memory: differentiate memory_region_is_logging and memory_region_get_dirty_log_mask
[qemu.git] / kvm-all.c
blobd5416bbd7451c388365e7ebbd214e466bf5fa1dd
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 AccelState parent_obj;
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109 #endif
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 KVMState *kvm_state;
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_resamplefds_allowed;
124 bool kvm_msi_via_irqfd_allowed;
125 bool kvm_gsi_routing_allowed;
126 bool kvm_gsi_direct_mapping;
127 bool kvm_allowed;
128 bool kvm_readonly_mem_allowed;
129 bool kvm_vm_attributes_allowed;
131 static const KVMCapabilityInfo kvm_required_capabilites[] = {
132 KVM_CAP_INFO(USER_MEMORY),
133 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
134 KVM_CAP_LAST_INFO
137 static KVMSlot *kvm_get_free_slot(KVMState *s)
139 int i;
141 for (i = 0; i < s->nr_slots; i++) {
142 if (s->slots[i].memory_size == 0) {
143 return &s->slots[i];
147 return NULL;
150 bool kvm_has_free_slot(MachineState *ms)
152 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
155 static KVMSlot *kvm_alloc_slot(KVMState *s)
157 KVMSlot *slot = kvm_get_free_slot(s);
159 if (slot) {
160 return slot;
163 fprintf(stderr, "%s: no free slot available\n", __func__);
164 abort();
167 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
168 hwaddr start_addr,
169 hwaddr end_addr)
171 int i;
173 for (i = 0; i < s->nr_slots; i++) {
174 KVMSlot *mem = &s->slots[i];
176 if (start_addr == mem->start_addr &&
177 end_addr == mem->start_addr + mem->memory_size) {
178 return mem;
182 return NULL;
186 * Find overlapping slot with lowest start address
188 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
189 hwaddr start_addr,
190 hwaddr end_addr)
192 KVMSlot *found = NULL;
193 int i;
195 for (i = 0; i < s->nr_slots; i++) {
196 KVMSlot *mem = &s->slots[i];
198 if (mem->memory_size == 0 ||
199 (found && found->start_addr < mem->start_addr)) {
200 continue;
203 if (end_addr > mem->start_addr &&
204 start_addr < mem->start_addr + mem->memory_size) {
205 found = mem;
209 return found;
212 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
213 hwaddr *phys_addr)
215 int i;
217 for (i = 0; i < s->nr_slots; i++) {
218 KVMSlot *mem = &s->slots[i];
220 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
221 *phys_addr = mem->start_addr + (ram - mem->ram);
222 return 1;
226 return 0;
229 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
231 struct kvm_userspace_memory_region mem;
233 mem.slot = slot->slot;
234 mem.guest_phys_addr = slot->start_addr;
235 mem.userspace_addr = (unsigned long)slot->ram;
236 mem.flags = slot->flags;
237 if (s->migration_log) {
238 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
241 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
242 /* Set the slot size to 0 before setting the slot to the desired
243 * value. This is needed based on KVM commit 75d61fbc. */
244 mem.memory_size = 0;
245 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
247 mem.memory_size = slot->memory_size;
248 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
251 int kvm_init_vcpu(CPUState *cpu)
253 KVMState *s = kvm_state;
254 long mmap_size;
255 int ret;
257 DPRINTF("kvm_init_vcpu\n");
259 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
260 if (ret < 0) {
261 DPRINTF("kvm_create_vcpu failed\n");
262 goto err;
265 cpu->kvm_fd = ret;
266 cpu->kvm_state = s;
267 cpu->kvm_vcpu_dirty = true;
269 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
270 if (mmap_size < 0) {
271 ret = mmap_size;
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
273 goto err;
276 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
277 cpu->kvm_fd, 0);
278 if (cpu->kvm_run == MAP_FAILED) {
279 ret = -errno;
280 DPRINTF("mmap'ing vcpu state failed\n");
281 goto err;
284 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
285 s->coalesced_mmio_ring =
286 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
289 ret = kvm_arch_init_vcpu(cpu);
290 err:
291 return ret;
295 * dirty pages logging control
298 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
300 int flags = 0;
301 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
302 if (readonly && kvm_readonly_mem_allowed) {
303 flags |= KVM_MEM_READONLY;
305 return flags;
308 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
310 KVMState *s = kvm_state;
311 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
312 int old_flags;
314 old_flags = mem->flags;
316 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
317 mem->flags = flags;
319 /* If nothing changed effectively, no need to issue ioctl */
320 if (s->migration_log) {
321 flags |= KVM_MEM_LOG_DIRTY_PAGES;
324 if (flags == old_flags) {
325 return 0;
328 return kvm_set_user_memory_region(s, mem);
331 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
332 ram_addr_t size, bool log_dirty)
334 KVMState *s = kvm_state;
335 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
337 if (mem == NULL) {
338 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
339 TARGET_FMT_plx "\n", __func__, phys_addr,
340 (hwaddr)(phys_addr + size - 1));
341 return -EINVAL;
343 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
346 static void kvm_log_start(MemoryListener *listener,
347 MemoryRegionSection *section)
349 int r;
351 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
352 int128_get64(section->size), true);
353 if (r < 0) {
354 abort();
358 static void kvm_log_stop(MemoryListener *listener,
359 MemoryRegionSection *section)
361 int r;
363 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
364 int128_get64(section->size), false);
365 if (r < 0) {
366 abort();
370 static int kvm_set_migration_log(bool enable)
372 KVMState *s = kvm_state;
373 KVMSlot *mem;
374 int i, err;
376 s->migration_log = enable;
378 for (i = 0; i < s->nr_slots; i++) {
379 mem = &s->slots[i];
381 if (!mem->memory_size) {
382 continue;
384 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
385 continue;
387 err = kvm_set_user_memory_region(s, mem);
388 if (err) {
389 return err;
392 return 0;
395 /* get kvm's dirty pages bitmap and update qemu's */
396 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
397 unsigned long *bitmap)
399 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
400 ram_addr_t pages = int128_get64(section->size) / getpagesize();
402 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
403 return 0;
406 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
409 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
410 * This function updates qemu's dirty bitmap using
411 * memory_region_set_dirty(). This means all bits are set
412 * to dirty.
414 * @start_add: start of logged region.
415 * @end_addr: end of logged region.
