isapc: Fix irq routing
[qemu.git] / vl.c
blobc6c6a6b59ec1509b520cf62ddfb15cb0f28f6798
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 return qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
163 #include "disas.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 #define QEMU_TIMER_BASE 1000000000LL
534 #ifdef WIN32
536 static int64_t clock_freq;
538 static void init_get_clock(void)
540 LARGE_INTEGER freq;
541 int ret;
542 ret = QueryPerformanceFrequency(&freq);
543 if (ret == 0) {
544 fprintf(stderr, "Could not calibrate ticks\n");
545 exit(1);
547 clock_freq = freq.QuadPart;
550 static int64_t get_clock(void)
552 LARGE_INTEGER ti;
553 QueryPerformanceCounter(&ti);
554 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 #else
559 static int use_rt_clock;
561 static void init_get_clock(void)
563 use_rt_clock = 0;
564 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
565 || defined(__DragonFly__)
567 struct timespec ts;
568 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
569 use_rt_clock = 1;
572 #endif
575 static int64_t get_clock(void)
577 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
578 || defined(__DragonFly__)
579 if (use_rt_clock) {
580 struct timespec ts;
581 clock_gettime(CLOCK_MONOTONIC, &ts);
582 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
583 } else
584 #endif
586 /* XXX: using gettimeofday leads to problems if the date
587 changes, so it should be avoided. */
588 struct timeval tv;
589 gettimeofday(&tv, NULL);
590 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 #endif
595 /* Return the virtual CPU time, based on the instruction counter. */
596 static int64_t cpu_get_icount(void)
598 int64_t icount;
599 CPUState *env = cpu_single_env;;
600 icount = qemu_icount;
601 if (env) {
602 if (!can_do_io(env))
603 fprintf(stderr, "Bad clock read\n");
604 icount -= (env->icount_decr.u16.low + env->icount_extra);
606 return qemu_icount_bias + (icount << icount_time_shift);
609 /***********************************************************/
610 /* guest cycle counter */
612 static int64_t cpu_ticks_prev;
613 static int64_t cpu_ticks_offset;
614 static int64_t cpu_clock_offset;
615 static int cpu_ticks_enabled;
617 /* return the host CPU cycle counter and handle stop/restart */
618 int64_t cpu_get_ticks(void)
620 if (use_icount) {
621 return cpu_get_icount();
623 if (!cpu_ticks_enabled) {
624 return cpu_ticks_offset;
625 } else {
626 int64_t ticks;
627 ticks = cpu_get_real_ticks();
628 if (cpu_ticks_prev > ticks) {
629 /* Note: non increasing ticks may happen if the host uses
630 software suspend */
631 cpu_ticks_offset += cpu_ticks_prev - ticks;
633 cpu_ticks_prev = ticks;
634 return ticks + cpu_ticks_offset;
638 /* return the host CPU monotonic timer and handle stop/restart */
639 static int64_t cpu_get_clock(void)
641 int64_t ti;
642 if (!cpu_ticks_enabled) {
643 return cpu_clock_offset;
644 } else {
645 ti = get_clock();
646 return ti + cpu_clock_offset;
650 /* enable cpu_get_ticks() */
651 void cpu_enable_ticks(void)
653 if (!cpu_ticks_enabled) {
654 cpu_ticks_offset -= cpu_get_real_ticks();
655 cpu_clock_offset -= get_clock();
656 cpu_ticks_enabled = 1;
660 /* disable cpu_get_ticks() : the clock is stopped. You must not call
661 cpu_get_ticks() after that. */
662 void cpu_disable_ticks(void)
664 if (cpu_ticks_enabled) {
665 cpu_ticks_offset = cpu_get_ticks();
666 cpu_clock_offset = cpu_get_clock();
667 cpu_ticks_enabled = 0;
671 /***********************************************************/
672 /* timers */
674 #define QEMU_TIMER_REALTIME 0
675 #define QEMU_TIMER_VIRTUAL 1
677 struct QEMUClock {
678 int type;
679 /* XXX: add frequency */
682 struct QEMUTimer {
683 QEMUClock *clock;
684 int64_t expire_time;
685 QEMUTimerCB *cb;
686 void *opaque;
687 struct QEMUTimer *next;
690 struct qemu_alarm_timer {
691 char const *name;
692 unsigned int flags;
694 int (*start)(struct qemu_alarm_timer *t);
695 void (*stop)(struct qemu_alarm_timer *t);
696 void (*rearm)(struct qemu_alarm_timer *t);
697 void *priv;
700 #define ALARM_FLAG_DYNTICKS 0x1
701 #define ALARM_FLAG_EXPIRED 0x2
703 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
705 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
710 if (!alarm_has_dynticks(t))
711 return;
713 t->rearm(t);
716 /* TODO: MIN_TIMER_REARM_US should be optimized */
717 #define MIN_TIMER_REARM_US 250
719 static struct qemu_alarm_timer *alarm_timer;
721 #ifdef _WIN32
723 struct qemu_alarm_win32 {
724 MMRESULT timerId;
725 unsigned int period;
726 } alarm_win32_data = {0, -1};
728 static int win32_start_timer(struct qemu_alarm_timer *t);
729 static void win32_stop_timer(struct qemu_alarm_timer *t);
730 static void win32_rearm_timer(struct qemu_alarm_timer *t);
732 #else
734 static int unix_start_timer(struct qemu_alarm_timer *t);
735 static void unix_stop_timer(struct qemu_alarm_timer *t);
737 #ifdef __linux__
739 static int dynticks_start_timer(struct qemu_alarm_timer *t);
740 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
741 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
743 static int hpet_start_timer(struct qemu_alarm_timer *t);
744 static void hpet_stop_timer(struct qemu_alarm_timer *t);
746 static int rtc_start_timer(struct qemu_alarm_timer *t);
747 static void rtc_stop_timer(struct qemu_alarm_timer *t);
749 #endif /* __linux__ */
751 #endif /* _WIN32 */
753 /* Correlation between real and virtual time is always going to be
754 fairly approximate, so ignore small variation.
755 When the guest is idle real and virtual time will be aligned in
756 the IO wait loop. */
757 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
759 static void icount_adjust(void)
761 int64_t cur_time;
762 int64_t cur_icount;
763 int64_t delta;
764 static int64_t last_delta;
765 /* If the VM is not running, then do nothing. */
766 if (!vm_running)
767 return;
769 cur_time = cpu_get_clock();
770 cur_icount = qemu_get_clock(vm_clock);
771 delta = cur_icount - cur_time;
772 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 if (delta > 0
774 && last_delta + ICOUNT_WOBBLE < delta * 2
775 && icount_time_shift > 0) {
776 /* The guest is getting too far ahead. Slow time down. */
777 icount_time_shift--;
779 if (delta < 0
780 && last_delta - ICOUNT_WOBBLE > delta * 2
781 && icount_time_shift < MAX_ICOUNT_SHIFT) {
782 /* The guest is getting too far behind. Speed time up. */
783 icount_time_shift++;
785 last_delta = delta;
786 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 static void icount_adjust_rt(void * opaque)
791 qemu_mod_timer(icount_rt_timer,
792 qemu_get_clock(rt_clock) + 1000);
793 icount_adjust();
796 static void icount_adjust_vm(void * opaque)
798 qemu_mod_timer(icount_vm_timer,
799 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
800 icount_adjust();
803 static void init_icount_adjust(void)
805 /* Have both realtime and virtual time triggers for speed adjustment.
806 The realtime trigger catches emulated time passing too slowly,
807 the virtual time trigger catches emulated time passing too fast.
808 Realtime triggers occur even when idle, so use them less frequently
809 than VM triggers. */
810 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
811 qemu_mod_timer(icount_rt_timer,
812 qemu_get_clock(rt_clock) + 1000);
813 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
814 qemu_mod_timer(icount_vm_timer,
815 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 static struct qemu_alarm_timer alarm_timers[] = {
819 #ifndef _WIN32
820 #ifdef __linux__
821 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
822 dynticks_stop_timer, dynticks_rearm_timer, NULL},
823 /* HPET - if available - is preferred */
824 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
825 /* ...otherwise try RTC */
826 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
827 #endif
828 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
829 #else
830 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
831 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
832 {"win32", 0, win32_start_timer,
833 win32_stop_timer, NULL, &alarm_win32_data},
834 #endif
835 {NULL, }
838 static void show_available_alarms(void)
840 int i;
842 printf("Available alarm timers, in order of precedence:\n");
843 for (i = 0; alarm_timers[i].name; i++)
844 printf("%s\n", alarm_timers[i].name);
847 static void configure_alarms(char const *opt)
849 int i;
850 int cur = 0;
851 int count = ARRAY_SIZE(alarm_timers) - 1;
852 char *arg;
853 char *name;
854 struct qemu_alarm_timer tmp;
856 if (!strcmp(opt, "?")) {
857 show_available_alarms();
858 exit(0);
861 arg = qemu_strdup(opt);
863 /* Reorder the array */
864 name = strtok(arg, ",");
865 while (name) {
866 for (i = 0; i < count && alarm_timers[i].name; i++) {
867 if (!strcmp(alarm_timers[i].name, name))
868 break;
871 if (i == count) {
872 fprintf(stderr, "Unknown clock %s\n", name);
873 goto next;
876 if (i < cur)
877 /* Ignore */
878 goto next;
880 /* Swap */
881 tmp = alarm_timers[i];
882 alarm_timers[i] = alarm_timers[cur];
883 alarm_timers[cur] = tmp;
885 cur++;
886 next:
887 name = strtok(NULL, ",");
890 qemu_free(arg);
892 if (cur) {
893 /* Disable remaining timers */
894 for (i = cur; i < count; i++)
895 alarm_timers[i].name = NULL;
896 } else {
897 show_available_alarms();
898 exit(1);
902 QEMUClock *rt_clock;
903 QEMUClock *vm_clock;
905 static QEMUTimer *active_timers[2];
907 static QEMUClock *qemu_new_clock(int type)
909 QEMUClock *clock;
910 clock = qemu_mallocz(sizeof(QEMUClock));
911 clock->type = type;
912 return clock;
915 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
917 QEMUTimer *ts;
919 ts = qemu_mallocz(sizeof(QEMUTimer));
920 ts->clock = clock;
921 ts->cb = cb;
922 ts->opaque = opaque;
923 return ts;
926 void qemu_free_timer(QEMUTimer *ts)
928 qemu_free(ts);
931 /* stop a timer, but do not dealloc it */
932 void qemu_del_timer(QEMUTimer *ts)
934 QEMUTimer **pt, *t;
936 /* NOTE: this code must be signal safe because
937 qemu_timer_expired() can be called from a signal. */
938 pt = &active_timers[ts->clock->type];
939 for(;;) {
940 t = *pt;
941 if (!t)
942 break;
943 if (t == ts) {
944 *pt = t->next;
945 break;
947 pt = &t->next;
951 /* modify the current timer so that it will be fired when current_time
