4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits
;
114 bool target_page_bits_decided
;
117 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
118 /* current CPU in the current thread. It is only valid inside
120 __thread CPUState
*current_cpu
;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
126 uintptr_t qemu_host_page_size
;
127 intptr_t qemu_host_page_mask
;
129 bool set_preferred_target_page_bits(int bits
)
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits
>= TARGET_PAGE_BITS_MIN
);
138 if (target_page_bits
== 0 || target_page_bits
> bits
) {
139 if (target_page_bits_decided
) {
142 target_page_bits
= bits
;
148 #if !defined(CONFIG_USER_ONLY)
150 static void finalize_target_page_bits(void)
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits
== 0) {
154 target_page_bits
= TARGET_PAGE_BITS_MIN
;
156 target_page_bits_decided
= true;
160 typedef struct PhysPageEntry PhysPageEntry
;
162 struct PhysPageEntry
{
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
175 #define P_L2_SIZE (1 << P_L2_BITS)
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
179 typedef PhysPageEntry Node
[P_L2_SIZE
];
181 typedef struct PhysPageMap
{
184 unsigned sections_nb
;
185 unsigned sections_nb_alloc
;
187 unsigned nodes_nb_alloc
;
189 MemoryRegionSection
*sections
;
192 struct AddressSpaceDispatch
{
193 MemoryRegionSection
*mru_section
;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
197 PhysPageEntry phys_map
;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t
{
206 uint16_t sub_section
[];
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener
*listener
);
218 static MemoryRegion io_mem_watch
;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace
{
230 struct AddressSpaceDispatch
*memory_dispatch
;
231 MemoryListener tcg_as_listener
;
234 struct DirtyBitmapSnapshot
{
237 unsigned long dirty
[];
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
246 static unsigned alloc_hint
= 16;
247 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
248 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
249 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
250 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
251 alloc_hint
= map
->nodes_nb_alloc
;
255 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
262 ret
= map
->nodes_nb
++;
264 assert(ret
!= PHYS_MAP_NODE_NIL
);
265 assert(ret
!= map
->nodes_nb_alloc
);
267 e
.skip
= leaf
? 0 : 1;
268 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
269 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
270 memcpy(&p
[i
], &e
, sizeof(e
));
275 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
276 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
280 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
282 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
283 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
285 p
= map
->nodes
[lp
->ptr
];
286 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
288 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
289 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
295 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
301 static void phys_page_set(AddressSpaceDispatch
*d
,
302 hwaddr index
, hwaddr nb
,
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
308 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
316 unsigned valid_ptr
= P_L2_SIZE
;
321 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
326 for (i
= 0; i
< P_L2_SIZE
; i
++) {
327 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
334 phys_page_compact(&p
[i
], nodes
);
338 /* We can only compress if there's only one child. */
343 assert(valid_ptr
< P_L2_SIZE
);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
350 lp
->ptr
= p
[valid_ptr
].ptr
;
351 if (!p
[valid_ptr
].skip
) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
360 lp
->skip
+= p
[valid_ptr
].skip
;
364 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
366 if (d
->phys_map
.skip
) {
367 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
371 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section
->size
) ||
378 range_covers_byte(section
->offset_within_address_space
,
379 int128_getlo(section
->size
), addr
);
382 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
384 PhysPageEntry lp
= d
->phys_map
, *p
;
385 Node
*nodes
= d
->map
.nodes
;
386 MemoryRegionSection
*sections
= d
->map
.sections
;
387 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
390 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
391 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
392 return §ions
[PHYS_SECTION_UNASSIGNED
];
395 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
398 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
399 return §ions
[lp
.ptr
];
401 return §ions
[PHYS_SECTION_UNASSIGNED
];
405 bool memory_region_is_unassigned(MemoryRegion
*mr
)
407 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
408 && mr
!= &io_mem_watch
;
411 /* Called from RCU critical section */
412 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
414 bool resolve_subpage
)
416 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
419 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
420 !section_covers_addr(section
, addr
)) {
421 section
= phys_page_find(d
, addr
);
422 atomic_set(&d
->mru_section
, section
);
424 if (resolve_subpage
&& section
->mr
->subpage
) {
425 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
426 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
431 /* Called from RCU critical section */
432 static MemoryRegionSection
*
433 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
434 hwaddr
*plen
, bool resolve_subpage
)
436 MemoryRegionSection
*section
;
440 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
441 /* Compute offset within MemoryRegionSection */
442 addr
-= section
->offset_within_address_space
;
444 /* Compute offset within MemoryRegion */
445 *xlat
= addr
+ section
->offset_within_region
;
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
460 if (memory_region_is_ram(mr
)) {
461 diff
= int128_sub(section
->size
, int128_make64(addr
));
462 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
489 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
492 hwaddr
*page_mask_out
,
495 AddressSpace
**target_as
,
498 MemoryRegionSection
*section
;
499 hwaddr page_mask
= (hwaddr
)-1;
503 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
507 if (imrc
->attrs_to_index
) {
508 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
511 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
512 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
514 if (!(iotlb
.perm
& (1 << is_write
))) {
518 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
519 | (addr
& iotlb
.addr_mask
));
520 page_mask
&= iotlb
.addr_mask
;
521 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
522 *target_as
= iotlb
.target_as
;
524 section
= address_space_translate_internal(
525 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
528 iommu_mr
= memory_region_get_iommu(section
->mr
);
529 } while (unlikely(iommu_mr
));
532 *page_mask_out
= page_mask
;
537 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
541 * flatview_do_translate - translate an address in FlatView
543 * @fv: the flat view that we want to translate on
544 * @addr: the address to be translated in above address space
545 * @xlat: the translated address offset within memory region. It
547 * @plen_out: valid read/write length of the translated address. It
548 * can be @NULL when we don't care about it.
549 * @page_mask_out: page mask for the translated address. This
550 * should only be meaningful for IOMMU translated
551 * addresses, since there may be huge pages that this bit
552 * would tell. It can be @NULL if we don't care about it.
553 * @is_write: whether the translation operation is for write
554 * @is_mmio: whether this can be MMIO, set true if it can
555 * @target_as: the address space targeted by the IOMMU
556 * @attrs: memory transaction attributes
558 * This function is called from RCU critical section
560 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
564 hwaddr
*page_mask_out
,
567 AddressSpace
**target_as
,
570 MemoryRegionSection
*section
;
571 IOMMUMemoryRegion
*iommu_mr
;
572 hwaddr plen
= (hwaddr
)(-1);
578 section
= address_space_translate_internal(
579 flatview_to_dispatch(fv
), addr
, xlat
,
582 iommu_mr
= memory_region_get_iommu(section
->mr
);
583 if (unlikely(iommu_mr
)) {
584 return address_space_translate_iommu(iommu_mr
, xlat
,
585 plen_out
, page_mask_out
,
590 /* Not behind an IOMMU, use default page size. */
591 *page_mask_out
= ~TARGET_PAGE_MASK
;
597 /* Called from RCU critical section */
598 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
599 bool is_write
, MemTxAttrs attrs
)
601 MemoryRegionSection section
;
602 hwaddr xlat
, page_mask
;
605 * This can never be MMIO, and we don't really care about plen,
608 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
609 NULL
, &page_mask
, is_write
, false, &as
,
612 /* Illegal translation */
613 if (section
.mr
== &io_mem_unassigned
) {
617 /* Convert memory region offset into address space offset */
618 xlat
+= section
.offset_within_address_space
-
619 section
.offset_within_region
;
621 return (IOMMUTLBEntry
) {
623 .iova
= addr
& ~page_mask
,
624 .translated_addr
= xlat
& ~page_mask
,
625 .addr_mask
= page_mask
,
626 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
631 return (IOMMUTLBEntry
) {0};
634 /* Called from RCU critical section */
635 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
636 hwaddr
*plen
, bool is_write
,
640 MemoryRegionSection section
;
641 AddressSpace
*as
= NULL
;
643 /* This can be MMIO, so setup MMIO bit. */
644 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
645 is_write
, true, &as
, attrs
);
648 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
649 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
650 *plen
= MIN(page
, *plen
);
656 typedef struct TCGIOMMUNotifier
{
664 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
666 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
668 if (!notifier
->active
) {
671 tlb_flush(notifier
->cpu
);
672 notifier
->active
= false;
673 /* We leave the notifier struct on the list to avoid reallocating it later.
674 * Generally the number of IOMMUs a CPU deals with will be small.
675 * In any case we can't unregister the iommu notifier from a notify
680 static void tcg_register_iommu_notifier(CPUState
*cpu
,
681 IOMMUMemoryRegion
*iommu_mr
,
684 /* Make sure this CPU has an IOMMU notifier registered for this
685 * IOMMU/IOMMU index combination, so that we can flush its TLB
686 * when the IOMMU tells us the mappings we've cached have changed.
688 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
689 TCGIOMMUNotifier
*notifier
;
692 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
693 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
694 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
698 if (i
== cpu
->iommu_notifiers
->len
) {
699 /* Not found, add a new entry at the end of the array */
700 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
701 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
704 notifier
->iommu_idx
= iommu_idx
;
706 /* Rather than trying to register interest in the specific part
707 * of the iommu's address space that we've accessed and then
708 * expand it later as subsequent accesses touch more of it, we
709 * just register interest in the whole thing, on the assumption
710 * that iommu reconfiguration will be rare.
