usb:xhci: no DMA on HC reset
[qemu.git] / hw / arm / virt.c
blob56d35c7716e71c45fc5965fb287376b7d020073c
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/kvm.h"
43 #include "hw/boards.h"
44 #include "hw/loader.h"
45 #include "exec/address-spaces.h"
46 #include "qemu/bitops.h"
47 #include "qemu/error-report.h"
48 #include "hw/pci-host/gpex.h"
49 #include "hw/arm/virt-acpi-build.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic_common.h"
54 #include "kvm_arm.h"
55 #include "hw/smbios/smbios.h"
56 #include "qapi/visitor.h"
57 #include "standard-headers/linux/input.h"
59 /* Number of external interrupt lines to configure the GIC with */
60 #define NUM_IRQS 256
62 #define PLATFORM_BUS_NUM_IRQS 64
64 static ARMPlatformBusSystemParams platform_bus_params;
66 typedef struct VirtBoardInfo {
67 struct arm_boot_info bootinfo;
68 const char *cpu_model;
69 const MemMapEntry *memmap;
70 const int *irqmap;
71 int smp_cpus;
72 void *fdt;
73 int fdt_size;
74 uint32_t clock_phandle;
75 uint32_t gic_phandle;
76 uint32_t v2m_phandle;
77 bool using_psci;
78 } VirtBoardInfo;
80 typedef struct {
81 MachineClass parent;
82 VirtBoardInfo *daughterboard;
83 } VirtMachineClass;
85 typedef struct {
86 MachineState parent;
87 bool secure;
88 bool highmem;
89 int32_t gic_version;
90 } VirtMachineState;
92 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
93 #define VIRT_MACHINE(obj) \
94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_GET_CLASS(obj) \
96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_CLASS(klass) \
98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
100 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
101 * RAM can go up to the 256GB mark, leaving 256GB of the physical
102 * address space unallocated and free for future use between 256G and 512G.
103 * If we need to provide more RAM to VMs in the future then we need to:
104 * * allocate a second bank of RAM starting at 2TB and working up
105 * * fix the DT and ACPI table generation code in QEMU to correctly
106 * report two split lumps of RAM to the guest
107 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
108 * (We don't want to fill all the way up to 512GB with RAM because
109 * we might want it for non-RAM purposes later. Conversely it seems
110 * reasonable to assume that anybody configuring a VM with a quarter
111 * of a terabyte of RAM will be doing it on a host with more than a
112 * terabyte of physical address space.)
114 #define RAMLIMIT_GB 255
115 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
117 /* Addresses and sizes of our components.
118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
119 * 128MB..256MB is used for miscellaneous device I/O.
120 * 256MB..1GB is reserved for possible future PCI support (ie where the
121 * PCI memory window will go if we add a PCI host controller).
122 * 1GB and up is RAM (which may happily spill over into the
123 * high memory region beyond 4GB).
124 * This represents a compromise between how much RAM can be given to
125 * a 32 bit VM and leaving space for expansion and in particular for PCI.
126 * Note that devices should generally be placed at multiples of 0x10000,
127 * to accommodate guests using 64K pages.
129 static const MemMapEntry a15memmap[] = {
130 /* Space up to 0x8000000 is reserved for a boot ROM */
131 [VIRT_FLASH] = { 0, 0x08000000 },
132 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
134 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
135 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
136 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
137 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
138 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
139 /* This redistributor space allows up to 2*64kB*123 CPUs */
140 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
141 [VIRT_UART] = { 0x09000000, 0x00001000 },
142 [VIRT_RTC] = { 0x09010000, 0x00001000 },
143 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
144 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
145 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
154 /* Second PCIe window, 512GB wide at the 512GB boundary */
155 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
158 static const int a15irqmap[] = {
159 [VIRT_UART] = 1,
160 [VIRT_RTC] = 2,
161 [VIRT_PCIE] = 3, /* ... to 6 */
162 [VIRT_GPIO] = 7,
163 [VIRT_SECURE_UART] = 8,
164 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
165 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
166 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 static VirtBoardInfo machines[] = {
171 .cpu_model = "cortex-a15",
172 .memmap = a15memmap,
173 .irqmap = a15irqmap,
176 .cpu_model = "cortex-a53",
177 .memmap = a15memmap,
178 .irqmap = a15irqmap,
181 .cpu_model = "cortex-a57",
182 .memmap = a15memmap,
183 .irqmap = a15irqmap,
186 .cpu_model = "host",
187 .memmap = a15memmap,
188 .irqmap = a15irqmap,
192 static VirtBoardInfo *find_machine_info(const char *cpu)
194 int i;
196 for (i = 0; i < ARRAY_SIZE(machines); i++) {
197 if (strcmp(cpu, machines[i].cpu_model) == 0) {
198 return &machines[i];
201 return NULL;
204 static void create_fdt(VirtBoardInfo *vbi)
206 void *fdt = create_device_tree(&vbi->fdt_size);
208 if (!fdt) {
209 error_report("create_device_tree() failed");
210 exit(1);
213 vbi->fdt = fdt;
215 /* Header */
216 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
217 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
218 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
221 * /chosen and /memory nodes must exist for load_dtb
222 * to fill in necessary properties later
224 qemu_fdt_add_subnode(fdt, "/chosen");
225 qemu_fdt_add_subnode(fdt, "/memory");
226 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
228 /* Clock node, for the benefit of the UART. The kernel device tree
229 * binding documentation claims the PL011 node clock properties are
230 * optional but in practice if you omit them the kernel refuses to
231 * probe for the device.