952 >= expire_time. The corresponding callback will be called. */
953 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
955 QEMUTimer **pt, *t;
957 qemu_del_timer(ts);
959 /* add the timer in the sorted list */
960 /* NOTE: this code must be signal safe because
961 qemu_timer_expired() can be called from a signal. */
962 pt = &active_timers[ts->clock->type];
963 for(;;) {
964 t = *pt;
965 if (!t)
966 break;
967 if (t->expire_time > expire_time)
968 break;
969 pt = &t->next;
971 ts->expire_time = expire_time;
972 ts->next = *pt;
973 *pt = ts;
975 /* Rearm if necessary */
976 if (pt == &active_timers[ts->clock->type]) {
977 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
978 qemu_rearm_alarm_timer(alarm_timer);
980 /* Interrupt execution to force deadline recalculation. */
981 if (use_icount)
982 qemu_notify_event();
986 int qemu_timer_pending(QEMUTimer *ts)
988 QEMUTimer *t;
989 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
990 if (t == ts)
991 return 1;
993 return 0;
996 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
998 if (!timer_head)
999 return 0;
1000 return (timer_head->expire_time <= current_time);
1003 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1005 QEMUTimer *ts;
1007 for(;;) {
1008 ts = *ptimer_head;
1009 if (!ts || ts->expire_time > current_time)
1010 break;
1011 /* remove timer from the list before calling the callback */
1012 *ptimer_head = ts->next;
1013 ts->next = NULL;
1015 /* run the callback (the timer list can be modified) */
1016 ts->cb(ts->opaque);
1020 int64_t qemu_get_clock(QEMUClock *clock)
1022 switch(clock->type) {
1023 case QEMU_TIMER_REALTIME:
1024 return get_clock() / 1000000;
1025 default:
1026 case QEMU_TIMER_VIRTUAL:
1027 if (use_icount) {
1028 return cpu_get_icount();
1029 } else {
1030 return cpu_get_clock();
1035 static void init_timers(void)
1037 init_get_clock();
1038 ticks_per_sec = QEMU_TIMER_BASE;
1039 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1040 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1043 /* save a timer */
1044 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1046 uint64_t expire_time;
1048 if (qemu_timer_pending(ts)) {
1049 expire_time = ts->expire_time;
1050 } else {
1051 expire_time = -1;
1053 qemu_put_be64(f, expire_time);
1056 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1058 uint64_t expire_time;
1060 expire_time = qemu_get_be64(f);
1061 if (expire_time != -1) {
1062 qemu_mod_timer(ts, expire_time);
1063 } else {
1064 qemu_del_timer(ts);
1068 static void timer_save(QEMUFile *f, void *opaque)
1070 if (cpu_ticks_enabled) {
1071 hw_error("cannot save state if virtual timers are running");
1073 qemu_put_be64(f, cpu_ticks_offset);
1074 qemu_put_be64(f, ticks_per_sec);
1075 qemu_put_be64(f, cpu_clock_offset);
1078 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1080 if (version_id != 1 && version_id != 2)
1081 return -EINVAL;
1082 if (cpu_ticks_enabled) {
1083 return -EINVAL;
1085 cpu_ticks_offset=qemu_get_be64(f);
1086 ticks_per_sec=qemu_get_be64(f);
1087 if (version_id == 2) {
1088 cpu_clock_offset=qemu_get_be64(f);
1090 return 0;
1093 static void qemu_event_increment(void);
1095 #ifdef _WIN32
1096 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1097 DWORD_PTR dwUser, DWORD_PTR dw1,
1098 DWORD_PTR dw2)
1099 #else
1100 static void host_alarm_handler(int host_signum)
1101 #endif
1103 #if 0
1104 #define DISP_FREQ 1000
1106 static int64_t delta_min = INT64_MAX;
1107 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1108 static int count;
1109 ti = qemu_get_clock(vm_clock);
1110 if (last_clock != 0) {
1111 delta = ti - last_clock;
1112 if (delta < delta_min)
1113 delta_min = delta;
1114 if (delta > delta_max)
1115 delta_max = delta;
1116 delta_cum += delta;
1117 if (++count == DISP_FREQ) {
1118 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1119 muldiv64(delta_min, 1000000, ticks_per_sec),
1120 muldiv64(delta_max, 1000000, ticks_per_sec),
1121 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1122 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1123 count = 0;
1124 delta_min = INT64_MAX;
1125 delta_max = 0;
1126 delta_cum = 0;
1129 last_clock = ti;
1131 #endif
1132 if (alarm_has_dynticks(alarm_timer) ||
1133 (!use_icount &&
1134 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1135 qemu_get_clock(vm_clock))) ||
1136 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1137 qemu_get_clock(rt_clock))) {
1138 qemu_event_increment();
1139 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1141 #ifndef CONFIG_IOTHREAD
1142 if (next_cpu) {
1143 /* stop the currently executing cpu because a timer occured */
1144 cpu_exit(next_cpu);
1146 #endif
1147 timer_alarm_pending = 1;
1148 qemu_notify_event();
1152 static int64_t qemu_next_deadline(void)
1154 int64_t delta;
1156 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1157 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1158 qemu_get_clock(vm_clock);
1159 } else {
1160 /* To avoid problems with overflow limit this to 2^32. */
1161 delta = INT32_MAX;
1164 if (delta < 0)
1165 delta = 0;
1167 return delta;
1170 #if defined(__linux__) || defined(_WIN32)
1171 static uint64_t qemu_next_deadline_dyntick(void)
1173 int64_t delta;
1174 int64_t rtdelta;
1176 if (use_icount)
1177 delta = INT32_MAX;
1178 else
1179 delta = (qemu_next_deadline() + 999) / 1000;
1181 if (active_timers[QEMU_TIMER_REALTIME]) {
1182 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1183 qemu_get_clock(rt_clock))*1000;
1184 if (rtdelta < delta)
1185 delta = rtdelta;
1188 if (delta < MIN_TIMER_REARM_US)
1189 delta = MIN_TIMER_REARM_US;
1191 return delta;
1193 #endif
1195 #ifndef _WIN32
1197 /* Sets a specific flag */
1198 static int fcntl_setfl(int fd, int flag)
1200 int flags;
1202 flags = fcntl(fd, F_GETFL);
1203 if (flags == -1)
1204 return -errno;
1206 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1207 return -errno;
1209 return 0;
1212 #if defined(__linux__)
1214 #define RTC_FREQ 1024
1216 static void enable_sigio_timer(int fd)
1218 struct sigaction act;
1220 /* timer signal */
1221 sigfillset(&act.sa_mask);
1222 act.sa_flags = 0;
1223 act.sa_handler = host_alarm_handler;
1225 sigaction(SIGIO, &act, NULL);
1226 fcntl_setfl(fd, O_ASYNC);
1227 fcntl(fd, F_SETOWN, getpid());
1230 static int hpet_start_timer(struct qemu_alarm_timer *t)
1232 struct hpet_info info;
1233 int r, fd;
1235 fd = open("/dev/hpet", O_RDONLY);
1236 if (fd < 0)
1237 return -1;
1239 /* Set frequency */
1240 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1241 if (r < 0) {
1242 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1243 "error, but for better emulation accuracy type:\n"
1244 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1245 goto fail;
1248 /* Check capabilities */
1249 r = ioctl(fd, HPET_INFO, &info);
1250 if (r < 0)
1251 goto fail;
1253 /* Enable periodic mode */
1254 r = ioctl(fd, HPET_EPI, 0);
1255 if (info.hi_flags && (r < 0))
1256 goto fail;
1258 /* Enable interrupt */
1259 r = ioctl(fd, HPET_IE_ON, 0);
1260 if (r < 0)
1261 goto fail;
1263 enable_sigio_timer(fd);
1264 t->priv = (void *)(long)fd;
1266 return 0;
1267 fail:
1268 close(fd);
1269 return -1;
1272 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1274 int fd = (long)t->priv;
1276 close(fd);
1279 static int rtc_start_timer(struct qemu_alarm_timer *t)
1281 int rtc_fd;
1282 unsigned long current_rtc_freq = 0;
1284 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1285 if (rtc_fd < 0)
1286 return -1;
1287 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1288 if (current_rtc_freq != RTC_FREQ &&
1289 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1290 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1291 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1292 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1293 goto fail;
1295 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1296 fail:
1297 close(rtc_fd);
1298 return -1;
1301 enable_sigio_timer(rtc_fd);
1303 t->priv = (void *)(long)rtc_fd;
1305 return 0;
1308 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1310 int rtc_fd = (long)t->priv;
1312 close(rtc_fd);
1315 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1317 struct sigevent ev;
1318 timer_t host_timer;
1319 struct sigaction act;
1321 sigfillset(&act.sa_mask);
1322 act.sa_flags = 0;
1323 act.sa_handler = host_alarm_handler;
1325 sigaction(SIGALRM, &act, NULL);
1328 * Initialize ev struct to 0 to avoid valgrind complaining
1329 * about uninitialized data in timer_create call
1331 memset(&ev, 0, sizeof(ev));
1332 ev.sigev_value.sival_int = 0;
1333 ev.sigev_notify = SIGEV_SIGNAL;
1334 ev.sigev_signo = SIGALRM;
1336 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1337 perror("timer_create");
1339 /* disable dynticks */
1340 fprintf(stderr, "Dynamic Ticks disabled\n");
1342 return -1;
1345 t->priv = (void *)(long)host_timer;
1347 return 0;
1350 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1352 timer_t host_timer = (timer_t)(long)t->priv;
1354 timer_delete(host_timer);
1357 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360 struct itimerspec timeout;
1361 int64_t nearest_delta_us = INT64_MAX;
1362 int64_t current_us;
1364 if (!active_timers[QEMU_TIMER_REALTIME] &&
1365 !active_timers[QEMU_TIMER_VIRTUAL])
1366 return;
1368 nearest_delta_us = qemu_next_deadline_dyntick();
1370 /* check whether a timer is already running */
1371 if (timer_gettime(host_timer, &timeout)) {
1372 perror("gettime");
1373 fprintf(stderr, "Internal timer error: aborting\n");
1374 exit(1);
1376 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1377 if (current_us && current_us <= nearest_delta_us)
1378 return;
1380 timeout.it_interval.tv_sec = 0;
1381 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1382 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1383 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1384 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1385 perror("settime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1391 #endif /* defined(__linux__) */
1393 static int unix_start_timer(struct qemu_alarm_timer *t)
1395 struct sigaction act;
1396 struct itimerval itv;
1397 int err;
1399 /* timer signal */
