2 * Optimizations for Tiny Code Generator for QEMU
4 * Copyright (c) 2010 Samsung Electronics.
5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "tcg/tcg-op.h"
29 #include "tcg-internal.h"
31 #define CASE_OP_32_64(x) \
32 glue(glue(case INDEX_op_, x), _i32): \
33 glue(glue(case INDEX_op_, x), _i64)
35 #define CASE_OP_32_64_VEC(x) \
36 glue(glue(case INDEX_op_, x), _i32): \
37 glue(glue(case INDEX_op_, x), _i64): \
38 glue(glue(case INDEX_op_, x), _vec)
40 typedef struct TempOptInfo
{
45 uint64_t z_mask
; /* mask bit is 0 if and only if value bit is 0 */
46 uint64_t s_mask
; /* a left-aligned mask of clrsb(value) bits. */
49 typedef struct OptContext
{
52 TCGTempSet temps_used
;
54 /* In flight values from optimization. */
55 uint64_t a_mask
; /* mask bit is 0 iff value identical to first input */
56 uint64_t z_mask
; /* mask bit is 0 iff value bit is 0 */
57 uint64_t s_mask
; /* mask of clrsb(value) bits */
61 /* Calculate the smask for a specific value. */
62 static uint64_t smask_from_value(uint64_t value
)
64 int rep
= clrsb64(value
);
65 return ~(~0ull >> rep
);
69 * Calculate the smask for a given set of known-zeros.
70 * If there are lots of zeros on the left, we can consider the remainder
71 * an unsigned field, and thus the corresponding signed field is one bit
74 static uint64_t smask_from_zmask(uint64_t zmask
)
77 * Only the 0 bits are significant for zmask, thus the msb itself
78 * must be zero, else we have no sign information.
80 int rep
= clz64(zmask
);
85 return ~(~0ull >> rep
);
89 * Recreate a properly left-aligned smask after manipulation.
90 * Some bit-shuffling, particularly shifts and rotates, may
91 * retain sign bits on the left, but may scatter disconnected
92 * sign bits on the right. Retain only what remains to the left.
94 static uint64_t smask_from_smask(int64_t smask
)
96 /* Only the 1 bits are significant for smask */
97 return smask_from_zmask(~smask
);
100 static inline TempOptInfo
*ts_info(TCGTemp
*ts
)
102 return ts
->state_ptr
;
105 static inline TempOptInfo
*arg_info(TCGArg arg
)
107 return ts_info(arg_temp(arg
));
110 static inline bool ts_is_const(TCGTemp
*ts
)
112 return ts_info(ts
)->is_const
;
115 static inline bool arg_is_const(TCGArg arg
)
117 return ts_is_const(arg_temp(arg
));
120 static inline bool ts_is_copy(TCGTemp
*ts
)
122 return ts_info(ts
)->next_copy
!= ts
;
125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */
126 static void reset_ts(TCGTemp
*ts
)
128 TempOptInfo
*ti
= ts_info(ts
);
129 TempOptInfo
*pi
= ts_info(ti
->prev_copy
);
130 TempOptInfo
*ni
= ts_info(ti
->next_copy
);
132 ni
->prev_copy
= ti
->prev_copy
;
133 pi
->next_copy
= ti
->next_copy
;
136 ti
->is_const
= false;
141 static void reset_temp(TCGArg arg
)
143 reset_ts(arg_temp(arg
));
146 /* Initialize and activate a temporary. */
147 static void init_ts_info(OptContext
*ctx
, TCGTemp
*ts
)
149 size_t idx
= temp_idx(ts
);
152 if (test_bit(idx
, ctx
->temps_used
.l
)) {
155 set_bit(idx
, ctx
->temps_used
.l
);
159 ti
= tcg_malloc(sizeof(TempOptInfo
));
165 if (ts
->kind
== TEMP_CONST
) {
168 ti
->z_mask
= ts
->val
;
169 ti
->s_mask
= smask_from_value(ts
->val
);
171 ti
->is_const
= false;
177 static TCGTemp
*find_better_copy(TCGContext
*s
, TCGTemp
*ts
)
181 /* If this is already readonly, we can't do better. */
182 if (temp_readonly(ts
)) {
187 for (i
= ts_info(ts
)->next_copy
; i
!= ts
; i
= ts_info(i
)->next_copy
) {
188 if (temp_readonly(i
)) {
190 } else if (i
->kind
> ts
->kind
) {
191 if (i
->kind
== TEMP_GLOBAL
) {
193 } else if (i
->kind
== TEMP_LOCAL
) {
199 /* If we didn't find a better representation, return the same temp. */
200 return g
? g
: l
? l
: ts
;
203 static bool ts_are_copies(TCGTemp
*ts1
, TCGTemp
*ts2
)
211 if (!ts_is_copy(ts1
) || !ts_is_copy(ts2
)) {
215 for (i
= ts_info(ts1
)->next_copy
; i
!= ts1
; i
= ts_info(i
)->next_copy
) {
224 static bool args_are_copies(TCGArg arg1
, TCGArg arg2
)
226 return ts_are_copies(arg_temp(arg1
), arg_temp(arg2
));
229 static bool tcg_opt_gen_mov(OptContext
*ctx
, TCGOp
*op
, TCGArg dst
, TCGArg src
)
231 TCGTemp
*dst_ts
= arg_temp(dst
);
232 TCGTemp
*src_ts
= arg_temp(src
);
237 if (ts_are_copies(dst_ts
, src_ts
)) {
238 tcg_op_remove(ctx
->tcg
, op
);
243 di
= ts_info(dst_ts
);
244 si
= ts_info(src_ts
);
248 new_op
= INDEX_op_mov_i32
;
251 new_op
= INDEX_op_mov_i64
;
256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */
257 new_op
= INDEX_op_mov_vec
;
260 g_assert_not_reached();
266 di
->z_mask
= si
->z_mask
;
267 di
->s_mask
= si
->s_mask
;
269 if (src_ts
->type
== dst_ts
->type
) {
270 TempOptInfo
*ni
= ts_info(si
->next_copy
);
272 di
->next_copy
= si
->next_copy
;
273 di
->prev_copy
= src_ts
;
274 ni
->prev_copy
= dst_ts
;
275 si
->next_copy
= dst_ts
;
276 di
->is_const
= si
->is_const
;
282 static bool tcg_opt_gen_movi(OptContext
*ctx
, TCGOp
*op
,
283 TCGArg dst
, uint64_t val
)
287 if (ctx
->type
== TCG_TYPE_I32
) {
291 /* Convert movi to mov with constant temp. */
292 tv
= tcg_constant_internal(ctx
->type
, val
);
293 init_ts_info(ctx
, tv
);
294 return tcg_opt_gen_mov(ctx
, op
, dst
, temp_arg(tv
));
297 static uint64_t do_constant_folding_2(TCGOpcode op