233 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
234 qemu_fdt_add_subnode(fdt, "/apb-pclk");
235 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
236 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
239 "clk24mhz");
240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
244 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
246 uint32_t cpu_suspend_fn;
247 uint32_t cpu_off_fn;
248 uint32_t cpu_on_fn;
249 uint32_t migrate_fn;
250 void *fdt = vbi->fdt;
251 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253 if (!vbi->using_psci) {
254 return;
257 qemu_fdt_add_subnode(fdt, "/psci");
258 if (armcpu->psci_version == 2) {
259 const char comp[] = "arm,psci-0.2\0arm,psci";
260 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
262 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
263 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
264 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
265 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
266 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
267 } else {
268 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
269 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
270 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
272 } else {
273 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
275 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
276 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
277 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
278 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
281 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
282 * to the instruction that should be used to invoke PSCI functions.
283 * However, the device tree binding uses 'method' instead, so that is
284 * what we should use here.
286 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
288 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
290 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
291 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
294 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
296 /* Note that on A15 h/w these interrupts are level-triggered,
297 * but for the GIC implementation provided by both QEMU and KVM
298 * they are edge-triggered.
300 ARMCPU *armcpu;
301 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
303 if (gictype == 2) {
304 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
305 GIC_FDT_IRQ_PPI_CPU_WIDTH,
306 (1 << vbi->smp_cpus) - 1);
309 qemu_fdt_add_subnode(vbi->fdt, "/timer");
311 armcpu = ARM_CPU(qemu_get_cpu(0));
312 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
313 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
314 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
315 compat, sizeof(compat));
316 } else {
317 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
318 "arm,armv7-timer");
320 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
321 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
328 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
330 int cpu;
331 int addr_cells = 1;
334 * From Documentation/devicetree/bindings/arm/cpus.txt
335 * On ARM v8 64-bit systems value should be set to 2,
336 * that corresponds to the MPIDR_EL1 register size.
337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338 * in the system, #address-cells can be set to 1, since
339 * MPIDR_EL1[63:32] bits are not used for CPUs
340 * identification.
342 * Here we actually don't know whether our system is 32- or 64-bit one.
343 * The simplest way to go is to examine affinity IDs of all our CPUs. If
344 * at least one of them has Aff3 populated, we set #address-cells to 2.
346 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
349 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
350 addr_cells = 2;
351 break;
355 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
356 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
357 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
359 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
360 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
361 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
363 qemu_fdt_add_subnode(vbi->fdt, nodename);
364 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
365 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
366 armcpu->dtb_compatible);
368 if (vbi->using_psci && vbi->smp_cpus > 1) {
369 qemu_fdt_setprop_string(vbi->fdt, nodename,
370 "enable-method", "psci");
373 if (addr_cells == 2) {
374 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
375 armcpu->mp_affinity);
376 } else {
377 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
378 armcpu->mp_affinity);
381 g_free(nodename);
385 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
387 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
388 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
389 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
390 "arm,gic-v2m-frame");
391 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
392 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
393 2, vbi->memmap[VIRT_GIC_V2M].base,
394 2, vbi->memmap[VIRT_GIC_V2M].size);
395 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
398 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
400 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
401 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
403 qemu_fdt_add_subnode(vbi->fdt, "/intc");
404 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
405 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
406 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
407 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
408 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
409 if (type == 3) {
410 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
411 "arm,gic-v3");
412 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
413 2, vbi->memmap[VIRT_GIC_DIST].base,
414 2, vbi->memmap[VIRT_GIC_DIST].size,
415 2, vbi->memmap[VIRT_GIC_REDIST].base,
416 2, vbi->memmap[VIRT_GIC_REDIST].size);
417 } else {
418 /* 'cortex-a15-gic' means 'GIC v2' */
419 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
420 "arm,cortex-a15-gic");
421 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
422 2, vbi->memmap[VIRT_GIC_DIST].base,
423 2, vbi->memmap[VIRT_GIC_DIST].size,
424 2, vbi->memmap[VIRT_GIC_CPU].base,
425 2, vbi->memmap[VIRT_GIC_CPU].size);
428 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
431 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
433 int i;
434 int irq = vbi->irqmap[VIRT_GIC_V2M];
435 DeviceState *dev;
437 dev = qdev_create(NULL, "arm-gicv2m");
438 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
439 qdev_prop_set_uint32(dev, "base-spi", irq);
440 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
441 qdev_init_nofail(dev);
443 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
444 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
447 fdt_add_v2m_gic_node(vbi);
450 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
452 /* We create a standalone GIC */
453 DeviceState *gicdev;
454 SysBusDevice *gicbusdev;
455 const char *gictype;
456 int i;
458 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
460 gicdev = qdev_create(NULL, gictype);
461 qdev_prop_set_uint32(gicdev, "revision", type);
462 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
463 /* Note that the num-irq property counts both internal and external
464 * interrupts; there are always 32 of the former (mandated by GIC spec).
466 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
467 if (!kvm_irqchip_in_kernel()) {
468 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
470 qdev_init_nofail(gicdev);
471 gicbusdev = SYS_BUS_DEVICE(gicdev);
472 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
473 if (type == 3) {
474 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
475 } else {
476 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
479 /* Wire the outputs from each CPU's generic timer to the
480 * appropriate GIC PPI inputs, and the GIC's IRQ output to
481 * the CPU's IRQ input.
483 for (i = 0; i < smp_cpus; i++) {
484 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
485 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
486 int irq;
487 /* Mapping from the output timer irq lines from the CPU to the
488 * GIC PPI inputs we use for the virt board.
490 const int timer_irq[] = {
491 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
492 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
493 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
494 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
497 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
498 qdev_connect_gpio_out(cpudev, irq,
499 qdev_get_gpio_in(gicdev,
500 ppibase + timer_irq[irq]));
503 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
504 sysbus_connect_irq(gicbusdev, i + smp_cpus,
505 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
508 for (i = 0; i < NUM_IRQS; i++) {
509 pic[i] = qdev_get_gpio_in(gicdev, i);
512 fdt_add_gic_node(vbi, type);
514 if (type == 2) {
515 create_v2m(vbi, pic);
519 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
520 MemoryRegion *mem)
522 char *nodename;
523 hwaddr base = vbi->memmap[uart].base;
524 hwaddr size = vbi->memmap[uart].size;
525 int irq = vbi->irqmap[uart];
526 const char compat[] = "arm,pl011\0arm,primecell";
527 const char clocknames[] = "uartclk\0apb_pclk";
528 DeviceState *dev = qdev_create(NULL, "pl011");
529 SysBusDevice *s = SYS_BUS_DEVICE(dev);
531 qdev_init_nofail(dev);
532 memory_region_add_subregion(mem, base,
533 sysbus_mmio_get_region(s, 0));
534 sysbus_connect_irq(s, 0, pic[irq]);
536 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
537 qemu_fdt_add_subnode(vbi->fdt, nodename);
538 /* Note that we can't use setprop_string because of the embedded NUL */
539 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
540 compat, sizeof(compat));
541 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
542 2, base, 2, size);
543 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
544 GIC_FDT_IRQ_TYPE_SPI, irq,
545 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
546 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
547 vbi->clock_phandle, vbi->clock_phandle);
548 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
549 clocknames, sizeof(clocknames));
551 if (uart == VIRT_UART) {
552 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
553 } else {
554 /* Mark as not usable by the normal world */
555 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
556 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
559 g_free(nodename);
562 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
564 char *nodename;
565 hwaddr base = vbi->memmap[VIRT_RTC].base;
566 hwaddr size = vbi->memmap[VIRT_RTC].size;
567 int irq = vbi->irqmap[VIRT_RTC];
568 const char compat[] = "arm,pl031\0arm,primecell";
570 sysbus_create_simple("pl031", base, pic[irq]);
572 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
573 qemu_fdt_add_subnode(vbi->fdt, nodename);
574 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
575 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
576 2, base, 2, size);
577 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
578 GIC_FDT_IRQ_TYPE_SPI, irq,
579 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
580 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
581 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
582 g_free(nodename);
585 static DeviceState *gpio_key_dev;
586 static void virt_powerdown_req(Notifier *n, void *opaque)
588 /* use gpio Pin 3 for power button event */
589 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
592 static Notifier virt_system_powerdown_notifier = {
593 .notify = virt_powerdown_req
596 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
598 char *nodename;
599 DeviceState *pl061_dev;
600 hwaddr base = vbi->memmap[VIRT_GPIO].base;
601 hwaddr size = vbi->memmap[VIRT_GPIO].size;
602 int irq = vbi->irqmap[VIRT_GPIO];
603 const char compat[] = "arm,pl061\0arm,primecell";
605 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
607 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
608 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
609 qemu_fdt_add_subnode(vbi->fdt, nodename);
610 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
611 2, base, 2, size);
612 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
613 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
614 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
615 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
616 GIC_FDT_IRQ_TYPE_SPI, irq,
617 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
618 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
619 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
620 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
622 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
623 qdev_get_gpio_in(pl061_dev, 3));
624 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
625 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
626 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
627 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
629 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
630 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
631 "label", "GPIO Key Poweroff");
632 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
633 KEY_POWER);
634 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
635 "gpios", phandle, 3, 0);
637 /* connect powerdown request */
638 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
640 g_free(nodename);
643 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
645 int i;
646 hwaddr size = vbi->memmap[VIRT_MMIO].size;
648 /* We create the transports in forwards order. Since qbus_realize()
649 * prepends (not appends) new child buses, the incrementing loop below will
650 * create a list of virtio-mmio buses with decreasing base addresses.