1400 sigfillset(&act.sa_mask);
1401 act.sa_flags = 0;
1402 act.sa_handler = host_alarm_handler;
1404 sigaction(SIGALRM, &act, NULL);
1406 itv.it_interval.tv_sec = 0;
1407 /* for i386 kernel 2.6 to get 1 ms */
1408 itv.it_interval.tv_usec = 999;
1409 itv.it_value.tv_sec = 0;
1410 itv.it_value.tv_usec = 10 * 1000;
1412 err = setitimer(ITIMER_REAL, &itv, NULL);
1413 if (err)
1414 return -1;
1416 return 0;
1419 static void unix_stop_timer(struct qemu_alarm_timer *t)
1421 struct itimerval itv;
1423 memset(&itv, 0, sizeof(itv));
1424 setitimer(ITIMER_REAL, &itv, NULL);
1427 #endif /* !defined(_WIN32) */
1430 #ifdef _WIN32
1432 static int win32_start_timer(struct qemu_alarm_timer *t)
1434 TIMECAPS tc;
1435 struct qemu_alarm_win32 *data = t->priv;
1436 UINT flags;
1438 memset(&tc, 0, sizeof(tc));
1439 timeGetDevCaps(&tc, sizeof(tc));
1441 if (data->period < tc.wPeriodMin)
1442 data->period = tc.wPeriodMin;
1444 timeBeginPeriod(data->period);
1446 flags = TIME_CALLBACK_FUNCTION;
1447 if (alarm_has_dynticks(t))
1448 flags |= TIME_ONESHOT;
1449 else
1450 flags |= TIME_PERIODIC;
1452 data->timerId = timeSetEvent(1, // interval (ms)
1453 data->period, // resolution
1454 host_alarm_handler, // function
1455 (DWORD)t, // parameter
1456 flags);
1458 if (!data->timerId) {
1459 perror("Failed to initialize win32 alarm timer");
1460 timeEndPeriod(data->period);
1461 return -1;
1464 return 0;
1467 static void win32_stop_timer(struct qemu_alarm_timer *t)
1469 struct qemu_alarm_win32 *data = t->priv;
1471 timeKillEvent(data->timerId);
1472 timeEndPeriod(data->period);
1475 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1477 struct qemu_alarm_win32 *data = t->priv;
1478 uint64_t nearest_delta_us;
1480 if (!active_timers[QEMU_TIMER_REALTIME] &&
1481 !active_timers[QEMU_TIMER_VIRTUAL])
1482 return;
1484 nearest_delta_us = qemu_next_deadline_dyntick();
1485 nearest_delta_us /= 1000;
1487 timeKillEvent(data->timerId);
1489 data->timerId = timeSetEvent(1,
1490 data->period,
1491 host_alarm_handler,
1492 (DWORD)t,
1493 TIME_ONESHOT | TIME_PERIODIC);
1495 if (!data->timerId) {
1496 perror("Failed to re-arm win32 alarm timer");
1498 timeEndPeriod(data->period);
1499 exit(1);
1503 #endif /* _WIN32 */
1505 static int init_timer_alarm(void)
1507 struct qemu_alarm_timer *t = NULL;
1508 int i, err = -1;
1510 for (i = 0; alarm_timers[i].name; i++) {
1511 t = &alarm_timers[i];
1513 err = t->start(t);
1514 if (!err)
1515 break;
1518 if (err) {
1519 err = -ENOENT;
1520 goto fail;
1523 alarm_timer = t;
1525 return 0;
1527 fail:
1528 return err;
1531 static void quit_timers(void)
1533 alarm_timer->stop(alarm_timer);
1534 alarm_timer = NULL;
1537 /***********************************************************/
1538 /* host time/date access */
1539 void qemu_get_timedate(struct tm *tm, int offset)
1541 time_t ti;
1542 struct tm *ret;
1544 time(&ti);
1545 ti += offset;
1546 if (rtc_date_offset == -1) {
1547 if (rtc_utc)
1548 ret = gmtime(&ti);
1549 else
1550 ret = localtime(&ti);
1551 } else {
1552 ti -= rtc_date_offset;
1553 ret = gmtime(&ti);
1556 memcpy(tm, ret, sizeof(struct tm));
1559 int qemu_timedate_diff(struct tm *tm)
1561 time_t seconds;
1563 if (rtc_date_offset == -1)
1564 if (rtc_utc)
1565 seconds = mktimegm(tm);
1566 else
1567 seconds = mktime(tm);
1568 else
1569 seconds = mktimegm(tm) + rtc_date_offset;
1571 return seconds - time(NULL);
1574 #ifdef _WIN32
1575 static void socket_cleanup(void)
1577 WSACleanup();
1580 static int socket_init(void)
1582 WSADATA Data;
1583 int ret, err;
1585 ret = WSAStartup(MAKEWORD(2,2), &Data);
1586 if (ret != 0) {
1587 err = WSAGetLastError();
1588 fprintf(stderr, "WSAStartup: %d\n", err);
1589 return -1;
1591 atexit(socket_cleanup);
1592 return 0;
1594 #endif
1596 /***********************************************************/
1597 /* Bluetooth support */
1598 static int nb_hcis;
1599 static int cur_hci;
1600 static struct HCIInfo *hci_table[MAX_NICS];
1602 static struct bt_vlan_s {
1603 struct bt_scatternet_s net;
1604 int id;
1605 struct bt_vlan_s *next;
1606 } *first_bt_vlan;
1608 /* find or alloc a new bluetooth "VLAN" */
1609 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1611 struct bt_vlan_s **pvlan, *vlan;
1612 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1613 if (vlan->id == id)
1614 return &vlan->net;
1616 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1617 vlan->id = id;
1618 pvlan = &first_bt_vlan;
1619 while (*pvlan != NULL)
1620 pvlan = &(*pvlan)->next;
1621 *pvlan = vlan;
1622 return &vlan->net;
1625 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1629 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1631 return -ENOTSUP;
1634 static struct HCIInfo null_hci = {
1635 .cmd_send = null_hci_send,
1636 .sco_send = null_hci_send,
1637 .acl_send = null_hci_send,
1638 .bdaddr_set = null_hci_addr_set,
1641 struct HCIInfo *qemu_next_hci(void)
1643 if (cur_hci == nb_hcis)
1644 return &null_hci;
1646 return hci_table[cur_hci++];
1649 static struct HCIInfo *hci_init(const char *str)
1651 char *endp;
1652 struct bt_scatternet_s *vlan = 0;
1654 if (!strcmp(str, "null"))
1655 /* null */
1656 return &null_hci;
1657 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1658 /* host[:hciN] */
1659 return bt_host_hci(str[4] ? str + 5 : "hci0");
1660 else if (!strncmp(str, "hci", 3)) {
1661 /* hci[,vlan=n] */
1662 if (str[3]) {
1663 if (!strncmp(str + 3, ",vlan=", 6)) {
1664 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1665 if (*endp)
1666 vlan = 0;
1668 } else
1669 vlan = qemu_find_bt_vlan(0);
1670 if (vlan)
1671 return bt_new_hci(vlan);
1674 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1676 return 0;
1679 static int bt_hci_parse(const char *str)
1681 struct HCIInfo *hci;
1682 bdaddr_t bdaddr;
1684 if (nb_hcis >= MAX_NICS) {
1685 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1686 return -1;
1689 hci = hci_init(str);
1690 if (!hci)
1691 return -1;
1693 bdaddr.b[0] = 0x52;
1694 bdaddr.b[1] = 0x54;
1695 bdaddr.b[2] = 0x00;
1696 bdaddr.b[3] = 0x12;
1697 bdaddr.b[4] = 0x34;
1698 bdaddr.b[5] = 0x56 + nb_hcis;
1699 hci->bdaddr_set(hci, bdaddr.b);
1701 hci_table[nb_hcis++] = hci;
1703 return 0;
1706 static void bt_vhci_add(int vlan_id)
1708 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1710 if (!vlan->slave)
1711 fprintf(stderr, "qemu: warning: adding a VHCI to "
1712 "an empty scatternet %i\n", vlan_id);
1714 bt_vhci_init(bt_new_hci(vlan));
1717 static struct bt_device_s *bt_device_add(const char *opt)
1719 struct bt_scatternet_s *vlan;
1720 int vlan_id = 0;
1721 char *endp = strstr(opt, ",vlan=");
1722 int len = (endp ? endp - opt : strlen(opt)) + 1;
1723 char devname[10];
1725 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1727 if (endp) {
1728 vlan_id = strtol(endp + 6, &endp, 0);
1729 if (*endp) {
1730 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1731 return 0;
1735 vlan = qemu_find_bt_vlan(vlan_id);
1737 if (!vlan->slave)
1738 fprintf(stderr, "qemu: warning: adding a slave device to "
1739 "an empty scatternet %i\n", vlan_id);
1741 if (!strcmp(devname, "keyboard"))
1742 return bt_keyboard_init(vlan);
1744 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1745 return 0;
1748 static int bt_parse(const char *opt)
1750 const char *endp, *p;
1751 int vlan;
1753 if (strstart(opt, "hci", &endp)) {
1754 if (!*endp || *endp == ',') {
1755 if (*endp)
1756 if (!strstart(endp, ",vlan=", 0))
1757 opt = endp + 1;
1759 return bt_hci_parse(opt);
1761 } else if (strstart(opt, "vhci", &endp)) {
1762 if (!*endp || *endp == ',') {
1763 if (*endp) {
1764 if (strstart(endp, ",vlan=", &p)) {
1765 vlan = strtol(p, (char **) &endp, 0);
1766 if (*endp) {
1767 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1768 return 1;
1770 } else {
1771 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1772 return 1;
1774 } else
1775 vlan = 0;
1777 bt_vhci_add(vlan);
1778 return 0;
1780 } else if (strstart(opt, "device:", &endp))
1781 return !bt_device_add(endp);
1783 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1784 return 1;
1787 /***********************************************************/
1788 /* QEMU Block devices */
1790 #define HD_ALIAS "index=%d,media=disk"
1791 #define CDROM_ALIAS "index=2,media=cdrom"
1792 #define FD_ALIAS "index=%d,if=floppy"
1793 #define PFLASH_ALIAS "if=pflash"
1794 #define MTD_ALIAS "if=mtd"
1795 #define SD_ALIAS "index=0,if=sd"
1797 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1799 va_list ap;
1800 char optstr[1024];
1801 QemuOpts *opts;
1803 va_start(ap, fmt);
1804 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1805 va_end(ap);
1807 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1808 if (!opts) {
1809 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1810 __FUNCTION__, optstr);
1811 return NULL;
1813 if (file)
1814 qemu_opt_set(opts, "file", file);
1815 return opts;
1818 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1820 DriveInfo *dinfo;
1822 /* seek interface, bus and unit */
1824 TAILQ_FOREACH(dinfo, &drives, next) {
1825 if (dinfo->type == type &&
1826 dinfo->bus == bus &&
1827 dinfo->unit == unit)
1828 return dinfo;
1831 return NULL;
1834 DriveInfo *drive_get_by_id(const char *id)
1836 DriveInfo *dinfo;
1838 TAILQ_FOREACH(dinfo, &drives, next) {
1839 if (strcmp(id, dinfo->id))
1840 continue;
1841 return dinfo;
1843 return NULL;
1846 int drive_get_max_bus(BlockInterfaceType type)
1848 int max_bus;
1849 DriveInfo *dinfo;
1851 max_bus = -1;
1852 TAILQ_FOREACH(dinfo, &drives, next) {
1853 if(dinfo->type == type &&
1854 dinfo->bus > max_bus)
1855 max_bus = dinfo->bus;
1857 return max_bus;
1860 const char *drive_get_serial(BlockDriverState *bdrv)
1862 DriveInfo *dinfo;
1864 TAILQ_FOREACH(dinfo, &drives, next) {
1865 if (dinfo->bdrv == bdrv)
1866 return dinfo->serial;
1869 return "\0";
1872 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1874 DriveInfo *dinfo;
1876 TAILQ_FOREACH(dinfo, &drives, next) {
1877 if (dinfo->bdrv == bdrv)
1878 return dinfo->onerror;
1881 return BLOCK_ERR_STOP_ENOSPC;
1884 static void bdrv_format_print(void *opaque, const char *name)
1886 fprintf(stderr, " %s", name);
1889 void drive_uninit(BlockDriverState *bdrv)
1891 DriveInfo *dinfo;
1893 TAILQ_FOREACH(dinfo, &drives, next) {