, uint64_t x
, uint64_t y
)
311 CASE_OP_32_64_VEC(and):
314 CASE_OP_32_64_VEC(or):
317 CASE_OP_32_64_VEC(xor):
320 case INDEX_op_shl_i32
:
321 return (uint32_t)x
<< (y
& 31);
323 case INDEX_op_shl_i64
:
324 return (uint64_t)x
<< (y
& 63);
326 case INDEX_op_shr_i32
:
327 return (uint32_t)x
>> (y
& 31);
329 case INDEX_op_shr_i64
:
330 return (uint64_t)x
>> (y
& 63);
332 case INDEX_op_sar_i32
:
333 return (int32_t)x
>> (y
& 31);
335 case INDEX_op_sar_i64
:
336 return (int64_t)x
>> (y
& 63);
338 case INDEX_op_rotr_i32
:
339 return ror32(x
, y
& 31);
341 case INDEX_op_rotr_i64
:
342 return ror64(x
, y
& 63);
344 case INDEX_op_rotl_i32
:
345 return rol32(x
, y
& 31);
347 case INDEX_op_rotl_i64
:
348 return rol64(x
, y
& 63);
350 CASE_OP_32_64_VEC(not):
356 CASE_OP_32_64_VEC(andc
):
359 CASE_OP_32_64_VEC(orc
):
362 CASE_OP_32_64_VEC(eqv
):
365 CASE_OP_32_64_VEC(nand
):
368 CASE_OP_32_64_VEC(nor
):
371 case INDEX_op_clz_i32
:
372 return (uint32_t)x
? clz32(x
) : y
;
374 case INDEX_op_clz_i64
:
375 return x
? clz64(x
) : y
;
377 case INDEX_op_ctz_i32
:
378 return (uint32_t)x
? ctz32(x
) : y
;
380 case INDEX_op_ctz_i64
:
381 return x
? ctz64(x
) : y
;
383 case INDEX_op_ctpop_i32
:
386 case INDEX_op_ctpop_i64
:
389 CASE_OP_32_64(ext8s
):
392 CASE_OP_32_64(ext16s
):
395 CASE_OP_32_64(ext8u
):
398 CASE_OP_32_64(ext16u
):
401 CASE_OP_32_64(bswap16
):
403 return y
& TCG_BSWAP_OS
? (int16_t)x
: x
;
405 CASE_OP_32_64(bswap32
):
407 return y
& TCG_BSWAP_OS
? (int32_t)x
: x
;
409 case INDEX_op_bswap64_i64
:
412 case INDEX_op_ext_i32_i64
:
413 case INDEX_op_ext32s_i64
:
416 case INDEX_op_extu_i32_i64
:
417 case INDEX_op_extrl_i64_i32
:
418 case INDEX_op_ext32u_i64
:
421 case INDEX_op_extrh_i64_i32
:
422 return (uint64_t)x
>> 32;
424 case INDEX_op_muluh_i32
:
425 return ((uint64_t)(uint32_t)x
* (uint32_t)y
) >> 32;
426 case INDEX_op_mulsh_i32
:
427 return ((int64_t)(int32_t)x
* (int32_t)y
) >> 32;
429 case INDEX_op_muluh_i64
:
430 mulu64(&l64
, &h64
, x
, y
);
432 case INDEX_op_mulsh_i64
:
433 muls64(&l64
, &h64
, x
, y
);
436 case INDEX_op_div_i32
:
437 /* Avoid crashing on divide by zero, otherwise undefined. */
438 return (int32_t)x
/ ((int32_t)y
? : 1);
439 case INDEX_op_divu_i32
:
440 return (uint32_t)x
/ ((uint32_t)y
? : 1);
441 case INDEX_op_div_i64
:
442 return (int64_t)x
/ ((int64_t)y
? : 1);
443 case INDEX_op_divu_i64
:
444 return (uint64_t)x
/ ((uint64_t)y
? : 1);
446 case INDEX_op_rem_i32
:
447 return (int32_t)x
% ((int32_t)y
? : 1);
448 case INDEX_op_remu_i32
:
449 return (uint32_t)x
% ((uint32_t)y
? : 1);
450 case INDEX_op_rem_i64
:
451 return (int64_t)x
% ((int64_t)y
? : 1);
452 case INDEX_op_remu_i64
:
453 return (uint64_t)x
% ((uint64_t)y
? : 1);
457 "Unrecognized operation %d in do_constant_folding.\n", op
);
462 static uint64_t do_constant_folding(TCGOpcode op
, TCGType type
,
463 uint64_t x
, uint64_t y
)
465 uint64_t res
= do_constant_folding_2(op
, x
, y
);
466 if (type
== TCG_TYPE_I32
) {
472 static bool do_constant_folding_cond_32(uint32_t x
, uint32_t y
, TCGCond c
)
480 return (int32_t)x
< (int32_t)y
;
482 return (int32_t)x
>= (int32_t)y
;
484 return (int32_t)x
<= (int32_t)y
;
486 return (int32_t)x
> (int32_t)y
;
500 static bool do_constant_folding_cond_64(uint64_t x
, uint64_t y
, TCGCond c
)
508 return (int64_t)x
< (int64_t)y
;
510 return (int64_t)x
>= (int64_t)y
;
512 return (int64_t)x
<= (int64_t)y
;
514 return (int64_t)x
> (int64_t)y
;
528 static bool do_constant_folding_cond_eq(TCGCond c
)
549 * Return -1 if the condition can't be simplified,
550 * and the result of the condition (0 or 1) if it can.
552 static int do_constant_folding_cond(TCGType type
, TCGArg x
,
555 if (arg_is_const(x
) && arg_is_const(y
)) {
556 uint64_t xv
= arg_info(x
)->val
;
557 uint64_t yv
= arg_info(y
)->val
;
561 return do_constant_folding_cond_32(xv
, yv
, c
);
563 return do_constant_folding_cond_64(xv
, yv
, c
);
565 /* Only scalar comparisons are optimizable */
568 } else if (args_are_copies(x
, y
)) {
569 return do_constant_folding_cond_eq(c
);
570 } else if (arg_is_const(y
) && arg_info(y
)->val
== 0) {
584 * Return -1 if the condition can't be simplified,
585 * and the result of the condition (0 or 1) if it can.
587 static int do_constant_folding_cond2(TCGArg
*p1
, TCGArg
*p2
, TCGCond c
)
589 TCGArg al
= p1
[0], ah
= p1
[1];
590 TCGArg bl
= p2
[0], bh
= p2
[1];
592 if (arg_is_const(bl
) && arg_is_const(bh
)) {
593 tcg_target_ulong blv
= arg_info(bl
)->val
;
594 tcg_target_ulong bhv
= arg_info(bh
)->val
;
595 uint64_t b
= deposit64(blv
, 32, 32, bhv
);
597 if (arg_is_const(al
) && arg_is_const(ah
)) {
598 tcg_target_ulong alv
= arg_info(al
)->val
;
599 tcg_target_ulong ahv
= arg_info(ah
)->val
;
600 uint64_t a
= deposit64(alv
, 32, 32, ahv
);
601 return do_constant_folding_cond_64(a
, b
, c
);
614 if (args_are_copies(al
, bl
) && args_are_copies(ah
, bh
)) {
615 return do_constant_folding_cond_eq(c
);
622 * @dest: TCGArg of the destination argument, or NO_DEST.
623 * @p1: first paired argument
624 * @p2: second paired argument
626 * If *@p1 is a constant and *@p2 is not, swap.
627 * If *@p2 matches @dest, swap.
628 * Return true if a swap was performed.