712 iommu_notifier_init(¬ifier
->n
,
713 tcg_iommu_unmap_notify
,
714 IOMMU_NOTIFIER_UNMAP
,
718 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
721 if (!notifier
->active
) {
722 notifier
->active
= true;
726 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
728 /* Destroy the CPU's notifier list */
730 TCGIOMMUNotifier
*notifier
;
732 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
733 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
734 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
736 g_array_free(cpu
->iommu_notifiers
, true);
739 /* Called from RCU critical section */
740 MemoryRegionSection
*
741 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
742 hwaddr
*xlat
, hwaddr
*plen
,
743 MemTxAttrs attrs
, int *prot
)
745 MemoryRegionSection
*section
;
746 IOMMUMemoryRegion
*iommu_mr
;
747 IOMMUMemoryRegionClass
*imrc
;
750 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
753 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
755 iommu_mr
= memory_region_get_iommu(section
->mr
);
760 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
762 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
763 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
764 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
765 * doesn't short-cut its translation table walk.
767 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
768 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
769 | (addr
& iotlb
.addr_mask
));
770 /* Update the caller's prot bits to remove permissions the IOMMU
771 * is giving us a failure response for. If we get down to no
772 * permissions left at all we can give up now.
774 if (!(iotlb
.perm
& IOMMU_RO
)) {
775 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
777 if (!(iotlb
.perm
& IOMMU_WO
)) {
778 *prot
&= ~PAGE_WRITE
;
785 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
788 assert(!memory_region_is_iommu(section
->mr
));
793 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
797 #if !defined(CONFIG_USER_ONLY)
799 static int cpu_common_post_load(void *opaque
, int version_id
)
801 CPUState
*cpu
= opaque
;
803 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
804 version_id is increased. */
805 cpu
->interrupt_request
&= ~0x01;
808 /* loadvm has just updated the content of RAM, bypassing the
809 * usual mechanisms that ensure we flush TBs for writes to
810 * memory we've translated code from. So we must flush all TBs,
811 * which will now be stale.
818 static int cpu_common_pre_load(void *opaque
)
820 CPUState
*cpu
= opaque
;
822 cpu
->exception_index
= -1;
827 static bool cpu_common_exception_index_needed(void *opaque
)
829 CPUState
*cpu
= opaque
;
831 return tcg_enabled() && cpu
->exception_index
!= -1;
834 static const VMStateDescription vmstate_cpu_common_exception_index
= {
835 .name
= "cpu_common/exception_index",
837 .minimum_version_id
= 1,
838 .needed
= cpu_common_exception_index_needed
,
839 .fields
= (VMStateField
[]) {
840 VMSTATE_INT32(exception_index
, CPUState
),
841 VMSTATE_END_OF_LIST()
845 static bool cpu_common_crash_occurred_needed(void *opaque
)
847 CPUState
*cpu
= opaque
;
849 return cpu
->crash_occurred
;
852 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
853 .name
= "cpu_common/crash_occurred",
855 .minimum_version_id
= 1,
856 .needed
= cpu_common_crash_occurred_needed
,
857 .fields
= (VMStateField
[]) {
858 VMSTATE_BOOL(crash_occurred
, CPUState
),
859 VMSTATE_END_OF_LIST()
863 const VMStateDescription vmstate_cpu_common
= {
864 .name
= "cpu_common",
866 .minimum_version_id
= 1,
867 .pre_load
= cpu_common_pre_load
,
868 .post_load
= cpu_common_post_load
,
869 .fields
= (VMStateField
[]) {
870 VMSTATE_UINT32(halted
, CPUState
),
871 VMSTATE_UINT32(interrupt_request
, CPUState
),
872 VMSTATE_END_OF_LIST()
874 .subsections
= (const VMStateDescription
*[]) {
875 &vmstate_cpu_common_exception_index
,
876 &vmstate_cpu_common_crash_occurred
,
883 CPUState
*qemu_get_cpu(int index
)
888 if (cpu
->cpu_index
== index
) {
896 #if !defined(CONFIG_USER_ONLY)
897 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
898 const char *prefix
, MemoryRegion
*mr
)
900 CPUAddressSpace
*newas
;
901 AddressSpace
*as
= g_new0(AddressSpace
, 1);
905 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
906 address_space_init(as
, mr
, as_name
);
909 /* Target code should have set num_ases before calling us */
910 assert(asidx
< cpu
->num_ases
);
913 /* address space 0 gets the convenience alias */
917 /* KVM cannot currently support multiple address spaces. */
918 assert(asidx
== 0 || !kvm_enabled());
920 if (!cpu
->cpu_ases
) {
921 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
924 newas
= &cpu
->cpu_ases
[asidx
];
928 newas
->tcg_as_listener
.commit
= tcg_commit
;
929 memory_listener_register(&newas
->tcg_as_listener
, as
);
933 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
935 /* Return the AddressSpace corresponding to the specified index */
936 return cpu
->cpu_ases
[asidx
].as
;
940 void cpu_exec_unrealizefn(CPUState
*cpu
)
942 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
944 cpu_list_remove(cpu
);
946 if (cc
->vmsd
!= NULL
) {
947 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
949 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
950 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
952 #ifndef CONFIG_USER_ONLY
953 tcg_iommu_free_notifier_list(cpu
);
957 Property cpu_common_props
[] = {
958 #ifndef CONFIG_USER_ONLY
959 /* Create a memory property for softmmu CPU object,
960 * so users can wire up its memory. (This can't go in qom/cpu.c
961 * because that file is compiled only once for both user-mode
962 * and system builds.) The default if no link is set up is to use
963 * the system address space.
965 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
968 DEFINE_PROP_END_OF_LIST(),
971 void cpu_exec_initfn(CPUState
*cpu
)
976 #ifndef CONFIG_USER_ONLY
977 cpu
->thread_id
= qemu_get_thread_id();
978 cpu
->memory
= system_memory
;
979 object_ref(OBJECT(cpu
->memory
));
983 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
985 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
986 static bool tcg_target_initialized
;
990 if (tcg_enabled() && !tcg_target_initialized
) {
991 tcg_target_initialized
= true;
992 cc
->tcg_initialize();
995 #ifndef CONFIG_USER_ONLY
996 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
997 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
999 if (cc
->vmsd
!= NULL
) {
1000 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
1003 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
));
1007 const char *parse_cpu_model(const char *cpu_model
)
1011 gchar
**model_pieces
;
1012 const char *cpu_type
;
1014 model_pieces
= g_strsplit(cpu_model
, ",", 2);
1016 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
1018 error_report("unable to find CPU model '%s'", model_pieces
[0]);
1019 g_strfreev(model_pieces
);
1023 cpu_type
= object_class_get_name(oc
);
1025 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
1026 g_strfreev(model_pieces
);
1030 #if defined(CONFIG_USER_ONLY)
1031 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1035 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1040 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1043 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
1044 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
1046 /* Locks grabbed by tb_invalidate_phys_addr */
1047 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
1048 phys
| (pc
& ~TARGET_PAGE_MASK
), attrs
);
1053 #if defined(CONFIG_USER_ONLY)
1054 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1059 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1065 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1069 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1070 int flags
, CPUWatchpoint
**watchpoint
)
1075 /* Add a watchpoint. */
1076 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1077 int flags
, CPUWatchpoint
**watchpoint
)
1081 /* forbid ranges which are empty or run off the end of the address space */
1082 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1083 error_report("tried to set invalid watchpoint at %"
1084 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1087 wp
= g_malloc(sizeof(*wp
));
1093 /* keep all GDB-injected watchpoints in front */
1094 if (flags
& BP_GDB
) {
1095 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1097 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1100 tlb_flush_page(cpu
, addr
);
1107 /* Remove a specific watchpoint. */
1108 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1113 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1114 if (addr
== wp
->vaddr
&& len
== wp
->len
1115 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1116 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1123 /* Remove a specific watchpoint by reference. */
1124 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1126 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1128 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1133 /* Remove all matching watchpoints. */
1134 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1136 CPUWatchpoint
*wp
, *next
;
1138 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1139 if (wp
->flags
& mask
) {
1140 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1145 /* Return true if this watchpoint address matches the specified
1146 * access (ie the address range covered by the watchpoint overlaps
1147 * partially or completely with the address range covered by the
1150 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1154 /* We know the lengths are non-zero, but a little caution is
1155 * required to avoid errors in the case where the range ends
1156 * exactly at the top of the address space and so addr + len
1157 * wraps round to zero.
