4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
11 { 'include': 'common.json' }
16 # The comprehensive enumeration of QEMU system emulation ("softmmu")
17 # targets. Run "./configure --help" in the project root directory, and
18 # look for the \*-softmmu targets near the "--target-list" option. The
19 # individual target constants are not documented here, for the time
25 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
26 # prefix to produce the corresponding QEMU executable name. This
27 # is true even for "qemu-system-x86_64".
31 { 'enum' : 'SysEmuTarget',
32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36 'sh4eb', 'sparc', 'sparc64', 'tricore',
37 'x86_64', 'xtensa', 'xtensaeb' ] }
42 # An enumeration of cpu states that can be assumed by a virtual
47 { 'enum': 'CpuS390State',
48 'prefix': 'S390_CPU_STATE',
49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
54 # Additional information about a virtual S390 CPU
56 # @cpu-state: the virtual CPU's state
60 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
65 # Information about a virtual CPU
67 # @cpu-index: index of the virtual CPU
69 # @qom-path: path to the CPU object in the QOM tree
71 # @thread-id: ID of the underlying host thread
73 # @props: properties describing to which node/socket/core/thread
74 # virtual CPU belongs to, provided if supported by board
76 # @target: the QEMU system emulation target, which determines which
77 # additional fields will be listed (since 3.0)
82 { 'union' : 'CpuInfoFast',
83 'base' : { 'cpu-index' : 'int',
86 '*props' : 'CpuInstanceProperties',
87 'target' : 'SysEmuTarget' },
88 'discriminator' : 'target',
89 'data' : { 's390x' : 'CpuInfoS390' } }
94 # Returns information about all virtual CPUs.
96 # Returns: list of @CpuInfoFast
102 # -> { "execute": "query-cpus-fast" }
105 # "thread-id": 25627,
111 # "qom-path": "/machine/unattached/device[0]",
117 # "thread-id": 25628,
123 # "qom-path": "/machine/unattached/device[2]",
131 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
136 # Information describing a machine.
138 # @name: the name of the machine
140 # @alias: an alias for the machine name
142 # @is-default: whether the machine is default
144 # @cpu-max: maximum number of CPUs supported by the machine type
147 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
149 # @numa-mem-supported: true if '-numa node,mem' option is supported by
150 # the machine type and false otherwise (since 4.1)
152 # @deprecated: if true, the machine type is deprecated and may be removed
153 # in future versions of QEMU according to the QEMU deprecation
156 # @default-cpu-type: default CPU model typename if none is requested via
157 # the -cpu argument. (since 4.2)
159 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
163 { 'struct': 'MachineInfo',
164 'data': { 'name': 'str', '*alias': 'str',
165 '*is-default': 'bool', 'cpu-max': 'int',
166 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
167 'deprecated': 'bool', '*default-cpu-type': 'str',
168 '*default-ram-id': 'str' } }
173 # Return a list of supported machines
175 # Returns: a list of MachineInfo
179 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
182 # @CurrentMachineParams:
184 # Information describing the running machine parameters.
186 # @wakeup-suspend-support: true if the machine supports wake up from
191 { 'struct': 'CurrentMachineParams',
192 'data': { 'wakeup-suspend-support': 'bool'} }
195 # @query-current-machine:
197 # Return information on the current virtual machine.
199 # Returns: CurrentMachineParams
203 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
208 # Information describing the QEMU target.
210 # @arch: the target architecture
214 { 'struct': 'TargetInfo',
215 'data': { 'arch': 'SysEmuTarget' } }
220 # Return information about the target for this QEMU
222 # Returns: TargetInfo
226 { 'command': 'query-target', 'returns': 'TargetInfo' }
231 # Guest UUID information (Universally Unique Identifier).
233 # @UUID: the UUID of the guest
237 # Notes: If no UUID was specified for the guest, a null UUID is returned.
239 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
244 # Query the guest UUID information.
246 # Returns: The @UuidInfo for the guest
252 # -> { "execute": "query-uuid" }
253 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
256 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
263 # @guid: the globally unique identifier
267 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
270 # @query-vm-generation-id:
272 # Show Virtual Machine Generation ID
276 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
281 # Performs a hard reset of a guest.
287 # -> { "execute": "system_reset" }
288 # <- { "return": {} }
291 { 'command': 'system_reset' }
296 # Requests that a guest perform a powerdown operation.
300 # Notes: A guest may or may not respond to this command. This command
301 # returning does not indicate that a guest has accepted the request or
302 # that it has shut down. Many guests will respond to this command by
303 # prompting the user in some way.
306 # -> { "execute": "system_powerdown" }
307 # <- { "return": {} }
310 { 'command': 'system_powerdown' }
315 # Wake up guest from suspend. If the guest has wake-up from suspend
316 # support enabled (wakeup-suspend-support flag from
317 # query-current-machine), wake-up guest from suspend if the guest is
318 # in SUSPENDED state. Return an error otherwise.
324 # Note: prior to 4.0, this command does nothing in case the guest
329 # -> { "execute": "system_wakeup" }
330 # <- { "return": {} }
333 { 'command': 'system_wakeup' }
338 # Policy for handling lost ticks in timer devices. Ticks end up getting
339 # lost when, for example, the guest is paused.
341 # @discard: throw away the missed ticks and continue with future injection
342 # normally. The guest OS will see the timer jump ahead by a
343 # potentially quite significant amount all at once, as if the
344 # intervening chunk of time had simply not existed; needless to
345 # say, such a sudden jump can easily confuse a guest OS which is
346 # not specifically prepared to deal with it. Assuming the guest
347 # OS can deal correctly with the time jump, the time in the guest
348 # and in the host should now match.
350 # @delay: continue to deliver ticks at the normal rate. The guest OS will
351 # not notice anything is amiss, as from its point of view time will
352 # have continued to flow normally. The time in the guest should now
353 # be behind the time in the host by exactly the amount of time during
354 # which ticks have been missed.
356 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
357 # The guest OS will not notice anything is amiss, as from its point
358 # of view time will have continued to flow normally. Once the timer
359 # has managed to catch up with all the missing ticks, the time in
360 # the guest and in the host should match.
364 { 'enum': 'LostTickPolicy',
365 'data': ['discard', 'delay', 'slew' ] }
370 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
371 # The command fails when the guest doesn't support injecting.
373 # Returns: If successful, nothing
377 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
381 # -> { "execute": "inject-nmi" }
382 # <- { "return": {} }
385 { 'command': 'inject-nmi' }
390 # Information about support for KVM acceleration
392 # @enabled: true if KVM acceleration is active
394 # @present: true if KVM acceleration is built into this executable
398 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
403 # Returns information about KVM acceleration
411 # -> { "execute": "query-kvm" }
412 # <- { "return": { "enabled": true, "present": true } }
415 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
420 # @node: NUMA nodes configuration
422 # @dist: NUMA distance configuration (since 2.10)
424 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
426 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
428 # @hmat-cache: memory side cache information (Since: 5.0)
432 { 'enum': 'NumaOptionsType',
433 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
438 # A discriminated record of NUMA options. (for OptsVisitor)
442 { 'union': 'NumaOptions',
443 'base': { 'type': 'NumaOptionsType' },
444 'discriminator': 'type',
446 'node': 'NumaNodeOptions',
447 'dist': 'NumaDistOptions',
448 'cpu': 'NumaCpuOptions',
449 'hmat-lb': 'NumaHmatLBOptions',
450 'hmat-cache': 'NumaHmatCacheOptions' }}
455 # Create a guest NUMA node. (for OptsVisitor)
457 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
459 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
462 # @mem: memory size of this node; mutually exclusive with @memdev.
463 # Equally divide total memory among nodes if both @mem and @memdev are
466 # @memdev: memory backend object. If specified for one node,
467 # it must be specified for all nodes.
469 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
470 # points to the nodeid which has the memory controller
471 # responsible for this NUMA node. This field provides
472 # additional information as to the initiator node that
473 # is closest (as in directly attached) to this node, and
474 # therefore has the best performance (since 5.0)
478 { 'struct': 'NumaNodeOptions',
484 '*initiator': 'uint16' }}
489 # Set the distance between 2 NUMA nodes.
491 # @src: source NUMA node.
493 # @dst: destination NUMA node.
495 # @val: NUMA distance from source node to destination node.
496 # When a node is unreachable from another node, set the distance
497 # between them to 255.
501 { 'struct': 'NumaDistOptions',
510 # A X86 32-bit register
514 { 'enum': 'X86CPURegister32',
515 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
518 # @X86CPUFeatureWordInfo:
520 # Information about a X86 CPU feature word
522 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
524 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
527 # @cpuid-register: Output register containing the feature bits
529 # @features: value of output register, containing the feature bits
533 { 'struct': 'X86CPUFeatureWordInfo',
534 'data': { 'cpuid-input-eax': 'int',
535 '*cpuid-input-ecx': 'int',
536 'cpuid-register': 'X86CPURegister32',
537 'features': 'int' } }
542 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
546 { 'struct': 'DummyForceArrays',
547 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
552 # Option "-numa cpu" overrides default cpu to node mapping.
553 # It accepts the same set of cpu properties as returned by
554 # query-hotpluggable-cpus[].props, where node-id could be used to
555 # override default node mapping.
559 { 'struct': 'NumaCpuOptions',
560 'base': 'CpuInstanceProperties',
564 # @HmatLBMemoryHierarchy:
566 # The memory hierarchy in the System Locality Latency and Bandwidth
567 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
569 # For more information about @HmatLBMemoryHierarchy, see chapter
570 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
572 # @memory: the structure represents the memory performance
574 # @first-level: first level of memory side cache
576 # @second-level: second level of memory side cache
578 # @third-level: third level of memory side cache
582 { 'enum': 'HmatLBMemoryHierarchy',
583 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
588 # Data type in the System Locality Latency and Bandwidth
589 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
591 # For more information about @HmatLBDataType, see chapter
592 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
594 # @access-latency: access latency (nanoseconds)
596 # @read-latency: read latency (nanoseconds)
598 # @write-latency: write latency (nanoseconds)
600 # @access-bandwidth: access bandwidth (Bytes per second)
602 # @read-bandwidth: read bandwidth (Bytes per second)
604 # @write-bandwidth: write bandwidth (Bytes per second)
608 { 'enum': 'HmatLBDataType',
609 'data': [ 'access-latency', 'read-latency', 'write-latency',
610 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
613 # @NumaHmatLBOptions:
615 # Set the system locality latency and bandwidth information
616 # between Initiator and Target proximity Domains.
618 # For more information about @NumaHmatLBOptions, see chapter
619 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
621 # @initiator: the Initiator Proximity Domain.
623 # @target: the Target Proximity Domain.
625 # @hierarchy: the Memory Hierarchy. Indicates the performance
626 # of memory or side cache.
628 # @data-type: presents the type of data, access/read/write
629 # latency or hit latency.
631 # @latency: the value of latency from @initiator to @target
632 # proximity domain, the latency unit is "ns(nanosecond)".
634 # @bandwidth: the value of bandwidth between @initiator and @target
635 # proximity domain, the bandwidth unit is
636 # "Bytes per second".
640 { 'struct': 'NumaHmatLBOptions',
642 'initiator': 'uint16',
644 'hierarchy': 'HmatLBMemoryHierarchy',
645 'data-type': 'HmatLBDataType',
646 '*latency': 'uint64',
647 '*bandwidth': 'size' }}
650 # @HmatCacheAssociativity:
652 # Cache associativity in the Memory Side Cache Information Structure
655 # For more information of @HmatCacheAssociativity, see chapter
656 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
658 # @none: None (no memory side cache in this proximity domain,
659 # or cache associativity unknown)
661 # @direct: Direct Mapped
663 # @complex: Complex Cache Indexing (implementation specific)
667 { 'enum': 'HmatCacheAssociativity',
668 'data': [ 'none', 'direct', 'complex' ] }
671 # @HmatCacheWritePolicy:
673 # Cache write policy in the Memory Side Cache Information Structure
676 # For more information of @HmatCacheWritePolicy, see chapter
677 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
679 # @none: None (no memory side cache in this proximity domain,
680 # or cache write policy unknown)
682 # @write-back: Write Back (WB)
684 # @write-through: Write Through (WT)
688 { 'enum': 'HmatCacheWritePolicy',
689 'data': [ 'none', 'write-back', 'write-through' ] }
692 # @NumaHmatCacheOptions:
694 # Set the memory side cache information for a given memory domain.
696 # For more information of @NumaHmatCacheOptions, see chapter
697 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
699 # @node-id: the memory proximity domain to which the memory belongs.