417 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
419 KVMState *s = kvm_state;
420 unsigned long size, allocated_size = 0;
421 KVMDirtyLog d = {};
422 KVMSlot *mem;
423 int ret = 0;
424 hwaddr start_addr = section->offset_within_address_space;
425 hwaddr end_addr = start_addr + int128_get64(section->size);
427 d.dirty_bitmap = NULL;
428 while (start_addr < end_addr) {
429 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
430 if (mem == NULL) {
431 break;
434 /* XXX bad kernel interface alert
435 * For dirty bitmap, kernel allocates array of size aligned to
436 * bits-per-long. But for case when the kernel is 64bits and
437 * the userspace is 32bits, userspace can't align to the same
438 * bits-per-long, since sizeof(long) is different between kernel
439 * and user space. This way, userspace will provide buffer which
440 * may be 4 bytes less than the kernel will use, resulting in
441 * userspace memory corruption (which is not detectable by valgrind
442 * too, in most cases).
443 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
444 * a hope that sizeof(long) wont become >8 any time soon.
446 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
447 /*HOST_LONG_BITS*/ 64) / 8;
448 if (!d.dirty_bitmap) {
449 d.dirty_bitmap = g_malloc(size);
450 } else if (size > allocated_size) {
451 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
453 allocated_size = size;
454 memset(d.dirty_bitmap, 0, allocated_size);
456 d.slot = mem->slot;
458 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
459 DPRINTF("ioctl failed %d\n", errno);
460 ret = -1;
461 break;
464 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
465 start_addr = mem->start_addr + mem->memory_size;
467 g_free(d.dirty_bitmap);
469 return ret;
472 static void kvm_coalesce_mmio_region(MemoryListener *listener,
473 MemoryRegionSection *secion,
474 hwaddr start, hwaddr size)
476 KVMState *s = kvm_state;
478 if (s->coalesced_mmio) {
479 struct kvm_coalesced_mmio_zone zone;
481 zone.addr = start;
482 zone.size = size;
483 zone.pad = 0;
485 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
489 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
490 MemoryRegionSection *secion,
491 hwaddr start, hwaddr size)
493 KVMState *s = kvm_state;
495 if (s->coalesced_mmio) {
496 struct kvm_coalesced_mmio_zone zone;
498 zone.addr = start;
499 zone.size = size;
500 zone.pad = 0;
502 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
506 int kvm_check_extension(KVMState *s, unsigned int extension)
508 int ret;
510 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
511 if (ret < 0) {
512 ret = 0;
515 return ret;
518 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
520 int ret;
522 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
523 if (ret < 0) {
524 /* VM wide version not implemented, use global one instead */
525 ret = kvm_check_extension(s, extension);
528 return ret;
531 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
533 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
534 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
535 * endianness, but the memory core hands them in target endianness.
536 * For example, PPC is always treated as big-endian even if running
537 * on KVM and on PPC64LE. Correct here.
539 switch (size) {
540 case 2:
541 val = bswap16(val);
542 break;
543 case 4:
544 val = bswap32(val);
545 break;
547 #endif
548 return val;
551 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
552 bool assign, uint32_t size, bool datamatch)
554 int ret;
555 struct kvm_ioeventfd iofd = {
556 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
557 .addr = addr,
558 .len = size,
559 .flags = 0,
560 .fd = fd,
563 if (!kvm_enabled()) {
564 return -ENOSYS;
567 if (datamatch) {
568 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
570 if (!assign) {
571 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
574 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
576 if (ret < 0) {
577 return -errno;
580 return 0;
583 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
584 bool assign, uint32_t size, bool datamatch)
586 struct kvm_ioeventfd kick = {
587 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
588 .addr = addr,
589 .flags = KVM_IOEVENTFD_FLAG_PIO,
590 .len = size,
591 .fd = fd,
593 int r;
594 if (!kvm_enabled()) {
595 return -ENOSYS;
597 if (datamatch) {
598 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
600 if (!assign) {
601 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
603 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
604 if (r < 0) {
605 return r;
607 return 0;
611 static int kvm_check_many_ioeventfds(void)
613 /* Userspace can use ioeventfd for io notification. This requires a host
614 * that supports eventfd(2) and an I/O thread; since eventfd does not
615 * support SIGIO it cannot interrupt the vcpu.
617 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
618 * can avoid creating too many ioeventfds.
620 #if defined(CONFIG_EVENTFD)
621 int ioeventfds[7];
622 int i, ret = 0;
623 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
624 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
625 if (ioeventfds[i] < 0) {
626 break;
628 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
629 if (ret < 0) {
630 close(ioeventfds[i]);
631 break;
635 /* Decide whether many devices are supported or not */
636 ret = i == ARRAY_SIZE(ioeventfds);
638 while (i-- > 0) {
639 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
640 close(ioeventfds[i]);
642 return ret;
643 #else
644 return 0;
645 #endif
648 static const KVMCapabilityInfo *
649 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
651 while (list->name) {
652 if (!kvm_check_extension(s, list->value)) {
653 return list;
655 list++;
657 return NULL;
660 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
662 KVMState *s = kvm_state;
663 KVMSlot *mem, old;
664 int err;
665 MemoryRegion *mr = section->mr;
666 bool log_dirty =
667 memory_region_get_dirty_log_mask(mr) & ~(1 << DIRTY_MEMORY_MIGRATION);
668 bool writeable = !mr->readonly && !mr->rom_device;
669 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
670 hwaddr start_addr = section->offset_within_address_space;
671 ram_addr_t size = int128_get64(section->size);
672 void *ram = NULL;
673 unsigned delta;
675 /* kvm works in page size chunks, but the function may be called
676 with sub-page size and unaligned start address. Pad the start
677 address to next and truncate size to previous page boundary. */
678 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
679 delta &= ~TARGET_PAGE_MASK;
680 if (delta > size) {
681 return;
683 start_addr += delta;
684 size -= delta;
685 size &= TARGET_PAGE_MASK;
686 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
687 return;
690 if (!memory_region_is_ram(mr)) {
691 if (writeable || !kvm_readonly_mem_allowed) {
692 return;
693 } else if (!mr->romd_mode) {
694 /* If the memory device is not in romd_mode, then we actually want
695 * to remove the kvm memory slot so all accesses will trap. */
696 add = false;
700 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
702 while (1) {
703 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704 if (!mem) {
705 break;
708 if (add && start_addr >= mem->start_addr &&
709 (start_addr + size <= mem->start_addr + mem->memory_size) &&
710 (ram - start_addr == mem->ram - mem->start_addr)) {
711 /* The new slot fits into the existing one and comes with
712 * identical parameters - update flags and done. */
713 kvm_slot_dirty_pages_log_change(mem, log_dirty);
714 return;
717 old = *mem;
719 if ((mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || s->migration_log) {
720 kvm_physical_sync_dirty_bitmap(section);
723 /* unregister the overlapping slot */
724 mem->memory_size = 0;
725 err = kvm_set_user_memory_region(s, mem);
726 if (err) {
727 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
728 __func__, strerror(-err));
729 abort();
732 /* Workaround for older KVM versions: we can't join slots, even not by
733 * unregistering the previous ones and then registering the larger
734 * slot. We have to maintain the existing fragmentation. Sigh.
736 * This workaround assumes that the new slot starts at the same
737 * address as the first existing one. If not or if some overlapping
738 * slot comes around later, we will fail (not seen in practice so far)
739 * - and actually require a recent KVM version. */
740 if (s->broken_set_mem_region &&
741 old.start_addr == start_addr && old.memory_size < size && add) {
742 mem = kvm_alloc_slot(s);
743 mem->memory_size = old.memory_size;
744 mem->start_addr = old.start_addr;
745 mem->ram = old.ram;
746 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
748 err = kvm_set_user_memory_region(s, mem);
749 if (err) {
750 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
751 strerror(-err));
752 abort();
755 start_addr += old.memory_size;
756 ram += old.memory_size;
757 size -= old.memory_size;
758 continue;
761 /* register prefix slot */
762 if (old.start_addr < start_addr) {
763 mem = kvm_alloc_slot(s);
764 mem->memory_size = start_addr - old.start_addr;
765 mem->start_addr = old.start_addr;
766 mem->ram = old.ram;
767 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
769 err = kvm_set_user_memory_region(s, mem);
770 if (err) {
771 fprintf(stderr, "%s: error registering prefix slot: %s\n",
772 __func__, strerror(-err));
773 #ifdef TARGET_PPC
774 fprintf(stderr, "%s: This is probably because your kernel's " \
775 "PAGE_SIZE is too big. Please try to use 4k " \
776 "PAGE_SIZE!\n", __func__);
777 #endif
778 abort();
782 /* register suffix slot */
783 if (old.start_addr + old.memory_size > start_addr + size) {
784 ram_addr_t size_delta;
786 mem = kvm_alloc_slot(s);
787 mem->start_addr = start_addr + size;
788 size_delta = mem->start_addr - old.start_addr;
789 mem->memory_size = old.memory_size - size_delta;
790 mem->ram = old.ram + size_delta;
791 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
793 err = kvm_set_user_memory_region(s, mem);
794 if (err) {
795 fprintf(stderr, "%s: error registering suffix slot: %s\n",
796 __func__, strerror(-err));
797 abort();
802 /* in case the KVM bug workaround already "consumed" the new slot */
803 if (!size) {
804 return;
806 if (!add) {
807 return;
809 mem = kvm_alloc_slot(s);
810 mem->memory_size = size;
811 mem->start_addr = start_addr;
812 mem->ram = ram;
813 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
815 err = kvm_set_user_memory_region(s, mem);
816 if (err) {
817 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
818 strerror(-err));
819 abort();
823 static void kvm_region_add(MemoryListener *listener,
824 MemoryRegionSection *section)
826 memory_region_ref(section->mr);
827 kvm_set_phys_mem(section, true);
830 static void kvm_region_del(MemoryListener *listener,
831 MemoryRegionSection *section)
833 kvm_set_phys_mem(section, false);
834 memory_region_unref(section->mr);
837 static void kvm_log_sync(MemoryListener *listener,
838 MemoryRegionSection *section)
840 int r;
842 r = kvm_physical_sync_dirty_bitmap(section);
843 if (r < 0) {
844 abort();
848 static void kvm_log_global_start(struct MemoryListener *listener)
850 int r;
852 r = kvm_set_migration_log(1);
853 assert(r >= 0);
856 static void kvm_log_global_stop(struct MemoryListener *listener)
858 int r;
860 r = kvm_set_migration_log(0);
861 assert(r >= 0);
864 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
865 MemoryRegionSection *section,
866 bool match_data, uint64_t data,
867 EventNotifier *e)
869 int fd = event_notifier_get_fd(e);
870 int r;
872 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
873 data, true, int128_get64(section->size),
874 match_data);
875 if (r < 0) {
876 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
877 __func__, strerror(-r));
878 abort();
882 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
883 MemoryRegionSection *section,
884 bool match_data, uint64_t data,
885 EventNotifier *e)
887 int fd = event_notifier_get_fd(e);
888 int r;
890 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
891 data, false, int128_get64(section->size),
892 match_data);
893 if (r < 0) {
894 abort();
898 static void kvm_io_ioeventfd_add(MemoryListener *listener,
899 MemoryRegionSection *section,
900 bool match_data, uint64_t data,
901 EventNotifier *e)
903 int fd = event_notifier_get_fd(e);
904 int r;
906 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
907 data, true, int128_get64(section->size),
908 match_data);
909 if (r < 0) {
910 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
911 __func__, strerror(-r));
912 abort();
916 static void kvm_io_ioeventfd_del(MemoryListener *listener,
917 MemoryRegionSection *section,
918 bool match_data, uint64_t data,
919 EventNotifier *e)
922 int fd = event_notifier_get_fd(e);
923 int r;
925 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
926 data, false, int128_get64(section->size),
927 match_data);
928 if (r < 0) {
929 abort();
933 static MemoryListener kvm_memory_listener = {
934 .region_add = kvm_region_add,
935 .region_del = kvm_region_del,
936 .log_start = kvm_log_start,
937 .log_stop = kvm_log_stop,
938 .log_sync = kvm_log_sync,
939 .log_global_start = kvm_log_global_start,
940 .log_global_stop = kvm_log_global_stop,
941 .eventfd_add = kvm_mem_ioeventfd_add,
942 .eventfd_del = kvm_mem_ioeventfd_del,
943 .coalesced_mmio_add = kvm_coalesce_mmio_region,
944 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
945 .priority = 10,
948 static MemoryListener kvm_io_listener = {
949 .eventfd_add = kvm_io_ioeventfd_add,
950 .eventfd_del = kvm_io_ioeventfd_del,
951 .priority = 10,
954 static void kvm_handle_interrupt(CPUState *cpu, int mask)
956 cpu->interrupt_request |= mask;
958 if (!qemu_cpu_is_self(cpu)) {
959 qemu_cpu_kick(cpu);
963 int kvm_set_irq(KVMState *s, int irq, int level)
965 struct kvm_irq_level event;
966 int ret;
968 assert(kvm_async_interrupts_enabled());
970 event.level = level;
971 event.irq = irq;
972 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
973 if (ret < 0) {
974 perror("kvm_set_irq");
975 abort();
978 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
981 #ifdef KVM_CAP_IRQ_ROUTING
982 typedef struct KVMMSIRoute {
983 struct kvm_irq_routing_entry kroute;
984 QTAILQ_ENTRY(KVMMSIRoute) entry;
985 } KVMMSIRoute;
987 static void set_gsi(KVMState *s, unsigned int gsi)
989 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
992 static void clear_gsi(KVMState *s, unsigned int gsi)
994 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
997 void kvm_init_irq_routing(KVMState *s)
999 int gsi_count, i;
1001 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1002 if (gsi_count > 0) {
1003 unsigned int gsi_bits, i;
1005 /* Round up so we can search ints using ffs */
1006 gsi_bits = ALIGN(gsi_count, 32);
1007 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
1008 s->gsi_count = gsi_count;
1010 /* Mark any over-allocated bits as already in use */
1011 for (i = gsi_count; i < gsi_bits; i++) {
1012 set_gsi(s, i);
1016 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1017 s->nr_allocated_irq_routes = 0;
1019 if (!s->direct_msi) {
1020 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1021 QTAILQ_INIT(&s->msi_hashtab[i]);
1025 kvm_arch_init_irq_routing(s);
1028 void kvm_irqchip_commit_routes(KVMState *s)
1030 int ret;
1032 s->irq_routes->flags = 0;
1033 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1034 assert(ret == 0);
1037 static void kvm_add_routing_entry(KVMState *s,
1038 struct kvm_irq_routing_entry *entry)
1040 struct kvm_irq_routing_entry *new;
1041 int n, size;
1043 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1044 n = s->nr_allocated_irq_routes * 2;
1045 if (n < 64) {
1046 n = 64;
1048 size = sizeof(struct kvm_irq_routing);
1049 size += n * sizeof(*new);
1050 s->irq_routes = g_realloc(s->irq_routes, size);
1051 s->nr_allocated_irq_routes = n;
1053 n = s->irq_routes->nr++;
1054 new = &s->irq_routes->entries[n];
1056 *new = *entry;
1058 set_gsi(s, entry->gsi);
1061 static int kvm_update_routing_entry(KVMState *s,
1062 struct kvm_irq_routing_entry *new_entry)
1064 struct kvm_irq_routing_entry *entry;
1065 int n;
1067 for (n = 0; n < s->irq_routes->nr; n++) {
1068 entry = &s->irq_routes->entries[n];
1069 if (entry->gsi != new_entry->gsi) {
1070 continue;
1073 if(!memcmp(entry, new_entry, sizeof *entry)) {
1074 return 0;
1077 *entry = *new_entry;
1079 kvm_irqchip_commit_routes(s);
1081 return 0;
1084 return -ESRCH;
1087 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1089 struct kvm_irq_routing_entry e = {};
1091 assert(pin < s->gsi_count);
1093 e.gsi = irq;
1094 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1095 e.flags = 0;
1096 e.u.irqchip.irqchip = irqchip;
1097 e.u.irqchip.pin = pin;
1098 kvm_add_routing_entry(s, &e);
1101 void kvm_irqchip_release_virq(KVMState *s, int virq)
1103 struct kvm_irq_routing_entry *e;
1104 int i;
1106 if (kvm_gsi_direct_mapping()) {
1107 return;
1110 for (i = 0; i < s->irq_routes->nr; i++) {
1111 e = &s->irq_routes->entries[i];
1112 if (e->gsi == virq) {
1113 s->irq_routes->nr--;
1114 *e = s->irq_routes->entries[s->irq_routes->nr];
1117 clear_gsi(s, virq);
1120 static unsigned int kvm_hash_msi(uint32_t data)
1122 /* This is optimized for IA32 MSI layout. However, no other arch shall
1123 * repeat the mistake of not providing a direct MSI injection API. */
1124 return data & 0xff;
1127 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1129 KVMMSIRoute *route, *next;
1130 unsigned int hash;
1132 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1133 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1134 kvm_irqchip_release_virq(s, route->kroute.gsi);
1135 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1136 g_free(route);
1141 static int kvm_irqchip_get_virq(KVMState *s)
1143 uint32_t *word = s->used_gsi_bitmap;
1144 int max_words = ALIGN(s->gsi_count, 32) / 32;
1145 int i, zeroes;
1146 bool retry = true;
1148 again:
1149 /* Return the lowest unused GSI in the bitmap */
1150 for (i = 0; i < max_words; i++) {
1151 zeroes = ctz32(~word[i]);
1152 if (zeroes == 32) {
1153 continue;
1156 return zeroes + i * 32;
1158 if (!s->direct_msi && retry) {
1159 retry = false;
1160 kvm_flush_dynamic_msi_routes(s);
1161 goto again;
1163 return -ENOSPC;
1167 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1169 unsigned int hash = kvm_hash_msi(msg.data);
1170 KVMMSIRoute *route;
1172 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1173 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1174 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1175 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1176 return route;
1179 return NULL;
1182 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1184 struct kvm_msi msi;
1185 KVMMSIRoute *route;
1187 if (s->direct_msi) {
1188 msi.address_lo = (uint32_t)msg.address;
1189 msi.address_hi = msg.address >> 32;
1190 msi.data = le32_to_cpu(msg.data);
1191 msi.flags = 0;
1192 memset(msi.pad, 0, sizeof(msi.pad));
1194 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1197 route = kvm_lookup_msi_route(s, msg);
1198 if (!route) {
1199 int virq;
1201 virq = kvm_irqchip_get_virq(s);
1202 if (virq < 0) {
1203 return virq;
1206 route = g_malloc0(sizeof(KVMMSIRoute));
1207 route->kroute.gsi = virq;
1208 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1209 route->kroute.flags = 0;
1210 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1211 route->kroute.u.msi.address_hi = msg.address >> 32;
1212 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1214 kvm_add_routing_entry(s, &route->kroute);
1215 kvm_irqchip_commit_routes(s);
1217 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1218 entry);
1221 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1223 return kvm_set_irq(s, route->kroute.gsi, 1);
1226 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1228 struct kvm_irq_routing_entry kroute = {};
1229 int virq;
1231 if (kvm_gsi_direct_mapping()) {
1232 return kvm_arch_msi_data_to_gsi(msg.data);
1235 if (!kvm_gsi_routing_enabled()) {
1236 return -ENOSYS;
1239 virq = kvm_irqchip_get_virq(s);
1240 if (virq < 0) {
1241 return virq;
1244 kroute.gsi = virq;
1245 kroute.type = KVM_IRQ_ROUTING_MSI;
1246 kroute.flags = 0;
1247 kroute.u.msi.address_lo = (uint32_t)msg.address;
1248 kroute.u.msi.address_hi = msg.address >> 32;
1249 kroute.u.msi.data = le32_to_cpu(msg.data);
1250 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1251 kvm_irqchip_release_virq(s, virq);
1252 return -EINVAL;
1255 kvm_add_routing_entry(s, &kroute);
1256 kvm_irqchip_commit_routes(s);
1258 return virq;
1261 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1263 struct kvm_irq_routing_entry kroute = {};
1265 if (kvm_gsi_direct_mapping()) {
1266 return 0;
1269 if (!kvm_irqchip_in_kernel()) {
1270 return -ENOSYS;
1273 kroute.gsi = virq;
1274 kroute.type = KVM_IRQ_ROUTING_MSI;
1275 kroute.flags = 0;
1276 kroute.u.msi.address_lo = (uint32_t)msg.address;
1277 kroute.u.msi.address_hi = msg.address >> 32;
1278 kroute.u.msi.data = le32_to_cpu(msg.data);
1279 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1280 return -EINVAL;
1283 return kvm_update_routing_entry(s, &kroute);
1286 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1287 bool assign)
1289 struct kvm_irqfd irqfd = {
1290 .fd = fd,
1291 .gsi = virq,
1292 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1295 if (rfd != -1) {
1296 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1297 irqfd.resamplefd = rfd;
1300 if (!kvm_irqfds_enabled()) {
1301 return -ENOSYS;
1304 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1307 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1309 struct kvm_irq_routing_entry kroute = {};
1310 int virq;
1312 if (!kvm_gsi_routing_enabled()) {
1313 return -ENOSYS;
1316 virq = kvm_irqchip_get_virq(s);
1317 if (virq < 0) {
1318 return virq;
1321 kroute.gsi = virq;
1322 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1323 kroute.flags = 0;
1324 kroute.u.adapter.summary_addr = adapter->summary_addr;
1325 kroute.u.adapter.ind_addr = adapter->ind_addr;
1326 kroute.u.adapter.summary_offset = adapter->summary_offset;
1327 kroute.u.adapter.ind_offset = adapter->ind_offset;
1328 kroute.u.adapter.adapter_id = adapter->adapter_id;
1330 kvm_add_routing_entry(s, &kroute);
1331 kvm_irqchip_commit_routes(s);
1333 return virq;
1336 #else /* !KVM_CAP_IRQ_ROUTING */
1338 void kvm_init_irq_routing(KVMState *s)
1342 void kvm_irqchip_release_virq(KVMState *s, int virq)
1346 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1348 abort();
1351 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1353 return -ENOSYS;
1356 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1358 return -ENOSYS;
1361 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1363 abort();
1366 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1368 return -ENOSYS;
1370 #endif /* !KVM_CAP_IRQ_ROUTING */
1372 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1373 EventNotifier *rn, int virq)
1375 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1376 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1379 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1381 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1382 false);
1385 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1387 int ret;
1389 if (!machine_kernel_irqchip_allowed(machine) ||
1390 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1391 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1392 return 0;
1395 /* First probe and see if there's a arch-specific hook to create the
1396 * in-kernel irqchip for us */
1397 ret = kvm_arch_irqchip_create(s);
1398 if (ret < 0) {
1399 return ret;
1400 } else if (ret == 0) {
1401 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1402 if (ret < 0) {
1403 fprintf(stderr, "Create kernel irqchip failed\n");
1404 return ret;
1408 kvm_kernel_irqchip = true;
1409 /* If we have an in-kernel IRQ chip then we must have asynchronous
1410 * interrupt delivery (though the reverse is not necessarily true)
1412 kvm_async_interrupts_allowed = true;
1413 kvm_halt_in_kernel_allowed = true;
1415 kvm_init_irq_routing(s);
1417 return 0;
1420 /* Find number of supported CPUs using the recommended
1421 * procedure from the kernel API documentation to cope with
1422 * older kernels that may be missing capabilities.
1424 static int kvm_recommended_vcpus(KVMState *s)
1426 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1427 return (ret) ? ret : 4;
1430 static int kvm_max_vcpus(KVMState *s)
1432 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1433 return (ret) ? ret : kvm_recommended_vcpus(s);
1436 static int kvm_init(MachineState *ms)
1438 MachineClass *mc = MACHINE_GET_CLASS(ms);
1439 static const char upgrade_note[] =
1440 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1441 "(see http://sourceforge.net/projects/kvm).\n";
1442 struct {
1443 const char *name;
1444 int num;
1445 } num_cpus[] = {
1446 { "SMP", smp_cpus },
1447 { "hotpluggable", max_cpus },
1448 { NULL, }
1449 }, *nc = num_cpus;
1450 int soft_vcpus_limit, hard_vcpus_limit;
1451 KVMState *s;
1452 const KVMCapabilityInfo *missing_cap;
1453 int ret;
1454 int i, type = 0;
1455 const char *kvm_type;
1457 s = KVM_STATE(ms->accelerator);
1460 * On systems where the kernel can support different base page
1461 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1462 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1463 * page size for the system though.
1465 assert(TARGET_PAGE_SIZE <= getpagesize());
1466 page_size_init();
1468 s->sigmask_len = 8;
1470 #ifdef KVM_CAP_SET_GUEST_DEBUG
1471 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1472 #endif
1473 s->vmfd = -1;
1474 s->fd = qemu_open("/dev/kvm", O_RDWR);
1475 if (s->fd == -1) {
1476 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1477 ret = -errno;
1478 goto err;
1481 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1482 if (ret < KVM_API_VERSION) {
1483 if (ret >= 0) {
1484 ret = -EINVAL;
1486 fprintf(stderr, "kvm version too old\n");
1487 goto err;
1490 if (ret > KVM_API_VERSION) {
1491 ret = -EINVAL;
1492 fprintf(stderr, "kvm version not supported\n");
1493 goto err;
1496 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1498 /* If unspecified, use the default value */
1499 if (!s->nr_slots) {
1500 s->nr_slots = 32;
1503 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1505 for (i = 0; i < s->nr_slots; i++) {
1506 s->slots[i].slot = i;
1509 /* check the vcpu limits */
1510 soft_vcpus_limit = kvm_recommended_vcpus(s);
1511 hard_vcpus_limit = kvm_max_vcpus(s);
1513 while (nc->name) {
1514 if (nc->num > soft_vcpus_limit) {
1515 fprintf(stderr,
1516 "Warning: Number of %s cpus requested (%d) exceeds "
1517 "the recommended cpus supported by KVM (%d)\n",
1518 nc->name, nc->num, soft_vcpus_limit);
1520 if (nc->num > hard_vcpus_limit) {
1521 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1522 "the maximum cpus supported by KVM (%d)\n",
1523 nc->name, nc->num, hard_vcpus_limit);
1524 exit(1);
1527 nc++;
1530 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1531 if (mc->kvm_type) {
1532 type = mc->kvm_type(kvm_type);
1533 } else if (kvm_type) {
1534 ret = -EINVAL;
1535 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1536 goto err;
1539 do {
1540 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1541 } while (ret == -EINTR);
1543 if (ret < 0) {
1544 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1545 strerror(-ret));
1547 #ifdef TARGET_S390X
1548 if (ret == -EINVAL) {
1549 fprintf(stderr,
1550 "Host kernel setup problem detected. Please verify:\n");
1551 fprintf(stderr, "- for kernels supporting the switch_amode or"
1552 " user_mode parameters, whether\n");
1553 fprintf(stderr,
1554 " user space is running in primary address space\n");
1555 fprintf(stderr,
1556 "- for kernels supporting the vm.allocate_pgste sysctl, "
1557 "whether it is enabled\n");
1559 #endif
1560 goto err;
1563 s->vmfd = ret;
1564 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1565 if (!missing_cap) {
1566 missing_cap =
1567 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1569 if (missing_cap) {
1570 ret = -EINVAL;
1571 fprintf(stderr, "kvm does not support %s\n%s",
1572 missing_cap->name, upgrade_note);
1573 goto err;
1576 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1578 s->broken_set_mem_region = 1;
1579 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1580 if (ret > 0) {
1581 s->broken_set_mem_region = 0;
1584 #ifdef KVM_CAP_VCPU_EVENTS
1585 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1586 #endif
1588 s->robust_singlestep =
1589 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1591 #ifdef KVM_CAP_DEBUGREGS
1592 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1593 #endif
1595 #ifdef KVM_CAP_XSAVE
1596 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1597 #endif
1599 #ifdef KVM_CAP_XCRS
1600 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1601 #endif
1603 #ifdef KVM_CAP_PIT_STATE2
1604 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1605 #endif
1607 #ifdef KVM_CAP_IRQ_ROUTING
1608 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1609 #endif
1611 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1613 s->irq_set_ioctl = KVM_IRQ_LINE;
1614 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1615 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1618 #ifdef KVM_CAP_READONLY_MEM
1619 kvm_readonly_mem_allowed =
1620 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1621 #endif
1623 kvm_eventfds_allowed =
1624 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1626 kvm_irqfds_allowed =
1627 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1629 kvm_resamplefds_allowed =
1630 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1632 kvm_vm_attributes_allowed =
1633 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1635 ret = kvm_arch_init(ms, s);
1636 if (ret < 0) {
1637 goto err;
1640 ret = kvm_irqchip_create(ms, s);
1641 if (ret < 0) {
1642 goto err;
1645 kvm_state = s;
1646 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1647 memory_listener_register(&kvm_io_listener, &address_space_io);
1649 s->many_ioeventfds = kvm_check_many_ioeventfds();
1651 cpu_interrupt_handler = kvm_handle_interrupt;
1653 return 0;
1655 err:
1656 assert(ret < 0);
1657 if (s->vmfd >= 0) {
1658 close(s->vmfd);
1660 if (s->fd != -1) {
1661 close(s->fd);
1663 g_free(s->slots);
1665 return ret;
1668 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1670 s->sigmask_len = sigmask_len;
1673 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1674 int size, uint32_t count)
1676 int i;
1677 uint8_t *ptr = data;
1679 for (i = 0; i < count; i++) {
1680 address_space_rw(&address_space_io, port, attrs,
1681 ptr, size,
1682 direction == KVM_EXIT_IO_OUT);
1683 ptr += size;
1687 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1689 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1690 run->internal.suberror);
1692 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1693 int i;
1695 for (i = 0; i < run->internal.ndata; ++i) {
1696 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1697 i, (uint64_t)run->internal.data[i]);
1700 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1701 fprintf(stderr, "emulation failure\n");
1702 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1703 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1704 return EXCP_INTERRUPT;
1707 /* FIXME: Should trigger a qmp message to let management know
1708 * something went wrong.