1159 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1160 vaddr addrend
= addr
+ len
- 1;
1162 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1167 /* Add a breakpoint. */
1168 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1169 CPUBreakpoint
**breakpoint
)
1173 bp
= g_malloc(sizeof(*bp
));
1178 /* keep all GDB-injected breakpoints in front */
1179 if (flags
& BP_GDB
) {
1180 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1182 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1185 breakpoint_invalidate(cpu
, pc
);
1193 /* Remove a specific breakpoint. */
1194 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1198 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1199 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1200 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1207 /* Remove a specific breakpoint by reference. */
1208 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1210 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1212 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1217 /* Remove all matching breakpoints. */
1218 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1220 CPUBreakpoint
*bp
, *next
;
1222 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1223 if (bp
->flags
& mask
) {
1224 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1229 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1230 CPU loop after each instruction */
1231 void cpu_single_step(CPUState
*cpu
, int enabled
)
1233 if (cpu
->singlestep_enabled
!= enabled
) {
1234 cpu
->singlestep_enabled
= enabled
;
1235 if (kvm_enabled()) {
1236 kvm_update_guest_debug(cpu
, 0);
1238 /* must flush all the translated code to avoid inconsistencies */
1239 /* XXX: only flush what is necessary */
1245 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1252 fprintf(stderr
, "qemu: fatal: ");
1253 vfprintf(stderr
, fmt
, ap
);
1254 fprintf(stderr
, "\n");
1255 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1256 if (qemu_log_separate()) {
1258 qemu_log("qemu: fatal: ");
1259 qemu_log_vprintf(fmt
, ap2
);
1261 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1269 #if defined(CONFIG_USER_ONLY)
1271 struct sigaction act
;
1272 sigfillset(&act
.sa_mask
);
1273 act
.sa_handler
= SIG_DFL
;
1275 sigaction(SIGABRT
, &act
, NULL
);
1281 #if !defined(CONFIG_USER_ONLY)
1282 /* Called from RCU critical section */
1283 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1287 block
= atomic_rcu_read(&ram_list
.mru_block
);
1288 if (block
&& addr
- block
->offset
< block
->max_length
) {
1291 RAMBLOCK_FOREACH(block
) {
1292 if (addr
- block
->offset
< block
->max_length
) {
1297 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1301 /* It is safe to write mru_block outside the iothread lock. This
1306 * xxx removed from list
1310 * call_rcu(reclaim_ramblock, xxx);
1313 * atomic_rcu_set is not needed here. The block was already published
1314 * when it was placed into the list. Here we're just making an extra
1315 * copy of the pointer.
1317 ram_list
.mru_block
= block
;
1321 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1328 end
= TARGET_PAGE_ALIGN(start
+ length
);
1329 start
&= TARGET_PAGE_MASK
;
1332 block
= qemu_get_ram_block(start
);
1333 assert(block
== qemu_get_ram_block(end
- 1));
1334 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1336 tlb_reset_dirty(cpu
, start1
, length
);
1341 /* Note: start and end must be within the same ram block. */
1342 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1346 DirtyMemoryBlocks
*blocks
;
1347 unsigned long end
, page
;
1354 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1355 page
= start
>> TARGET_PAGE_BITS
;
1359 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1361 while (page
< end
) {
1362 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1363 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1364 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1366 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1373 if (dirty
&& tcg_enabled()) {
1374 tlb_reset_dirty_range_all(start
, length
);
1380 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1381 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1383 DirtyMemoryBlocks
*blocks
;
1384 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1385 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1386 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1387 DirtyBitmapSnapshot
*snap
;
1388 unsigned long page
, end
, dest
;
1390 snap
= g_malloc0(sizeof(*snap
) +
1391 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1392 snap
->start
= first
;
1395 page
= first
>> TARGET_PAGE_BITS
;
1396 end
= last
>> TARGET_PAGE_BITS
;
1401 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1403 while (page
< end
) {
1404 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1405 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1406 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1408 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1409 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1410 offset
>>= BITS_PER_LEVEL
;
1412 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1413 blocks
->blocks
[idx
] + offset
,
1416 dest
+= num
>> BITS_PER_LEVEL
;
1421 if (tcg_enabled()) {
1422 tlb_reset_dirty_range_all(start
, length
);
1428 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1432 unsigned long page
, end
;
1434 assert(start
>= snap
->start
);
1435 assert(start
+ length
<= snap
->end
);
1437 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1438 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1440 while (page
< end
) {
1441 if (test_bit(page
, snap
->dirty
)) {
1449 /* Called from RCU critical section */
1450 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1451 MemoryRegionSection
*section
,
1453 hwaddr paddr
, hwaddr xlat
,
1455 target_ulong
*address
)
1460 if (memory_region_is_ram(section
->mr
)) {
1462 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1463 if (!section
->readonly
) {
1464 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1466 iotlb
|= PHYS_SECTION_ROM
;
1469 AddressSpaceDispatch
*d
;
1471 d
= flatview_to_dispatch(section
->fv
);
1472 iotlb
= section
- d
->map
.sections
;
1476 /* Make accesses to pages with watchpoints go via the
1477 watchpoint trap routines. */
1478 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1479 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1480 /* Avoid trapping reads of pages with a write breakpoint. */
1481 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1482 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1483 *address
|= TLB_MMIO
;
1491 #endif /* defined(CONFIG_USER_ONLY) */
1493 #if !defined(CONFIG_USER_ONLY)
1495 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1497 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1499 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1500 qemu_anon_ram_alloc
;
1503 * Set a custom physical guest memory alloator.
1504 * Accelerators with unusual needs may need this. Hopefully, we can
1505 * get rid of it eventually.
1507 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1509 phys_mem_alloc
= alloc
;
1512 static uint16_t phys_section_add(PhysPageMap
*map
,
1513 MemoryRegionSection
*section
)
1515 /* The physical section number is ORed with a page-aligned
1516 * pointer to produce the iotlb entries. Thus it should
1517 * never overflow into the page-aligned value.
1519 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1521 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1522 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1523 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1524 map
->sections_nb_alloc
);
1526 map
->sections
[map
->sections_nb
] = *section
;
1527 memory_region_ref(section
->mr
);
1528 return map
->sections_nb
++;
1531 static void phys_section_destroy(MemoryRegion
*mr
)
1533 bool have_sub_page
= mr
->subpage
;
1535 memory_region_unref(mr
);
1537 if (have_sub_page
) {
1538 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1539 object_unref(OBJECT(&subpage
->iomem
));
1544 static void phys_sections_free(PhysPageMap
*map
)
1546 while (map
->sections_nb
> 0) {
1547 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1548 phys_section_destroy(section
->mr
);
1550 g_free(map
->sections
);
1554 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1556 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1558 hwaddr base
= section
->offset_within_address_space
1560 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1561 MemoryRegionSection subsection
= {
1562 .offset_within_address_space
= base
,
1563 .size
= int128_make64(TARGET_PAGE_SIZE
),
1567 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1569 if (!(existing
->mr
->subpage
)) {
1570 subpage
= subpage_init(fv
, base
);
1572 subsection
.mr
= &subpage
->iomem
;
1573 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1574 phys_section_add(&d
->map
, &subsection
));
1576 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1578 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1579 end
= start
+ int128_get64(section
->size
) - 1;
1580 subpage_register(subpage
, start
, end
,
1581 phys_section_add(&d
->map
, section
));
1585 static void register_multipage(FlatView
*fv
,
1586 MemoryRegionSection
*section
)
1588 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1589 hwaddr start_addr
= section
->offset_within_address_space
;
1590 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1591 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1595 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1598 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1600 MemoryRegionSection now
= *section
, remain
= *section
;
1601 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1603 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1604 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1605 - now
.offset_within_address_space
;
1607 now
.size
= int128_min(int128_make64(left
), now
.size
);
1608 register_subpage(fv
, &now
);
1610 now
.size
= int128_zero();
1612 while (int128_ne(remain
.size
, now
.size
)) {
1613 remain
.size
= int128_sub(remain
.size
, now
.size
);
1614 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1615 remain
.offset_within_region
+= int128_get64(now
.size
);
1617 if (int128_lt(remain
.size
, page_size
)) {
1618 register_subpage(fv
, &now
);
1619 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1620 now
.size
= page_size
;
1621 register_subpage(fv
, &now
);
1623 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1624 register_multipage(fv
, &now
);
1629 void qemu_flush_coalesced_mmio_buffer(void)
1632 kvm_flush_coalesced_mmio_buffer();
1635 void qemu_mutex_lock_ramlist(void)
1637 qemu_mutex_lock(&ram_list
.mutex
);
1640 void qemu_mutex_unlock_ramlist(void)
1642 qemu_mutex_unlock(&ram_list
.mutex
);
1645 void ram_block_dump(Monitor
*mon
)
1651 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1652 "Block Name", "PSize", "Offset", "Used", "Total");
1653 RAMBLOCK_FOREACH(block
) {
1654 psize
= size_to_str(block
->page_size
);
1655 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1656 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1657 (uint64_t)block
->offset
,
1658 (uint64_t)block
->used_length
,
1659 (uint64_t)block
->max_length
);
1667 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1668 * may or may not name the same files / on the same filesystem now as
1669 * when we actually open and map them. Iterate over the file
1670 * descriptors instead, and use qemu_fd_getpagesize().
1672 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1674 long *hpsize_min
= opaque
;
1676 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1677 long hpsize
= host_memory_backend_pagesize(MEMORY_BACKEND(obj
));
1679 if (hpsize
< *hpsize_min
) {
1680 *hpsize_min
= hpsize
;
1687 long qemu_getrampagesize(void)
1689 long hpsize
= LONG_MAX
;
1690 long mainrampagesize
;
1691 Object
*memdev_root
;
1693 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1695 /* it's possible we have memory-backend objects with
1696 * hugepage-backed RAM. these may get mapped into system
1697 * address space via -numa parameters or memory hotplug
1698 * hooks. we want to take these into account, but we
1699 * also want to make sure these supported hugepage
1700 * sizes are applicable across the entire range of memory
1701 * we may boot from, so we take the min across all
1702 * backends, and assume normal pages in cases where a
1703 * backend isn't backed by hugepages.