631 #define NO_DEST temp_arg(NULL)
633 static bool swap_commutative(TCGArg dest
, TCGArg
*p1
, TCGArg
*p2
)
635 TCGArg a1
= *p1
, a2
= *p2
;
637 sum
+= arg_is_const(a1
);
638 sum
-= arg_is_const(a2
);
640 /* Prefer the constant in second argument, and then the form
641 op a, a, b, which is better handled on non-RISC hosts. */
642 if (sum
> 0 || (sum
== 0 && dest
== a2
)) {
650 static bool swap_commutative2(TCGArg
*p1
, TCGArg
*p2
)
653 sum
+= arg_is_const(p1
[0]);
654 sum
+= arg_is_const(p1
[1]);
655 sum
-= arg_is_const(p2
[0]);
656 sum
-= arg_is_const(p2
[1]);
659 t
= p1
[0], p1
[0] = p2
[0], p2
[0] = t
;
660 t
= p1
[1], p1
[1] = p2
[1], p2
[1] = t
;
666 static void init_arguments(OptContext
*ctx
, TCGOp
*op
, int nb_args
)
668 for (int i
= 0; i
< nb_args
; i
++) {
669 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
670 init_ts_info(ctx
, ts
);
674 static void copy_propagate(OptContext
*ctx
, TCGOp
*op
,
675 int nb_oargs
, int nb_iargs
)
677 TCGContext
*s
= ctx
->tcg
;
679 for (int i
= nb_oargs
; i
< nb_oargs
+ nb_iargs
; i
++) {
680 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
681 if (ts_is_copy(ts
)) {
682 op
->args
[i
] = temp_arg(find_better_copy(s
, ts
));
687 static void finish_folding(OptContext
*ctx
, TCGOp
*op
)
689 const TCGOpDef
*def
= &tcg_op_defs
[op
->opc
];
693 * For an opcode that ends a BB, reset all temp data.
694 * We do no cross-BB optimization.
696 if (def
->flags
& TCG_OPF_BB_END
) {
697 memset(&ctx
->temps_used
, 0, sizeof(ctx
->temps_used
));
702 nb_oargs
= def
->nb_oargs
;
703 for (i
= 0; i
< nb_oargs
; i
++) {
704 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
707 * Save the corresponding known-zero/sign bits mask for the
708 * first output argument (only one supported so far).
711 ts_info(ts
)->z_mask
= ctx
->z_mask
;
712 ts_info(ts
)->s_mask
= ctx
->s_mask
;
718 * The fold_* functions return true when processing is complete,
719 * usually by folding the operation to a constant or to a copy,
720 * and calling tcg_opt_gen_{mov,movi}. They may do other things,
721 * like collect information about the value produced, for use in
722 * optimizing a subsequent operation.
724 * These first fold_* functions are all helpers, used by other
725 * folders for more specific operations.
728 static bool fold_const1(OptContext
*ctx
, TCGOp
*op
)
730 if (arg_is_const(op
->args
[1])) {
733 t
= arg_info(op
->args
[1])->val
;
734 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, 0);
735 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
740 static bool fold_const2(OptContext
*ctx
, TCGOp
*op
)
742 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
743 uint64_t t1
= arg_info(op
->args
[1])->val
;
744 uint64_t t2
= arg_info(op
->args
[2])->val
;
746 t1
= do_constant_folding(op
->opc
, ctx
->type
, t1
, t2
);
747 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t1
);
752 static bool fold_commutative(OptContext
*ctx
, TCGOp
*op
)
754 swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2]);
758 static bool fold_const2_commutative(OptContext
*ctx
, TCGOp
*op
)
760 swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2]);
761 return fold_const2(ctx
, op
);
764 static bool fold_masks(OptContext
*ctx
, TCGOp
*op
)
766 uint64_t a_mask
= ctx
->a_mask
;
767 uint64_t z_mask
= ctx
->z_mask
;
768 uint64_t s_mask
= ctx
->s_mask
;
771 * 32-bit ops generate 32-bit results, which for the purpose of
772 * simplifying tcg are sign-extended. Certainly that's how we
773 * represent our constants elsewhere. Note that the bits will
774 * be reset properly for a 64-bit value when encountering the
775 * type changing opcodes.
777 if (ctx
->type
== TCG_TYPE_I32
) {
778 a_mask
= (int32_t)a_mask
;
779 z_mask
= (int32_t)z_mask
;
780 s_mask
|= MAKE_64BIT_MASK(32, 32);
781 ctx
->z_mask
= z_mask
;
782 ctx
->s_mask
= s_mask
;
786 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], 0);
789 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
795 * Convert @op to NOT, if NOT is supported by the host.
796 * Return true f the conversion is successful, which will still
797 * indicate that the processing is complete.
799 static bool fold_not(OptContext
*ctx
, TCGOp
*op
);
800 static bool fold_to_not(OptContext
*ctx
, TCGOp
*op
, int idx
)
807 not_op
= INDEX_op_not_i32
;
808 have_not
= TCG_TARGET_HAS_not_i32
;
811 not_op
= INDEX_op_not_i64
;
812 have_not
= TCG_TARGET_HAS_not_i64
;
817 not_op
= INDEX_op_not_vec
;
818 have_not
= TCG_TARGET_HAS_not_vec
;
821 g_assert_not_reached();
825 op
->args
[1] = op
->args
[idx
];
826 return fold_not(ctx
, op
);
831 /* If the binary operation has first argument @i, fold to @i. */
832 static bool fold_ix_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
834 if (arg_is_const(op
->args
[1]) && arg_info(op
->args
[1])->val
== i
) {
835 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
840 /* If the binary operation has first argument @i, fold to NOT. */
841 static bool fold_ix_to_not(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
843 if (arg_is_const(op
->args
[1]) && arg_info(op
->args
[1])->val
== i
) {
844 return fold_to_not(ctx
, op
, 2);
849 /* If the binary operation has second argument @i, fold to @i. */
850 static bool fold_xi_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
852 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
853 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
858 /* If the binary operation has second argument @i, fold to identity. */
859 static bool fold_xi_to_x(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
861 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
862 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
867 /* If the binary operation has second argument @i, fold to NOT. */
868 static bool fold_xi_to_not(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
870 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
871 return fold_to_not(ctx
, op
, 1);
876 /* If the binary operation has both arguments equal, fold to @i. */
877 static bool fold_xx_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
879 if (args_are_copies(op
->args
[1], op
->args
[2])) {
880 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
885 /* If the binary operation has both arguments equal, fold to identity. */
886 static bool fold_xx_to_x(OptContext
*ctx
, TCGOp
*op
)
888 if (args_are_copies(op
->args
[1], op
->args
[2])) {
889 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
895 * These outermost fold_<op> functions are sorted alphabetically.
897 * The ordering of the transformations should be:
898 * 1) those that produce a constant
899 * 2) those that produce a copy
900 * 3) those that produce information about the result value.