701 # @size: the size of memory side cache in bytes.
703 # @level: the cache level described in this structure.
705 # @associativity: the cache associativity,
706 # none/direct-mapped/complex(complex cache indexing).
708 # @policy: the write policy, none/write-back/write-through.
710 # @line: the cache Line size in bytes.
714 { 'struct': 'NumaHmatCacheOptions',
719 'associativity': 'HmatCacheAssociativity',
720 'policy': 'HmatCacheWritePolicy',
726 # Save a portion of guest memory to a file.
728 # @val: the virtual address of the guest to start from
730 # @size: the size of memory region to save
732 # @filename: the file to save the memory to as binary data
734 # @cpu-index: the index of the virtual CPU to use for translating the
735 # virtual address (defaults to CPU 0)
737 # Returns: Nothing on success
741 # Notes: Errors were not reliably returned until 1.1
745 # -> { "execute": "memsave",
746 # "arguments": { "val": 10,
748 # "filename": "/tmp/virtual-mem-dump" } }
749 # <- { "return": {} }
752 { 'command': 'memsave',
753 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
758 # Save a portion of guest physical memory to a file.
760 # @val: the physical address of the guest to start from
762 # @size: the size of memory region to save
764 # @filename: the file to save the memory to as binary data
766 # Returns: Nothing on success
770 # Notes: Errors were not reliably returned until 1.1
774 # -> { "execute": "pmemsave",
775 # "arguments": { "val": 10,
777 # "filename": "/tmp/physical-mem-dump" } }
778 # <- { "return": {} }
781 { 'command': 'pmemsave',
782 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
787 # Information about memory backend
789 # @id: backend's ID if backend has 'id' property (since 2.9)
791 # @size: memory backend size
793 # @merge: whether memory merge support is enabled
795 # @dump: whether memory backend's memory is included in a core dump
797 # @prealloc: whether memory was preallocated
799 # @share: whether memory is private to QEMU or shared (since 6.1)
801 # @reserve: whether swap space (or huge pages) was reserved if applicable.
802 # This corresponds to the user configuration and not the actual
803 # behavior implemented in the OS to perform the reservation.
804 # For example, Linux will never reserve swap space for shared
805 # file mappings. (since 6.1)
807 # @host-nodes: host nodes for its memory policy
809 # @policy: memory policy of memory backend
813 { 'struct': 'Memdev',
822 'host-nodes': ['uint16'],
823 'policy': 'HostMemPolicy' }}
828 # Returns information for all memory backends.
830 # Returns: a list of @Memdev.
836 # -> { "execute": "query-memdev" }
844 # "host-nodes": [0, 1],
852 # "host-nodes": [2, 3],
853 # "policy": "preferred"
859 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
862 # @CpuInstanceProperties:
864 # List of properties to be used for hotplugging a CPU instance,
865 # it should be passed by management with device_add command when
866 # a CPU is being hotplugged.
868 # @node-id: NUMA node ID the CPU belongs to
869 # @socket-id: socket number within node/board the CPU belongs to
870 # @die-id: die number within node/board the CPU belongs to (Since 4.1)
871 # @core-id: core number within die the CPU belongs to
872 # @thread-id: thread number within core the CPU belongs to
874 # Note: currently there are 5 properties that could be present
875 # but management should be prepared to pass through other
876 # properties with device_add command to allow for future
877 # interface extension. This also requires the filed names to be kept in
878 # sync with the properties passed to -device/device_add.
882 { 'struct': 'CpuInstanceProperties',
883 'data': { '*node-id': 'int',
894 # @type: CPU object type for usage with device_add command
895 # @props: list of properties to be used for hotplugging CPU
896 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
897 # @qom-path: link to existing CPU object if CPU is present or
898 # omitted if CPU is not present.
902 { 'struct': 'HotpluggableCPU',
903 'data': { 'type': 'str',
904 'vcpus-count': 'int',
905 'props': 'CpuInstanceProperties',
911 # @query-hotpluggable-cpus:
913 # TODO: Better documentation; currently there is none.
915 # Returns: a list of HotpluggableCPU objects.