1705 memdev_root
= object_resolve_path("/objects", NULL
);
1707 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1709 if (hpsize
== LONG_MAX
) {
1710 /* No additional memory regions found ==> Report main RAM page size */
1711 return mainrampagesize
;
1714 /* If NUMA is disabled or the NUMA nodes are not backed with a
1715 * memory-backend, then there is at least one node using "normal" RAM,
1716 * so if its page size is smaller we have got to report that size instead.
1718 if (hpsize
> mainrampagesize
&&
1719 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1722 error_report("Huge page support disabled (n/a for main memory).");
1725 return mainrampagesize
;
1731 long qemu_getrampagesize(void)
1733 return getpagesize();
1738 static int64_t get_file_size(int fd
)
1740 int64_t size
= lseek(fd
, 0, SEEK_END
);
1747 static int file_ram_open(const char *path
,
1748 const char *region_name
,
1753 char *sanitized_name
;
1759 fd
= open(path
, O_RDWR
);
1761 /* @path names an existing file, use it */
1764 if (errno
== ENOENT
) {
1765 /* @path names a file that doesn't exist, create it */
1766 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1771 } else if (errno
== EISDIR
) {
1772 /* @path names a directory, create a file there */
1773 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1774 sanitized_name
= g_strdup(region_name
);
1775 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1781 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1783 g_free(sanitized_name
);
1785 fd
= mkstemp(filename
);
1793 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1794 error_setg_errno(errp
, errno
,
1795 "can't open backing store %s for guest RAM",
1800 * Try again on EINTR and EEXIST. The latter happens when
1801 * something else creates the file between our two open().
1808 static void *file_ram_alloc(RAMBlock
*block
,
1816 block
->page_size
= qemu_fd_getpagesize(fd
);
1817 if (block
->mr
->align
% block
->page_size
) {
1818 error_setg(errp
, "alignment 0x%" PRIx64
1819 " must be multiples of page size 0x%zx",
1820 block
->mr
->align
, block
->page_size
);
1823 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1824 #if defined(__s390x__)
1825 if (kvm_enabled()) {
1826 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1830 if (memory
< block
->page_size
) {
1831 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1832 "or larger than page size 0x%zx",
1833 memory
, block
->page_size
);
1837 memory
= ROUND_UP(memory
, block
->page_size
);
1840 * ftruncate is not supported by hugetlbfs in older
1841 * hosts, so don't bother bailing out on errors.
1842 * If anything goes wrong with it under other filesystems,
1845 * Do not truncate the non-empty backend file to avoid corrupting
1846 * the existing data in the file. Disabling shrinking is not
1847 * enough. For example, the current vNVDIMM implementation stores
1848 * the guest NVDIMM labels at the end of the backend file. If the
1849 * backend file is later extended, QEMU will not be able to find
1850 * those labels. Therefore, extending the non-empty backend file
1851 * is disabled as well.
1853 if (truncate
&& ftruncate(fd
, memory
)) {
1854 perror("ftruncate");
1857 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1858 block
->flags
& RAM_SHARED
);
1859 if (area
== MAP_FAILED
) {
1860 error_setg_errno(errp
, errno
,
1861 "unable to map backing store for guest RAM");
1866 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1867 if (errp
&& *errp
) {
1868 qemu_ram_munmap(area
, memory
);
1878 /* Allocate space within the ram_addr_t space that governs the
1880 * Called with the ramlist lock held.
1882 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1884 RAMBlock
*block
, *next_block
;
1885 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1887 assert(size
!= 0); /* it would hand out same offset multiple times */
1889 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1893 RAMBLOCK_FOREACH(block
) {
1894 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1896 /* Align blocks to start on a 'long' in the bitmap
1897 * which makes the bitmap sync'ing take the fast path.
1899 candidate
= block
->offset
+ block
->max_length
;
1900 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1902 /* Search for the closest following block
1905 RAMBLOCK_FOREACH(next_block
) {
1906 if (next_block
->offset
>= candidate
) {
1907 next
= MIN(next
, next_block
->offset
);
1911 /* If it fits remember our place and remember the size
1912 * of gap, but keep going so that we might find a smaller
1913 * gap to fill so avoiding fragmentation.
1915 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1917 mingap
= next
- candidate
;
1920 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1923 if (offset
== RAM_ADDR_MAX
) {
1924 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1929 trace_find_ram_offset(size
, offset
);
1934 unsigned long last_ram_page(void)
1937 ram_addr_t last
= 0;
1940 RAMBLOCK_FOREACH(block
) {
1941 last
= MAX(last
, block
->offset
+ block
->max_length
);
1944 return last
>> TARGET_PAGE_BITS
;
1947 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1951 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1952 if (!machine_dump_guest_core(current_machine
)) {
1953 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1955 perror("qemu_madvise");
1956 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1957 "but dump_guest_core=off specified\n");
1962 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1967 bool qemu_ram_is_shared(RAMBlock
*rb
)
1969 return rb
->flags
& RAM_SHARED
;
1972 /* Note: Only set at the start of postcopy */
1973 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1975 return rb
->flags
& RAM_UF_ZEROPAGE
;
1978 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1980 rb
->flags
|= RAM_UF_ZEROPAGE
;
1983 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1985 return rb
->flags
& RAM_MIGRATABLE
;
1988 void qemu_ram_set_migratable(RAMBlock
*rb
)
1990 rb
->flags
|= RAM_MIGRATABLE
;
1993 void qemu_ram_unset_migratable(RAMBlock
*rb
)
1995 rb
->flags
&= ~RAM_MIGRATABLE
;
1998 /* Called with iothread lock held. */
1999 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2004 assert(!new_block
->idstr
[0]);
2007 char *id
= qdev_get_dev_path(dev
);
2009 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2013 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2016 RAMBLOCK_FOREACH(block
) {
2017 if (block
!= new_block
&&
2018 !strcmp(block
->idstr
, new_block
->idstr
)) {
2019 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2027 /* Called with iothread lock held. */
2028 void qemu_ram_unset_idstr(RAMBlock
*block
)
2030 /* FIXME: arch_init.c assumes that this is not called throughout
2031 * migration. Ignore the problem since hot-unplug during migration
2032 * does not work anyway.
2035 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2039 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2041 return rb
->page_size
;
2044 /* Returns the largest size of page in use */
2045 size_t qemu_ram_pagesize_largest(void)
2050 RAMBLOCK_FOREACH(block
) {
2051 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2057 static int memory_try_enable_merging(void *addr
, size_t len
)
2059 if (!machine_mem_merge(current_machine
)) {
2060 /* disabled by the user */
2064 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2067 /* Only legal before guest might have detected the memory size: e.g. on
2068 * incoming migration, or right after reset.
2070 * As memory core doesn't know how is memory accessed, it is up to
2071 * resize callback to update device state and/or add assertions to detect
2072 * misuse, if necessary.
2074 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2078 newsize
= HOST_PAGE_ALIGN(newsize
);
2080 if (block
->used_length
== newsize
) {
2084 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2085 error_setg_errno(errp
, EINVAL
,
2086 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2087 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2088 newsize
, block
->used_length
);
2092 if (block
->max_length
< newsize
) {
2093 error_setg_errno(errp
, EINVAL
,
2094 "Length too large: %s: 0x" RAM_ADDR_FMT
2095 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2096 newsize
, block
->max_length
);
2100 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2101 block
->used_length
= newsize
;
2102 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2104 memory_region_set_size(block
->mr
, newsize
);
2105 if (block
->resized
) {
2106 block
->resized(block
->idstr
, newsize
, block
->host
);
2111 /* Called with ram_list.mutex held */
2112 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2113 ram_addr_t new_ram_size
)
2115 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2116 DIRTY_MEMORY_BLOCK_SIZE
);
2117 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2118 DIRTY_MEMORY_BLOCK_SIZE
);
2121 /* Only need to extend if block count increased */
2122 if (new_num_blocks
<= old_num_blocks
) {
2126 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2127 DirtyMemoryBlocks
*old_blocks
;
2128 DirtyMemoryBlocks
*new_blocks
;
2131 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2132 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2133 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2135 if (old_num_blocks
) {
2136 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2137 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2140 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2141 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2144 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2147 g_free_rcu(old_blocks
, rcu
);
2152 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2155 RAMBlock
*last_block
= NULL
;
2156 ram_addr_t old_ram_size
, new_ram_size
;
2159 old_ram_size
= last_ram_page();
2161 qemu_mutex_lock_ramlist();
2162 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2164 if (!new_block
->host
) {
2165 if (xen_enabled()) {
2166 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2167 new_block
->mr
, &err
);
2169 error_propagate(errp
, err
);
2170 qemu_mutex_unlock_ramlist();
2174 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2175 &new_block
->mr
->align
, shared
);
2176 if (!new_block
->host
) {
2177 error_setg_errno(errp
, errno
,
2178 "cannot set up guest memory '%s'",
2179 memory_region_name(new_block
->mr
));
2180 qemu_mutex_unlock_ramlist();
2183 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2187 new_ram_size
= MAX(old_ram_size
,
2188 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2189 if (new_ram_size
> old_ram_size
) {
2190 dirty_memory_extend(old_ram_size
, new_ram_size
);
2192 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2193 * QLIST (which has an RCU-friendly variant) does not have insertion at
2194 * tail, so save the last element in last_block.