1894 if (dinfo->bdrv != bdrv)
1895 continue;
1896 qemu_opts_del(dinfo->opts);
1897 TAILQ_REMOVE(&drives, dinfo, next);
1898 qemu_free(dinfo);
1899 break;
1903 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1904 int *fatal_error)
1906 const char *buf;
1907 const char *file = NULL;
1908 char devname[128];
1909 const char *serial;
1910 const char *mediastr = "";
1911 BlockInterfaceType type;
1912 enum { MEDIA_DISK, MEDIA_CDROM } media;
1913 int bus_id, unit_id;
1914 int cyls, heads, secs, translation;
1915 BlockDriver *drv = NULL;
1916 QEMUMachine *machine = opaque;
1917 int max_devs;
1918 int index;
1919 int cache;
1920 int aio = 0;
1921 int bdrv_flags, onerror;
1922 const char *devaddr;
1923 DriveInfo *dinfo;
1924 int snapshot = 0;
1926 *fatal_error = 1;
1928 translation = BIOS_ATA_TRANSLATION_AUTO;
1929 cache = 1;
1931 if (machine && machine->use_scsi) {
1932 type = IF_SCSI;
1933 max_devs = MAX_SCSI_DEVS;
1934 pstrcpy(devname, sizeof(devname), "scsi");
1935 } else {
1936 type = IF_IDE;
1937 max_devs = MAX_IDE_DEVS;
1938 pstrcpy(devname, sizeof(devname), "ide");
1940 media = MEDIA_DISK;
1942 /* extract parameters */
1943 bus_id = qemu_opt_get_number(opts, "bus", 0);
1944 unit_id = qemu_opt_get_number(opts, "unit", -1);
1945 index = qemu_opt_get_number(opts, "index", -1);
1947 cyls = qemu_opt_get_number(opts, "cyls", 0);
1948 heads = qemu_opt_get_number(opts, "heads", 0);
1949 secs = qemu_opt_get_number(opts, "secs", 0);
1951 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1953 file = qemu_opt_get(opts, "file");
1954 serial = qemu_opt_get(opts, "serial");
1956 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1957 pstrcpy(devname, sizeof(devname), buf);
1958 if (!strcmp(buf, "ide")) {
1959 type = IF_IDE;
1960 max_devs = MAX_IDE_DEVS;
1961 } else if (!strcmp(buf, "scsi")) {
1962 type = IF_SCSI;
1963 max_devs = MAX_SCSI_DEVS;
1964 } else if (!strcmp(buf, "floppy")) {
1965 type = IF_FLOPPY;
1966 max_devs = 0;
1967 } else if (!strcmp(buf, "pflash")) {
1968 type = IF_PFLASH;
1969 max_devs = 0;
1970 } else if (!strcmp(buf, "mtd")) {
1971 type = IF_MTD;
1972 max_devs = 0;
1973 } else if (!strcmp(buf, "sd")) {
1974 type = IF_SD;
1975 max_devs = 0;
1976 } else if (!strcmp(buf, "virtio")) {
1977 type = IF_VIRTIO;
1978 max_devs = 0;
1979 } else if (!strcmp(buf, "xen")) {
1980 type = IF_XEN;
1981 max_devs = 0;
1982 } else if (!strcmp(buf, "none")) {
1983 type = IF_NONE;
1984 max_devs = 0;
1985 } else {
1986 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1987 return NULL;
1991 if (cyls || heads || secs) {
1992 if (cyls < 1 || cyls > 16383) {
1993 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1994 return NULL;
1996 if (heads < 1 || heads > 16) {
1997 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1998 return NULL;
2000 if (secs < 1 || secs > 63) {
2001 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2002 return NULL;
2006 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2007 if (!cyls) {
2008 fprintf(stderr,
2009 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2010 buf);
2011 return NULL;
2013 if (!strcmp(buf, "none"))
2014 translation = BIOS_ATA_TRANSLATION_NONE;
2015 else if (!strcmp(buf, "lba"))
2016 translation = BIOS_ATA_TRANSLATION_LBA;
2017 else if (!strcmp(buf, "auto"))
2018 translation = BIOS_ATA_TRANSLATION_AUTO;
2019 else {
2020 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2021 return NULL;
2025 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2026 if (!strcmp(buf, "disk")) {
2027 media = MEDIA_DISK;
2028 } else if (!strcmp(buf, "cdrom")) {
2029 if (cyls || secs || heads) {
2030 fprintf(stderr,
2031 "qemu: '%s' invalid physical CHS format\n", buf);
2032 return NULL;
2034 media = MEDIA_CDROM;
2035 } else {
2036 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2037 return NULL;
2041 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2042 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2043 cache = 0;
2044 else if (!strcmp(buf, "writethrough"))
2045 cache = 1;
2046 else if (!strcmp(buf, "writeback"))
2047 cache = 2;
2048 else {
2049 fprintf(stderr, "qemu: invalid cache option\n");
2050 return NULL;
2054 #ifdef CONFIG_LINUX_AIO
2055 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2056 if (!strcmp(buf, "threads"))
2057 aio = 0;
2058 else if (!strcmp(buf, "native"))
2059 aio = 1;
2060 else {
2061 fprintf(stderr, "qemu: invalid aio option\n");
2062 return NULL;
2065 #endif
2067 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2068 if (strcmp(buf, "?") == 0) {
2069 fprintf(stderr, "qemu: Supported formats:");
2070 bdrv_iterate_format(bdrv_format_print, NULL);
2071 fprintf(stderr, "\n");
2072 return NULL;
2074 drv = bdrv_find_format(buf);
2075 if (!drv) {
2076 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2077 return NULL;
2081 onerror = BLOCK_ERR_STOP_ENOSPC;
2082 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2083 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2084 fprintf(stderr, "werror is no supported by this format\n");
2085 return NULL;
2087 if (!strcmp(buf, "ignore"))
2088 onerror = BLOCK_ERR_IGNORE;
2089 else if (!strcmp(buf, "enospc"))
2090 onerror = BLOCK_ERR_STOP_ENOSPC;
2091 else if (!strcmp(buf, "stop"))
2092 onerror = BLOCK_ERR_STOP_ANY;
2093 else if (!strcmp(buf, "report"))
2094 onerror = BLOCK_ERR_REPORT;
2095 else {
2096 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2097 return NULL;
2101 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2102 if (type != IF_VIRTIO) {
2103 fprintf(stderr, "addr is not supported\n");
2104 return NULL;
2108 /* compute bus and unit according index */
2110 if (index != -1) {
2111 if (bus_id != 0 || unit_id != -1) {
2112 fprintf(stderr,
2113 "qemu: index cannot be used with bus and unit\n");
2114 return NULL;
2116 if (max_devs == 0)
2118 unit_id = index;
2119 bus_id = 0;
2120 } else {
2121 unit_id = index % max_devs;
2122 bus_id = index / max_devs;
2126 /* if user doesn't specify a unit_id,
2127 * try to find the first free
2130 if (unit_id == -1) {
2131 unit_id = 0;
2132 while (drive_get(type, bus_id, unit_id) != NULL) {
2133 unit_id++;
2134 if (max_devs && unit_id >= max_devs) {
2135 unit_id -= max_devs;
2136 bus_id++;
2141 /* check unit id */
2143 if (max_devs && unit_id >= max_devs) {
2144 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2145 unit_id, max_devs - 1);
2146 return NULL;
2150 * ignore multiple definitions
2153 if (drive_get(type, bus_id, unit_id) != NULL) {
2154 *fatal_error = 0;
2155 return NULL;
2158 /* init */
2160 dinfo = qemu_mallocz(sizeof(*dinfo));
2161 if ((buf = qemu_opts_id(opts)) != NULL) {
2162 dinfo->id = qemu_strdup(buf);
2163 } else {
2164 /* no id supplied -> create one */
2165 dinfo->id = qemu_mallocz(32);
2166 if (type == IF_IDE || type == IF_SCSI)
2167 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2168 if (max_devs)
2169 snprintf(dinfo->id, 32, "%s%i%s%i",
2170 devname, bus_id, mediastr, unit_id);
2171 else
2172 snprintf(dinfo->id, 32, "%s%s%i",
2173 devname, mediastr, unit_id);
2175 dinfo->bdrv = bdrv_new(dinfo->id);
2176 dinfo->devaddr = devaddr;
2177 dinfo->type = type;
2178 dinfo->bus = bus_id;
2179 dinfo->unit = unit_id;
2180 dinfo->onerror = onerror;
2181 dinfo->opts = opts;
2182 if (serial)
2183 strncpy(dinfo->serial, serial, sizeof(serial));
2184 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2186 switch(type) {
2187 case IF_IDE:
2188 case IF_SCSI:
2189 case IF_XEN:
2190 switch(media) {
2191 case MEDIA_DISK:
2192 if (cyls != 0) {
2193 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2194 bdrv_set_translation_hint(dinfo->bdrv, translation);
2196 break;
2197 case MEDIA_CDROM:
2198 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2199 break;
2201 break;
2202 case IF_SD:
2203 /* FIXME: This isn't really a floppy, but it's a reasonable
2204 approximation. */
2205 case IF_FLOPPY:
2206 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2207 break;
2208 case IF_PFLASH:
2209 case IF_MTD:
2210 case IF_NONE:
2211 break;
2212 case IF_VIRTIO:
2213 /* add virtio block device */
2214 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2215 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2216 qemu_opt_set(opts, "drive", dinfo->id);
2217 if (devaddr)
2218 qemu_opt_set(opts, "addr", devaddr);
2219 break;
2220 case IF_COUNT:
2221 abort();
2223 if (!file) {
2224 *fatal_error = 0;
2225 return NULL;
2227 bdrv_flags = 0;
2228 if (snapshot) {
2229 bdrv_flags |= BDRV_O_SNAPSHOT;
2230 cache = 2; /* always use write-back with snapshot */
2232 if (cache == 0) /* no caching */
2233 bdrv_flags |= BDRV_O_NOCACHE;
2234 else if (cache == 2) /* write-back */
2235 bdrv_flags |= BDRV_O_CACHE_WB;
2237 if (aio == 1) {
2238 bdrv_flags |= BDRV_O_NATIVE_AIO;
2239 } else {
2240 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2243 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2244 fprintf(stderr, "qemu: could not open disk image %s\n",
2245 file);
2246 return NULL;
2249 if (bdrv_key_required(dinfo->bdrv))
2250 autostart = 0;
2251 *fatal_error = 0;
2252 return dinfo;
2255 static int drive_init_func(QemuOpts *opts, void *opaque)
2257 QEMUMachine *machine = opaque;
2258 int fatal_error = 0;
2260 if (drive_init(opts, machine, &fatal_error) == NULL) {
2261 if (fatal_error)
2262 return 1;
2264 return 0;
2267 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2269 if (NULL == qemu_opt_get(opts, "snapshot")) {
2270 qemu_opt_set(opts, "snapshot", "on");
2272 return 0;
2275 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2277 boot_set_handler = func;
2278 boot_set_opaque = opaque;
2281 int qemu_boot_set(const char *boot_devices)
2283 if (!boot_set_handler) {
2284 return -EINVAL;
2286 return boot_set_handler(boot_set_opaque, boot_devices);
2289 static int parse_bootdevices(char *devices)
2291 /* We just do some generic consistency checks */
2292 const char *p;
2293 int bitmap = 0;
2295 for (p = devices; *p != '\0'; p++) {
2296 /* Allowed boot devices are:
2297 * a-b: floppy disk drives
2298 * c-f: IDE disk drives
2299 * g-m: machine implementation dependant drives
2300 * n-p: network devices
2301 * It's up to each machine implementation to check if the given boot
2302 * devices match the actual hardware implementation and firmware
2303 * features.