921 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
923 # -> { "execute": "query-hotpluggable-cpus" }
925 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
926 # "vcpus-count": 1 },
927 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
928 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
931 # For pc machine type started with -smp 1,maxcpus=2:
933 # -> { "execute": "query-hotpluggable-cpus" }
936 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
937 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
940 # "qom-path": "/machine/unattached/device[0]",
941 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
942 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
946 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
949 # -> { "execute": "query-hotpluggable-cpus" }
952 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
953 # "props": { "core-id": 1 }
956 # "qom-path": "/machine/unattached/device[0]",
957 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
958 # "props": { "core-id": 0 }
963 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
964 'allow-preconfig': true }
969 # Runtime equivalent of '-numa' CLI option, available at
970 # preconfigure stage to configure numa mapping before initializing
975 { 'command': 'set-numa-node', 'boxed': true,
976 'data': 'NumaOptions',
977 'allow-preconfig': true
983 # Request the balloon driver to change its balloon size.
985 # @value: the target logical size of the VM in bytes.
986 # We can deduce the size of the balloon using this formula:
988 # logical_vm_size = vm_ram_size - balloon_size
990 # From it we have: balloon_size = vm_ram_size - @value
992 # Returns: - Nothing on success
993 # - If the balloon driver is enabled but not functional because the KVM
994 # kernel module cannot support it, KvmMissingCap
995 # - If no balloon device is present, DeviceNotActive
997 # Notes: This command just issues a request to the guest. When it returns,
998 # the balloon size may not have changed. A guest can change the balloon
999 # size independent of this command.
1005 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1006 # <- { "return": {} }
1008 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1011 { 'command': 'balloon', 'data': {'value': 'int'} }
1016 # Information about the guest balloon device.
1018 # @actual: the logical size of the VM in bytes
1019 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1024 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1029 # Return information about the balloon device.
1031 # Returns: - @BalloonInfo on success
1032 # - If the balloon driver is enabled but not functional because the KVM
1033 # kernel module cannot support it, KvmMissingCap
1034 # - If no balloon device is present, DeviceNotActive
1040 # -> { "execute": "query-balloon" }
1042 # "actual": 1073741824,
1047 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1052 # Emitted when the guest changes the actual BALLOON level. This value is
1053 # equivalent to the @actual field return by the 'query-balloon' command
1055 # @actual: the logical size of the VM in bytes
1056 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1058 # Note: this event is rate-limited.
1064 # <- { "event": "BALLOON_CHANGE",
1065 # "data": { "actual": 944766976 },
1066 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1069 { 'event': 'BALLOON_CHANGE',
1070 'data': { 'actual': 'int' } }
1075 # Actual memory information in bytes.
1077 # @base-memory: size of "base" memory specified with command line
1080 # @plugged-memory: size of memory that can be hot-unplugged. This field
1081 # is omitted if target doesn't support memory hotplug
1082 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1086 { 'struct': 'MemoryInfo',
1087 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1090 # @query-memory-size-summary:
1092 # Return the amount of initially allocated and present hotpluggable (if
1093 # enabled) memory in bytes.
1097 # -> { "execute": "query-memory-size-summary" }
1098 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1102 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1105 # @PCDIMMDeviceInfo:
1107 # PCDIMMDevice state information
1111 # @addr: physical address, where device is mapped
1113 # @size: size of memory that the device provides
1115 # @slot: slot number at which device is plugged in
1117 # @node: NUMA node number where device is plugged in
1119 # @memdev: memory backend linked with device
1121 # @hotplugged: true if device was hotplugged
1123 # @hotpluggable: true if device if could be added/removed while machine is running
1127 { 'struct': 'PCDIMMDeviceInfo',
1128 'data': { '*id': 'str',
1134 'hotplugged': 'bool',
1135 'hotpluggable': 'bool'
1140 # @VirtioPMEMDeviceInfo:
1142 # VirtioPMEM state information
1146 # @memaddr: physical address in memory, where device is mapped