2196 RAMBLOCK_FOREACH(block
) {
2198 if (block
->max_length
< new_block
->max_length
) {
2203 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2204 } else if (last_block
) {
2205 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2206 } else { /* list is empty */
2207 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2209 ram_list
.mru_block
= NULL
;
2211 /* Write list before version */
2214 qemu_mutex_unlock_ramlist();
2216 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2217 new_block
->used_length
,
2220 if (new_block
->host
) {
2221 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2222 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2223 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2224 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2225 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2230 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2234 RAMBlock
*new_block
;
2235 Error
*local_err
= NULL
;
2238 if (xen_enabled()) {
2239 error_setg(errp
, "-mem-path not supported with Xen");
2243 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2245 "host lacks kvm mmu notifiers, -mem-path unsupported");
2249 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2251 * file_ram_alloc() needs to allocate just like
2252 * phys_mem_alloc, but we haven't bothered to provide
2256 "-mem-path not supported with this accelerator");
2260 size
= HOST_PAGE_ALIGN(size
);
2261 file_size
= get_file_size(fd
);
2262 if (file_size
> 0 && file_size
< size
) {
2263 error_setg(errp
, "backing store %s size 0x%" PRIx64
2264 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2265 mem_path
, file_size
, size
);
2269 new_block
= g_malloc0(sizeof(*new_block
));
2271 new_block
->used_length
= size
;
2272 new_block
->max_length
= size
;
2273 new_block
->flags
= share
? RAM_SHARED
: 0;
2274 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2275 if (!new_block
->host
) {
2280 ram_block_add(new_block
, &local_err
, share
);
2283 error_propagate(errp
, local_err
);
2291 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2292 bool share
, const char *mem_path
,
2299 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2304 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2318 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2319 void (*resized
)(const char*,
2322 void *host
, bool resizeable
, bool share
,
2323 MemoryRegion
*mr
, Error
**errp
)
2325 RAMBlock
*new_block
;
2326 Error
*local_err
= NULL
;
2328 size
= HOST_PAGE_ALIGN(size
);
2329 max_size
= HOST_PAGE_ALIGN(max_size
);
2330 new_block
= g_malloc0(sizeof(*new_block
));
2332 new_block
->resized
= resized
;
2333 new_block
->used_length
= size
;
2334 new_block
->max_length
= max_size
;
2335 assert(max_size
>= size
);
2337 new_block
->page_size
= getpagesize();
2338 new_block
->host
= host
;
2340 new_block
->flags
|= RAM_PREALLOC
;
2343 new_block
->flags
|= RAM_RESIZEABLE
;
2345 ram_block_add(new_block
, &local_err
, share
);
2348 error_propagate(errp
, local_err
);
2354 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2355 MemoryRegion
*mr
, Error
**errp
)
2357 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2361 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2362 MemoryRegion
*mr
, Error
**errp
)
2364 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2368 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2369 void (*resized
)(const char*,
2372 MemoryRegion
*mr
, Error
**errp
)
2374 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2378 static void reclaim_ramblock(RAMBlock
*block
)
2380 if (block
->flags
& RAM_PREALLOC
) {
2382 } else if (xen_enabled()) {
2383 xen_invalidate_map_cache_entry(block
->host
);
2385 } else if (block
->fd
>= 0) {
2386 qemu_ram_munmap(block
->host
, block
->max_length
);
2390 qemu_anon_ram_free(block
->host
, block
->max_length
);
2395 void qemu_ram_free(RAMBlock
*block
)
2402 ram_block_notify_remove(block
->host
, block
->max_length
);
2405 qemu_mutex_lock_ramlist();
2406 QLIST_REMOVE_RCU(block
, next
);
2407 ram_list
.mru_block
= NULL
;
2408 /* Write list before version */
2411 call_rcu(block
, reclaim_ramblock
, rcu
);
2412 qemu_mutex_unlock_ramlist();
2416 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2423 RAMBLOCK_FOREACH(block
) {
2424 offset
= addr
- block
->offset
;
2425 if (offset
< block
->max_length
) {
2426 vaddr
= ramblock_ptr(block
, offset
);
2427 if (block
->flags
& RAM_PREALLOC
) {
2429 } else if (xen_enabled()) {
2433 if (block
->fd
>= 0) {
2434 flags
|= (block
->flags
& RAM_SHARED
?
2435 MAP_SHARED
: MAP_PRIVATE
);
2436 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2437 flags
, block
->fd
, offset
);
2440 * Remap needs to match alloc. Accelerators that
2441 * set phys_mem_alloc never remap. If they did,
2442 * we'd need a remap hook here.
2444 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2446 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2447 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2450 if (area
!= vaddr
) {
2451 error_report("Could not remap addr: "
2452 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2456 memory_try_enable_merging(vaddr
, length
);
2457 qemu_ram_setup_dump(vaddr
, length
);
2462 #endif /* !_WIN32 */
2464 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2465 * This should not be used for general purpose DMA. Use address_space_map
2466 * or address_space_rw instead. For local memory (e.g. video ram) that the
2467 * device owns, use memory_region_get_ram_ptr.
2469 * Called within RCU critical section.
2471 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2473 RAMBlock
*block
= ram_block
;
2475 if (block
== NULL
) {
2476 block
= qemu_get_ram_block(addr
);
2477 addr
-= block
->offset
;
2480 if (xen_enabled() && block
->host
== NULL
) {
2481 /* We need to check if the requested address is in the RAM
2482 * because we don't want to map the entire memory in QEMU.
2483 * In that case just map until the end of the page.
2485 if (block
->offset
== 0) {
2486 return xen_map_cache(addr
, 0, 0, false);
2489 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2491 return ramblock_ptr(block
, addr
);
2494 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2495 * but takes a size argument.
2497 * Called within RCU critical section.
2499 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2500 hwaddr
*size
, bool lock
)
2502 RAMBlock
*block
= ram_block
;
2507 if (block
== NULL
) {
2508 block
= qemu_get_ram_block(addr
);
2509 addr
-= block
->offset
;
2511 *size
= MIN(*size
, block
->max_length
- addr
);
2513 if (xen_enabled() && block
->host
== NULL
) {
2514 /* We need to check if the requested address is in the RAM
2515 * because we don't want to map the entire memory in QEMU.
2516 * In that case just map the requested area.
2518 if (block
->offset
== 0) {
2519 return xen_map_cache(addr
, *size
, lock
, lock
);
2522 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2525 return ramblock_ptr(block
, addr
);
2528 /* Return the offset of a hostpointer within a ramblock */
2529 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2531 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2532 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2533 assert(res
< rb
->max_length
);
2539 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2542 * ptr: Host pointer to look up
2543 * round_offset: If true round the result offset down to a page boundary
2544 * *ram_addr: set to result ram_addr
2545 * *offset: set to result offset within the RAMBlock
2547 * Returns: RAMBlock (or NULL if not found)
2549 * By the time this function returns, the returned pointer is not protected
2550 * by RCU anymore. If the caller is not within an RCU critical section and
2551 * does not hold the iothread lock, it must have other means of protecting the
2552 * pointer, such as a reference to the region that includes the incoming
2555 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2559 uint8_t *host
= ptr
;
2561 if (xen_enabled()) {
2562 ram_addr_t ram_addr
;
2564 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2565 block
= qemu_get_ram_block(ram_addr
);
2567 *offset
= ram_addr
- block
->offset
;
2574 block
= atomic_rcu_read(&ram_list
.mru_block
);
2575 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2579 RAMBLOCK_FOREACH(block
) {
2580 /* This case append when the block is not mapped. */
2581 if (block
->host
== NULL
) {
2584 if (host
- block
->host
< block
->max_length
) {
2593 *offset
= (host
- block
->host
);
2595 *offset
&= TARGET_PAGE_MASK
;
2602 * Finds the named RAMBlock
2604 * name: The name of RAMBlock to find
2606 * Returns: RAMBlock (or NULL if not found)
2608 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2612 RAMBLOCK_FOREACH(block
) {
2613 if (!strcmp(name
, block
->idstr
)) {
2621 /* Some of the softmmu routines need to translate from a host pointer
2622 (typically a TLB entry) back to a ram offset. */
2623 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2628 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2630 return RAM_ADDR_INVALID
;
2633 return block
->offset
+ offset
;
2636 /* Called within RCU critical section. */
2637 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2640 ram_addr_t ram_addr
,
2644 ndi
->ram_addr
= ram_addr
;
2645 ndi
->mem_vaddr
= mem_vaddr
;
2647 ndi
->locked
= false;
2649 assert(tcg_enabled());
2650 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2653 tb_invalidate_phys_page_fast(ram_addr
, size
);
2657 /* Called within RCU critical section. */
2658 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2664 /* Set both VGA and migration bits for simplicity and to remove
2665 * the notdirty callback faster.
