pte_offset);
315 pte1 = ppc_hash64_load_hpte1(env, pte_offset);
317 if ((pte0 & HPTE64_V_VALID)
318 && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
319 && HPTE64_V_COMPARE(pte0, ptem)) {
320 pte->pte0 = pte0;
321 pte->pte1 = pte1;
322 return pte_offset;
325 pte_offset += HASH_PTE_SIZE_64;
328 return -1;
331 static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env,
332 ppc_slb_t *slb, target_ulong eaddr,
333 ppc_hash_pte64_t *pte)
335 hwaddr pteg_off, pte_offset;
336 hwaddr hash;
337 uint64_t vsid, epnshift, epnmask, epn, ptem;
339 /* Page size according to the SLB, which we use to generate the
340 * EPN for hash table lookup.. When we implement more recent MMU
341 * extensions this might be different from the actual page size
342 * encoded in the PTE */
343 epnshift = (slb->vsid & SLB_VSID_L)
344 ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
345 epnmask = ~((1ULL << epnshift) - 1);
347 if (slb->vsid & SLB_VSID_B) {
348 /* 1TB segment */
349 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
350 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
351 hash = vsid ^ (vsid << 25) ^ (epn >> epnshift);
352 } else {
353 /* 256M segment */
354 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
355 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
356 hash = vsid ^ (epn >> epnshift);
358 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
360 /* Page address translation */
361 LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
362 " hash " TARGET_FMT_plx "\n",
363 env->htab_base, env->htab_mask, hash);
365 /* Primary PTEG lookup */
366 LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
367 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
368 " hash=" TARGET_FMT_plx "\n",
369 env->htab_base, env->htab_mask, vsid, ptem, hash);
370 pteg_off = (hash * HASH_PTEG_SIZE_64) & env->htab_mask;
371 pte_offset = ppc_hash64_pteg_search(env, pteg_off, 0, ptem, pte);
373 if (pte_offset == -1) {
374 /* Secondary PTEG lookup */
375 LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
376 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
377 " hash=" TARGET_FMT_plx "\n", env->htab_base,
378 env->htab_mask, vsid, ptem, ~hash);
380 pteg_off = (~hash * HASH_PTEG_SIZE_64) & env->htab_mask;
381 pte_offset = ppc_hash64_pteg_search(env, pteg_off, 1, ptem, pte);
384 return pte_offset;
387 static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte,
388 target_ulong eaddr)
390 hwaddr rpn = pte.pte1 & HPTE64_R_RPN;
391 /* FIXME: Add support for SLLP extended page sizes */
392 int target_page_bits = (slb->vsid & SLB_VSID_L)
393 ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
394 hwaddr mask = (1ULL << target_page_bits) - 1;
396 return (rpn & ~mask) | (eaddr & mask);
399 int ppc_hash64_handle_mmu_fault(CPUPPCState *env, target_ulong eaddr,
400 int rwx, int mmu_idx)
402 ppc_slb_t *slb;
403 hwaddr pte_offset;
404 ppc_hash_pte64_t pte;
405 int pp_prot, amr_prot, prot;
406 uint64_t new_pte1;
407 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
408 hwaddr raddr;
410 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
412 /* 1. Handle real mode accesses */
413 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
414 /* Translation is off */
415 /* In real mode the top 4 effective address bits are ignored */
416 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
417 tlb_set_page(env, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
418 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
419 TARGET_PAGE_SIZE);
420 return 0;
423 /* 2. Translation is on, so look up the SLB */
424 slb = slb_lookup(env, eaddr);
426 if (!slb) {
427 if (rwx == 2) {
428 env->exception_index = POWERPC_EXCP_ISEG;
429 env->error_code = 0;
430 } else {
431 env->exception_index = POWERPC_EXCP_DSEG;
432 env->error_code = 0;
433 env->spr[SPR_DAR] = eaddr;
435 return 1;
438 /* 3. Check for segment level no-execute violation */
439 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
440 env->exception_index = POWERPC_EXCP_ISI;
441 env->error_code = 0x10000000;
442 return 1;
445 /* 4. Locate the PTE in the hash table */
446 pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte);
447 if (pte_offset == -1) {
448 if (rwx == 2) {
449 env->exception_index = POWERPC_EXCP_ISI;
450 env->error_code = 0x40000000;
451 } else {
452 env->exception_index = POWERPC_EXCP_DSI;
453 env->error_code = 0;
454 env->spr[SPR_DAR] = eaddr;
455 if (rwx == 1) {
456 env->spr[SPR_DSISR] = 0x42000000;
457 } else {
458 env->spr[SPR_DSISR] = 0x40000000;
461 return 1;
463 LOG_MMU("found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
465 /* 5. Check access permissions */
467 pp_prot = ppc_hash64_pte_prot(env, slb, pte);
468 amr_prot = ppc_hash64_amr_prot(env, pte);
469 prot = pp_prot & amr_prot;
471 if ((need_prot[rwx] & ~prot) != 0) {
472 /* Access right violation */
473 LOG_MMU("PTE access rejected\n");
474 if (rwx == 2) {
475 env->exception_index = POWERPC_EXCP_ISI;
476 env->error_code = 0x08000000;
477 } else {
478 target_ulong dsisr = 0;
480 env->exception_index = POWERPC_EXCP_DSI;
481 env->error_code = 0;
482 env->spr[SPR_DAR] = eaddr;
483 if (need_prot[rwx] & ~pp_prot) {
484 dsisr |= 0x08000000;
486 if (rwx == 1) {
487 dsisr |= 0x02000000;
489 if (need_prot[rwx] & ~amr_prot) {
490 dsisr |= 0x00200000;
492 env->spr[SPR_DSISR] = dsisr;
494 return 1;
497 LOG_MMU("PTE access granted !\n");
499 /* 6. Update PTE referenced and changed bits if necessary */
501 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
502 if (rwx == 1) {
503 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
504 } else {
505 /* Treat the page as read-only for now, so that a later write
506 * will pass through this function again to set the C bit */
507 prot &= ~PAGE_WRITE;
510 if (new_pte1 != pte.pte1) {
511 ppc_hash64_store_hpte1(env, pte_offset, new_pte1);
514 /* 7. Determine the real address from the PTE */
516 raddr = ppc_hash64_pte_raddr(slb, pte, eaddr);
518 tlb_set_page(env, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
519 prot, mmu_idx, TARGET_PAGE_SIZE);
521 return 0;
524 hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
526 ppc_slb_t *slb;
527 hwaddr pte_offset;
528 ppc_hash_pte64_t pte;
530 if (msr_dr == 0) {
531 /* In real mode the top 4 effective address bits are ignored */
532 return addr & 0x0FFFFFFFFFFFFFFFULL;
535 slb = slb_lookup(env, addr);
536 if (!slb) {
537 return -1;
540 pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte);
541 if (pte_offset == -1) {
542 return -1;
545 return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK;