dbdma: reset io->processing flag for unassigned DBDMA channel rw accesses
[qemu.git] / hw / i386 / intel_iommu.c
blob464f2a05181441ebddd943b58aab0c42f1f0bffb
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/pci_bus.h"
28 #include "hw/i386/pc.h"
30 /*#define DEBUG_INTEL_IOMMU*/
31 #ifdef DEBUG_INTEL_IOMMU
32 enum {
33 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
34 DEBUG_CACHE,
36 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
37 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
39 #define VTD_DPRINTF(what, fmt, ...) do { \
40 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
41 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
42 ## __VA_ARGS__); } \
43 } while (0)
44 #else
45 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
46 #endif
48 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
49 uint64_t wmask, uint64_t w1cmask)
51 stq_le_p(&s->csr[addr], val);
52 stq_le_p(&s->wmask[addr], wmask);
53 stq_le_p(&s->w1cmask[addr], w1cmask);
56 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
58 stq_le_p(&s->womask[addr], mask);
61 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
62 uint32_t wmask, uint32_t w1cmask)
64 stl_le_p(&s->csr[addr], val);
65 stl_le_p(&s->wmask[addr], wmask);
66 stl_le_p(&s->w1cmask[addr], w1cmask);
69 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
71 stl_le_p(&s->womask[addr], mask);
74 /* "External" get/set operations */
75 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
77 uint64_t oldval = ldq_le_p(&s->csr[addr]);
78 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
79 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
80 stq_le_p(&s->csr[addr],
81 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
84 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
86 uint32_t oldval = ldl_le_p(&s->csr[addr]);
87 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
88 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
89 stl_le_p(&s->csr[addr],
90 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
93 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
95 uint64_t val = ldq_le_p(&s->csr[addr]);
96 uint64_t womask = ldq_le_p(&s->womask[addr]);
97 return val & ~womask;
100 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
102 uint32_t val = ldl_le_p(&s->csr[addr]);
103 uint32_t womask = ldl_le_p(&s->womask[addr]);
104 return val & ~womask;
107 /* "Internal" get/set operations */
108 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
110 return ldq_le_p(&s->csr[addr]);
113 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
115 return ldl_le_p(&s->csr[addr]);
118 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
120 stq_le_p(&s->csr[addr], val);
123 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
124 uint32_t clear, uint32_t mask)
126 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
127 stl_le_p(&s->csr[addr], new_val);
128 return new_val;
131 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
132 uint64_t clear, uint64_t mask)
134 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
135 stq_le_p(&s->csr[addr], new_val);
136 return new_val;
139 /* GHashTable functions */
140 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
142 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
145 static guint vtd_uint64_hash(gconstpointer v)
147 return (guint)*(const uint64_t *)v;
150 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
151 gpointer user_data)
153 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
154 uint16_t domain_id = *(uint16_t *)user_data;
155 return entry->domain_id == domain_id;
158 /* The shift of an addr for a certain level of paging structure */
159 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
161 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
164 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
166 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
169 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
170 gpointer user_data)
172 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
173 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
174 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
175 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
176 return (entry->domain_id == info->domain_id) &&
177 (((entry->gfn & info->mask) == gfn) ||
178 (entry->gfn == gfn_tlb));
181 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
182 * IntelIOMMUState to 1.
184 static void vtd_reset_context_cache(IntelIOMMUState *s)
186 VTDAddressSpace *vtd_as;
187 VTDBus *vtd_bus;
188 GHashTableIter bus_it;
189 uint32_t devfn_it;
191 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
193 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
194 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
195 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
196 vtd_as = vtd_bus->dev_as[devfn_it];
197 if (!vtd_as) {
198 continue;
200 vtd_as->context_cache_entry.context_cache_gen = 0;
203 s->context_cache_gen = 1;
206 static void vtd_reset_iotlb(IntelIOMMUState *s)
208 assert(s->iotlb);
209 g_hash_table_remove_all(s->iotlb);
212 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
213 uint32_t level)
215 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
216 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
219 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
221 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
224 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
225 hwaddr addr)
227 VTDIOTLBEntry *entry;
228 uint64_t key;
229 int level;
231 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
232 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
233 source_id, level);
234 entry = g_hash_table_lookup(s->iotlb, &key);
235 if (entry) {
236 goto out;
240 out:
241 return entry;
244 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
245 uint16_t domain_id, hwaddr addr, uint64_t slpte,
246 bool read_flags, bool write_flags,
247 uint32_t level)
249 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
250 uint64_t *key = g_malloc(sizeof(*key));
251 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
253 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
254 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
255 domain_id);
256 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
257 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
258 vtd_reset_iotlb(s);
261 entry->gfn = gfn;
262 entry->domain_id = domain_id;
263 entry->slpte = slpte;
264 entry->read_flags = read_flags;
265 entry->write_flags = write_flags;
266 entry->mask = vtd_slpt_level_page_mask(level);
267 *key = vtd_get_iotlb_key(gfn, source_id, level);
268 g_hash_table_replace(s->iotlb, key, entry);
271 /* Given the reg addr of both the message data and address, generate an
272 * interrupt via MSI.
274 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
275 hwaddr mesg_data_reg)
277 hwaddr addr;
278 uint32_t data;
280 assert(mesg_data_reg < DMAR_REG_SIZE);
281 assert(mesg_addr_reg < DMAR_REG_SIZE);
283 addr = vtd_get_long_raw(s, mesg_addr_reg);
284 data = vtd_get_long_raw(s, mesg_data_reg);
286 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
287 address_space_stl_le(&address_space_memory, addr, data,
288 MEMTXATTRS_UNSPECIFIED, NULL);
291 /* Generate a fault event to software via MSI if conditions are met.
292 * Notice that the value of FSTS_REG being passed to it should be the one
293 * before any update.
295 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
297 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
298 pre_fsts & VTD_FSTS_IQE) {
299 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
300 "to be serviced by software, fault event is not generated "
301 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
302 return;
304 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
305 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
306 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
307 } else {
308 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
309 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
313 /* Check if the Fault (F) field of the Fault Recording Register referenced by
314 * @index is Set.
316 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
318 /* Each reg is 128-bit */
319 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
320 addr += 8; /* Access the high 64-bit half */
322 assert(index < DMAR_FRCD_REG_NR);
324 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
327 /* Update the PPF field of Fault Status Register.