903 static bool fold_add(OptContext
*ctx
, TCGOp
*op
)
905 if (fold_const2_commutative(ctx
, op
) ||
906 fold_xi_to_x(ctx
, op
, 0)) {
912 /* We cannot as yet do_constant_folding with vectors. */
913 static bool fold_add_vec(OptContext
*ctx
, TCGOp
*op
)
915 if (fold_commutative(ctx
, op
) ||
916 fold_xi_to_x(ctx
, op
, 0)) {
922 static bool fold_addsub2(OptContext
*ctx
, TCGOp
*op
, bool add
)
924 if (arg_is_const(op
->args
[2]) && arg_is_const(op
->args
[3]) &&
925 arg_is_const(op
->args
[4]) && arg_is_const(op
->args
[5])) {
926 uint64_t al
= arg_info(op
->args
[2])->val
;
927 uint64_t ah
= arg_info(op
->args
[3])->val
;
928 uint64_t bl
= arg_info(op
->args
[4])->val
;
929 uint64_t bh
= arg_info(op
->args
[5])->val
;
933 if (ctx
->type
== TCG_TYPE_I32
) {
934 uint64_t a
= deposit64(al
, 32, 32, ah
);
935 uint64_t b
= deposit64(bl
, 32, 32, bh
);
943 al
= sextract64(a
, 0, 32);
944 ah
= sextract64(a
, 32, 32);
946 Int128 a
= int128_make128(al
, ah
);
947 Int128 b
= int128_make128(bl
, bh
);
950 a
= int128_add(a
, b
);
952 a
= int128_sub(a
, b
);
955 al
= int128_getlo(a
);
956 ah
= int128_gethi(a
);
962 /* The proper opcode is supplied by tcg_opt_gen_mov. */
963 op2
= tcg_op_insert_before(ctx
->tcg
, op
, 0, 2);
965 tcg_opt_gen_movi(ctx
, op
, rl
, al
);
966 tcg_opt_gen_movi(ctx
, op2
, rh
, ah
);
972 static bool fold_add2(OptContext
*ctx
, TCGOp
*op
)
974 /* Note that the high and low parts may be independently swapped. */
975 swap_commutative(op
->args
[0], &op
->args
[2], &op
->args
[4]);
976 swap_commutative(op
->args
[1], &op
->args
[3], &op
->args
[5]);
978 return fold_addsub2(ctx
, op
, true);
981 static bool fold_and(OptContext
*ctx
, TCGOp
*op
)
985 if (fold_const2_commutative(ctx
, op
) ||
986 fold_xi_to_i(ctx
, op
, 0) ||
987 fold_xi_to_x(ctx
, op
, -1) ||
988 fold_xx_to_x(ctx
, op
)) {
992 z1
= arg_info(op
->args
[1])->z_mask
;
993 z2
= arg_info(op
->args
[2])->z_mask
;
994 ctx
->z_mask
= z1
& z2
;
997 * Sign repetitions are perforce all identical, whether they are 1 or 0.
998 * Bitwise operations preserve the relative quantity of the repetitions.
1000 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1001 & arg_info(op
->args
[2])->s_mask
;
1004 * Known-zeros does not imply known-ones. Therefore unless
1005 * arg2 is constant, we can't infer affected bits from it.
1007 if (arg_is_const(op
->args
[2])) {
1008 ctx
->a_mask
= z1
& ~z2
;
1011 return fold_masks(ctx
, op
);
1014 static bool fold_andc(OptContext
*ctx
, TCGOp
*op
)
1018 if (fold_const2(ctx
, op
) ||
1019 fold_xx_to_i(ctx
, op
, 0) ||
1020 fold_xi_to_x(ctx
, op
, 0) ||
1021 fold_ix_to_not(ctx
, op
, -1)) {
1025 z1
= arg_info(op
->args
[1])->z_mask
;
1028 * Known-zeros does not imply known-ones. Therefore unless
1029 * arg2 is constant, we can't infer anything from it.
1031 if (arg_is_const(op
->args
[2])) {
1032 uint64_t z2
= ~arg_info(op
->args
[2])->z_mask
;
1033 ctx
->a_mask
= z1
& ~z2
;
1038 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1039 & arg_info(op
->args
[2])->s_mask
;
1040 return fold_masks(ctx
, op
);
1043 static bool fold_brcond(OptContext
*ctx
, TCGOp
*op
)
1045 TCGCond cond
= op
->args
[2];
1048 if (swap_commutative(NO_DEST
, &op
->args
[0], &op
->args
[1])) {
1049 op
->args
[2] = cond
= tcg_swap_cond(cond
);
1052 i
= do_constant_folding_cond(ctx
->type
, op
->args
[0], op
->args
[1], cond
);
1054 tcg_op_remove(ctx
->tcg
, op
);
1058 op
->opc
= INDEX_op_br
;
1059 op
->args
[0] = op
->args
[3];
1064 static bool fold_brcond2(OptContext
*ctx
, TCGOp
*op
)
1066 TCGCond cond
= op
->args
[4];
1067 TCGArg label
= op
->args
[5];
1070 if (swap_commutative2(&op
->args
[0], &op
->args
[2])) {
1071 op
->args
[4] = cond
= tcg_swap_cond(cond
);
1074 i
= do_constant_folding_cond2(&op
->args
[0], &op
->args
[2], cond
);
1076 goto do_brcond_const
;
1083 * Simplify LT/GE comparisons vs zero to a single compare
1084 * vs the high word of the input.
1086 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== 0 &&
1087 arg_is_const(op
->args
[3]) && arg_info(op
->args
[3])->val
== 0) {
1088 goto do_brcond_high
;
1097 * Simplify EQ/NE comparisons where one of the pairs
1098 * can be simplified.
1100 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[0],
1104 goto do_brcond_const
;
1106 goto do_brcond_high
;
1109 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[1],
1113 goto do_brcond_const
;
1115 op
->opc
= INDEX_op_brcond_i32
;
1116 op
->args
[1] = op
->args
[2];
1118 op
->args
[3] = label
;
1127 op
->opc
= INDEX_op_brcond_i32
;
1128 op
->args
[0] = op
->args
[1];
1129 op
->args
[1] = op
->args
[3];
1131 op
->args
[3] = label
;
1136 tcg_op_remove(ctx
->tcg
, op
);
1139 op
->opc
= INDEX_op_br
;
1140 op
->args
[0] = label
;
1146 static bool fold_bswap(OptContext
*ctx
, TCGOp
*op
)
1148 uint64_t z_mask
, s_mask
, sign
;
1150 if (arg_is_const(op
->args
[1])) {
1151 uint64_t t
= arg_info(op
->args
[1])->val
;
1153 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, op
->args
[2]);
1154 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1157 z_mask
= arg_info(op
->args
[1])->z_mask
;
1160 case INDEX_op_bswap16_i32
:
1161 case INDEX_op_bswap16_i64
:
1162 z_mask
= bswap16(z_mask
);
1165 case INDEX_op_bswap32_i32
:
1166 case INDEX_op_bswap32_i64
:
1167 z_mask
= bswap32(z_mask
);
1170 case INDEX_op_bswap64_i64
:
1171 z_mask
= bswap64(z_mask
);
1175 g_assert_not_reached();
1177 s_mask
= smask_from_zmask(z_mask
);
1179 switch (op
->args
[2] & (TCG_BSWAP_OZ
| TCG_BSWAP_OS
)) {
1183 /* If the sign bit may be 1, force all the bits above to 1. */
1184 if (z_mask
& sign
) {
1190 /* The high bits are undefined: force all bits above the sign to 1. */
1191 z_mask
|= sign
<< 1;
1195 ctx
->z_mask
= z_mask
;
1196 ctx
->s_mask
= s_mask
;
1198 return fold_masks(ctx
, op
);
1201 static bool fold_call(OptContext
*ctx
, TCGOp
*op
)
1203 TCGContext
*s
= ctx
->tcg
;
1204 int nb_oargs
= TCGOP_CALLO(op
);
1205 int nb_iargs
= TCGOP_CALLI(op
);
1208 init_arguments(ctx