2305 if (*p < 'a' || *p > 'p') {
2306 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2307 exit(1);
2309 if (bitmap & (1 << (*p - 'a'))) {
2310 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2311 exit(1);
2313 bitmap |= 1 << (*p - 'a');
2315 return bitmap;
2318 static void restore_boot_devices(void *opaque)
2320 char *standard_boot_devices = opaque;
2322 qemu_boot_set(standard_boot_devices);
2324 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2325 qemu_free(standard_boot_devices);
2328 static void numa_add(const char *optarg)
2330 char option[128];
2331 char *endptr;
2332 unsigned long long value, endvalue;
2333 int nodenr;
2335 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2336 if (!strcmp(option, "node")) {
2337 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2338 nodenr = nb_numa_nodes;
2339 } else {
2340 nodenr = strtoull(option, NULL, 10);
2343 if (get_param_value(option, 128, "mem", optarg) == 0) {
2344 node_mem[nodenr] = 0;
2345 } else {
2346 value = strtoull(option, &endptr, 0);
2347 switch (*endptr) {
2348 case 0: case 'M': case 'm':
2349 value <<= 20;
2350 break;
2351 case 'G': case 'g':
2352 value <<= 30;
2353 break;
2355 node_mem[nodenr] = value;
2357 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2358 node_cpumask[nodenr] = 0;
2359 } else {
2360 value = strtoull(option, &endptr, 10);
2361 if (value >= 64) {
2362 value = 63;
2363 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2364 } else {
2365 if (*endptr == '-') {
2366 endvalue = strtoull(endptr+1, &endptr, 10);
2367 if (endvalue >= 63) {
2368 endvalue = 62;
2369 fprintf(stderr,
2370 "only 63 CPUs in NUMA mode supported.\n");
2372 value = (1 << (endvalue + 1)) - (1 << value);
2373 } else {
2374 value = 1 << value;
2377 node_cpumask[nodenr] = value;
2379 nb_numa_nodes++;
2381 return;
2384 static void smp_parse(const char *optarg)
2386 int smp, sockets = 0, threads = 0, cores = 0;
2387 char *endptr;
2388 char option[128];
2390 smp = strtoul(optarg, &endptr, 10);
2391 if (endptr != optarg) {
2392 if (*endptr == ',') {
2393 endptr++;
2396 if (get_param_value(option, 128, "sockets", endptr) != 0)
2397 sockets = strtoull(option, NULL, 10);
2398 if (get_param_value(option, 128, "cores", endptr) != 0)
2399 cores = strtoull(option, NULL, 10);
2400 if (get_param_value(option, 128, "threads", endptr) != 0)
2401 threads = strtoull(option, NULL, 10);
2402 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2403 max_cpus = strtoull(option, NULL, 10);
2405 /* compute missing values, prefer sockets over cores over threads */
2406 if (smp == 0 || sockets == 0) {
2407 sockets = sockets > 0 ? sockets : 1;
2408 cores = cores > 0 ? cores : 1;
2409 threads = threads > 0 ? threads : 1;
2410 if (smp == 0) {
2411 smp = cores * threads * sockets;
2412 } else {
2413 sockets = smp / (cores * threads);
2415 } else {
2416 if (cores == 0) {
2417 threads = threads > 0 ? threads : 1;
2418 cores = smp / (sockets * threads);
2419 } else {
2420 if (sockets == 0) {
2421 sockets = smp / (cores * threads);
2422 } else {
2423 threads = smp / (cores * sockets);
2427 smp_cpus = smp;
2428 smp_cores = cores > 0 ? cores : 1;
2429 smp_threads = threads > 0 ? threads : 1;
2430 if (max_cpus == 0)
2431 max_cpus = smp_cpus;
2434 /***********************************************************/
2435 /* USB devices */
2437 static void usb_msd_password_cb(void *opaque, int err)
2439 USBDevice *dev = opaque;
2441 if (!err)
2442 usb_device_attach(dev);
2443 else
2444 dev->info->handle_destroy(dev);
2447 static struct {
2448 const char *name;
2449 const char *qdev;
2450 } usbdevs[] = {
2452 .name = "mouse",
2453 .qdev = "QEMU USB Mouse",
2455 .name = "tablet",
2456 .qdev = "QEMU USB Tablet",
2458 .name = "keyboard",
2459 .qdev = "QEMU USB Keyboard",
2461 .name = "wacom-tablet",
2462 .qdev = "QEMU PenPartner Tablet",
2466 static int usb_device_add(const char *devname, int is_hotplug)
2468 const char *p;
2469 USBBus *bus = usb_bus_find(-1 /* any */);
2470 USBDevice *dev = NULL;
2471 int i;
2473 if (!usb_enabled)
2474 return -1;
2476 /* simple devices which don't need extra care */
2477 for (i = 0; i < ARRAY_SIZE(usbdevs); i++) {
2478 if (strcmp(devname, usbdevs[i].name) != 0)
2479 continue;
2480 dev = usb_create_simple(bus, usbdevs[i].qdev);
2481 goto done;
2484 /* the other ones */
2485 if (strstart(devname, "host:", &p)) {
2486 dev = usb_host_device_open(p);
2487 } else if (strstart(devname, "disk:", &p)) {
2488 BlockDriverState *bs;
2490 dev = usb_msd_init(p);
2491 if (!dev)
2492 return -1;
2493 bs = usb_msd_get_bdrv(dev);
2494 if (bdrv_key_required(bs)) {
2495 autostart = 0;
2496 if (is_hotplug) {
2497 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2498 dev);
2499 return 0;
2502 } else if (strstart(devname, "serial:", &p)) {
2503 dev = usb_serial_init(p);
2504 #ifdef CONFIG_BRLAPI
2505 } else if (!strcmp(devname, "braille")) {
2506 dev = usb_baum_init();
2507 #endif
2508 } else if (strstart(devname, "net:", &p)) {
2509 int nic = nb_nics;
2511 if (net_client_init(NULL, "nic", p) < 0)
2512 return -1;
2513 nd_table[nic].model = "usb";
2514 dev = usb_net_init(&nd_table[nic]);
2515 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2516 dev = usb_bt_init(devname[2] ? hci_init(p) :
2517 bt_new_hci(qemu_find_bt_vlan(0)));
2518 } else {
2519 return -1;
2521 if (!dev)
2522 return -1;
2524 done:
2525 return 0;
2528 static int usb_device_del(const char *devname)
2530 int bus_num, addr;
2531 const char *p;
2533 if (strstart(devname, "host:", &p))
2534 return usb_host_device_close(p);
2536 if (!usb_enabled)
2537 return -1;
2539 p = strchr(devname, '.');
2540 if (!p)
2541 return -1;
2542 bus_num = strtoul(devname, NULL, 0);
2543 addr = strtoul(p + 1, NULL, 0);
2545 return usb_device_delete_addr(bus_num, addr);
2548 static int usb_parse(const char *cmdline)
2550 return usb_device_add(cmdline, 0);
2553 void do_usb_add(Monitor *mon, const QDict *qdict)
2555 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2558 void do_usb_del(Monitor *mon, const QDict *qdict)
2560 usb_device_del(qdict_get_str(qdict, "devname"));
2563 /***********************************************************/
2564 /* PCMCIA/Cardbus */
2566 static struct pcmcia_socket_entry_s {
2567 PCMCIASocket *socket;
2568 struct pcmcia_socket_entry_s *next;
2569 } *pcmcia_sockets = 0;
2571 void pcmcia_socket_register(PCMCIASocket *socket)
2573 struct pcmcia_socket_entry_s *entry;
2575 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2576 entry->socket = socket;
2577 entry->next = pcmcia_sockets;
2578 pcmcia_sockets = entry;
2581 void pcmcia_socket_unregister(PCMCIASocket *socket)
2583 struct pcmcia_socket_entry_s *entry, **ptr;
2585 ptr = &pcmcia_sockets;
2586 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2587 if (entry->socket == socket) {
2588 *ptr = entry->next;
2589 qemu_free(entry);
2593 void pcmcia_info(Monitor *mon)
2595 struct pcmcia_socket_entry_s *iter;
2597 if (!pcmcia_sockets)
2598 monitor_printf(mon, "No PCMCIA sockets\n");
2600 for (iter = pcmcia_sockets; iter; iter = iter->next)
2601 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2602 iter->socket->attached ? iter->socket->card_string :
2603 "Empty");
2606 /***********************************************************/
2607 /* register display */
2609 struct DisplayAllocator default_allocator = {
2610 defaultallocator_create_displaysurface,
2611 defaultallocator_resize_displaysurface,
2612 defaultallocator_free_displaysurface
2615 void register_displaystate(DisplayState *ds)
2617 DisplayState **s;
2618 s = &display_state;
2619 while (*s != NULL)
2620 s = &(*s)->next;
2621 ds->next = NULL;
2622 *s = ds;
2625 DisplayState *get_displaystate(void)
2627 return display_state;
2630 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2632 if(ds->allocator == &default_allocator) ds->allocator = da;
2633 return ds->allocator;
2636 /* dumb display */
2638 static void dumb_display_init(void)
2640 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2641 ds->allocator = &default_allocator;
2642 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2643 register_displaystate(ds);
2646 /***********************************************************/
2647 /* I/O handling */
2649 typedef struct IOHandlerRecord {
2650 int fd;
2651 IOCanRWHandler *fd_read_poll;
2652 IOHandler *fd_read;
2653 IOHandler *fd_write;
2654 int deleted;
2655 void *opaque;
2656 /* temporary data */
2657 struct pollfd *ufd;
2658 struct IOHandlerRecord *next;
2659 } IOHandlerRecord;
2661 static IOHandlerRecord *first_io_handler;
2663 /* XXX: fd_read_poll should be suppressed, but an API change is
2664 necessary in the character devices to suppress fd_can_read(). */
2665 int qemu_set_fd_handler2(int fd,
2666 IOCanRWHandler *fd_read_poll,
2667 IOHandler *fd_read,
2668 IOHandler *fd_write,
2669 void *opaque)
2671 IOHandlerRecord **pioh, *ioh;
2673 if (!fd_read && !fd_write) {
2674 pioh = &first_io_handler;
2675 for(;;) {
2676 ioh = *pioh;
2677 if (ioh == NULL)
2678 break;
2679 if (ioh->fd == fd) {
2680 ioh->deleted = 1;
2681 break;
2683 pioh = &ioh->next;
2685 } else {
2686 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2687 if (ioh->fd == fd)
2688 goto found;
2690 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2691 ioh->next = first_io_handler;
2692 first_io_handler = ioh;
2693 found:
2694 ioh->fd = fd;
2695 ioh->fd_read_poll = fd_read_poll;
2696 ioh->fd_read = fd_read;
2697 ioh->fd_write = fd_write;
2698 ioh->opaque = opaque;
2699 ioh->deleted = 0;
2701 return 0;
2704 int qemu_set_fd_handler(int fd,
2705 IOHandler *fd_read,
2706 IOHandler *fd_write,
2707 void *opaque)
2709 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2712 #ifdef _WIN32
2713 /***********************************************************/