2667 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2668 DIRTY_CLIENTS_NOCODE
);
2669 /* we remove the notdirty callback only if the code has been
2671 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2672 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2676 /* Called within RCU critical section. */
2677 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2678 uint64_t val
, unsigned size
)
2682 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2685 stn_p(qemu_map_ram_ptr(NULL
, ram_addr
), size
, val
);
2686 memory_notdirty_write_complete(&ndi
);
2689 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2690 unsigned size
, bool is_write
,
2696 static const MemoryRegionOps notdirty_mem_ops
= {
2697 .write
= notdirty_mem_write
,
2698 .valid
.accepts
= notdirty_mem_accepts
,
2699 .endianness
= DEVICE_NATIVE_ENDIAN
,
2701 .min_access_size
= 1,
2702 .max_access_size
= 8,
2706 .min_access_size
= 1,
2707 .max_access_size
= 8,
2712 /* Generate a debug exception if a watchpoint has been hit. */
2713 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2715 CPUState
*cpu
= current_cpu
;
2716 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2720 assert(tcg_enabled());
2721 if (cpu
->watchpoint_hit
) {
2722 /* We re-entered the check after replacing the TB. Now raise
2723 * the debug interrupt so that is will trigger after the
2724 * current instruction. */
2725 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2728 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2729 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2730 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2731 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2732 && (wp
->flags
& flags
)) {
2733 if (flags
== BP_MEM_READ
) {
2734 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2736 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2738 wp
->hitaddr
= vaddr
;
2739 wp
->hitattrs
= attrs
;
2740 if (!cpu
->watchpoint_hit
) {
2741 if (wp
->flags
& BP_CPU
&&
2742 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2743 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2746 cpu
->watchpoint_hit
= wp
;
2748 /* Both tb_lock and iothread_mutex will be reset when
2749 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2750 * back into the cpu_exec main loop.
2753 tb_check_watchpoint(cpu
);
2754 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2755 cpu
->exception_index
= EXCP_DEBUG
;
2758 /* Force execution of one insn next time. */
2759 cpu
->cflags_next_tb
= 1 | curr_cflags();
2760 cpu_loop_exit_noexc(cpu
);
2764 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2769 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2770 so these check for a hit then pass through to the normal out-of-line
2772 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2773 unsigned size
, MemTxAttrs attrs
)
2777 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2778 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2780 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2783 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2786 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2789 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2792 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2800 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2801 uint64_t val
, unsigned size
,
2805 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2806 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2808 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2811 address_space_stb(as
, addr
, val
, attrs
, &res
);
2814 address_space_stw(as
, addr
, val
, attrs
, &res
);
2817 address_space_stl(as
, addr
, val
, attrs
, &res
);
2820 address_space_stq(as
, addr
, val
, attrs
, &res
);
2827 static const MemoryRegionOps watch_mem_ops
= {
2828 .read_with_attrs
= watch_mem_read
,
2829 .write_with_attrs
= watch_mem_write
,
2830 .endianness
= DEVICE_NATIVE_ENDIAN
,
2832 .min_access_size
= 1,
2833 .max_access_size
= 8,
2837 .min_access_size
= 1,
2838 .max_access_size
= 8,
2843 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2844 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2845 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2846 const uint8_t *buf
, int len
);
2847 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2848 bool is_write
, MemTxAttrs attrs
);
2850 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2851 unsigned len
, MemTxAttrs attrs
)
2853 subpage_t
*subpage
= opaque
;
2857 #if defined(DEBUG_SUBPAGE)
2858 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2859 subpage
, len
, addr
);
2861 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2865 *data
= ldn_p(buf
, len
);
2869 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2870 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2872 subpage_t
*subpage
= opaque
;
2875 #if defined(DEBUG_SUBPAGE)
2876 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2877 " value %"PRIx64
"\n",
2878 __func__
, subpage
, len
, addr
, value
);
2880 stn_p(buf
, len
, value
);
2881 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2884 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2885 unsigned len
, bool is_write
,
2888 subpage_t
*subpage
= opaque
;
2889 #if defined(DEBUG_SUBPAGE)
2890 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2891 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2894 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2895 len
, is_write
, attrs
);
2898 static const MemoryRegionOps subpage_ops
= {
2899 .read_with_attrs
= subpage_read
,
2900 .write_with_attrs
= subpage_write
,
2901 .impl
.min_access_size
= 1,
2902 .impl
.max_access_size
= 8,
2903 .valid
.min_access_size
= 1,
2904 .valid
.max_access_size
= 8,
2905 .valid
.accepts
= subpage_accepts
,
2906 .endianness
= DEVICE_NATIVE_ENDIAN
,
2909 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2914 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2916 idx
= SUBPAGE_IDX(start
);
2917 eidx
= SUBPAGE_IDX(end
);
2918 #if defined(DEBUG_SUBPAGE)
2919 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2920 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2922 for (; idx
<= eidx
; idx
++) {
2923 mmio
->sub_section
[idx
] = section
;
2929 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2933 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2936 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2937 NULL
, TARGET_PAGE_SIZE
);
2938 mmio
->iomem
.subpage
= true;
2939 #if defined(DEBUG_SUBPAGE)
2940 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2941 mmio
, base
, TARGET_PAGE_SIZE
);
2943 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2948 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2951 MemoryRegionSection section
= {
2954 .offset_within_address_space
= 0,
2955 .offset_within_region
= 0,
2956 .size
= int128_2_64(),
2959 return phys_section_add(map
, §ion
);
2962 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2963 uint64_t val
, unsigned size
)
2965 /* Ignore any write to ROM. */
2968 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2969 unsigned size
, bool is_write
,
2975 /* This will only be used for writes, because reads are special cased
2976 * to directly access the underlying host ram.
2978 static const MemoryRegionOps readonly_mem_ops
= {
2979 .write
= readonly_mem_write
,
2980 .valid
.accepts
= readonly_mem_accepts
,
2981 .endianness
= DEVICE_NATIVE_ENDIAN
,
2983 .min_access_size
= 1,
2984 .max_access_size
= 8,
2988 .min_access_size
= 1,
2989 .max_access_size
= 8,
2994 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2995 hwaddr index
, MemTxAttrs attrs
)
2997 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2998 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2999 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
3000 MemoryRegionSection
*sections
= d
->map
.sections
;
3002 return §ions
[index
& ~TARGET_PAGE_MASK
];
3005 static void io_mem_init(void)
3007 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
3008 NULL
, NULL
, UINT64_MAX
);
3009 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
3012 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3013 * which can be called without the iothread mutex.
3015 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
3017 memory_region_clear_global_locking(&io_mem_notdirty
);
3019 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
3023 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
3025 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
3028 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
3029 assert(n
== PHYS_SECTION_UNASSIGNED
);
3030 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
3031 assert(n
== PHYS_SECTION_NOTDIRTY
);
3032 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
3033 assert(n
== PHYS_SECTION_ROM
);
3034 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
3035 assert(n
== PHYS_SECTION_WATCH
);
3037 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
3042 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
3044 phys_sections_free(&d
->map
);
3048 static void tcg_commit(MemoryListener
*listener
)
3050 CPUAddressSpace
*cpuas
;
3051 AddressSpaceDispatch
*d
;
3053 /* since each CPU stores ram addresses in its TLB cache, we must
3054 reset the modified entries */
3055 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
3056 cpu_reloading_memory_map();
3057 /* The CPU and TLB are protected by the iothread lock.
3058 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3059 * may have split the RCU critical section.
3061 d
= address_space_to_dispatch(cpuas
->as
);
3062 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
3063 tlb_flush(cpuas
->cpu
);
3066 static void memory_map_init(void)
3068 system_memory
= g_malloc(sizeof(*system_memory
));
3070 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
3071 address_space_init(&address_space_memory
, system_memory
, "memory");
3073 system_io
= g_malloc(sizeof(*system_io
));
3074 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
3076 address_space_init(&address_space_io
, system_io
, "I/O");
3079 MemoryRegion
*get_system_memory(void)
3081 return system_memory
;
3084 MemoryRegion
*get_system_io(void)
3089 #endif /* !defined(CONFIG_USER_ONLY) */
3091 /* physical memory access (slow version, mainly for debug) */
3092 #if defined(CONFIG_USER_ONLY)
3093 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3094 uint8_t *buf
, int len
, int is_write
)
3101 page
= addr
& TARGET_PAGE_MASK
;
3102 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3105 flags
= page_get_flags(page
);
3106 if (!(flags
& PAGE_VALID
))
3109 if (!(flags
& PAGE_WRITE
))
3111 /* XXX: this code should not depend on lock_user */
3112 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3115 unlock_user(p
, addr
, l
);
3117 if (!(flags
& PAGE_READ
))
3119 /* XXX: this code should not depend on lock_user */
3120 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3123 unlock_user(p
, addr
, 0);
3134 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3137 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3138 addr
+= memory_region_get_ram_addr(mr
);
3140 /* No early return if dirty_log_mask is or becomes 0, because
3141 * cpu_physical_memory_set_dirty_range will still call
3142 * xen_modified_memory.