, op
, nb_oargs
+ nb_iargs
);
1209 copy_propagate(ctx
, op
, nb_oargs
, nb_iargs
);
1211 /* If the function reads or writes globals, reset temp data. */
1212 flags
= tcg_call_flags(op
);
1213 if (!(flags
& (TCG_CALL_NO_READ_GLOBALS
| TCG_CALL_NO_WRITE_GLOBALS
))) {
1214 int nb_globals
= s
->nb_globals
;
1216 for (i
= 0; i
< nb_globals
; i
++) {
1217 if (test_bit(i
, ctx
->temps_used
.l
)) {
1218 reset_ts(&ctx
->tcg
->temps
[i
]);
1223 /* Reset temp data for outputs. */
1224 for (i
= 0; i
< nb_oargs
; i
++) {
1225 reset_temp(op
->args
[i
]);
1228 /* Stop optimizing MB across calls. */
1229 ctx
->prev_mb
= NULL
;
1233 static bool fold_count_zeros(OptContext
*ctx
, TCGOp
*op
)
1237 if (arg_is_const(op
->args
[1])) {
1238 uint64_t t
= arg_info(op
->args
[1])->val
;
1241 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, 0);
1242 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1244 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[2]);
1247 switch (ctx
->type
) {
1255 g_assert_not_reached();
1257 ctx
->z_mask
= arg_info(op
->args
[2])->z_mask
| z_mask
;
1258 ctx
->s_mask
= smask_from_zmask(ctx
->z_mask
);
1262 static bool fold_ctpop(OptContext
*ctx
, TCGOp
*op
)
1264 if (fold_const1(ctx
, op
)) {
1268 switch (ctx
->type
) {
1270 ctx
->z_mask
= 32 | 31;
1273 ctx
->z_mask
= 64 | 63;
1276 g_assert_not_reached();
1278 ctx
->s_mask
= smask_from_zmask(ctx
->z_mask
);
1282 static bool fold_deposit(OptContext
*ctx
, TCGOp
*op
)
1284 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1285 uint64_t t1
= arg_info(op
->args
[1])->val
;
1286 uint64_t t2
= arg_info(op
->args
[2])->val
;
1288 t1
= deposit64(t1
, op
->args
[3], op
->args
[4], t2
);
1289 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t1
);
1292 ctx
->z_mask
= deposit64(arg_info(op
->args
[1])->z_mask
,
1293 op
->args
[3], op
->args
[4],
1294 arg_info(op
->args
[2])->z_mask
);
1298 static bool fold_divide(OptContext
*ctx
, TCGOp
*op
)
1300 if (fold_const2(ctx
, op
) ||
1301 fold_xi_to_x(ctx
, op
, 1)) {
1307 static bool fold_dup(OptContext
*ctx
, TCGOp
*op
)
1309 if (arg_is_const(op
->args
[1])) {
1310 uint64_t t
= arg_info(op
->args
[1])->val
;
1311 t
= dup_const(TCGOP_VECE(op
), t
);
1312 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1317 static bool fold_dup2(OptContext
*ctx
, TCGOp
*op
)
1319 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1320 uint64_t t
= deposit64(arg_info(op
->args
[1])->val
, 32, 32,
1321 arg_info(op
->args
[2])->val
);
1322 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1325 if (args_are_copies(op
->args
[1], op
->args
[2])) {
1326 op
->opc
= INDEX_op_dup_vec
;
1327 TCGOP_VECE(op
) = MO_32
;
1332 static bool fold_eqv(OptContext
*ctx
, TCGOp
*op
)
1334 if (fold_const2_commutative(ctx
, op
) ||
1335 fold_xi_to_x(ctx
, op
, -1) ||
1336 fold_xi_to_not(ctx
, op
, 0)) {
1340 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1341 & arg_info(op
->args
[2])->s_mask
;
1345 static bool fold_extract(OptContext
*ctx
, TCGOp
*op
)
1347 uint64_t z_mask_old
, z_mask
;
1348 int pos
= op
->args
[2];
1349 int len
= op
->args
[3];
1351 if (arg_is_const(op
->args
[1])) {
1354 t
= arg_info(op
->args
[1])->val
;
1355 t
= extract64(t
, pos
, len
);
1356 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1359 z_mask_old
= arg_info(op
->args
[1])->z_mask
;
1360 z_mask
= extract64(z_mask_old
, pos
, len
);
1362 ctx
->a_mask
= z_mask_old
^ z_mask
;
1364 ctx
->z_mask
= z_mask
;
1365 ctx
->s_mask
= smask_from_zmask(z_mask
);
1367 return fold_masks(ctx
, op
);
1370 static bool fold_extract2(OptContext
*ctx
, TCGOp
*op
)
1372 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1373 uint64_t v1
= arg_info(op
->args
[1])->val
;
1374 uint64_t v2
= arg_info(op
->args
[2])->val
;
1375 int shr
= op
->args
[3];
1377 if (op
->opc
== INDEX_op_extract2_i64
) {
1381 v1
= (uint32_t)v1
>> shr
;
1382 v2
= (uint64_t)((int32_t)v2
<< (32 - shr
));
1384 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], v1
| v2
);
1389 static bool fold_exts(OptContext
*ctx
, TCGOp
*op
)
1391 uint64_t s_mask_old
, s_mask
, z_mask
, sign
;
1392 bool type_change
= false;
1394 if (fold_const1(ctx
, op
)) {
1398 z_mask
= arg_info(op
->args
[1])->z_mask
;
1399 s_mask
= arg_info(op
->args
[1])->s_mask
;
1400 s_mask_old
= s_mask
;
1403 CASE_OP_32_64(ext8s
):
1405 z_mask
= (uint8_t)z_mask
;
1407 CASE_OP_32_64(ext16s
):
1409 z_mask
= (uint16_t)z_mask
;
1411 case INDEX_op_ext_i32_i64
:
1414 case INDEX_op_ext32s_i64
:
1416 z_mask
= (uint32_t)z_mask
;
1419 g_assert_not_reached();
1422 if (z_mask
& sign
) {
1425 s_mask
|= sign
<< 1;
1427 ctx
->z_mask
= z_mask
;
1428 ctx
->s_mask
= s_mask
;
1430 ctx
->a_mask
= s_mask
& ~s_mask_old
;
1433 return fold_masks(ctx
, op
);
1436 static bool fold_extu(OptContext
*ctx
, TCGOp
*op
)
1438 uint64_t z_mask_old
, z_mask
;
1439 bool type_change
= false;
1441 if (fold_const1(ctx
, op
)) {
1445 z_mask_old
= z_mask
= arg_info(op
->args
[1])->z_mask
;
1448 CASE_OP_32_64(ext8u
):
1449 z_mask
= (uint8_t)z_mask
;
1451 CASE_OP_32_64(ext16u
):
1452 z_mask
= (uint16_t)z_mask
;
1454 case INDEX_op_extrl_i64_i32
:
1455 case INDEX_op_extu_i32_i64
:
1458 case INDEX_op_ext32u_i64
:
1459 z_mask
= (uint32_t)z_mask
;
1461 case INDEX_op_extrh_i64_i32
:
1466 g_assert_not_reached();
1469 ctx
->z_mask
= z_mask
;
1470 ctx
->s_mask
= smask_from_zmask(z_mask
);
1472 ctx
->a_mask
= z_mask_old
^ z_mask
;
1474 return fold_masks(ctx
, op
);
1477 static bool fold_mb(OptContext
*ctx
, TCGOp
*op
)
1479 /* Eliminate duplicate and redundant fence instructions. */
1482 * Merge two barriers of the same type into one,
1483 * or a weaker barrier into a stronger one,
1484 * or two weaker barriers into a stronger one.
1485 * mb X; mb Y => mb X|Y
1486 * mb; strl => mb; st
1487 * ldaq; mb => ld; mb
1488 * ldaq; strl => ld; mb; st
1489 * Other combinations are also merged into a strong
1490 * barrier. This is stricter than specified but for
1491 * the purposes of TCG is better than not optimizing.