328 * Should be called whenever change the F field of any fault recording
329 * registers.
331 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
333 uint32_t i;
334 uint32_t ppf_mask = 0;
336 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
337 if (vtd_is_frcd_set(s, i)) {
338 ppf_mask = VTD_FSTS_PPF;
339 break;
342 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
343 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
346 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
348 /* Each reg is 128-bit */
349 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
350 addr += 8; /* Access the high 64-bit half */
352 assert(index < DMAR_FRCD_REG_NR);
354 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
355 vtd_update_fsts_ppf(s);
358 /* Must not update F field now, should be done later */
359 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
360 uint16_t source_id, hwaddr addr,
361 VTDFaultReason fault, bool is_write)
363 uint64_t hi = 0, lo;
364 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
366 assert(index < DMAR_FRCD_REG_NR);
368 lo = VTD_FRCD_FI(addr);
369 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
370 if (!is_write) {
371 hi |= VTD_FRCD_T;
373 vtd_set_quad_raw(s, frcd_reg_addr, lo);
374 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
375 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
376 ", lo 0x%"PRIx64, index, hi, lo);
379 /* Try to collapse multiple pending faults from the same requester */
380 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
382 uint32_t i;
383 uint64_t frcd_reg;
384 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
386 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
387 frcd_reg = vtd_get_quad_raw(s, addr);
388 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
389 if ((frcd_reg & VTD_FRCD_F) &&
390 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
391 return true;
393 addr += 16; /* 128-bit for each */
395 return false;
398 /* Log and report an DMAR (address translation) fault to software */
399 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
400 hwaddr addr, VTDFaultReason fault,
401 bool is_write)
403 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
405 assert(fault < VTD_FR_MAX);
407 if (fault == VTD_FR_RESERVED_ERR) {
408 /* This is not a normal fault reason case. Drop it. */
409 return;
411 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
412 ", is_write %d", source_id, fault, addr, is_write);
413 if (fsts_reg & VTD_FSTS_PFO) {
414 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
415 "Primary Fault Overflow");
416 return;
418 if (vtd_try_collapse_fault(s, source_id)) {
419 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
420 "compression of faults");
421 return;
423 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
424 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
425 "new fault is not recorded, set PFO field");
426 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
427 return;
430 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
432 if (fsts_reg & VTD_FSTS_PPF) {
433 VTD_DPRINTF(FLOG, "there are pending faults already, "
434 "fault event is not generated");
435 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
436 s->next_frcd_reg++;
437 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
438 s->next_frcd_reg = 0;
440 } else {
441 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
442 VTD_FSTS_FRI(s->next_frcd_reg));
443 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
444 s->next_frcd_reg++;
445 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
446 s->next_frcd_reg = 0;
448 /* This case actually cause the PPF to be Set.
449 * So generate fault event (interrupt).
451 vtd_generate_fault_event(s, fsts_reg);
455 /* Handle Invalidation Queue Errors of queued invalidation interface error
456 * conditions.
458 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
460 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
462 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
463 vtd_generate_fault_event(s, fsts_reg);
466 /* Set the IWC field and try to generate an invalidation completion interrupt */
467 static void vtd_generate_completion_event(IntelIOMMUState *s)
469 VTD_DPRINTF(INV, "completes an invalidation wait command with "
470 "Interrupt Flag");
471 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
472 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
473 "serviced by software, "
474 "new invalidation event is not generated");
475 return;
477 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
478 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
479 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
480 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
481 "event is not generated");
482 return;
483 } else {
484 /* Generate the interrupt event */
485 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
486 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
490 static inline bool vtd_root_entry_present(VTDRootEntry *root)
492 return root->val & VTD_ROOT_ENTRY_P;
495 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
496 VTDRootEntry *re)
498 dma_addr_t addr;
500 addr = s->root + index * sizeof(*re);
501 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
502 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
503 " + %"PRIu8, s->root, index);
504 re->val = 0;
505 return -VTD_FR_ROOT_TABLE_INV;
507 re->val = le64_to_cpu(re->val);
508 return 0;
511 static inline bool vtd_context_entry_present(VTDContextEntry *context)
513 return context->lo & VTD_CONTEXT_ENTRY_P;
516 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
517 VTDContextEntry *ce)
519 dma_addr_t addr;
521 if (!vtd_root_entry_present(root)) {
522 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
523 return -VTD_FR_ROOT_ENTRY_P;
525 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
526 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
527 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
528 " + %"PRIu8,
529 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
530 return -VTD_FR_CONTEXT_TABLE_INV;
532 ce->lo = le64_to_cpu(ce->lo);
533 ce->hi = le64_to_cpu(ce->hi);
534 return 0;
537 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
539 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
542 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
544 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
547 /* Whether the pte indicates the address of the page frame */
548 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
550 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
553 /* Get the content of a spte located in @base_addr[@index] */
554 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
556 uint64_t slpte;
558 assert(index < VTD_SL_PT_ENTRY_NR);
560 if (dma_memory_read(&address_space_memory,
561 base_addr + index * sizeof(slpte), &slpte,
562 sizeof(slpte))) {
563 slpte = (uint64_t)-1;
564 return slpte;
566 slpte = le64_to_cpu(slpte);
567 return slpte;
570 /* Given a gpa and the level of paging structure, return the offset of current
571 * level.
573 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
575 return (gpa >> vtd_slpt_level_shift(level)) &
576 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
579 /* Check Capability Register to see if the @level of page-table is supported */
580 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
582 return VTD_CAP_SAGAW_MASK & s->cap &
583 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
586 /* Get the page-table level that hardware should use for the second-level
587 * page-table walk from the Address Width field of context-entry.
589 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
591 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
594 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
596 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
599 static const uint64_t vtd_paging_entry_rsvd_field[] = {
600 [0] = ~0ULL,
601 /* For not large page */
602 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
603 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
604 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
605 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
606 /* For large page */
607 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
608 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
609 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
610 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
615 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
616 /* Maybe large page */
617 return slpte & vtd_paging_entry_rsvd_field[level + 4];
618 } else {
619 return slpte & vtd_paging_entry_rsvd_field[level];
623 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
624 * of the translation, can be used for deciding the size of large page.
626 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
627 uint64_t *slptep, uint32_t *slpte_level,
628 bool *reads, bool *writes)
630 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
631 uint32_t level = vtd_get_level_from_context_entry(ce);
632 uint32_t offset;
633 uint64_t slpte;
634 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
635 uint64_t access_right_check;
637 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
638 * and AW in context-entry.
640 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
641 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
642 return -VTD_FR_ADDR_BEYOND_MGAW;
645 /* FIXME: what is the Atomics request here? */
646 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
648 while (true) {
649 offset = vtd_gpa_level_offset(gpa, level);
650 slpte = vtd_get_slpte(addr, offset);
652 if (slpte == (uint64_t)-1) {
653 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
654 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
655 level, gpa);
656 if (level == vtd_get_level_from_context_entry(ce)) {
657 /* Invalid programming of context-entry */
658 return -VTD_FR_CONTEXT_ENTRY_INV;
659 } else {
660 return -VTD_FR_PAGING_ENTRY_INV;
663 *reads = (*reads) && (slpte & VTD_SL_R);
664 *writes = (*writes) && (slpte & VTD_SL_W);
665 if (!(slpte & access_right_check)) {
666 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
667 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
668 (is_write ? "write" : "read"), gpa, slpte);
669 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
671 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
672 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
673 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
674 level, slpte);
675 return -VTD_FR_PAGING_ENTRY_RSVD;
678 if (vtd_is_last_slpte(slpte, level)) {
679 *slptep = slpte;
680 *slpte_level = level;
681 return 0;
683 addr = vtd_get_slpte_addr(slpte);
684 level--;
688 /* Map a device to its corresponding domain (context-entry) */
689 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
690 uint8_t devfn, VTDContextEntry *ce)
692 VTDRootEntry re;
693 int ret_fr;
695 ret_fr = vtd_get_root_entry(s, bus_num, &re);
696 if (ret_fr) {
697 return ret_fr;
700 if (!vtd_root_entry_present(&re)) {
701 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
702 bus_num);
703 return -VTD_FR_ROOT_ENTRY_P;
704 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
705 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
706 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
707 return -VTD_FR_ROOT_ENTRY_RSVD;
710 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
711 if (ret_fr) {
712 return ret_fr;
715 if (!vtd_context_entry_present(ce)) {
716 VTD_DPRINTF(GENERAL,
717 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
718 "is not present", devfn, bus_num);
719 return -VTD_FR_CONTEXT_ENTRY_P;
720 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
721 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
722 VTD_DPRINTF(GENERAL,
723 "error: non-zero reserved field in context-entry "
724 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
725 return -VTD_FR_CONTEXT_ENTRY_RSVD;
727 /* Check if the programming of context-entry is valid */
728 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
729 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
730 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
731 ce->hi, ce->lo);
732 return -VTD_FR_CONTEXT_ENTRY_INV;
733 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
734 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
735 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
736 ce->hi, ce->lo);
737 return -VTD_FR_CONTEXT_ENTRY_INV;
739 return 0;
742 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
744 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
747 static const bool vtd_qualified_faults[] = {
748 [VTD_FR_RESERVED] = false,
749 [VTD_FR_ROOT_ENTRY_P] = false,
750 [VTD_FR_CONTEXT_ENTRY_P] = true,
751 [VTD_FR_CONTEXT_ENTRY_INV] = true,
752 [VTD_FR_ADDR_BEYOND_MGAW] = true,
753 [VTD_FR_WRITE] = true,
754 [VTD_FR_READ] = true,
755 [VTD_FR_PAGING_ENTRY_INV] = true,
756 [VTD_FR_ROOT_TABLE_INV] = false,
757 [VTD_FR_CONTEXT_TABLE_INV] = false,
758 [VTD_FR_ROOT_ENTRY_RSVD] = false,
759 [VTD_FR_PAGING_ENTRY_RSVD] = true,
760 [VTD_FR_CONTEXT_ENTRY_TT] = true,
761 [VTD_FR_RESERVED_ERR] = false,
762 [VTD_FR_MAX] = false,
765 /* To see if a fault condition is "qualified", which is reported to software
766 * only if the FPD field in the context-entry used to process the faulting
767 * request is 0.
769 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
771 return vtd_qualified_faults[fault];
774 static inline bool vtd_is_interrupt_addr(hwaddr addr)
776 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
779 /* Map dev to context-entry then do a paging-structures walk to do a iommu
780 * translation.
782 * Called from RCU critical section.
784 * @bus_num: The bus number
785 * @devfn: The devfn, which is the combined of device and function number
786 * @is_write: The access is a write operation
787 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
789 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
790 uint8_t devfn, hwaddr addr, bool is_write,
791 IOMMUTLBEntry *entry)
793 IntelIOMMUState *s = vtd_as->iommu_state;
794 VTDContextEntry ce;
795 uint8_t bus_num = pci_bus_num(bus);
796 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
797 uint64_t slpte, page_mask;
798 uint32_t level;
799 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
800 int ret_fr;
801 bool is_fpd_set = false;
802 bool reads = true;
803 bool writes = true;
804 VTDIOTLBEntry *iotlb_entry;
806 /* Check if the request is in interrupt address range */
807 if (vtd_is_interrupt_addr(addr)) {
808 if (is_write) {
809 /* FIXME: since we don't know the length of the access here, we
810 * treat Non-DWORD length write requests without PASID as
811 * interrupt requests, too. Withoud interrupt remapping support,
812 * we just use 1:1 mapping.
814 VTD_DPRINTF(MMU, "write request to interrupt address "
815 "gpa 0x%"PRIx64, addr);
816 entry->iova = addr & VTD_PAGE_MASK_4K;
817 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
818 entry->addr_mask = ~VTD_PAGE_MASK_4K;
819 entry->perm = IOMMU_WO;
820 return;
821 } else {
822 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
823 "gpa 0x%"PRIx64, addr);
824 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
825 return;
828 /* Try to fetch slpte form IOTLB */
829 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
830 if (iotlb_entry) {
831 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
832 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
833 iotlb_entry->slpte, iotlb_entry->domain_id);
834 slpte = iotlb_entry->slpte;
835 reads = iotlb_entry->read_flags;
836 writes = iotlb_entry->write_flags;
837 page_mask = iotlb_entry->mask;
838 goto out;
840 /* Try to fetch context-entry from cache first */
841 if (cc_entry->context_cache_gen == s->context_cache_gen) {
842 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
843 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
844 bus_num, devfn, cc_entry->context_entry.hi,
845 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
846 ce = cc_entry->context_entry;
847 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
848 } else {
849 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
850 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
851 if (ret_fr) {
852 ret_fr = -ret_fr;
853 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
854 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
855 "requests through this context-entry "
856 "(with FPD Set)");
857 } else {
858 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
860 return;
862 /* Update context-cache */
863 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
864 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
865 bus_num, devfn, ce.hi, ce.lo,
866 cc_entry->context_cache_gen, s->context_cache_gen);
867 cc_entry->context_entry = ce;
868 cc_entry->context_cache_gen = s->context_cache_gen;
871 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
872 &reads, &writes);
873 if (ret_fr) {
874 ret_fr = -ret_fr;
875 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
876 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
877 "through this context-entry (with FPD Set)");
878 } else {
879 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
881 return;
884 page_mask = vtd_slpt_level_page_mask(level);
885 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
886 reads, writes, level);
887 out:
888 entry->iova = addr & page_mask;
889 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
890 entry->addr_mask = ~page_mask;
891 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
894 static void vtd_root_table_setup(IntelIOMMUState *s)
896 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
897 s->root_extended = s->root & VTD_RTADDR_RTT;
898 s->root &= VTD_RTADDR_ADDR_MASK;
900 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
901 (s->root_extended ? "(extended)" : ""));
904 static void vtd_context_global_invalidate(IntelIOMMUState *s)
906 s->context_cache_gen++;
907 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
908 vtd_reset_context_cache(s);
913 /* Find the VTD address space currently associated with a given bus number,
915 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
917 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
918 if (!vtd_bus) {
919 /* Iterate over the registered buses to find the one
920 * which currently hold this bus number, and update the bus_num lookup table:
922 GHashTableIter iter;
924 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
925 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
926 if (pci_bus_num(vtd_bus->bus) == bus_num) {
927 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
928 return vtd_bus;
932 return vtd_bus;
935 /* Do a context-cache device-selective invalidation.
936 * @func_mask: FM field after shifting
938 static void vtd_context_device_invalidate(IntelIOMMUState *s,
939 uint16_t source_id,
940 uint16_t func_mask)
942 uint16_t mask;
943 VTDBus *vtd_bus;
944 VTDAddressSpace *vtd_as;
945 uint16_t devfn;
946 uint16_t devfn_it;
948 switch (func_mask & 3) {
949 case 0:
950 mask = 0; /* No bits in the SID field masked */
951 break;
952 case 1:
953 mask = 4; /* Mask bit 2 in the SID field */
954 break;
955 case 2:
956 mask = 6; /* Mask bit 2:1 in the SID field */
957 break;
958 case 3:
959 mask = 7; /* Mask bit 2:0 in the SID field */
960 break;
962 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
963 " mask %"PRIu16, source_id, mask);
964 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
965 if (vtd_bus) {
966 devfn = VTD_SID_TO_DEVFN(source_id);
967 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
968 vtd_as = vtd_bus->dev_as[devfn_it];
969 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
970 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
971 devfn_it);
972 vtd_as->context_cache_entry.context_cache_gen = 0;
978 /* Context-cache invalidation
979 * Returns the Context Actual Invalidation Granularity.
980 * @val: the content of the CCMD_REG
982 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
984 uint64_t caig;
985 uint64_t type = val & VTD_CCMD_CIRG_MASK;
987 switch (type) {
988 case VTD_CCMD_DOMAIN_INVL:
989 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
990 (uint16_t)VTD_CCMD_DID(val));
991 /* Fall through */
992 case VTD_CCMD_GLOBAL_INVL:
993 VTD_DPRINTF(INV, "global invalidation");
994 caig = VTD_CCMD_GLOBAL_INVL_A;
995 vtd_context_global_invalidate(s);
996 break;
998 case VTD_CCMD_DEVICE_INVL:
999 caig = VTD_CCMD_DEVICE_INVL_A;
1000 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1001 break;
1003 default:
1004 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1005 caig = 0;
1007 return caig;
1010 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1012 vtd_reset_iotlb(s);
1015 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1017 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1018 &domain_id);
1021 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1022 hwaddr addr, uint8_t am)
1024 VTDIOTLBPageInvInfo info;
1026 assert(am <= VTD_MAMV);
1027 info.domain_id = domain_id;
1028 info.addr = addr;
1029 info.mask = ~((1 << am) - 1);
1030 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1033 /* Flush IOTLB
1034 * Returns the IOTLB Actual Invalidation Granularity.
1035 * @val: the content of the IOTLB_REG
1037 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1039 uint64_t iaig;
1040 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1041 uint16_t domain_id;
1042 hwaddr addr;
1043 uint8_t am;
1045 switch (type) {
1046 case VTD_TLB_GLOBAL_FLUSH:
1047 VTD_DPRINTF(INV, "global invalidation");
1048 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1049 vtd_iotlb_global_invalidate(s);
1050 break;
1052 case VTD_TLB_DSI_FLUSH:
1053 domain_id = VTD_TLB_DID(val);
1054 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1055 domain_id);
1056 iaig = VTD_TLB_DSI_FLUSH_A;
1057 vtd_iotlb_domain_invalidate(s, domain_id);
1058 break;
1060 case VTD_TLB_PSI_FLUSH:
1061 domain_id = VTD_TLB_DID(val);
1062 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1063 am = VTD_IVA_AM(addr);
1064 addr = VTD_IVA_ADDR(addr);
1065 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1066 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1067 if (am > VTD_MAMV) {
1068 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1069 "%"PRIu8, (uint8_t)VTD_MAMV);
1070 iaig = 0;
1071 break;
1073 iaig = VTD_TLB_PSI_FLUSH_A;
1074 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1075 break;
1077 default:
1078 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1079 iaig = 0;
1081 return iaig;
1084 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1086 return s->iq_tail == 0;
1089 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1091 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1092 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1095 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1097 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1099 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1100 if (en) {
1101 if (vtd_queued_inv_enable_check(s)) {
1102 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1103 /* 2^(x+8) entries */
1104 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1105 s->qi_enabled = true;
1106 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1107 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1108 s->iq, s->iq_size);
1109 /* Ok - report back to driver */
1110 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1111 } else {
1112 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1113 "tail %"PRIu16, s->iq_tail);
1115 } else {
1116 if (vtd_queued_inv_disable_check(s)) {
1117 /* disable Queued Invalidation */
1118 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1119 s->iq_head = 0;
1120 s->qi_enabled = false;
1121 /* Ok - report back to driver */
1122 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1123 } else {
1124 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1125 "head %"PRIu16 ", tail %"PRIu16
1126 ", last_descriptor %"PRIu8,
1127 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1132 /* Set Root Table Pointer */
1133 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1135 VTD_DPRINTF(CSR, "set Root Table Pointer");
1137 vtd_root_table_setup(s);
1138 /* Ok - report back to driver */
1139 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1142 /* Handle Translation Enable/Disable */
1143 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1145 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1147 if (en) {
1148 s->dmar_enabled = true;
1149 /* Ok - report back to driver */
1150 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1151 } else {
1152 s->dmar_enabled = false;
1154 /* Clear the index of Fault Recording Register */
1155 s->next_frcd_reg = 0;
1156 /* Ok - report back to driver */
1157 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1161 /* Handle write to Global Command Register */
1162 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1164 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1165 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1166 uint32_t changed = status ^ val;
1168 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1169 if (changed & VTD_GCMD_TE) {
1170 /* Translation enable/disable */
1171 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1173 if (val & VTD_GCMD_SRTP) {
1174 /* Set/update the root-table pointer */
1175 vtd_handle_gcmd_srtp(s);
1177 if (changed & VTD_GCMD_QIE) {
1178 /* Queued Invalidation Enable */
1179 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1183 /* Handle write to Context Command Register */
1184 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1186 uint64_t ret;
1187 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1189 /* Context-cache invalidation request */
1190 if (val & VTD_CCMD_ICC) {
1191 if (s->qi_enabled) {
1192 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1193 "should not use register-based invalidation");
1194 return;
1196 ret = vtd_context_cache_invalidate(s, val);
1197 /* Invalidation completed. Change something to show */
1198 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1199 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1200 ret);
1201 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1205 /* Handle write to IOTLB Invalidation Register */
1206 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1208 uint64_t ret;
1209 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1211 /* IOTLB invalidation request */
1212 if (val & VTD_TLB_IVT) {
1213 if (s->qi_enabled) {
1214 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1215 "should not use register-based invalidation");
1216 return;
1218 ret = vtd_iotlb_flush(s, val);
1219 /* Invalidation completed. Change something to show */
1220 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1221 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1222 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1223 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1227 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1228 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1229 VTDInvDesc *inv_desc)
1231 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1232 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1233 sizeof(*inv_desc))) {
1234 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1235 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1236 inv_desc->lo = 0;
1237 inv_desc->hi = 0;
1239 return false;
1241 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1242 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1243 return true;
1246 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1248 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1249 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1250 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1251 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1252 inv_desc->hi, inv_desc->lo);
1253 return false;
1255 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1256 /* Status Write */
1257 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1258 VTD_INV_DESC_WAIT_DATA_SHIFT);
1260 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1262 /* FIXME: need to be masked with HAW? */
1263 dma_addr_t status_addr = inv_desc->hi;
1264 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1265 status_data, status_addr);
1266 status_data = cpu_to_le32(status_data);
1267 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1268 sizeof(status_data))) {
1269 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1270 return false;
1272 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1273 /* Interrupt flag */
1274 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1275 vtd_generate_completion_event(s);
1276 } else {
1277 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1278 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1279 return false;
1281 return true;
1284 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1285 VTDInvDesc *inv_desc)
1287 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1288 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1289 "Invalidate Descriptor");
1290 return false;
1292 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1293 case VTD_INV_DESC_CC_DOMAIN:
1294 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1295 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1296 /* Fall through */
1297 case VTD_INV_DESC_CC_GLOBAL:
1298 VTD_DPRINTF(INV, "global invalidation");
1299 vtd_context_global_invalidate(s);
1300 break;
1302 case VTD_INV_DESC_CC_DEVICE:
1303 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1304 VTD_INV_DESC_CC_FM(inv_desc->lo));
1305 break;
1307 default:
1308 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1309 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1310 inv_desc->hi, inv_desc->lo);
1311 return false;
1313 return true;
1316 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1318 uint16_t domain_id;
1319 uint8_t am;
1320 hwaddr addr;
1322 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1323 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1324 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1325 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1326 inv_desc->hi, inv_desc->lo);
1327 return false;
1330 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1331 case VTD_INV_DESC_IOTLB_GLOBAL:
1332 VTD_DPRINTF(INV, "global invalidation");
1333 vtd_iotlb_global_invalidate(s);
1334 break;
1336 case VTD_INV_DESC_IOTLB_DOMAIN:
1337 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1338 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1339 domain_id);
1340 vtd_iotlb_domain_invalidate(s, domain_id);
1341 break;
1343 case VTD_INV_DESC_IOTLB_PAGE:
1344 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1345 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1346 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1347 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1348 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1349 if (am > VTD_MAMV) {
1350 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1351 "%"PRIu8, (uint8_t)VTD_MAMV);
1352 return false;
1354 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1355 break;
1357 default:
1358 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1359 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1360 inv_desc->hi, inv_desc->lo);
1361 return false;
1363 return true;
1366 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1368 VTDInvDesc inv_desc;
1369 uint8_t desc_type;
1371 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1372 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1373 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1374 return false;
1376 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1377 /* FIXME: should update at first or at last? */
1378 s->iq_last_desc_type = desc_type;
1380 switch (desc_type) {
1381 case VTD_INV_DESC_CC:
1382 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1383 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1384 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1385 return false;
1387 break;
1389 case VTD_INV_DESC_IOTLB:
1390 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1391 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1392 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1393 return false;
1395 break;
1397 case VTD_INV_DESC_WAIT:
1398 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1399 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1400 if (!vtd_process_wait_desc(s, &inv_desc)) {
1401 return false;
1403 break;
1405 default:
1406 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1407 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1408 inv_desc.hi, inv_desc.lo, desc_type);
1409 return false;
1411 s->iq_head++;
1412 if (s->iq_head == s->iq_size) {
1413 s->iq_head = 0;
1415 return true;
1418 /* Try to fetch and process more Invalidation Descriptors */
1419 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1421 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1422 if (s->iq_tail >= s->iq_size) {
1423 /* Detects an invalid Tail pointer */
1424 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1425 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1426 vtd_handle_inv_queue_error(s);
1427 return;
1429 while (s->iq_head != s->iq_tail) {
1430 if (!vtd_process_inv_desc(s)) {
1431 /* Invalidation Queue Errors */
1432 vtd_handle_inv_queue_error(s);
1433 break;
1435 /* Must update the IQH_REG in time */
1436 vtd_set_quad_raw(s, DMAR_IQH_REG,
1437 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1438 VTD_IQH_QH_MASK);
1442 /* Handle write to Invalidation Queue Tail Register */
1443 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1445 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1447 s->iq_tail = VTD_IQT_QT(val);
1448 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1449 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1450 /* Process Invalidation Queue here */
1451 vtd_fetch_inv_desc(s);
1455 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1457 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1458 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1459 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1461 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1462 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1463 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1464 "IP field of FECTL_REG");
1466 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1467 * Descriptors if there are any when Queued Invalidation is enabled?
1471 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1473 uint32_t fectl_reg;
1474 /* FIXME: when software clears the IM field, check the IP field. But do we
1475 * need to compare the old value and the new value to conclude that
1476 * software clears the IM field? Or just check if the IM field is zero?
1478 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1479 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1480 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1481 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1482 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1483 "fault event interrupt");
1487 static void vtd_handle_ics_write(IntelIOMMUState *s)
1489 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1490 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1492 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1493 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1494 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1495 "clear IP field of IECTL_REG");
1499 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1501 uint32_t iectl_reg;
1502 /* FIXME: when software clears the IM field, check the IP field. But do we
1503 * need to compare the old value and the new value to conclude that
1504 * software clears the IM field? Or just check if the IM field is zero?
1506 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1507 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1508 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1509 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1510 VTD_DPRINTF(INV, "IM field is cleared, generate "
1511 "invalidation event interrupt");
1515 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1517 IntelIOMMUState *s = opaque;
1518 uint64_t val;
1520 if (addr + size > DMAR_REG_SIZE) {
1521 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1522 ", got 0x%"PRIx64 " %d",
1523 (uint64_t)DMAR_REG_SIZE, addr, size);
1524 return (uint64_t)-1;
1527 switch (addr) {
1528 /* Root Table Address Register, 64-bit */
1529 case DMAR_RTADDR_REG:
1530 if (size == 4) {
1531 val = s->root & ((1ULL << 32) - 1);
1532 } else {
1533 val = s->root;
1535 break;
1537 case DMAR_RTADDR_REG_HI:
1538 assert(size == 4);
1539 val = s->root >> 32;
1540 break;
1542 /* Invalidation Queue Address Register, 64-bit */
1543 case DMAR_IQA_REG:
1544 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1545 if (size == 4) {
1546 val = val & ((1ULL << 32) - 1);
1548 break;
1550 case DMAR_IQA_REG_HI:
1551 assert(size == 4);
1552 val = s->iq >> 32;
1553 break;
1555 default:
1556 if (size == 4) {
1557 val = vtd_get_long(s, addr);
1558 } else {
1559 val = vtd_get_quad(s, addr);
1562 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1563 addr, size, val);
1564 return val;
1567 static void vtd_mem_write(void *opaque, hwaddr addr,
1568 uint64_t val, unsigned size)
1570 IntelIOMMUState *s = opaque;
1572 if (addr + size > DMAR_REG_SIZE) {
1573 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1574 ", got 0x%"PRIx64 " %d",
1575 (uint64_t)DMAR_REG_SIZE, addr, size);
1576 return;
1579 switch (addr) {
1580 /* Global Command Register, 32-bit */
1581 case DMAR_GCMD_REG:
1582 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1583 ", size %d, val 0x%"PRIx64, addr, size, val);
1584 vtd_set_long(s, addr, val);
1585 vtd_handle_gcmd_write(s);
1586 break;
1588 /* Context Command Register, 64-bit */
1589 case DMAR_CCMD_REG:
1590 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1591 ", size %d, val 0x%"PRIx64, addr, size, val);
1592 if (size == 4) {
1593 vtd_set_long(s, addr, val);
1594 } else {
1595 vtd_set_quad(s, addr, val);
1596 vtd_handle_ccmd_write(s);
1598 break;
1600 case DMAR_CCMD_REG_HI:
1601 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1602 ", size %d, val 0x%"PRIx64, addr, size, val);
1603 assert(size == 4);
1604 vtd_set_long(s, addr, val);
1605 vtd_handle_ccmd_write(s);
1606 break;
1608 /* IOTLB Invalidation Register, 64-bit */
1609 case DMAR_IOTLB_REG:
1610 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1611 ", size %d, val 0x%"PRIx64, addr, size, val);
1612 if (size == 4) {
1613 vtd_set_long(s, addr, val);
1614 } else {
1615 vtd_set_quad(s, addr, val);
1616 vtd_handle_iotlb_write(s);
1618 break;
1620 case DMAR_IOTLB_REG_HI:
1621 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1622 ", size %d, val 0x%"PRIx64, addr, size, val);
1623 assert(size == 4);
1624 vtd_set_long(s, addr, val);
1625 vtd_handle_iotlb_write(s);
1626 break;
1628 /* Invalidate Address Register, 64-bit */
1629 case DMAR_IVA_REG:
1630 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1631 ", size %d, val 0x%"PRIx64, addr, size, val);
1632 if (size == 4) {
1633 vtd_set_long(s, addr, val);
1634 } else {
1635 vtd_set_quad(s, addr, val);
1637 break;
1639 case DMAR_IVA_REG_HI:
1640 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1641 ", size %d, val 0x%"PRIx64, addr, size, val);
1642 assert(size == 4);
1643 vtd_set_long(s, addr, val);
1644 break;
1646 /* Fault Status Register, 32-bit */
1647 case DMAR_FSTS_REG:
1648 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1649 ", size %d, val 0x%"PRIx64, addr, size, val);
1650 assert(size == 4);
1651 vtd_set_long(s, addr, val);
1652 vtd_handle_fsts_write(s);
1653 break;
1655 /* Fault Event Control Register, 32-bit */
1656 case DMAR_FECTL_REG:
1657 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1658 ", size %d, val 0x%"PRIx64, addr, size, val);
1659 assert(size == 4);
1660 vtd_set_long(s, addr, val);
1661 vtd_handle_fectl_write(s);
1662 break;
1664 /* Fault Event Data Register, 32-bit */
1665 case DMAR_FEDATA_REG:
1666 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1667 ", size %d, val 0x%"PRIx64, addr, size, val);
1668 assert(size == 4);
1669 vtd_set_long(s, addr, val);
1670 break;
1672 /* Fault Event Address Register, 32-bit */
1673 case DMAR_FEADDR_REG:
1674 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1675 ", size %d, val 0x%"PRIx64, addr, size, val);
1676 assert(size == 4);
1677 vtd_set_long(s, addr, val);
1678 break;
1680 /* Fault Event Upper Address Register, 32-bit */
1681 case DMAR_FEUADDR_REG:
1682 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1683 ", size %d, val 0x%"PRIx64, addr, size, val);
1684 assert(size == 4);
1685 vtd_set_long(s, addr, val);
1686 break;
1688 /* Protected Memory Enable Register, 32-bit */
1689 case DMAR_PMEN_REG:
1690 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1691 ", size %d, val 0x%"PRIx64, addr, size, val);
1692 assert(size == 4);
1693 vtd_set_long(s, addr, val);
1694 break;
1696 /* Root Table Address Register, 64-bit */
1697 case DMAR_RTADDR_REG:
1698 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1699 ", size %d, val 0x%"PRIx64, addr, size, val);
1700 if (size == 4) {
1701 vtd_set_long(s, addr, val);
1702 } else {
1703 vtd_set_quad(s, addr, val);
1705 break;
1707 case DMAR_RTADDR_REG_HI:
1708 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1709 ", size %d, val 0x%"PRIx64, addr, size, val);
1710 assert(size == 4);
1711 vtd_set_long(s, addr, val);
1712 break;
1714 /* Invalidation Queue Tail Register, 64-bit */
1715 case DMAR_IQT_REG:
1716 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1717 ", size %d, val 0x%"PRIx64, addr, size, val);
1718 if (size == 4) {
1719 vtd_set_long(s, addr, val);
1720 } else {
1721 vtd_set_quad(s, addr, val);
1723 vtd_handle_iqt_write(s);
1724 break;
1726 case DMAR_IQT_REG_HI:
1727 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1728 ", size %d, val 0x%"PRIx64, addr, size, val);
1729 assert(size == 4);
1730 vtd_set_long(s, addr, val);
1731 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1732 break;
1734 /* Invalidation Queue Address Register, 64-bit */
1735 case DMAR_IQA_REG:
1736 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1737 ", size %d, val 0x%"PRIx64, addr, size, val);
1738 if (size == 4) {
1739 vtd_set_long(s, addr, val);
1740 } else {
1741 vtd_set_quad(s, addr, val);
1743 break;
1745 case DMAR_IQA_REG_HI:
1746 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1747 ", size %d, val 0x%"PRIx64, addr, size, val);
1748 assert(size == 4);
1749 vtd_set_long(s, addr, val);
1750 break;
1752 /* Invalidation Completion Status Register, 32-bit */
1753 case DMAR_ICS_REG:
1754 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1755 ", size %d, val 0x%"PRIx64, addr, size, val);
1756 assert(size == 4);
1757 vtd_set_long(s, addr, val);
1758 vtd_handle_ics_write(s);
1759 break;
1761 /* Invalidation Event Control Register, 32-bit */
1762 case DMAR_IECTL_REG:
1763 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1764 ", size %d, val 0x%"PRIx64, addr, size, val);
1765 assert(size == 4);
1766 vtd_set_long(s, addr, val);
1767 vtd_handle_iectl_write(s);
1768 break;
1770 /* Invalidation Event Data Register, 32-bit */
1771 case DMAR_IEDATA_REG:
1772 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1773 ", size %d, val 0x%"PRIx64, addr, size, val);
1774 assert(size == 4);
1775 vtd_set_long(s, addr, val);
1776 break;
1778 /* Invalidation Event Address Register, 32-bit */
1779 case DMAR_IEADDR_REG:
1780 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1781 ", size %d, val 0x%"PRIx64, addr, size, val);
1782 assert(size == 4);
1783 vtd_set_long(s, addr, val);
1784 break;
1786 /* Invalidation Event Upper Address Register, 32-bit */
1787 case DMAR_IEUADDR_REG:
1788 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1789 ", size %d, val 0x%"PRIx64, addr, size, val);
1790 assert(size == 4);
1791 vtd_set_long(s, addr, val);
1792 break;
1794 /* Fault Recording Registers, 128-bit */
1795 case DMAR_FRCD_REG_0_0:
1796 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1797 ", size %d, val 0x%"PRIx64, addr, size, val);
1798 if (size == 4) {
1799 vtd_set_long(s, addr, val);
1800 } else {
1801 vtd_set_quad(s, addr, val);
1803 break;
1805 case DMAR_FRCD_REG_0_1:
1806 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1807 ", size %d, val 0x%"PRIx64, addr, size, val);
1808 assert(size == 4);
1809 vtd_set_long(s, addr, val);
1810 break;
1812 case DMAR_FRCD_REG_0_2:
1813 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1814 ", size %d, val 0x%"PRIx64, addr, size, val);
1815 if (size == 4) {
1816 vtd_set_long(s, addr, val);
1817 } else {
1818 vtd_set_quad(s, addr, val);
1819 /* May clear bit 127 (Fault), update PPF */
1820 vtd_update_fsts_ppf(s);
1822 break;
1824 case DMAR_FRCD_REG_0_3:
1825 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1826 ", size %d, val 0x%"PRIx64, addr, size, val);
1827 assert(size == 4);
1828 vtd_set_long(s, addr, val);
1829 /* May clear bit 127 (Fault), update PPF */
1830 vtd_update_fsts_ppf(s);
1831 break;
1833 default:
1834 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1835 ", size %d, val 0x%"PRIx64, addr, size, val);
1836 if (size == 4) {
1837 vtd_set_long(s, addr, val);
1838 } else {
1839 vtd_set_quad(s, addr, val);
1844 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1845 bool is_write)
1847 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1848 IntelIOMMUState *s = vtd_as->iommu_state;
1849 IOMMUTLBEntry ret = {
1850 .target_as = &address_space_memory,
1851 .iova = addr,
1852 .translated_addr = 0,
1853 .addr_mask = ~(hwaddr)0,
1854 .perm = IOMMU_NONE,
1857 if (!s->dmar_enabled) {
1858 /* DMAR disabled, passthrough, use 4k-page*/
1859 ret.iova = addr & VTD_PAGE_MASK_4K;
1860 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1861 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1862 ret.perm = IOMMU_RW;
1863 return ret;
1866 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1867 is_write, &ret);
1868 VTD_DPRINTF(MMU,
1869 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1870 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1871 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1872 vtd_as->devfn, addr, ret.translated_addr);
1873 return ret;
1876 static void vtd_iommu_notify_started(MemoryRegion *iommu)
1878 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1880 hw_error("Device at bus %s addr %02x.%d requires iommu notifier which "
1881 "is currently not supported by intel-iommu emulation",
1882 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1883 PCI_FUNC(vtd_as->devfn));
1886 static const VMStateDescription vtd_vmstate = {
1887 .name = "iommu-intel",
1888 .unmigratable = 1,
1891 static const MemoryRegionOps vtd_mem_ops = {
1892 .read = vtd_mem_read,
1893 .write = vtd_mem_write,
1894 .endianness = DEVICE_LITTLE_ENDIAN,