1148 # @size: size of memory that the device provides
1150 # @memdev: memory backend linked with device
1154 { 'struct': 'VirtioPMEMDeviceInfo',
1155 'data': { '*id': 'str',
1163 # @VirtioMEMDeviceInfo:
1165 # VirtioMEMDevice state information
1169 # @memaddr: physical address in memory, where device is mapped
1171 # @requested-size: the user requested size of the device
1173 # @size: the (current) size of memory that the device provides
1175 # @max-size: the maximum size of memory that the device can provide
1177 # @block-size: the block size of memory that the device provides
1179 # @node: NUMA node number where device is assigned to
1181 # @memdev: memory backend linked with the region
1185 { 'struct': 'VirtioMEMDeviceInfo',
1186 'data': { '*id': 'str',
1188 'requested-size': 'size',
1191 'block-size': 'size',
1198 # @SgxEPCDeviceInfo:
1200 # Sgx EPC state information
1204 # @memaddr: physical address in memory, where device is mapped
1206 # @size: size of memory that the device provides
1208 # @memdev: memory backend linked with device
1212 { 'struct': 'SgxEPCDeviceInfo',
1213 'data': { '*id': 'str',
1221 # @MemoryDeviceInfoKind:
1225 { 'enum': 'MemoryDeviceInfoKind',
1226 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1229 # @PCDIMMDeviceInfoWrapper:
1233 { 'struct': 'PCDIMMDeviceInfoWrapper',
1234 'data': { 'data': 'PCDIMMDeviceInfo' } }
1237 # @VirtioPMEMDeviceInfoWrapper:
1241 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1242 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1245 # @VirtioMEMDeviceInfoWrapper:
1249 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1250 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1253 # @SgxEPCDeviceInfoWrapper:
1257 { 'struct': 'SgxEPCDeviceInfoWrapper',
1258 'data': { 'data': 'SgxEPCDeviceInfo' } }
1261 # @MemoryDeviceInfo:
1263 # Union containing information about a memory device
1265 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1266 # virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1270 { 'union': 'MemoryDeviceInfo',
1271 'base': { 'type': 'MemoryDeviceInfoKind' },
1272 'discriminator': 'type',
1273 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1274 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1275 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1276 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1277 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1284 # Sgx EPC cmdline information
1286 # @memdev: memory backend linked with device
1290 { 'struct': 'SgxEPC',
1291 'data': { 'memdev': 'str' } }
1294 # @SgxEPCProperties:
1296 # SGX properties of machine types.
1298 # @sgx-epc: list of ids of memory-backend-epc objects.
1302 { 'struct': 'SgxEPCProperties',
1303 'data': { 'sgx-epc': ['SgxEPC'] }
1307 # @query-memory-devices:
1309 # Lists available memory devices and their state
1315 # -> { "execute": "query-memory-devices" }
1316 # <- { "return": [ { "data":
1317 # { "addr": 5368709120,
1318 # "hotpluggable": true,
1319 # "hotplugged": true,
1321 # "memdev": "/objects/memX",
1323 # "size": 1073741824,
1329 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1332 # @MEMORY_DEVICE_SIZE_CHANGE:
1334 # Emitted when the size of a memory device changes. Only emitted for memory
1335 # devices that can actually change the size (e.g., virtio-mem due to guest
1340 # @size: the new size of memory that the device provides
1342 # @qom-path: path to the device object in the QOM tree (since 6.2)
1344 # Note: this event is rate-limited.
1350 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1351 # "data": { "id": "vm0", "size": 1073741824},
1352 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1355 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1356 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1360 # @MEM_UNPLUG_ERROR:
1362 # Emitted when memory hot unplug error occurs.
1364 # @device: device name
1366 # @msg: Informative message
1369 # @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1376 # <- { "event": "MEM_UNPLUG_ERROR"
1377 # "data": { "device": "dimm1",
1378 # "msg": "acpi: device unplug for unsupported device"
1380 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1383 { 'event': 'MEM_UNPLUG_ERROR',
1384 'data': { 'device': 'str', 'msg': 'str' },
1385 'features': ['deprecated'] }
1388 # @SMPConfiguration:
1390 # Schema for CPU topology configuration. A missing value lets
1391 # QEMU figure out a suitable value based on the ones that are provided.
1393 # @cpus: number of virtual CPUs in the virtual machine
1395 # @sockets: number of sockets in the CPU topology
1397 # @dies: number of dies per socket in the CPU topology
1399 # @cores: number of cores per die in the CPU topology
1401 # @threads: number of threads per core in the CPU topology
1403 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1407 { 'struct': 'SMPConfiguration', 'data': {
1413 '*maxcpus': 'int' } }