1710 return -1;
1713 void kvm_flush_coalesced_mmio_buffer(void)
1715 KVMState *s = kvm_state;
1717 if (s->coalesced_flush_in_progress) {
1718 return;
1721 s->coalesced_flush_in_progress = true;
1723 if (s->coalesced_mmio_ring) {
1724 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1725 while (ring->first != ring->last) {
1726 struct kvm_coalesced_mmio *ent;
1728 ent = &ring->coalesced_mmio[ring->first];
1730 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1731 smp_wmb();
1732 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1736 s->coalesced_flush_in_progress = false;
1739 static void do_kvm_cpu_synchronize_state(void *arg)
1741 CPUState *cpu = arg;
1743 if (!cpu->kvm_vcpu_dirty) {
1744 kvm_arch_get_registers(cpu);
1745 cpu->kvm_vcpu_dirty = true;
1749 void kvm_cpu_synchronize_state(CPUState *cpu)
1751 if (!cpu->kvm_vcpu_dirty) {
1752 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1756 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1758 CPUState *cpu = arg;
1760 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1761 cpu->kvm_vcpu_dirty = false;
1764 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1766 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1769 static void do_kvm_cpu_synchronize_post_init(void *arg)
1771 CPUState *cpu = arg;
1773 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1774 cpu->kvm_vcpu_dirty = false;
1777 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1779 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1782 void kvm_cpu_clean_state(CPUState *cpu)
1784 cpu->kvm_vcpu_dirty = false;
1787 int kvm_cpu_exec(CPUState *cpu)
1789 struct kvm_run *run = cpu->kvm_run;
1790 int ret, run_ret;
1792 DPRINTF("kvm_cpu_exec()\n");
1794 if (kvm_arch_process_async_events(cpu)) {
1795 cpu->exit_request = 0;
1796 return EXCP_HLT;
1799 do {
1800 MemTxAttrs attrs;
1802 if (cpu->kvm_vcpu_dirty) {
1803 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1804 cpu->kvm_vcpu_dirty = false;
1807 kvm_arch_pre_run(cpu, run);
1808 if (cpu->exit_request) {
1809 DPRINTF("interrupt exit requested\n");
1811 * KVM requires us to reenter the kernel after IO exits to complete
1812 * instruction emulation. This self-signal will ensure that we
1813 * leave ASAP again.
1815 qemu_cpu_kick_self();
1817 qemu_mutex_unlock_iothread();
1819 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1821 qemu_mutex_lock_iothread();
1822 attrs = kvm_arch_post_run(cpu, run);
1824 if (run_ret < 0) {
1825 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1826 DPRINTF("io window exit\n");
1827 ret = EXCP_INTERRUPT;
1828 break;
1830 fprintf(stderr, "error: kvm run failed %s\n",
1831 strerror(-run_ret));
1832 #ifdef TARGET_PPC
1833 if (run_ret == -EBUSY) {
1834 fprintf(stderr,
1835 "This is probably because your SMT is enabled.\n"
1836 "VCPU can only run on primary threads with all "
1837 "secondary threads offline.\n");
1839 #endif
1840 ret = -1;
1841 break;
1844 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1845 switch (run->exit_reason) {
1846 case KVM_EXIT_IO:
1847 DPRINTF("handle_io\n");
1848 kvm_handle_io(run->io.port, attrs,
1849 (uint8_t *)run + run->io.data_offset,
1850 run->io.direction,
1851 run->io.size,
1852 run->io.count);
1853 ret = 0;
1854 break;
1855 case KVM_EXIT_MMIO:
1856 DPRINTF("handle_mmio\n");
1857 address_space_rw(&address_space_memory,
1858 run->mmio.phys_addr, attrs,
1859 run->mmio.data,
1860 run->mmio.len,
1861 run->mmio.is_write);
1862 ret = 0;
1863 break;
1864 case KVM_EXIT_IRQ_WINDOW_OPEN:
1865 DPRINTF("irq_window_open\n");
1866 ret = EXCP_INTERRUPT;
1867 break;
1868 case KVM_EXIT_SHUTDOWN:
1869 DPRINTF("shutdown\n");
1870 qemu_system_reset_request();
1871 ret = EXCP_INTERRUPT;
1872 break;
1873 case KVM_EXIT_UNKNOWN:
1874 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1875 (uint64_t)run->hw.hardware_exit_reason);
1876 ret = -1;
1877 break;
1878 case KVM_EXIT_INTERNAL_ERROR:
1879 ret = kvm_handle_internal_error(cpu, run);
1880 break;
1881 case KVM_EXIT_SYSTEM_EVENT:
1882 switch (run->system_event.type) {
1883 case KVM_SYSTEM_EVENT_SHUTDOWN:
1884 qemu_system_shutdown_request();
1885 ret = EXCP_INTERRUPT;
1886 break;
1887 case KVM_SYSTEM_EVENT_RESET:
1888 qemu_system_reset_request();
1889 ret = EXCP_INTERRUPT;
1890 break;
1891 default:
1892 DPRINTF("kvm_arch_handle_exit\n");
1893 ret = kvm_arch_handle_exit(cpu, run);
1894 break;
1896 break;
1897 default:
1898 DPRINTF("kvm_arch_handle_exit\n");
1899 ret = kvm_arch_handle_exit(cpu, run);
1900 break;
1902 } while (ret == 0);
1904 if (ret < 0) {
1905 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1906 vm_stop(RUN_STATE_INTERNAL_ERROR);
1909 cpu->exit_request = 0;
1910 return ret;
1913 int kvm_ioctl(KVMState *s, int type, ...)
1915 int ret;
1916 void *arg;
1917 va_list ap;
1919 va_start(ap, type);
1920 arg = va_arg(ap, void *);
1921 va_end(ap);
1923 trace_kvm_ioctl(type, arg);
1924 ret = ioctl(s->fd, type, arg);
1925 if (ret == -1) {
1926 ret = -errno;
1928 return ret;
1931 int kvm_vm_ioctl(KVMState *s, int type, ...)
1933 int ret;
1934 void *arg;
1935 va_list ap;
1937 va_start(ap, type);
1938 arg = va_arg(ap, void *);
1939 va_end(ap);
1941 trace_kvm_vm_ioctl(type, arg);
1942 ret = ioctl(s->vmfd, type, arg);
1943 if (ret == -1) {
1944 ret = -errno;
1946 return ret;
1949 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1951 int ret;
1952 void *arg;
1953 va_list ap;
1955 va_start(ap, type);
1956 arg = va_arg(ap, void *);
1957 va_end(ap);
1959 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1960 ret = ioctl(cpu->kvm_fd, type, arg);
1961 if (ret == -1) {
1962 ret = -errno;
1964 return ret;
1967 int kvm_device_ioctl(int fd, int type, ...)