652 * When a -device option is processed from the command line,
653 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
654 * order. The upshot is that -device options in increasing command line
655 * order are mapped to virtio-mmio buses with decreasing base addresses.
657 * When this code was originally written, that arrangement ensured that the
658 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
659 * the first -device on the command line. (The end-to-end order is a
660 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
661 * guest kernel's name-to-address assignment strategy.)
663 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
664 * the message, if not necessarily the code, of commit 70161ff336.
665 * Therefore the loop now establishes the inverse of the original intent.
667 * Unfortunately, we can't counteract the kernel change by reversing the
668 * loop; it would break existing command lines.
670 * In any case, the kernel makes no guarantee about the stability of
671 * enumeration order of virtio devices (as demonstrated by it changing
672 * between kernel versions). For reliable and stable identification
673 * of disks users must use UUIDs or similar mechanisms.
675 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
676 int irq = vbi->irqmap[VIRT_MMIO] + i;
677 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
679 sysbus_create_simple("virtio-mmio", base, pic[irq]);
682 /* We add dtb nodes in reverse order so that they appear in the finished
683 * device tree lowest address first.
685 * Note that this mapping is independent of the loop above. The previous
686 * loop influences virtio device to virtio transport assignment, whereas
687 * this loop controls how virtio transports are laid out in the dtb.
689 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
690 char *nodename;
691 int irq = vbi->irqmap[VIRT_MMIO] + i;
692 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
694 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
695 qemu_fdt_add_subnode(vbi->fdt, nodename);
696 qemu_fdt_setprop_string(vbi->fdt, nodename,
697 "compatible", "virtio,mmio");
698 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
699 2, base, 2, size);
700 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
701 GIC_FDT_IRQ_TYPE_SPI, irq,
702 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
703 g_free(nodename);
707 static void create_one_flash(const char *name, hwaddr flashbase,
708 hwaddr flashsize, const char *file,
709 MemoryRegion *sysmem)
711 /* Create and map a single flash device. We use the same
712 * parameters as the flash devices on the Versatile Express board.
714 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
715 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
716 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
717 const uint64_t sectorlength = 256 * 1024;
719 if (dinfo) {
720 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
721 &error_abort);
724 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
725 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
726 qdev_prop_set_uint8(dev, "width", 4);
727 qdev_prop_set_uint8(dev, "device-width", 2);
728 qdev_prop_set_bit(dev, "big-endian", false);
729 qdev_prop_set_uint16(dev, "id0", 0x89);
730 qdev_prop_set_uint16(dev, "id1", 0x18);
731 qdev_prop_set_uint16(dev, "id2", 0x00);
732 qdev_prop_set_uint16(dev, "id3", 0x00);
733 qdev_prop_set_string(dev, "name", name);
734 qdev_init_nofail(dev);
736 memory_region_add_subregion(sysmem, flashbase,
737 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
739 if (file) {
740 char *fn;
741 int image_size;
743 if (drive_get(IF_PFLASH, 0, 0)) {
744 error_report("The contents of the first flash device may be "
745 "specified with -bios or with -drive if=pflash... "
746 "but you cannot use both options at once");
747 exit(1);
749 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
750 if (!fn) {
751 error_report("Could not find ROM image '%s'", file);
752 exit(1);
754 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
755 g_free(fn);
756 if (image_size < 0) {
757 error_report("Could not load ROM image '%s'", file);
758 exit(1);
763 static void create_flash(const VirtBoardInfo *vbi,
764 MemoryRegion *sysmem,
765 MemoryRegion *secure_sysmem)
767 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
768 * Any file passed via -bios goes in the first of these.