3144 if (dirty_log_mask
) {
3146 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3148 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3149 assert(tcg_enabled());
3151 tb_invalidate_phys_range(addr
, addr
+ length
);
3153 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3155 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3158 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3160 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3162 /* Regions are assumed to support 1-4 byte accesses unless
3163 otherwise specified. */
3164 if (access_size_max
== 0) {
3165 access_size_max
= 4;
3168 /* Bound the maximum access by the alignment of the address. */
3169 if (!mr
->ops
->impl
.unaligned
) {
3170 unsigned align_size_max
= addr
& -addr
;
3171 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3172 access_size_max
= align_size_max
;
3176 /* Don't attempt accesses larger than the maximum. */
3177 if (l
> access_size_max
) {
3178 l
= access_size_max
;
3185 static bool prepare_mmio_access(MemoryRegion
*mr
)
3187 bool unlocked
= !qemu_mutex_iothread_locked();
3188 bool release_lock
= false;
3190 if (unlocked
&& mr
->global_locking
) {
3191 qemu_mutex_lock_iothread();
3193 release_lock
= true;
3195 if (mr
->flush_coalesced_mmio
) {
3197 qemu_mutex_lock_iothread();
3199 qemu_flush_coalesced_mmio_buffer();
3201 qemu_mutex_unlock_iothread();
3205 return release_lock
;
3208 /* Called within RCU critical section. */
3209 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3212 int len
, hwaddr addr1
,
3213 hwaddr l
, MemoryRegion
*mr
)
3217 MemTxResult result
= MEMTX_OK
;
3218 bool release_lock
= false;
3221 if (!memory_access_is_direct(mr
, true)) {
3222 release_lock
|= prepare_mmio_access(mr
);
3223 l
= memory_access_size(mr
, l
, addr1
);
3224 /* XXX: could force current_cpu to NULL to avoid
3226 val
= ldn_p(buf
, l
);
3227 result
|= memory_region_dispatch_write(mr
, addr1
, val
, l
, attrs
);
3230 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3231 memcpy(ptr
, buf
, l
);
3232 invalidate_and_set_dirty(mr
, addr1
, l
);
3236 qemu_mutex_unlock_iothread();
3237 release_lock
= false;
3249 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3255 /* Called from RCU critical section. */
3256 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3257 const uint8_t *buf
, int len
)
3262 MemTxResult result
= MEMTX_OK
;
3265 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3266 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3272 /* Called within RCU critical section. */
3273 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3274 MemTxAttrs attrs
, uint8_t *buf
,
3275 int len
, hwaddr addr1
, hwaddr l
,
3280 MemTxResult result
= MEMTX_OK
;
3281 bool release_lock
= false;
3284 if (!memory_access_is_direct(mr
, false)) {
3286 release_lock
|= prepare_mmio_access(mr
);
3287 l
= memory_access_size(mr
, l
, addr1
);
3288 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, l
, attrs
);
3292 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3293 memcpy(buf
, ptr
, l
);
3297 qemu_mutex_unlock_iothread();
3298 release_lock
= false;
3310 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3316 /* Called from RCU critical section. */
3317 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3318 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3325 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3326 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3330 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3331 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3333 MemTxResult result
= MEMTX_OK
;
3338 fv
= address_space_to_flatview(as
);
3339 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3346 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3348 const uint8_t *buf
, int len
)
3350 MemTxResult result
= MEMTX_OK
;
3355 fv
= address_space_to_flatview(as
);
3356 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3363 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3364 uint8_t *buf
, int len
, bool is_write
)
3367 return address_space_write(as
, addr
, attrs
, buf
, len
);
3369 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3373 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3374 int len
, int is_write
)
3376 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3377 buf
, len
, is_write
);
3380 enum write_rom_type
{
3385 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3386 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3396 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true,
3397 MEMTXATTRS_UNSPECIFIED
);
3399 if (!(memory_region_is_ram(mr
) ||
3400 memory_region_is_romd(mr
))) {
3401 l
= memory_access_size(mr
, l
, addr1
);
3404 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3407 memcpy(ptr
, buf
, l
);
3408 invalidate_and_set_dirty(mr
, addr1
, l
);
3411 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3422 /* used for ROM loading : can write in RAM and ROM */
3423 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3424 const uint8_t *buf
, int len
)
3426 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3429 void cpu_flush_icache_range(hwaddr start
, int len
)
3432 * This function should do the same thing as an icache flush that was
3433 * triggered from within the guest. For TCG we are always cache coherent,
3434 * so there is no need to flush anything. For KVM / Xen we need to flush
3435 * the host's instruction cache at least.
3437 if (tcg_enabled()) {
3441 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3442 start
, NULL
, len
, FLUSH_CACHE
);
3453 static BounceBuffer bounce
;
3455 typedef struct MapClient
{
3457 QLIST_ENTRY(MapClient
) link
;
3460 QemuMutex map_client_list_lock
;
3461 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3462 = QLIST_HEAD_INITIALIZER(map_client_list
);
3464 static void cpu_unregister_map_client_do(MapClient
*client
)
3466 QLIST_REMOVE(client
, link
);
3470 static void cpu_notify_map_clients_locked(void)
3474 while (!QLIST_EMPTY(&map_client_list
)) {
3475 client
= QLIST_FIRST(&map_client_list
);
3476 qemu_bh_schedule(client
->bh
);
3477 cpu_unregister_map_client_do(client
);
3481 void cpu_register_map_client(QEMUBH
*bh
)
3483 MapClient
*client
= g_malloc(sizeof(*client
));
3485 qemu_mutex_lock(&map_client_list_lock
);
3487 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3488 if (!atomic_read(&bounce
.in_use
)) {
3489 cpu_notify_map_clients_locked();
3491 qemu_mutex_unlock(&map_client_list_lock
);
3494 void cpu_exec_init_all(void)
3496 qemu_mutex_init(&ram_list
.mutex
);
3497 /* The data structures we set up here depend on knowing the page size,
3498 * so no more changes can be made after this point.
3499 * In an ideal world, nothing we did before we had finished the
3500 * machine setup would care about the target page size, and we could
3501 * do this much later, rather than requiring board models to state
3502 * up front what their requirements are.
3504 finalize_target_page_bits();
3507 qemu_mutex_init(&map_client_list_lock
);
3510 void cpu_unregister_map_client(QEMUBH
*bh
)
3514 qemu_mutex_lock(&map_client_list_lock
);
3515 QLIST_FOREACH(client
, &map_client_list
, link
) {
3516 if (client
->bh
== bh
) {
3517 cpu_unregister_map_client_do(client
);
3521 qemu_mutex_unlock(&map_client_list_lock
);
3524 static void cpu_notify_map_clients(void)
3526 qemu_mutex_lock(&map_client_list_lock
);
3527 cpu_notify_map_clients_locked();
3528 qemu_mutex_unlock(&map_client_list_lock
);
3531 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3532 bool is_write
, MemTxAttrs attrs
)
3539 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3540 if (!memory_access_is_direct(mr
, is_write
)) {
3541 l
= memory_access_size(mr
, l
, addr
);
3542 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3553 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3554 int len
, bool is_write
,
3561 fv
= address_space_to_flatview(as
);
3562 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3568 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3570 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3571 bool is_write
, MemTxAttrs attrs
)
3575 MemoryRegion
*this_mr
;
3581 if (target_len
== 0) {
3586 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3587 &len
, is_write
, attrs
);
3588 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3594 /* Map a physical memory region into a host virtual address.
3595 * May map a subset of the requested range, given by and returned in *plen.
3596 * May return NULL if resources needed to perform the mapping are exhausted.
3597 * Use only for reads OR writes - not for read-modify-write operations.
3598 * Use cpu_register_map_client() to know when retrying the map operation is
3599 * likely to succeed.
3601 void *address_space_map(AddressSpace
*as
,
3619 fv
= address_space_to_flatview(as
);
3620 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3622 if (!memory_access_is_direct(mr
, is_write
)) {
3623 if (atomic_xchg(&bounce
.in_use
, true)) {
3627 /* Avoid unbounded allocations */
3628 l
= MIN(l
, TARGET_PAGE_SIZE
);
3629 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3633 memory_region_ref(mr
);
3636 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3642 return bounce
.buffer
;
3646 memory_region_ref(mr
);
3647 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3648 l
, is_write
, attrs
);
3649 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3655 /* Unmaps a memory region previously mapped by address_space_map().
3656 * Will also mark the memory as dirty if is_write == 1. access_len gives
3657 * the amount of memory that was actually read or written by the caller.