1493 ctx
->prev_mb
->args
[0] |= op
->args
[0];
1494 tcg_op_remove(ctx
->tcg
, op
);
1501 static bool fold_mov(OptContext
*ctx
, TCGOp
*op
)
1503 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
1506 static bool fold_movcond(OptContext
*ctx
, TCGOp
*op
)
1508 TCGCond cond
= op
->args
[5];
1511 if (swap_commutative(NO_DEST
, &op
->args
[1], &op
->args
[2])) {
1512 op
->args
[5] = cond
= tcg_swap_cond(cond
);
1515 * Canonicalize the "false" input reg to match the destination reg so
1516 * that the tcg backend can implement a "move if true" operation.
1518 if (swap_commutative(op
->args
[0], &op
->args
[4], &op
->args
[3])) {
1519 op
->args
[5] = cond
= tcg_invert_cond(cond
);
1522 i
= do_constant_folding_cond(ctx
->type
, op
->args
[1], op
->args
[2], cond
);
1524 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[4 - i
]);
1527 ctx
->z_mask
= arg_info(op
->args
[3])->z_mask
1528 | arg_info(op
->args
[4])->z_mask
;
1529 ctx
->s_mask
= arg_info(op
->args
[3])->s_mask
1530 & arg_info(op
->args
[4])->s_mask
;
1532 if (arg_is_const(op
->args
[3]) && arg_is_const(op
->args
[4])) {
1533 uint64_t tv
= arg_info(op
->args
[3])->val
;
1534 uint64_t fv
= arg_info(op
->args
[4])->val
;
1537 switch (ctx
->type
) {
1539 opc
= INDEX_op_setcond_i32
;
1542 opc
= INDEX_op_setcond_i64
;
1545 g_assert_not_reached();
1548 if (tv
== 1 && fv
== 0) {
1551 } else if (fv
== 1 && tv
== 0) {
1553 op
->args
[3] = tcg_invert_cond(cond
);
1559 static bool fold_mul(OptContext
*ctx
, TCGOp
*op
)
1561 if (fold_const2(ctx
, op
) ||
1562 fold_xi_to_i(ctx
, op
, 0) ||
1563 fold_xi_to_x(ctx
, op
, 1)) {
1569 static bool fold_mul_highpart(OptContext
*ctx
, TCGOp
*op
)
1571 if (fold_const2_commutative(ctx
, op
) ||
1572 fold_xi_to_i(ctx
, op
, 0)) {
1578 static bool fold_multiply2(OptContext
*ctx
, TCGOp
*op
)
1580 swap_commutative(op
->args
[0], &op
->args
[2], &op
->args
[3]);
1582 if (arg_is_const(op
->args
[2]) && arg_is_const(op
->args
[3])) {
1583 uint64_t a
= arg_info(op
->args
[2])->val
;
1584 uint64_t b
= arg_info(op
->args
[3])->val
;
1590 case INDEX_op_mulu2_i32
:
1591 l
= (uint64_t)(uint32_t)a
* (uint32_t)b
;
1592 h
= (int32_t)(l
>> 32);
1595 case INDEX_op_muls2_i32
:
1596 l
= (int64_t)(int32_t)a
* (int32_t)b
;
1600 case INDEX_op_mulu2_i64
:
1601 mulu64(&l
, &h
, a
, b
);
1603 case INDEX_op_muls2_i64
:
1604 muls64(&l
, &h
, a
, b
);
1607 g_assert_not_reached();
1613 /* The proper opcode is supplied by tcg_opt_gen_mov. */
1614 op2
= tcg_op_insert_before(ctx
->tcg
, op
, 0, 2);
1616 tcg_opt_gen_movi(ctx
, op
, rl
, l
);
1617 tcg_opt_gen_movi(ctx
, op2
, rh
, h
);
1623 static bool fold_nand(OptContext
*ctx
, TCGOp
*op
)
1625 if (fold_const2_commutative(ctx
, op
) ||
1626 fold_xi_to_not(ctx
, op
, -1)) {
1630 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1631 & arg_info(op
->args
[2])->s_mask
;
1635 static bool fold_neg(OptContext
*ctx
, TCGOp
*op
)
1639 if (fold_const1(ctx
, op
)) {
1643 /* Set to 1 all bits to the left of the rightmost. */
1644 z_mask
= arg_info(op
->args
[1])->z_mask
;
1645 ctx
->z_mask
= -(z_mask
& -z_mask
);
1648 * Because of fold_sub_to_neg, we want to always return true,
1649 * via finish_folding.
1651 finish_folding(ctx
, op
);
1655 static bool fold_nor(OptContext
*ctx
, TCGOp
*op
)
1657 if (fold_const2_commutative(ctx
, op
) ||
1658 fold_xi_to_not(ctx
, op
, 0)) {
1662 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1663 & arg_info(op
->args
[2])->s_mask
;
1667 static bool fold_not(OptContext
*ctx
, TCGOp
*op
)
1669 if (fold_const1(ctx
, op
)) {
1673 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
;
1675 /* Because of fold_to_not, we want to always return true, via finish. */
1676 finish_folding(ctx
, op
);
1680 static bool fold_or(OptContext
*ctx
, TCGOp
*op
)
1682 if (fold_const2_commutative(ctx
, op
) ||
1683 fold_xi_to_x(ctx
, op
, 0) ||
1684 fold_xx_to_x(ctx
, op
)) {
1688 ctx
->z_mask
= arg_info(op
->args
[1])->z_mask
1689 | arg_info(op
->args
[2])->z_mask
;
1690 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1691 & arg_info(op
->args
[2])->s_mask
;
1692 return fold_masks(ctx
, op
);
1695 static bool fold_orc(OptContext
*ctx
, TCGOp
*op
)
1697 if (fold_const2(ctx
, op
) ||
1698 fold_xx_to_i(ctx
, op
, -1) ||
1699 fold_xi_to_x(ctx
, op
, -1) ||
1700 fold_ix_to_not(ctx
, op
, 0)) {
1704 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1705 & arg_info(op
->args
[2])->s_mask
;
1709 static bool fold_qemu_ld(OptContext
*ctx
, TCGOp
*op
)
1711 const TCGOpDef
*def
= &tcg_op_defs
[op
->opc
];
1712 MemOpIdx oi
= op
->args
[def
->nb_oargs
+ def
->nb_iargs
];
1713 MemOp mop
= get_memop(oi
);
1714 int width
= 8 * memop_size(mop
);
1717 ctx
->s_mask
= MAKE_64BIT_MASK(width
, 64 - width
);
1718 if (!(mop
& MO_SIGN
)) {
1719 ctx
->z_mask
= MAKE_64BIT_MASK(0, width
);
1724 /* Opcodes that touch guest memory stop the mb optimization. */
1725 ctx
->prev_mb
= NULL
;
1729 static bool fold_qemu_st(OptContext
*ctx
, TCGOp
*op
)
1731 /* Opcodes that touch guest memory stop the mb optimization. */
1732 ctx
->prev_mb
= NULL
;
1736 static bool fold_remainder(OptContext
*ctx
, TCGOp
*op
)
1738 if (fold_const2(ctx
, op
) ||
1739 fold_xx_to_i(ctx
, op
, 0)) {
1745 static bool fold_setcond(OptContext
*ctx
, TCGOp
*op
)
1747 TCGCond cond
= op
->args
[3];
1750 if (swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2])) {
1751 op
->args
[3] = cond
= tcg_swap_cond(cond
);
1754 i
= do_constant_folding_cond(ctx
->type
, op
->args
[1], op
->args
[2], cond
);
1756 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
1760 ctx
->s_mask
= smask_from_zmask(1);
1764 static bool fold_setcond2(OptContext
*ctx
, TCGOp
*op
)
1766 TCGCond cond
= op
->args
[5];
1769 if (swap_commutative2(&op
->args
[1], &op
->args
[3])) {
1770 op
->args
[5] = cond
= tcg_swap_cond(cond
);
1773 i
= do_constant_folding_cond2(&op
->args
[1], &op
->args
[3], cond
);
1775 goto do_setcond_const
;
1782 * Simplify LT/GE comparisons vs zero to a single compare
1783 * vs the high word of the input.