769 * sysmem is the system memory space. secure_sysmem is the secure view
770 * of the system, and the first flash device should be made visible only
771 * there. The second flash device is visible to both secure and nonsecure.
772 * If sysmem == secure_sysmem this means there is no separate Secure
773 * address space and both flash devices are generally visible.
775 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
776 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
777 char *nodename;
779 create_one_flash("virt.flash0", flashbase, flashsize,
780 bios_name, secure_sysmem);
781 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
782 NULL, sysmem);
784 if (sysmem == secure_sysmem) {
785 /* Report both flash devices as a single node in the DT */
786 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
787 qemu_fdt_add_subnode(vbi->fdt, nodename);
788 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
789 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
790 2, flashbase, 2, flashsize,
791 2, flashbase + flashsize, 2, flashsize);
792 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
793 g_free(nodename);
794 } else {
795 /* Report the devices as separate nodes so we can mark one as
796 * only visible to the secure world.
798 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
799 qemu_fdt_add_subnode(vbi->fdt, nodename);
800 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
801 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
802 2, flashbase, 2, flashsize);
803 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
804 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
805 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
806 g_free(nodename);
808 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
809 qemu_fdt_add_subnode(vbi->fdt, nodename);
810 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
811 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
812 2, flashbase + flashsize, 2, flashsize);
813 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
814 g_free(nodename);
818 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
820 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
821 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
822 char *nodename;
824 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
826 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
827 qemu_fdt_add_subnode(vbi->fdt, nodename);
828 qemu_fdt_setprop_string(vbi->fdt, nodename,
829 "compatible", "qemu,fw-cfg-mmio");
830 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
831 2, base, 2, size);
832 g_free(nodename);
835 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
836 int first_irq, const char *nodename)
838 int devfn, pin;
839 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
840 uint32_t *irq_map = full_irq_map;
842 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
843 for (pin = 0; pin < 4; pin++) {
844 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
845 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
846 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
847 int i;
849 uint32_t map[] = {
850 devfn << 8, 0, 0, /* devfn */
851 pin + 1, /* PCI pin */
852 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
854 /* Convert map to big endian */
855 for (i = 0; i < 10; i++) {
856 irq_map[i] = cpu_to_be32(map[i]);
858 irq_map += 10;
862 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
863 full_irq_map, sizeof(full_irq_map));
865 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
866 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
867 0x7 /* PCI irq */);
870 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
871 bool use_highmem)
873 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
874 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
875 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
876 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
877 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
878 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
879 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
880 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
881 hwaddr base = base_mmio;
882 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
883 int irq = vbi->irqmap[VIRT_PCIE];
884 MemoryRegion *mmio_alias;
885 MemoryRegion *mmio_reg;
886 MemoryRegion *ecam_alias;
887 MemoryRegion *ecam_reg;
888 DeviceState *dev;
889 char *nodename;
890 int i;
891 PCIHostState *pci;
893 dev = qdev_create(NULL, TYPE_GPEX_HOST);
894 qdev_init_nofail(dev);
896 /* Map only the first size_ecam bytes of ECAM space */
897 ecam_alias = g_new0(MemoryRegion, 1);
898 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
899 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
900 ecam_reg, 0, size_ecam);
901 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
903 /* Map the MMIO window into system address space so as to expose
904 * the section of PCI MMIO space which starts at the same base address
905 * (ie 1:1 mapping for that part of PCI MMIO space visible through
906 * the window).
908 mmio_alias = g_new0(MemoryRegion, 1);
909 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
910 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
911 mmio_reg, base_mmio, size_mmio);
912 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
914 if (use_highmem) {
915 /* Map high MMIO space */
916 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
918 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
919 mmio_reg, base_mmio_high, size_mmio_high);
920 memory_region_add_subregion(get_system_memory(), base_mmio_high,
921 high_mmio_alias);
924 /* Map IO port space */
925 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
927 for (i = 0; i < GPEX_NUM_IRQS; i++) {
928 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
931 pci = PCI_HOST_BRIDGE(dev);
932 if (pci->bus) {
933 for (i = 0; i < nb_nics; i++) {
934 NICInfo *nd = &nd_table[i];
936 if (!nd->model) {
937 nd->model = g_strdup("virtio");
940 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
944 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
945 qemu_fdt_add_subnode(vbi->fdt, nodename);
946 qemu_fdt_setprop_string(vbi->fdt, nodename,
947 "compatible", "pci-host-ecam-generic");
948 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
949 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
950 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
951 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
952 nr_pcie_buses - 1);
954 if (vbi->v2m_phandle) {
955 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
956 vbi->v2m_phandle);
959 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
960 2, base_ecam, 2, size_ecam);
962 if (use_highmem) {
963 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
964 1, FDT_PCI_RANGE_IOPORT, 2, 0,
965 2, base_pio, 2, size_pio,
966 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
967 2, base_mmio, 2, size_mmio,
968 1, FDT_PCI_RANGE_MMIO_64BIT,
969 2, base_mmio_high,
970 2, base_mmio_high, 2, size_mmio_high);
971 } else {
972 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
973 1, FDT_PCI_RANGE_IOPORT, 2, 0,
974 2, base_pio, 2, size_pio,
975 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
976 2, base_mmio, 2, size_mmio);
979 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
980 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
982 g_free(nodename);
985 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
987 DeviceState *dev;
988 SysBusDevice *s;
989 int i;
990 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
991 MemoryRegion *sysmem = get_system_memory();
993 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
994 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
995 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
996 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
998 fdt_params->system_params = &platform_bus_params;
999 fdt_params->binfo = &vbi->bootinfo;
1000 fdt_params->intc = "/intc";
1002 * register a machine init done notifier that creates the device tree
1003 * nodes of the platform bus and its children dynamic sysbus devices
1005 arm_register_platform_bus_fdt_creator(fdt_params);
1007 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1008 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1009 qdev_prop_set_uint32(dev, "num_irqs",
1010 platform_bus_params.platform_bus_num_irqs);
1011 qdev_prop_set_uint32(dev, "mmio_size",
1012 platform_bus_params.platform_bus_size);
1013 qdev_init_nofail(dev);
1014 s = SYS_BUS_DEVICE(dev);
1016 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1017 int irqn = platform_bus_params.platform_bus_first_irq + i;
1018 sysbus_connect_irq(s, i, pic[irqn]);
1021 memory_region_add_subregion(sysmem,
1022 platform_bus_params.platform_bus_base,
1023 sysbus_mmio_get_region(s, 0));
1026 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1028 MemoryRegion *secram = g_new(MemoryRegion, 1);
1029 char *nodename;
1030 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1031 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1033 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1034 vmstate_register_ram_global(secram);
1035 memory_region_add_subregion(secure_sysmem, base, secram);
1037 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1038 qemu_fdt_add_subnode(vbi->fdt, nodename);
1039 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1040 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1041 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1042 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1044 g_free(nodename);
1047 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1049 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1051 *fdt_size = board->fdt_size;
1052 return board->fdt;
1055 static void virt_build_smbios(VirtGuestInfo *guest_info)
1057 FWCfgState *fw_cfg = guest_info->fw_cfg;
1058 uint8_t *smbios_tables, *smbios_anchor;
1059 size_t smbios_tables_len, smbios_anchor_len;
1060 const char *product = "QEMU Virtual Machine";
1062 if (!fw_cfg) {
1063 return;
1066 if (kvm_enabled()) {
1067 product = "KVM Virtual Machine";
1070 smbios_set_defaults("QEMU", product,
1071 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1073 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1074 &smbios_anchor, &smbios_anchor_len);
1076 if (smbios_anchor) {
1077 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1078 smbios_tables, smbios_tables_len);
1079 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1080 smbios_anchor, smbios_anchor_len);
1084 static
1085 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1087 VirtGuestInfoState *guest_info_state = container_of(notifier,
1088 VirtGuestInfoState, machine_done);
1089 virt_acpi_setup(&guest_info_state->info);
1090 virt_build_smbios(&guest_info_state->info);
1093 static void machvirt_init(MachineState *machine)
1095 VirtMachineState *vms = VIRT_MACHINE(machine);
1096 qemu_irq pic[NUM_IRQS];
1097 MemoryRegion *sysmem = get_system_memory();
1098 MemoryRegion *secure_sysmem = NULL;
1099 int gic_version = vms->gic_version;
1100 int n, virt_max_cpus;
1101 MemoryRegion *ram = g_new(MemoryRegion, 1);
1102 const char *cpu_model = machine->cpu_model;
1103 VirtBoardInfo *vbi;
1104 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1105 VirtGuestInfo *guest_info = &guest_info_state->info;
1106 char **cpustr;
1107 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1109 if (!cpu_model) {
1110 cpu_model = "cortex-a15";
1113 /* We can probe only here because during property set
1114 * KVM is not available yet
1116 if (!gic_version) {
1117 gic_version = kvm_arm_vgic_probe();
1118 if (!gic_version) {
1119 error_report("Unable to determine GIC version supported by host");
1120 error_printf("KVM acceleration is probably not supported\n");
1121 exit(1);
1125 /* Separate the actual CPU model name from any appended features */
1126 cpustr = g_strsplit(cpu_model, ",", 2);
1128 vbi = find_machine_info(cpustr[0]);
1130 if (!vbi) {
1131 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1132 exit(1);
1135 /* If we have an EL3 boot ROM then the assumption is that it will
1136 * implement PSCI itself, so disable QEMU's internal implementation
1137 * so it doesn't get in the way. Instead of starting secondary
1138 * CPUs in PSCI powerdown state we will start them all running and
1139 * let the boot ROM sort them out.