1969 int ret;
1970 void *arg;
1971 va_list ap;
1973 va_start(ap, type);
1974 arg = va_arg(ap, void *);
1975 va_end(ap);
1977 trace_kvm_device_ioctl(fd, type, arg);
1978 ret = ioctl(fd, type, arg);
1979 if (ret == -1) {
1980 ret = -errno;
1982 return ret;
1985 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1987 int ret;
1988 struct kvm_device_attr attribute = {
1989 .group = group,
1990 .attr = attr,
1993 if (!kvm_vm_attributes_allowed) {
1994 return 0;
1997 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1998 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1999 return ret ? 0 : 1;
2002 int kvm_has_sync_mmu(void)
2004 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2007 int kvm_has_vcpu_events(void)
2009 return kvm_state->vcpu_events;
2012 int kvm_has_robust_singlestep(void)
2014 return kvm_state->robust_singlestep;
2017 int kvm_has_debugregs(void)
2019 return kvm_state->debugregs;
2022 int kvm_has_xsave(void)
2024 return kvm_state->xsave;
2027 int kvm_has_xcrs(void)
2029 return kvm_state->xcrs;
2032 int kvm_has_pit_state2(void)
2034 return kvm_state->pit_state2;
2037 int kvm_has_many_ioeventfds(void)
2039 if (!kvm_enabled()) {
2040 return 0;
2042 return kvm_state->many_ioeventfds;
2045 int kvm_has_gsi_routing(void)
2047 #ifdef KVM_CAP_IRQ_ROUTING
2048 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2049 #else
2050 return false;
2051 #endif
2054 int kvm_has_intx_set_mask(void)
2056 return kvm_state->intx_set_mask;
2059 void kvm_setup_guest_memory(void *start, size_t size)
2061 if (!kvm_has_sync_mmu()) {
2062 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2064 if (ret) {
2065 perror("qemu_madvise");
2066 fprintf(stderr,
2067 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2068 exit(1);
2073 #ifdef KVM_CAP_SET_GUEST_DEBUG
2074 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2075 target_ulong pc)
2077 struct kvm_sw_breakpoint *bp;
2079 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2080 if (bp->pc == pc) {
2081 return bp;
2084 return NULL;
2087 int kvm_sw_breakpoints_active(CPUState *cpu)
2089 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2092 struct kvm_set_guest_debug_data {
2093 struct kvm_guest_debug dbg;
2094 CPUState *cpu;
2095 int err;
2098 static void kvm_invoke_set_guest_debug(void *data)
2100 struct kvm_set_guest_debug_data *dbg_data = data;
2102 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2103 &dbg_data->dbg);
2106 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2108 struct kvm_set_guest_debug_data data;
2110 data.dbg.control = reinject_trap;
2112 if (cpu->singlestep_enabled) {
2113 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2115 kvm_arch_update_guest_debug(cpu, &data.dbg);
2116 data.cpu = cpu;
2118 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2119 return data.err;
2122 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2123 target_ulong len, int type)
2125 struct kvm_sw_breakpoint *bp;
2126 int err;
2128 if (type == GDB_BREAKPOINT_SW) {
2129 bp = kvm_find_sw_breakpoint(cpu, addr);
2130 if (bp) {
2131 bp->use_count++;
2132 return 0;
2135 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2136 bp->pc = addr;
2137 bp->use_count = 1;
2138 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2139 if (err) {
2140 g_free(bp);
2141 return err;
2144 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2145 } else {
2146 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2147 if (err) {
2148 return err;
2152 CPU_FOREACH(cpu) {
2153 err = kvm_update_guest_debug(cpu, 0);
2154 if (err) {
2155 return err;
2158 return 0;
2161 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2162 target_ulong len, int type)
2164 struct kvm_sw_breakpoint *bp;
2165 int err;
2167 if (type == GDB_BREAKPOINT_SW) {
2168 bp = kvm_find_sw_breakpoint(cpu, addr);
2169 if (!bp) {
2170 return -ENOENT;
2173 if (bp->use_count > 1) {
2174 bp->use_count--;
2175 return 0;
2178 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2179 if (err) {
2180 return err;
2183 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2184 g_free(bp);
2185 } else {
2186 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2187 if (err) {
2188 return err;
2192 CPU_FOREACH(cpu) {
2193 err = kvm_update_guest_debug(cpu, 0);
2194 if (err) {
2195 return err;
2198 return 0;
2201 void kvm_remove_all_breakpoints(CPUState *cpu)
2203 struct kvm_sw_breakpoint *bp, *next;
2204 KVMState *s = cpu->kvm_state;
2205 CPUState *tmpcpu;
2207 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2208 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2209 /* Try harder to find a CPU that currently sees the breakpoint. */
2210 CPU_FOREACH(tmpcpu) {
2211 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2212 break;
2216 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2217 g_free(bp);
2219 kvm_arch_remove_all_hw_breakpoints();
2221 CPU_FOREACH(cpu) {
2222 kvm_update_guest_debug(cpu, 0);
2226 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2228 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2230 return -EINVAL;
2233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2234 target_ulong len, int type)
2236 return -EINVAL;
2239 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2240 target_ulong len, int type)
2242 return -EINVAL;
2245 void kvm_remove_all_breakpoints(CPUState *cpu)
2248 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2250 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2252 KVMState *s = kvm_state;
2253 struct kvm_signal_mask *sigmask;
2254 int r;
2256 if (!sigset) {
2257 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2260 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2262 sigmask->len = s->sigmask_len;
2263 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2264 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2265 g_free(sigmask);
2267 return r;
2269 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2271 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2274 int kvm_on_sigbus(int code, void *addr)
2276 return kvm_arch_on_sigbus(code, addr);
2279 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2281 int ret;
2282 struct kvm_create_device create_dev;
2284 create_dev.type = type;
2285 create_dev.fd = -1;
2286 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2288 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2289 return -ENOTSUP;
2292 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2293 if (ret) {
2294 return ret;
2297 return test ? 0 : create_dev.fd;
2300 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2302 struct kvm_one_reg reg;
2303 int r;
2305 reg.id = id;
2306 reg.addr = (uintptr_t) source;
2307 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2308 if (r) {
2309 trace_kvm_failed_reg_set(id, strerror(r));
2311 return r;
2314 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2316 struct kvm_one_reg reg;
2317 int r;
2319 reg.id = id;
2320 reg.addr = (uintptr_t) target;
2321 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2322 if (r) {
2323 trace_kvm_failed_reg_get(id, strerror(r));
2325 return r;
2328 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2330 AccelClass *ac = ACCEL_CLASS(oc);
2331 ac->name = "KVM";
2332 ac->init_machine = kvm_init;
2333 ac->allowed = &kvm_allowed;
2336 static const TypeInfo kvm_accel_type = {
2337 .name = TYPE_KVM_ACCEL,
2338 .parent = TYPE_ACCEL,
2339 .class_init = kvm_accel_class_init,
2340 .instance_size = sizeof(KVMState),
2343 static void kvm_type_init(void)
2345 type_register_static(&kvm_accel_type);
2348 type_init(kvm_type_init);