1785 if (arg_is_const(op
->args
[3]) && arg_info(op
->args
[3])->val
== 0 &&
1786 arg_is_const(op
->args
[4]) && arg_info(op
->args
[4])->val
== 0) {
1787 goto do_setcond_high
;
1796 * Simplify EQ/NE comparisons where one of the pairs
1797 * can be simplified.
1799 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[1],
1803 goto do_setcond_const
;
1805 goto do_setcond_high
;
1808 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[2],
1812 goto do_setcond_const
;
1814 op
->args
[2] = op
->args
[3];
1816 op
->opc
= INDEX_op_setcond_i32
;
1825 op
->args
[1] = op
->args
[2];
1826 op
->args
[2] = op
->args
[4];
1828 op
->opc
= INDEX_op_setcond_i32
;
1833 ctx
->s_mask
= smask_from_zmask(1);
1837 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
1840 static bool fold_sextract(OptContext
*ctx
, TCGOp
*op
)
1842 uint64_t z_mask
, s_mask
, s_mask_old
;
1843 int pos
= op
->args
[2];
1844 int len
= op
->args
[3];
1846 if (arg_is_const(op
->args
[1])) {
1849 t
= arg_info(op
->args
[1])->val
;
1850 t
= sextract64(t
, pos
, len
);
1851 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1854 z_mask
= arg_info(op
->args
[1])->z_mask
;
1855 z_mask
= sextract64(z_mask
, pos
, len
);
1856 ctx
->z_mask
= z_mask
;
1858 s_mask_old
= arg_info(op
->args
[1])->s_mask
;
1859 s_mask
= sextract64(s_mask_old
, pos
, len
);
1860 s_mask
|= MAKE_64BIT_MASK(len
, 64 - len
);
1861 ctx
->s_mask
= s_mask
;
1864 ctx
->a_mask
= s_mask
& ~s_mask_old
;
1867 return fold_masks(ctx
, op
);
1870 static bool fold_shift(OptContext
*ctx
, TCGOp
*op
)
1872 uint64_t s_mask
, z_mask
, sign
;
1874 if (fold_const2(ctx
, op
) ||
1875 fold_ix_to_i(ctx
, op
, 0) ||
1876 fold_xi_to_x(ctx
, op
, 0)) {
1880 s_mask
= arg_info(op
->args
[1])->s_mask
;
1881 z_mask
= arg_info(op
->args
[1])->z_mask
;
1883 if (arg_is_const(op
->args
[2])) {
1884 int sh
= arg_info(op
->args
[2])->val
;
1886 ctx
->z_mask
= do_constant_folding(op
->opc
, ctx
->type
, z_mask
, sh
);
1888 s_mask
= do_constant_folding(op
->opc
, ctx
->type
, s_mask
, sh
);
1889 ctx
->s_mask
= smask_from_smask(s_mask
);
1891 return fold_masks(ctx
, op
);
1897 * Arithmetic right shift will not reduce the number of
1898 * input sign repetitions.
1900 ctx
->s_mask
= s_mask
;
1904 * If the sign bit is known zero, then logical right shift
1905 * will not reduced the number of input sign repetitions.
1907 sign
= (s_mask
& -s_mask
) >> 1;
1908 if (!(z_mask
& sign
)) {
1909 ctx
->s_mask
= s_mask
;
1919 static bool fold_sub_to_neg(OptContext
*ctx
, TCGOp
*op
)
1924 if (!arg_is_const(op
->args
[1]) || arg_info(op
->args
[1])->val
!= 0) {
1928 switch (ctx
->type
) {
1930 neg_op
= INDEX_op_neg_i32
;
1931 have_neg
= TCG_TARGET_HAS_neg_i32
;
1934 neg_op
= INDEX_op_neg_i64
;
1935 have_neg
= TCG_TARGET_HAS_neg_i64
;
1940 neg_op
= INDEX_op_neg_vec
;
1941 have_neg
= (TCG_TARGET_HAS_neg_vec
&&
1942 tcg_can_emit_vec_op(neg_op
, ctx
->type
, TCGOP_VECE(op
)) > 0);
1945 g_assert_not_reached();
1949 op
->args
[1] = op
->args
[2];
1950 return fold_neg(ctx
, op
);
1955 /* We cannot as yet do_constant_folding with vectors. */
1956 static bool fold_sub_vec(OptContext
*ctx
, TCGOp
*op
)
1958 if (fold_xx_to_i(ctx
, op
, 0) ||
1959 fold_xi_to_x(ctx
, op
, 0) ||
1960 fold_sub_to_neg(ctx
, op
)) {
1966 static bool fold_sub(OptContext
*ctx
, TCGOp
*op
)
1968 return fold_const2(ctx
, op
) || fold_sub_vec(ctx
, op
);
1971 static bool fold_sub2(OptContext
*ctx
, TCGOp
*op
)
1973 return fold_addsub2(ctx
, op
, false);
1976 static bool fold_tcg_ld(OptContext
*ctx
, TCGOp
*op
)
1978 /* We can't do any folding with a load, but we can record bits. */
1980 CASE_OP_32_64(ld8s
):
1981 ctx
->s_mask
= MAKE_64BIT_MASK(8, 56);
1983 CASE_OP_32_64(ld8u
):
1984 ctx
->z_mask
= MAKE_64BIT_MASK(0, 8);
1985 ctx
->s_mask
= MAKE_64BIT_MASK(9, 55);
1987 CASE_OP_32_64(ld16s
):
1988 ctx
->s_mask
= MAKE_64BIT_MASK(16, 48);
1990 CASE_OP_32_64(ld16u
):
1991 ctx
->z_mask
= MAKE_64BIT_MASK(0, 16);
1992 ctx
->s_mask
= MAKE_64BIT_MASK(17, 47);
1994 case INDEX_op_ld32s_i64
:
1995 ctx
->s_mask
= MAKE_64BIT_MASK(32, 32);
1997 case INDEX_op_ld32u_i64
:
1998 ctx
->z_mask
= MAKE_64BIT_MASK(0, 32);
1999 ctx
->s_mask
= MAKE_64BIT_MASK(33, 31);
2002 g_assert_not_reached();
2007 static bool fold_xor(OptContext
*ctx
, TCGOp
*op
)
2009 if (fold_const2_commutative(ctx
, op
) ||
2010 fold_xx_to_i(ctx
, op
, 0) ||
2011 fold_xi_to_x(ctx
, op
, 0) ||
2012 fold_xi_to_not(ctx
, op
, -1)) {
2016 ctx
->z_mask
= arg_info(op
->args
[1])->z_mask
2017 | arg_info(op
->args
[2])->z_mask
;
2018 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
2019 & arg_info(op
->args
[2])->s_mask
;
2020 return fold_masks(ctx
, op
);
2023 /* Propagate constants and copies, fold constant expressions. */
2024 void tcg_optimize(TCGContext
*s
)
2027 TCGOp
*op
, *op_next
;
2028 OptContext ctx
= { .tcg
= s
};
2030 /* Array VALS has an element for each temp.