1140 * The usual case is that we do use QEMU's PSCI implementation.
1142 vbi->using_psci = !(vms->secure && firmware_loaded);
1144 /* The maximum number of CPUs depends on the GIC version, or on how
1145 * many redistributors we can fit into the memory map.
1147 if (gic_version == 3) {
1148 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1149 } else {
1150 virt_max_cpus = GIC_NCPU;
1153 if (max_cpus > virt_max_cpus) {
1154 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1155 "supported by machine 'mach-virt' (%d)",
1156 max_cpus, virt_max_cpus);
1157 exit(1);
1160 vbi->smp_cpus = smp_cpus;
1162 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1163 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1164 exit(1);
1167 if (vms->secure) {
1168 if (kvm_enabled()) {
1169 error_report("mach-virt: KVM does not support Security extensions");
1170 exit(1);
1173 /* The Secure view of the world is the same as the NonSecure,
1174 * but with a few extra devices. Create it as a container region
1175 * containing the system memory at low priority; any secure-only
1176 * devices go in at higher priority and take precedence.
1178 secure_sysmem = g_new(MemoryRegion, 1);
1179 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1180 UINT64_MAX);
1181 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1184 create_fdt(vbi);
1186 for (n = 0; n < smp_cpus; n++) {
1187 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1188 CPUClass *cc = CPU_CLASS(oc);
1189 Object *cpuobj;
1190 Error *err = NULL;
1191 char *cpuopts = g_strdup(cpustr[1]);
1193 if (!oc) {
1194 error_report("Unable to find CPU definition");
1195 exit(1);
1197 cpuobj = object_new(object_class_get_name(oc));
1199 /* Handle any CPU options specified by the user */
1200 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1201 g_free(cpuopts);
1202 if (err) {
1203 error_report_err(err);
1204 exit(1);
1207 if (!vms->secure) {
1208 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1211 if (vbi->using_psci) {
1212 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1213 "psci-conduit", NULL);
1215 /* Secondary CPUs start in PSCI powered-down state */
1216 if (n > 0) {
1217 object_property_set_bool(cpuobj, true,
1218 "start-powered-off", NULL);
1222 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1223 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1224 "reset-cbar", &error_abort);
1227 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1228 &error_abort);
1229 if (vms->secure) {
1230 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1231 "secure-memory", &error_abort);
1234 object_property_set_bool(cpuobj, true, "realized", NULL);
1236 g_strfreev(cpustr);
1237 fdt_add_timer_nodes(vbi, gic_version);
1238 fdt_add_cpu_nodes(vbi);
1239 fdt_add_psci_node(vbi);
1241 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1242 machine->ram_size);
1243 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1245 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1247 create_gic(vbi, pic, gic_version, vms->secure);
1249 create_uart(vbi, pic, VIRT_UART, sysmem);
1251 if (vms->secure) {
1252 create_secure_ram(vbi, secure_sysmem);
1253 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1256 create_rtc(vbi, pic);
1258 create_pcie(vbi, pic, vms->highmem);
1260 create_gpio(vbi, pic);
1262 /* Create mmio transports, so the user can create virtio backends
1263 * (which will be automatically plugged in to the transports). If
1264 * no backend is created the transport will just sit harmlessly idle.
1266 create_virtio_devices(vbi, pic);
1268 create_fw_cfg(vbi, &address_space_memory);
1269 rom_set_fw(fw_cfg_find());
1271 guest_info->smp_cpus = smp_cpus;
1272 guest_info->fw_cfg = fw_cfg_find();
1273 guest_info->memmap = vbi->memmap;
1274 guest_info->irqmap = vbi->irqmap;
1275 guest_info->use_highmem = vms->highmem;
1276 guest_info->gic_version = gic_version;
1277 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1278 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1280 vbi->bootinfo.ram_size = machine->ram_size;
1281 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1282 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1283 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1284 vbi->bootinfo.nb_cpus = smp_cpus;
1285 vbi->bootinfo.board_id = -1;
1286 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1287 vbi->bootinfo.get_dtb = machvirt_dtb;
1288 vbi->bootinfo.firmware_loaded = firmware_loaded;
1289 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1292 * arm_load_kernel machine init done notifier registration must
1293 * happen before the platform_bus_create call. In this latter,
1294 * another notifier is registered which adds platform bus nodes.