3659 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3660 int is_write
, hwaddr access_len
)
3662 if (buffer
!= bounce
.buffer
) {
3666 mr
= memory_region_from_host(buffer
, &addr1
);
3669 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3671 if (xen_enabled()) {
3672 xen_invalidate_map_cache_entry(buffer
);
3674 memory_region_unref(mr
);
3678 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3679 bounce
.buffer
, access_len
);
3681 qemu_vfree(bounce
.buffer
);
3682 bounce
.buffer
= NULL
;
3683 memory_region_unref(bounce
.mr
);
3684 atomic_mb_set(&bounce
.in_use
, false);
3685 cpu_notify_map_clients();
3688 void *cpu_physical_memory_map(hwaddr addr
,
3692 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3693 MEMTXATTRS_UNSPECIFIED
);
3696 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3697 int is_write
, hwaddr access_len
)
3699 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3702 #define ARG1_DECL AddressSpace *as
3705 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3706 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3707 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3708 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3709 #define RCU_READ_LOCK(...) rcu_read_lock()
3710 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3711 #include "memory_ldst.inc.c"
3713 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3719 AddressSpaceDispatch
*d
;
3726 cache
->fv
= address_space_get_flatview(as
);
3727 d
= flatview_to_dispatch(cache
->fv
);
3728 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3731 memory_region_ref(mr
);
3732 if (memory_access_is_direct(mr
, is_write
)) {
3733 /* We don't care about the memory attributes here as we're only
3734 * doing this if we found actual RAM, which behaves the same
3735 * regardless of attributes; so UNSPECIFIED is fine.
3737 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3738 cache
->xlat
, l
, is_write
,
3739 MEMTXATTRS_UNSPECIFIED
);
3740 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3746 cache
->is_write
= is_write
;
3750 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3754 assert(cache
->is_write
);
3755 if (likely(cache
->ptr
)) {
3756 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3760 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3762 if (!cache
->mrs
.mr
) {
3766 if (xen_enabled()) {
3767 xen_invalidate_map_cache_entry(cache
->ptr
);
3769 memory_region_unref(cache
->mrs
.mr
);
3770 flatview_unref(cache
->fv
);
3771 cache
->mrs
.mr
= NULL
;
3775 /* Called from RCU critical section. This function has the same
3776 * semantics as address_space_translate, but it only works on a
3777 * predefined range of a MemoryRegion that was mapped with
3778 * address_space_cache_init.
3780 static inline MemoryRegion
*address_space_translate_cached(
3781 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3782 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3784 MemoryRegionSection section
;
3786 IOMMUMemoryRegion
*iommu_mr
;
3787 AddressSpace
*target_as
;
3789 assert(!cache
->ptr
);
3790 *xlat
= addr
+ cache
->xlat
;
3793 iommu_mr
= memory_region_get_iommu(mr
);
3799 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3800 NULL
, is_write
, true,
3805 /* Called from RCU critical section. address_space_read_cached uses this
3806 * out of line function when the target is an MMIO or IOMMU region.
3809 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3816 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3817 MEMTXATTRS_UNSPECIFIED
);
3818 flatview_read_continue(cache
->fv
,
3819 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3823 /* Called from RCU critical section. address_space_write_cached uses this
3824 * out of line function when the target is an MMIO or IOMMU region.
3827 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3828 const void *buf
, int len
)
3834 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3835 MEMTXATTRS_UNSPECIFIED
);
3836 flatview_write_continue(cache
->fv
,
3837 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3841 #define ARG1_DECL MemoryRegionCache *cache
3843 #define SUFFIX _cached_slow
3844 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3845 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3846 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3847 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3848 #define RCU_READ_LOCK() ((void)0)
3849 #define RCU_READ_UNLOCK() ((void)0)
3850 #include "memory_ldst.inc.c"
3852 /* virtual memory access for debug (includes writing to ROM) */
3853 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3854 uint8_t *buf
, int len
, int is_write
)
3860 cpu_synchronize_state(cpu
);
3865 page
= addr
& TARGET_PAGE_MASK
;
3866 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3867 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3868 /* if no physical page mapped, return an error */
3869 if (phys_addr
== -1)
3871 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3874 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3876 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3879 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3880 MEMTXATTRS_UNSPECIFIED
,
3891 * Allows code that needs to deal with migration bitmaps etc to still be built
3892 * target independent.
3894 size_t qemu_target_page_size(void)
3896 return TARGET_PAGE_SIZE
;
3899 int qemu_target_page_bits(void)
3901 return TARGET_PAGE_BITS
;
3904 int qemu_target_page_bits_min(void)
3906 return TARGET_PAGE_BITS_MIN
;
3911 * A helper function for the _utterly broken_ virtio device model to find out if
3912 * it's running on a big endian machine. Don't do this at home kids!
3914 bool target_words_bigendian(void);
3915 bool target_words_bigendian(void)
3917 #if defined(TARGET_WORDS_BIGENDIAN)
3924 #ifndef CONFIG_USER_ONLY
3925 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3932 mr
= address_space_translate(&address_space_memory
,
3933 phys_addr
, &phys_addr
, &l
, false,
3934 MEMTXATTRS_UNSPECIFIED
);
3936 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3941 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3947 RAMBLOCK_FOREACH(block
) {
3948 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3949 block
->used_length
, opaque
);
3958 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func
, void *opaque
)
3964 RAMBLOCK_FOREACH(block
) {
3965 if (!qemu_ram_is_migratable(block
)) {
3968 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3969 block
->used_length
, opaque
);
3979 * Unmap pages of memory from start to start+length such that
3980 * they a) read as 0, b) Trigger whatever fault mechanism
3981 * the OS provides for postcopy.
3982 * The pages must be unmapped by the end of the function.
3983 * Returns: 0 on success, none-0 on failure
3986 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3990 uint8_t *host_startaddr
= rb
->host
+ start
;
3992 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3993 error_report("ram_block_discard_range: Unaligned start address: %p",
3998 if ((start
+ length
) <= rb
->used_length
) {
3999 bool need_madvise
, need_fallocate
;
4000 uint8_t *host_endaddr
= host_startaddr
+ length
;
4001 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
4002 error_report("ram_block_discard_range: Unaligned end address: %p",
4007 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
4009 /* The logic here is messy;
4010 * madvise DONTNEED fails for hugepages
4011 * fallocate works on hugepages and shmem
4013 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
4014 need_fallocate
= rb
->fd
!= -1;
4015 if (need_fallocate
) {
4016 /* For a file, this causes the area of the file to be zero'd
4017 * if read, and for hugetlbfs also causes it to be unmapped
4018 * so a userfault will trigger.
4020 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4021 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
4025 error_report("ram_block_discard_range: Failed to fallocate "
4026 "%s:%" PRIx64
" +%zx (%d)",
4027 rb
->idstr
, start
, length
, ret
);
4032 error_report("ram_block_discard_range: fallocate not available/file"
4033 "%s:%" PRIx64
" +%zx (%d)",
4034 rb
->idstr
, start
, length
, ret
);
4039 /* For normal RAM this causes it to be unmapped,
4040 * for shared memory it causes the local mapping to disappear
4041 * and to fall back on the file contents (which we just
4042 * fallocate'd away).
4044 #if defined(CONFIG_MADVISE)
4045 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
4048 error_report("ram_block_discard_range: Failed to discard range "
4049 "%s:%" PRIx64
" +%zx (%d)",
4050 rb
->idstr
, start
, length
, ret
);
4055 error_report("ram_block_discard_range: MADVISE not available"
4056 "%s:%" PRIx64
" +%zx (%d)",
4057 rb
->idstr
, start
, length
, ret
);
4061 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
4062 need_madvise
, need_fallocate
, ret
);
4064 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4065 "/%zx/" RAM_ADDR_FMT
")",
4066 rb
->idstr
, start
, length
, rb
->used_length
);
4075 void page_size_init(void)
4077 /* NOTE: we can always suppose that qemu_host_page_size >=
4079 if (qemu_host_page_size
== 0) {
4080 qemu_host_page_size
= qemu_real_host_page_size
;
4082 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
4083 qemu_host_page_size
= TARGET_PAGE_SIZE
;
4085 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
4088 #if !defined(CONFIG_USER_ONLY)
4090 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
4091 int start
, int end
, int skip
, int ptr
)
4093 if (start
== end
- 1) {
4094 mon(f
, "\t%3d ", start
);
4096 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
4098 mon(f
, " skip=%d ", skip
);
4099 if (ptr
== PHYS_MAP_NODE_NIL
) {
4102 mon(f
, " ptr=#%d", ptr
);
4104 mon(f
, " ptr=[%d]", ptr
);
4109 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4110 int128_sub((size), int128_one())) : 0)
4112 void mtree_print_dispatch(fprintf_function mon
, void *f
,
4113 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4117 mon(f
, " Dispatch\n");
4118 mon(f
, " Physical sections\n");
4120 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4121 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4122 const char *names
[] = { " [unassigned]", " [not dirty]",
4123 " [ROM]", " [watch]" };
4125 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
4127 s
->offset_within_address_space
,
4128 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4129 s
->mr
->name
? s
->mr
->name
: "(noname)",
4130 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4131 s
->mr
== root
? " [ROOT]" : "",
4132 s
== d
->mru_section
? " [MRU]" : "",
4133 s
->mr
->is_iommu
? " [iommu]" : "");
4136 mon(f
, " alias=%s", s
->mr
->alias
->name
?
4137 s
->mr
->alias
->name
: "noname");
4142 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4143 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4144 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4147 Node
*n
= d
->map
.nodes
+ i
;
4149 mon(f
, " [%d]\n", i
);
4151 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4152 PhysPageEntry
*pe
= *n
+ j
;
4154 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4158 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
4164 if (jprev
!= ARRAY_SIZE(*n
)) {
4165 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);