2714 /* Polling handling */
2716 typedef struct PollingEntry {
2717 PollingFunc *func;
2718 void *opaque;
2719 struct PollingEntry *next;
2720 } PollingEntry;
2722 static PollingEntry *first_polling_entry;
2724 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2726 PollingEntry **ppe, *pe;
2727 pe = qemu_mallocz(sizeof(PollingEntry));
2728 pe->func = func;
2729 pe->opaque = opaque;
2730 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2731 *ppe = pe;
2732 return 0;
2735 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2737 PollingEntry **ppe, *pe;
2738 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2739 pe = *ppe;
2740 if (pe->func == func && pe->opaque == opaque) {
2741 *ppe = pe->next;
2742 qemu_free(pe);
2743 break;
2748 /***********************************************************/
2749 /* Wait objects support */
2750 typedef struct WaitObjects {
2751 int num;
2752 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2753 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2754 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2755 } WaitObjects;
2757 static WaitObjects wait_objects = {0};
2759 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2761 WaitObjects *w = &wait_objects;
2763 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2764 return -1;
2765 w->events[w->num] = handle;
2766 w->func[w->num] = func;
2767 w->opaque[w->num] = opaque;
2768 w->num++;
2769 return 0;
2772 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2774 int i, found;
2775 WaitObjects *w = &wait_objects;
2777 found = 0;
2778 for (i = 0; i < w->num; i++) {
2779 if (w->events[i] == handle)
2780 found = 1;
2781 if (found) {
2782 w->events[i] = w->events[i + 1];
2783 w->func[i] = w->func[i + 1];
2784 w->opaque[i] = w->opaque[i + 1];
2787 if (found)
2788 w->num--;
2790 #endif
2792 /***********************************************************/
2793 /* ram save/restore */
2795 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2797 int v;
2799 v = qemu_get_byte(f);
2800 switch(v) {
2801 case 0:
2802 if (qemu_get_buffer(f, buf, len) != len)
2803 return -EIO;
2804 break;
2805 case 1:
2806 v = qemu_get_byte(f);
2807 memset(buf, v, len);
2808 break;
2809 default:
2810 return -EINVAL;
2813 if (qemu_file_has_error(f))
2814 return -EIO;
2816 return 0;
2819 static int ram_load_v1(QEMUFile *f, void *opaque)
2821 int ret;
2822 ram_addr_t i;
2824 if (qemu_get_be32(f) != last_ram_offset)
2825 return -EINVAL;
2826 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2827 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2828 if (ret)
2829 return ret;
2831 return 0;
2834 #define BDRV_HASH_BLOCK_SIZE 1024
2835 #define IOBUF_SIZE 4096
2836 #define RAM_CBLOCK_MAGIC 0xfabe
2838 typedef struct RamDecompressState {
2839 z_stream zstream;
2840 QEMUFile *f;
2841 uint8_t buf[IOBUF_SIZE];
2842 } RamDecompressState;
2844 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2846 int ret;
2847 memset(s, 0, sizeof(*s));
2848 s->f = f;
2849 ret = inflateInit(&s->zstream);
2850 if (ret != Z_OK)
2851 return -1;
2852 return 0;
2855 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2857 int ret, clen;
2859 s->zstream.avail_out = len;
2860 s->zstream.next_out = buf;
2861 while (s->zstream.avail_out > 0) {
2862 if (s->zstream.avail_in == 0) {
2863 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2864 return -1;
2865 clen = qemu_get_be16(s->f);
2866 if (clen > IOBUF_SIZE)
2867 return -1;
2868 qemu_get_buffer(s->f, s->buf, clen);
2869 s->zstream.avail_in = clen;
2870 s->zstream.next_in = s->buf;
2872 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2873 if (ret != Z_OK && ret != Z_STREAM_END) {
2874 return -1;
2877 return 0;
2880 static void ram_decompress_close(RamDecompressState *s)
2882 inflateEnd(&s->zstream);
2885 #define RAM_SAVE_FLAG_FULL 0x01
2886 #define RAM_SAVE_FLAG_COMPRESS 0x02
2887 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2888 #define RAM_SAVE_FLAG_PAGE 0x08
2889 #define RAM_SAVE_FLAG_EOS 0x10
2891 static int is_dup_page(uint8_t *page, uint8_t ch)
2893 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2894 uint32_t *array = (uint32_t *)page;
2895 int i;
2897 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2898 if (array[i] != val)
2899 return 0;
2902 return 1;
2905 static int ram_save_block(QEMUFile *f)
2907 static ram_addr_t current_addr = 0;
2908 ram_addr_t saved_addr = current_addr;
2909 ram_addr_t addr = 0;
2910 int found = 0;
2912 while (addr < last_ram_offset) {
2913 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2914 uint8_t *p;
2916 cpu_physical_memory_reset_dirty(current_addr,
2917 current_addr + TARGET_PAGE_SIZE,
2918 MIGRATION_DIRTY_FLAG);
2920 p = qemu_get_ram_ptr(current_addr);
2922 if (is_dup_page(p, *p)) {
2923 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2924 qemu_put_byte(f, *p);
2925 } else {
2926 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2927 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2930 found = 1;
2931 break;
2933 addr += TARGET_PAGE_SIZE;
2934 current_addr = (saved_addr + addr) % last_ram_offset;
2937 return found;
2940 static uint64_t bytes_transferred = 0;
2942 static ram_addr_t ram_save_remaining(void)
2944 ram_addr_t addr;
2945 ram_addr_t count = 0;
2947 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2948 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2949 count++;
2952 return count;
2955 uint64_t ram_bytes_remaining(void)
2957 return ram_save_remaining() * TARGET_PAGE_SIZE;
2960 uint64_t ram_bytes_transferred(void)
2962 return bytes_transferred;
2965 uint64_t ram_bytes_total(void)
2967 return last_ram_offset;
2970 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2972 ram_addr_t addr;
2973 uint64_t bytes_transferred_last;
2974 double bwidth = 0;
2975 uint64_t expected_time = 0;
2977 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2978 qemu_file_set_error(f);
2979 return 0;
2982 if (stage == 1) {
2983 /* Make sure all dirty bits are set */
2984 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2985 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2986 cpu_physical_memory_set_dirty(addr);
2989 /* Enable dirty memory tracking */
2990 cpu_physical_memory_set_dirty_tracking(1);
2992 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2995 bytes_transferred_last = bytes_transferred;
2996 bwidth = get_clock();
2998 while (!qemu_file_rate_limit(f)) {
2999 int ret;
3001 ret = ram_save_block(f);
3002 bytes_transferred += ret * TARGET_PAGE_SIZE;
3003 if (ret == 0) /* no more blocks */
3004 break;
3007 bwidth = get_clock() - bwidth;
3008 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3010 /* if we haven't transferred anything this round, force expected_time to a
3011 * a very high value, but without crashing */
3012 if (bwidth == 0)
3013 bwidth = 0.000001;
3015 /* try transferring iterative blocks of memory */
3017 if (stage == 3) {
3019 /* flush all remaining blocks regardless of rate limiting */
3020 while (ram_save_block(f) != 0) {
3021 bytes_transferred += TARGET_PAGE_SIZE;
3023 cpu_physical_memory_set_dirty_tracking(0);
3026 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3028 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3030 return (stage == 2) && (expected_time <= migrate_max_downtime());
3033 static int ram_load_dead(QEMUFile *f, void *opaque)
3035 RamDecompressState s1, *s = &s1;
3036 uint8_t buf[10];
3037 ram_addr_t i;
3039 if (ram_decompress_open(s, f) < 0)
3040 return -EINVAL;
3041 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3042 if (ram_decompress_buf(s, buf, 1) < 0) {
3043 fprintf(stderr, "Error while reading ram block header\n");
3044 goto error;
3046 if (buf[0] == 0) {
3047 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3048 BDRV_HASH_BLOCK_SIZE) < 0) {
3049 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3050 goto error;
3052 } else {
3053 error:
3054 printf("Error block header\n");
3055 return -EINVAL;
3058 ram_decompress_close(s);
3060 return 0;
3063 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3065 ram_addr_t addr;
3066 int flags;
3068 if (version_id == 1)
3069 return ram_load_v1(f, opaque);
3071 if (version_id == 2) {
3072 if (qemu_get_be32(f) != last_ram_offset)
3073 return -EINVAL;
3074 return ram_load_dead(f, opaque);
3077 if (version_id != 3)
3078 return -EINVAL;
3080 do {
3081 addr = qemu_get_be64(f);
3083 flags = addr & ~TARGET_PAGE_MASK;
3084 addr &= TARGET_PAGE_MASK;
3086 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3087 if (addr != last_ram_offset)
3088 return -EINVAL;
3091 if (flags & RAM_SAVE_FLAG_FULL) {
3092 if (ram_load_dead(f, opaque) < 0)
3093 return -EINVAL;
3096 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3097 uint8_t ch = qemu_get_byte(f);
3098 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3099 #ifndef _WIN32
3100 if (ch == 0 &&
3101 (!kvm_enabled() || kvm_has_sync_mmu())) {
3102 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3104 #endif
3105 } else if (flags & RAM_SAVE_FLAG_PAGE)
3106 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3107 } while (!(flags & RAM_SAVE_FLAG_EOS));
3109 return 0;
3112 void qemu_service_io(void)
3114 qemu_notify_event();
3117 /***********************************************************/
3118 /* bottom halves (can be seen as timers which expire ASAP) */
3120 struct QEMUBH {
3121 QEMUBHFunc *cb;
3122 void *opaque;
3123 int scheduled;
3124 int idle;
3125 int deleted;
3126 QEMUBH *next;
3129 static QEMUBH *first_bh = NULL;
3131 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3133 QEMUBH *bh;
3134 bh = qemu_mallocz(sizeof(QEMUBH));
3135 bh->cb = cb;
3136 bh->opaque = opaque;
3137 bh->next = first_bh;
3138 first_bh = bh;
3139 return bh;
3142 int qemu_bh_poll(void)
3144 QEMUBH *bh, **bhp;