1295 * Notifiers are executed in registration reverse order.
1297 create_platform_bus(vbi, pic);
1300 static bool virt_get_secure(Object *obj, Error **errp)
1302 VirtMachineState *vms = VIRT_MACHINE(obj);
1304 return vms->secure;
1307 static void virt_set_secure(Object *obj, bool value, Error **errp)
1309 VirtMachineState *vms = VIRT_MACHINE(obj);
1311 vms->secure = value;
1314 static bool virt_get_highmem(Object *obj, Error **errp)
1316 VirtMachineState *vms = VIRT_MACHINE(obj);
1318 return vms->highmem;
1321 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1323 VirtMachineState *vms = VIRT_MACHINE(obj);
1325 vms->highmem = value;
1328 static char *virt_get_gic_version(Object *obj, Error **errp)
1330 VirtMachineState *vms = VIRT_MACHINE(obj);
1331 const char *val = vms->gic_version == 3 ? "3" : "2";
1333 return g_strdup(val);
1336 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1338 VirtMachineState *vms = VIRT_MACHINE(obj);
1340 if (!strcmp(value, "3")) {
1341 vms->gic_version = 3;
1342 } else if (!strcmp(value, "2")) {
1343 vms->gic_version = 2;
1344 } else if (!strcmp(value, "host")) {
1345 vms->gic_version = 0; /* Will probe later */
1346 } else {
1347 error_setg(errp, "Invalid gic-version value");
1348 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1352 static void virt_machine_class_init(ObjectClass *oc, void *data)
1354 MachineClass *mc = MACHINE_CLASS(oc);
1356 mc->init = machvirt_init;
1357 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1358 * it later in machvirt_init, where we have more information about the
1359 * configuration of the particular instance.
1361 mc->max_cpus = MAX_CPUMASK_BITS;
1362 mc->has_dynamic_sysbus = true;
1363 mc->block_default_type = IF_VIRTIO;
1364 mc->no_cdrom = 1;
1365 mc->pci_allow_0_address = true;
1368 static const TypeInfo virt_machine_info = {
1369 .name = TYPE_VIRT_MACHINE,
1370 .parent = TYPE_MACHINE,
1371 .abstract = true,
1372 .instance_size = sizeof(VirtMachineState),
1373 .class_size = sizeof(VirtMachineClass),
1374 .class_init = virt_machine_class_init,
1377 static void virt_2_6_instance_init(Object *obj)
1379 VirtMachineState *vms = VIRT_MACHINE(obj);
1381 /* EL3 is disabled by default on virt: this makes us consistent
1382 * between KVM and TCG for this board, and it also allows us to
1383 * boot UEFI blobs which assume no TrustZone support.
1385 vms->secure = false;
1386 object_property_add_bool(obj, "secure", virt_get_secure,
1387 virt_set_secure, NULL);
1388 object_property_set_description(obj, "secure",
1389 "Set on/off to enable/disable the ARM "
1390 "Security Extensions (TrustZone)",
1391 NULL);
1393 /* High memory is enabled by default */
1394 vms->highmem = true;
1395 object_property_add_bool(obj, "highmem", virt_get_highmem,
1396 virt_set_highmem, NULL);
1397 object_property_set_description(obj, "highmem",
1398 "Set on/off to enable/disable using "
1399 "physical address space above 32 bits",
1400 NULL);
1401 /* Default GIC type is v2 */
1402 vms->gic_version = 2;
1403 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1404 virt_set_gic_version, NULL);
1405 object_property_set_description(obj, "gic-version",
1406 "Set GIC version. "
1407 "Valid values are 2, 3 and host", NULL);
1410 static void virt_2_6_class_init(ObjectClass *oc, void *data)
1412 MachineClass *mc = MACHINE_CLASS(oc);
1413 static GlobalProperty compat_props[] = {
1414 { /* end of list */ }
1417 mc->desc = "QEMU 2.6 ARM Virtual Machine";
1418 mc->alias = "virt";
1419 mc->compat_props = compat_props;
1422 static const TypeInfo machvirt_info = {
1423 .name = MACHINE_TYPE_NAME("virt-2.6"),
1424 .parent = TYPE_VIRT_MACHINE,
1425 .instance_init = virt_2_6_instance_init,
1426 .class_init = virt_2_6_class_init,
1429 static void machvirt_machine_init(void)
1431 type_register_static(&virt_machine_info);
1432 type_register_static(&machvirt_info);
1435 type_init(machvirt_machine_init);