1895 .impl = {
1896 .min_access_size = 4,
1897 .max_access_size = 8,
1899 .valid = {
1900 .min_access_size = 4,
1901 .max_access_size = 8,
1905 static Property vtd_properties[] = {
1906 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1907 DEFINE_PROP_END_OF_LIST(),
1911 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1913 uintptr_t key = (uintptr_t)bus;
1914 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1915 VTDAddressSpace *vtd_dev_as;
1917 if (!vtd_bus) {
1918 /* No corresponding free() */
1919 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1920 vtd_bus->bus = bus;
1921 key = (uintptr_t)bus;
1922 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1925 vtd_dev_as = vtd_bus->dev_as[devfn];
1927 if (!vtd_dev_as) {
1928 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1930 vtd_dev_as->bus = bus;
1931 vtd_dev_as->devfn = (uint8_t)devfn;
1932 vtd_dev_as->iommu_state = s;
1933 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1934 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1935 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1936 address_space_init(&vtd_dev_as->as,
1937 &vtd_dev_as->iommu, "intel_iommu");
1939 return vtd_dev_as;
1942 /* Do the initialization. It will also be called when reset, so pay
1943 * attention when adding new initialization stuff.
1945 static void vtd_init(IntelIOMMUState *s)
1947 memset(s->csr, 0, DMAR_REG_SIZE);
1948 memset(s->wmask, 0, DMAR_REG_SIZE);
1949 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1950 memset(s->womask, 0, DMAR_REG_SIZE);
1952 s->iommu_ops.translate = vtd_iommu_translate;
1953 s->iommu_ops.notify_started = vtd_iommu_notify_started;
1954 s->root = 0;
1955 s->root_extended = false;
1956 s->dmar_enabled = false;
1957 s->iq_head = 0;
1958 s->iq_tail = 0;
1959 s->iq = 0;
1960 s->iq_size = 0;
1961 s->qi_enabled = false;
1962 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1963 s->next_frcd_reg = 0;
1964 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1965 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
1966 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1968 vtd_reset_context_cache(s);
1969 vtd_reset_iotlb(s);
1971 /* Define registers with default values and bit semantics */
1972 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1973 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1974 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1975 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1976 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1977 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1978 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1979 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1980 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1982 /* Advanced Fault Logging not supported */
1983 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1984 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1985 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1986 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1988 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1989 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1991 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1993 /* Treated as RO for implementations that PLMR and PHMR fields reported
1994 * as Clear in the CAP_REG.
1995 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1997 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1999 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2000 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2001 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2002 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2003 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2004 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2005 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2006 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2007 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2009 /* IOTLB registers */
2010 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2011 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2012 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2014 /* Fault Recording Registers, 128-bit */
2015 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2016 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2019 /* Should not reset address_spaces when reset because devices will still use
2020 * the address space they got at first (won't ask the bus again).
2022 static void vtd_reset(DeviceState *dev)
2024 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2026 VTD_DPRINTF(GENERAL, "");
2027 vtd_init(s);
2030 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2032 IntelIOMMUState *s = opaque;
2033 VTDAddressSpace *vtd_as;
2035 assert(0 <= devfn && devfn <= VTD_PCI_DEVFN_MAX);
2037 vtd_as = vtd_find_add_as(s, bus, devfn);
2038 return &vtd_as->as;
2041 static void vtd_realize(DeviceState *dev, Error **errp)
2043 PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
2044 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2046 VTD_DPRINTF(GENERAL, "");
2047 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2048 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2049 "intel_iommu", DMAR_REG_SIZE);
2050 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2051 /* No corresponding destroy */
2052 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2053 g_free, g_free);
2054 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2055 g_free, g_free);
2056 vtd_init(s);
2057 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2058 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2061 static void vtd_class_init(ObjectClass *klass, void *data)
2063 DeviceClass *dc = DEVICE_CLASS(klass);
2065 dc->reset = vtd_reset;
2066 dc->realize = vtd_realize;
2067 dc->vmsd = &vtd_vmstate;
2068 dc->props = vtd_properties;
2069 dc->hotpluggable = false;
2072 static const TypeInfo vtd_info = {
2073 .name = TYPE_INTEL_IOMMU_DEVICE,
2074 .parent = TYPE_SYS_BUS_DEVICE,
2075 .instance_size = sizeof(IntelIOMMUState),
2076 .class_init = vtd_class_init,
2079 static void vtd_register_types(void)
2081 VTD_DPRINTF(GENERAL, "");
2082 type_register_static(&vtd_info);
2085 type_init(vtd_register_types)