3145 int ret;
3147 ret = 0;
3148 for (bh = first_bh; bh; bh = bh->next) {
3149 if (!bh->deleted && bh->scheduled) {
3150 bh->scheduled = 0;
3151 if (!bh->idle)
3152 ret = 1;
3153 bh->idle = 0;
3154 bh->cb(bh->opaque);
3158 /* remove deleted bhs */
3159 bhp = &first_bh;
3160 while (*bhp) {
3161 bh = *bhp;
3162 if (bh->deleted) {
3163 *bhp = bh->next;
3164 qemu_free(bh);
3165 } else
3166 bhp = &bh->next;
3169 return ret;
3172 void qemu_bh_schedule_idle(QEMUBH *bh)
3174 if (bh->scheduled)
3175 return;
3176 bh->scheduled = 1;
3177 bh->idle = 1;
3180 void qemu_bh_schedule(QEMUBH *bh)
3182 if (bh->scheduled)
3183 return;
3184 bh->scheduled = 1;
3185 bh->idle = 0;
3186 /* stop the currently executing CPU to execute the BH ASAP */
3187 qemu_notify_event();
3190 void qemu_bh_cancel(QEMUBH *bh)
3192 bh->scheduled = 0;
3195 void qemu_bh_delete(QEMUBH *bh)
3197 bh->scheduled = 0;
3198 bh->deleted = 1;
3201 static void qemu_bh_update_timeout(int *timeout)
3203 QEMUBH *bh;
3205 for (bh = first_bh; bh; bh = bh->next) {
3206 if (!bh->deleted && bh->scheduled) {
3207 if (bh->idle) {
3208 /* idle bottom halves will be polled at least
3209 * every 10ms */
3210 *timeout = MIN(10, *timeout);
3211 } else {
3212 /* non-idle bottom halves will be executed
3213 * immediately */
3214 *timeout = 0;
3215 break;
3221 /***********************************************************/
3222 /* machine registration */
3224 static QEMUMachine *first_machine = NULL;
3225 QEMUMachine *current_machine = NULL;
3227 int qemu_register_machine(QEMUMachine *m)
3229 QEMUMachine **pm;
3230 pm = &first_machine;
3231 while (*pm != NULL)
3232 pm = &(*pm)->next;
3233 m->next = NULL;
3234 *pm = m;
3235 return 0;
3238 static QEMUMachine *find_machine(const char *name)
3240 QEMUMachine *m;
3242 for(m = first_machine; m != NULL; m = m->next) {
3243 if (!strcmp(m->name, name))
3244 return m;
3245 if (m->alias && !strcmp(m->alias, name))
3246 return m;
3248 return NULL;
3251 static QEMUMachine *find_default_machine(void)
3253 QEMUMachine *m;
3255 for(m = first_machine; m != NULL; m = m->next) {
3256 if (m->is_default) {
3257 return m;
3260 return NULL;
3263 /***********************************************************/
3264 /* main execution loop */
3266 static void gui_update(void *opaque)
3268 uint64_t interval = GUI_REFRESH_INTERVAL;
3269 DisplayState *ds = opaque;
3270 DisplayChangeListener *dcl = ds->listeners;
3272 dpy_refresh(ds);
3274 while (dcl != NULL) {
3275 if (dcl->gui_timer_interval &&
3276 dcl->gui_timer_interval < interval)
3277 interval = dcl->gui_timer_interval;
3278 dcl = dcl->next;
3280 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3283 static void nographic_update(void *opaque)
3285 uint64_t interval = GUI_REFRESH_INTERVAL;
3287 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3290 struct vm_change_state_entry {
3291 VMChangeStateHandler *cb;
3292 void *opaque;
3293 LIST_ENTRY (vm_change_state_entry) entries;
3296 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3298 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3299 void *opaque)
3301 VMChangeStateEntry *e;
3303 e = qemu_mallocz(sizeof (*e));
3305 e->cb = cb;
3306 e->opaque = opaque;
3307 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3308 return e;
3311 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3313 LIST_REMOVE (e, entries);
3314 qemu_free (e);
3317 static void vm_state_notify(int running, int reason)
3319 VMChangeStateEntry *e;
3321 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3322 e->cb(e->opaque, running, reason);
3326 static void resume_all_vcpus(void);
3327 static void pause_all_vcpus(void);
3329 void vm_start(void)
3331 if (!vm_running) {
3332 cpu_enable_ticks();
3333 vm_running = 1;
3334 vm_state_notify(1, 0);
3335 qemu_rearm_alarm_timer(alarm_timer);
3336 resume_all_vcpus();
3340 /* reset/shutdown handler */
3342 typedef struct QEMUResetEntry {
3343 TAILQ_ENTRY(QEMUResetEntry) entry;
3344 QEMUResetHandler *func;
3345 void *opaque;
3346 } QEMUResetEntry;
3348 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3349 TAILQ_HEAD_INITIALIZER(reset_handlers);
3350 static int reset_requested;
3351 static int shutdown_requested;
3352 static int powerdown_requested;
3353 static int debug_requested;
3354 static int vmstop_requested;
3356 int qemu_shutdown_requested(void)
3358 int r = shutdown_requested;
3359 shutdown_requested = 0;
3360 return r;
3363 int qemu_reset_requested(void)
3365 int r = reset_requested;
3366 reset_requested = 0;
3367 return r;
3370 int qemu_powerdown_requested(void)
3372 int r = powerdown_requested;
3373 powerdown_requested = 0;
3374 return r;
3377 static int qemu_debug_requested(void)
3379 int r = debug_requested;
3380 debug_requested = 0;
3381 return r;
3384 static int qemu_vmstop_requested(void)
3386 int r = vmstop_requested;
3387 vmstop_requested = 0;
3388 return r;
3391 static void do_vm_stop(int reason)
3393 if (vm_running) {
3394 cpu_disable_ticks();
3395 vm_running = 0;
3396 pause_all_vcpus();
3397 vm_state_notify(0, reason);
3401 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3403 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3405 re->func = func;
3406 re->opaque = opaque;
3407 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3410 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3412 QEMUResetEntry *re;
3414 TAILQ_FOREACH(re, &reset_handlers, entry) {
3415 if (re->func == func && re->opaque == opaque) {
3416 TAILQ_REMOVE(&reset_handlers, re, entry);
3417 qemu_free(re);
3418 return;
3423 void qemu_system_reset(void)
3425 QEMUResetEntry *re, *nre;
3427 /* reset all devices */
3428 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3429 re->func(re->opaque);
3433 void qemu_system_reset_request(void)
3435 if (no_reboot) {
3436 shutdown_requested = 1;
3437 } else {
3438 reset_requested = 1;
3440 qemu_notify_event();
3443 void qemu_system_shutdown_request(void)
3445 shutdown_requested = 1;
3446 qemu_notify_event();
3449 void qemu_system_powerdown_request(void)
3451 powerdown_requested = 1;
3452 qemu_notify_event();
3455 #ifdef CONFIG_IOTHREAD
3456 static void qemu_system_vmstop_request(int reason)
3458 vmstop_requested = reason;
3459 qemu_notify_event();
3461 #endif
3463 #ifndef _WIN32
3464 static int io_thread_fd = -1;
3466 static void qemu_event_increment(void)
3468 static const char byte = 0;
3470 if (io_thread_fd == -1)
3471 return;
3473 write(io_thread_fd, &byte, sizeof(byte));
3476 static void qemu_event_read(void *opaque)
3478 int fd = (unsigned long)opaque;
3479 ssize_t len;
3481 /* Drain the notify pipe */
3482 do {
3483 char buffer[512];
3484 len = read(fd, buffer, sizeof(buffer));
3485 } while ((len == -1 && errno == EINTR) || len > 0);
3488 static int qemu_event_init(void)
3490 int err;
3491 int fds[2];
3493 err = pipe(fds);
3494 if (err == -1)
3495 return -errno;
3497 err = fcntl_setfl(fds[0], O_NONBLOCK);
3498 if (err < 0)
3499 goto fail;
3501 err = fcntl_setfl(fds[1], O_NONBLOCK);
3502 if (err < 0)
3503 goto fail;
3505 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3506 (void *)(unsigned long)fds[0]);
3508 io_thread_fd = fds[1];
3509 return 0;
3511 fail:
3512 close(fds[0]);
3513 close(fds[1]);
3514 return err;
3516 #else
3517 HANDLE qemu_event_handle;
3519 static void dummy_event_handler(void *opaque)
3523 static int qemu_event_init(void)
3525 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3526 if (!qemu_event_handle) {
3527 perror("Failed CreateEvent");
3528 return -1;
3530 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3531 return 0;
3534 static void qemu_event_increment(void)
3536 SetEvent(qemu_event_handle);
3538 #endif
3540 static int cpu_can_run(CPUState *env)
3542 if (env->stop)
3543 return 0;
3544 if (env->stopped)
3545 return 0;
3546 return 1;
3549 #ifndef CONFIG_IOTHREAD
3550 static int qemu_init_main_loop(void)
3552 return qemu_event_init();
3555 void qemu_init_vcpu(void *_env)
3557 CPUState *env = _env;
3559 if (kvm_enabled())
3560 kvm_init_vcpu(env);
3561 env->nr_cores = smp_cores;
3562 env->nr_threads = smp_threads;
3563 return;
3566 int qemu_cpu_self(void *env)
3568 return 1;
3571 static void resume_all_vcpus(void)
3575 static void pause_all_vcpus(void)
3579 void qemu_cpu_kick(void *env)
3581 return;
3584 void qemu_notify_event(void)
3586 CPUState *env = cpu_single_env;
3588 if (env) {
3589 cpu_exit(env);
3593 #define qemu_mutex_lock_iothread() do { } while (0)
3594 #define qemu_mutex_unlock_iothread() do { } while (0)
3596 void vm_stop(int reason)
3598 do_vm_stop(reason);
3601 #else /* CONFIG_IOTHREAD */
3603 #include "qemu-thread.h"
3605 QemuMutex qemu_global_mutex;
3606 static QemuMutex qemu_fair_mutex;
3608 static QemuThread io_thread;
3610 static QemuThread *tcg_cpu_thread;
3611 static QemuCond *tcg_halt_cond;
3613 static int qemu_system_ready;
3614 /* cpu creation */
3615 static QemuCond qemu_cpu_cond;
3616 /* system init */
3617 static QemuCond qemu_system_cond;
3618 static QemuCond qemu_pause_cond;
3620 static void block_io_signals(void);
3621 static void unblock_io_signals(void);
3622 static int tcg_has_work(void);
3624 static int qemu_init_main_loop(void)
3626 int ret;
3628 ret = qemu_event_init();
3629 if (ret)
3630 return ret;
3632 qemu_cond_init(&qemu_pause_cond);
3633 qemu_mutex_init(&qemu_fair_mutex);
3634 qemu_mutex_init(&qemu_global_mutex);
3635 qemu_mutex_lock(&qemu_global_mutex);
3637 unblock_io_signals();
3638 qemu_thread_self(&io_thread);
3640 return 0;
3643 static void qemu_wait_io_event(CPUState *env)
3645 while (!tcg_has_work())
3646 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3648 qemu_mutex_unlock(&qemu_global_mutex);
3651 * Users of qemu_global_mutex can be starved, having no chance
3652 * to acquire it since this path will get to it first.