2031 If this temp holds a constant then its value is kept in VALS' element.
2032 If this temp is a copy of other ones then the other copies are
2033 available through the doubly linked circular list. */
2035 nb_temps
= s
->nb_temps
;
2036 for (i
= 0; i
< nb_temps
; ++i
) {
2037 s
->temps
[i
].state_ptr
= NULL
;
2040 QTAILQ_FOREACH_SAFE(op
, &s
->ops
, link
, op_next
) {
2041 TCGOpcode opc
= op
->opc
;
2042 const TCGOpDef
*def
;
2045 /* Calls are special. */
2046 if (opc
== INDEX_op_call
) {
2047 fold_call(&ctx
, op
);
2051 def
= &tcg_op_defs
[opc
];
2052 init_arguments(&ctx
, op
, def
->nb_oargs
+ def
->nb_iargs
);
2053 copy_propagate(&ctx
, op
, def
->nb_oargs
, def
->nb_iargs
);
2055 /* Pre-compute the type of the operation. */
2056 if (def
->flags
& TCG_OPF_VECTOR
) {
2057 ctx
.type
= TCG_TYPE_V64
+ TCGOP_VECL(op
);
2058 } else if (def
->flags
& TCG_OPF_64BIT
) {
2059 ctx
.type
= TCG_TYPE_I64
;
2061 ctx
.type
= TCG_TYPE_I32
;
2064 /* Assume all bits affected, no bits known zero, no sign reps. */
2070 * Process each opcode.
2071 * Sorted alphabetically by opcode as much as possible.
2075 done
= fold_add(&ctx
, op
);
2077 case INDEX_op_add_vec
:
2078 done
= fold_add_vec(&ctx
, op
);
2080 CASE_OP_32_64(add2
):
2081 done
= fold_add2(&ctx
, op
);
2083 CASE_OP_32_64_VEC(and):
2084 done
= fold_and(&ctx
, op
);
2086 CASE_OP_32_64_VEC(andc
):
2087 done
= fold_andc(&ctx
, op
);
2089 CASE_OP_32_64(brcond
):
2090 done
= fold_brcond(&ctx
, op
);
2092 case INDEX_op_brcond2_i32
:
2093 done
= fold_brcond2(&ctx
, op
);
2095 CASE_OP_32_64(bswap16
):
2096 CASE_OP_32_64(bswap32
):
2097 case INDEX_op_bswap64_i64
:
2098 done
= fold_bswap(&ctx
, op
);
2102 done
= fold_count_zeros(&ctx
, op
);
2104 CASE_OP_32_64(ctpop
):
2105 done
= fold_ctpop(&ctx
, op
);
2107 CASE_OP_32_64(deposit
):
2108 done
= fold_deposit(&ctx
, op
);
2111 CASE_OP_32_64(divu
):
2112 done
= fold_divide(&ctx
, op
);
2114 case INDEX_op_dup_vec
:
2115 done
= fold_dup(&ctx
, op
);
2117 case INDEX_op_dup2_vec
:
2118 done
= fold_dup2(&ctx
, op
);
2120 CASE_OP_32_64_VEC(eqv
):
2121 done
= fold_eqv(&ctx
, op
);
2123 CASE_OP_32_64(extract
):
2124 done
= fold_extract(&ctx
, op
);
2126 CASE_OP_32_64(extract2
):
2127 done
= fold_extract2(&ctx
, op
);
2129 CASE_OP_32_64(ext8s
):
2130 CASE_OP_32_64(ext16s
):
2131 case INDEX_op_ext32s_i64
:
2132 case INDEX_op_ext_i32_i64
:
2133 done
= fold_exts(&ctx
, op
);
2135 CASE_OP_32_64(ext8u
):
2136 CASE_OP_32_64(ext16u
):
2137 case INDEX_op_ext32u_i64
:
2138 case INDEX_op_extu_i32_i64
:
2139 case INDEX_op_extrl_i64_i32
:
2140 case INDEX_op_extrh_i64_i32
:
2141 done
= fold_extu(&ctx
, op
);
2143 CASE_OP_32_64(ld8s
):
2144 CASE_OP_32_64(ld8u
):
2145 CASE_OP_32_64(ld16s
):
2146 CASE_OP_32_64(ld16u
):
2147 case INDEX_op_ld32s_i64
:
2148 case INDEX_op_ld32u_i64
:
2149 done
= fold_tcg_ld(&ctx
, op
);
2152 done
= fold_mb(&ctx
, op
);
2154 CASE_OP_32_64_VEC(mov
):
2155 done
= fold_mov(&ctx
, op
);
2157 CASE_OP_32_64(movcond
):
2158 done
= fold_movcond(&ctx
, op
);
2161 done
= fold_mul(&ctx
, op
);
2163 CASE_OP_32_64(mulsh
):
2164 CASE_OP_32_64(muluh
):
2165 done
= fold_mul_highpart(&ctx
, op
);
2167 CASE_OP_32_64(muls2
):
2168 CASE_OP_32_64(mulu2
):
2169 done
= fold_multiply2(&ctx
, op
);
2171 CASE_OP_32_64_VEC(nand
):
2172 done
= fold_nand(&ctx
, op
);
2175 done
= fold_neg(&ctx
, op
);
2177 CASE_OP_32_64_VEC(nor
):
2178 done
= fold_nor(&ctx
, op
);
2180 CASE_OP_32_64_VEC(not):
2181 done
= fold_not(&ctx
, op
);
2183 CASE_OP_32_64_VEC(or):
2184 done
= fold_or(&ctx
, op
);
2186 CASE_OP_32_64_VEC(orc
):
2187 done
= fold_orc(&ctx
, op
);
2189 case INDEX_op_qemu_ld_i32
:
2190 case INDEX_op_qemu_ld_i64
:
2191 done
= fold_qemu_ld(&ctx
, op
);
2193 case INDEX_op_qemu_st_i32
:
2194 case INDEX_op_qemu_st8_i32
:
2195 case INDEX_op_qemu_st_i64
:
2196 done
= fold_qemu_st(&ctx
, op
);
2199 CASE_OP_32_64(remu
):
2200 done
= fold_remainder(&ctx
, op
);
2202 CASE_OP_32_64(rotl
):
2203 CASE_OP_32_64(rotr
):
2207 done
= fold_shift(&ctx
, op
);
2209 CASE_OP_32_64(setcond
):
2210 done
= fold_setcond(&ctx
, op
);
2212 case INDEX_op_setcond2_i32
:
2213 done
= fold_setcond2(&ctx
, op
);
2215 CASE_OP_32_64(sextract
):
2216 done
= fold_sextract(&ctx
, op
);
2219 done
= fold_sub(&ctx
, op
);
2221 case INDEX_op_sub_vec
:
2222 done
= fold_sub_vec(&ctx
, op
);
2224 CASE_OP_32_64(sub2
):
2225 done
= fold_sub2(&ctx
, op
);
2227 CASE_OP_32_64_VEC(xor):
2228 done
= fold_xor(&ctx
, op
);
2235 finish_folding(&ctx
, op
);