3653 * So use another lock to provide fairness.
3655 qemu_mutex_lock(&qemu_fair_mutex);
3656 qemu_mutex_unlock(&qemu_fair_mutex);
3658 qemu_mutex_lock(&qemu_global_mutex);
3659 if (env->stop) {
3660 env->stop = 0;
3661 env->stopped = 1;
3662 qemu_cond_signal(&qemu_pause_cond);
3666 static int qemu_cpu_exec(CPUState *env);
3668 static void *kvm_cpu_thread_fn(void *arg)
3670 CPUState *env = arg;
3672 block_io_signals();
3673 qemu_thread_self(env->thread);
3674 if (kvm_enabled())
3675 kvm_init_vcpu(env);
3677 /* signal CPU creation */
3678 qemu_mutex_lock(&qemu_global_mutex);
3679 env->created = 1;
3680 qemu_cond_signal(&qemu_cpu_cond);
3682 /* and wait for machine initialization */
3683 while (!qemu_system_ready)
3684 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3686 cpu_synchronize_state(env);
3688 while (1) {
3689 qemu_wait_io_event(env);
3690 if (cpu_can_run(env))
3691 qemu_cpu_exec(env);
3694 return NULL;
3697 static void tcg_cpu_exec(void);
3699 static void *tcg_cpu_thread_fn(void *arg)
3701 CPUState *env = arg;
3703 block_io_signals();
3704 qemu_thread_self(env->thread);
3706 /* signal CPU creation */
3707 qemu_mutex_lock(&qemu_global_mutex);
3708 for (env = first_cpu; env != NULL; env = env->next_cpu)
3709 env->created = 1;
3710 qemu_cond_signal(&qemu_cpu_cond);
3712 /* and wait for machine initialization */
3713 while (!qemu_system_ready)
3714 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3716 for (env = first_cpu; env != NULL; env = env->next_cpu) {
3717 cpu_synchronize_state(env);
3719 while (1) {
3720 tcg_cpu_exec();
3721 qemu_wait_io_event(cur_cpu);
3724 return NULL;
3727 void qemu_cpu_kick(void *_env)
3729 CPUState *env = _env;
3730 qemu_cond_broadcast(env->halt_cond);
3731 if (kvm_enabled())
3732 qemu_thread_signal(env->thread, SIGUSR1);
3735 int qemu_cpu_self(void *env)
3737 return (cpu_single_env != NULL);
3740 static void cpu_signal(int sig)
3742 if (cpu_single_env)
3743 cpu_exit(cpu_single_env);
3746 static void block_io_signals(void)
3748 sigset_t set;
3749 struct sigaction sigact;
3751 sigemptyset(&set);
3752 sigaddset(&set, SIGUSR2);
3753 sigaddset(&set, SIGIO);
3754 sigaddset(&set, SIGALRM);
3755 pthread_sigmask(SIG_BLOCK, &set, NULL);
3757 sigemptyset(&set);
3758 sigaddset(&set, SIGUSR1);
3759 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3761 memset(&sigact, 0, sizeof(sigact));
3762 sigact.sa_handler = cpu_signal;
3763 sigaction(SIGUSR1, &sigact, NULL);
3766 static void unblock_io_signals(void)
3768 sigset_t set;
3770 sigemptyset(&set);
3771 sigaddset(&set, SIGUSR2);
3772 sigaddset(&set, SIGIO);
3773 sigaddset(&set, SIGALRM);
3774 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3776 sigemptyset(&set);
3777 sigaddset(&set, SIGUSR1);
3778 pthread_sigmask(SIG_BLOCK, &set, NULL);
3781 static void qemu_signal_lock(unsigned int msecs)
3783 qemu_mutex_lock(&qemu_fair_mutex);
3785 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3786 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3787 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3788 break;
3790 qemu_mutex_unlock(&qemu_fair_mutex);
3793 static void qemu_mutex_lock_iothread(void)
3795 if (kvm_enabled()) {
3796 qemu_mutex_lock(&qemu_fair_mutex);
3797 qemu_mutex_lock(&qemu_global_mutex);
3798 qemu_mutex_unlock(&qemu_fair_mutex);
3799 } else
3800 qemu_signal_lock(100);
3803 static void qemu_mutex_unlock_iothread(void)
3805 qemu_mutex_unlock(&qemu_global_mutex);
3808 static int all_vcpus_paused(void)
3810 CPUState *penv = first_cpu;
3812 while (penv) {
3813 if (!penv->stopped)
3814 return 0;
3815 penv = (CPUState *)penv->next_cpu;
3818 return 1;
3821 static void pause_all_vcpus(void)
3823 CPUState *penv = first_cpu;
3825 while (penv) {
3826 penv->stop = 1;
3827 qemu_thread_signal(penv->thread, SIGUSR1);
3828 qemu_cpu_kick(penv);
3829 penv = (CPUState *)penv->next_cpu;
3832 while (!all_vcpus_paused()) {
3833 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3834 penv = first_cpu;
3835 while (penv) {
3836 qemu_thread_signal(penv->thread, SIGUSR1);
3837 penv = (CPUState *)penv->next_cpu;
3842 static void resume_all_vcpus(void)
3844 CPUState *penv = first_cpu;
3846 while (penv) {
3847 penv->stop = 0;
3848 penv->stopped = 0;
3849 qemu_thread_signal(penv->thread, SIGUSR1);
3850 qemu_cpu_kick(penv);
3851 penv = (CPUState *)penv->next_cpu;
3855 static void tcg_init_vcpu(void *_env)
3857 CPUState *env = _env;
3858 /* share a single thread for all cpus with TCG */
3859 if (!tcg_cpu_thread) {
3860 env->thread = qemu_mallocz(sizeof(QemuThread));
3861 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3862 qemu_cond_init(env->halt_cond);
3863 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3864 while (env->created == 0)
3865 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3866 tcg_cpu_thread = env->thread;
3867 tcg_halt_cond = env->halt_cond;
3868 } else {
3869 env->thread = tcg_cpu_thread;
3870 env->halt_cond = tcg_halt_cond;
3874 static void kvm_start_vcpu(CPUState *env)
3876 env->thread = qemu_mallocz(sizeof(QemuThread));
3877 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3878 qemu_cond_init(env->halt_cond);
3879 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3880 while (env->created == 0)
3881 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3884 void qemu_init_vcpu(void *_env)
3886 CPUState *env = _env;
3888 if (kvm_enabled())
3889 kvm_start_vcpu(env);
3890 else
3891 tcg_init_vcpu(env);
3892 env->nr_cores = smp_cores;
3893 env->nr_threads = smp_threads;
3896 void qemu_notify_event(void)
3898 qemu_event_increment();
3901 void vm_stop(int reason)
3903 QemuThread me;
3904 qemu_thread_self(&me);
3906 if (!qemu_thread_equal(&me, &io_thread)) {
3907 qemu_system_vmstop_request(reason);
3909 * FIXME: should not return to device code in case
3910 * vm_stop() has been requested.
3912 if (cpu_single_env) {
3913 cpu_exit(cpu_single_env);
3914 cpu_single_env->stop = 1;
3916 return;
3918 do_vm_stop(reason);
3921 #endif
3924 #ifdef _WIN32
3925 static void host_main_loop_wait(int *timeout)
3927 int ret, ret2, i;
3928 PollingEntry *pe;
3931 /* XXX: need to suppress polling by better using win32 events */
3932 ret = 0;
3933 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3934 ret |= pe->func(pe->opaque);
3936 if (ret == 0) {
3937 int err;
3938 WaitObjects *w = &wait_objects;
3940 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3941 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3942 if (w->func[ret - WAIT_OBJECT_0])
3943 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3945 /* Check for additional signaled events */
3946 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3948 /* Check if event is signaled */
3949 ret2 = WaitForSingleObject(w->events[i], 0);
3950 if(ret2 == WAIT_OBJECT_0) {
3951 if (w->func[i])
3952 w->func[i](w->opaque[i]);
3953 } else if (ret2 == WAIT_TIMEOUT) {
3954 } else {
3955 err = GetLastError();
3956 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3959 } else if (ret == WAIT_TIMEOUT) {
3960 } else {
3961 err = GetLastError();
3962 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3966 *timeout = 0;
3968 #else
3969 static void host_main_loop_wait(int *timeout)
3972 #endif
3974 void main_loop_wait(int timeout)
3976 IOHandlerRecord *ioh;
3977 fd_set rfds, wfds, xfds;
3978 int ret, nfds;
3979 struct timeval tv;
3981 qemu_bh_update_timeout(&timeout);
3983 host_main_loop_wait(&timeout);
3985 /* poll any events */
3986 /* XXX: separate device handlers from system ones */
3987 nfds = -1;
3988 FD_ZERO(&rfds);
3989 FD_ZERO(&wfds);
3990 FD_ZERO(&xfds);
3991 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3992 if (ioh->deleted)
3993 continue;
3994 if (ioh->fd_read &&
3995 (!ioh->fd_read_poll ||
3996 ioh->fd_read_poll(ioh->opaque) != 0)) {
3997 FD_SET(ioh->fd, &rfds);
3998 if (ioh->fd > nfds)
3999 nfds = ioh->fd;
4001 if (ioh->fd_write) {
4002 FD_SET(ioh->fd, &wfds);
4003 if (ioh->fd > nfds)
4004 nfds = ioh->fd;
4008 tv.tv_sec = timeout / 1000;
4009 tv.tv_usec = (timeout % 1000) * 1000;
4011 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4013 qemu_mutex_unlock_iothread();
4014 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4015 qemu_mutex_lock_iothread();
4016 if (ret > 0) {
4017 IOHandlerRecord **pioh;
4019 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4020 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4021 ioh->fd_read(ioh->opaque);
4023 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4024 ioh->fd_write(ioh->opaque);
4028 /* remove deleted IO handlers */
4029 pioh = &first_io_handler;
4030 while (*pioh) {
4031 ioh = *pioh;
4032 if (ioh->deleted) {
4033 *pioh = ioh->next;
4034 qemu_free(ioh);
4035 } else
4036 pioh = &ioh->next;
4040 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4042 /* rearm timer, if not periodic */
4043 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4044 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4045 qemu_rearm_alarm_timer(alarm_timer);
4048 /* vm time timers */
4049 if (vm_running) {
4050 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4051 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4052 qemu_get_clock(vm_clock));
4055 /* real time timers */
4056 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4057 qemu_get_clock(rt_clock));
4059 /* Check bottom-halves last in case any of the earlier events triggered
4060 them. */
4061 qemu_bh_poll();
4065 static int qemu_cpu_exec(CPUState *env)
4067 int ret;
4068 #ifdef CONFIG_PROFILER
4069 int64_t ti;
4070 #endif
4072 #ifdef CONFIG_PROFILER
4073 ti = profile_getclock();
4074 #endif
4075 if (use_icount) {
4076 int64_t count;
4077 int decr;
4078 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4079 env->icount_decr.u16.low = 0;
4080 env->icount_extra = 0;
4081 count = qemu_next_deadline();
4082 count = (count + (1 << icount_time_shift) - 1)
4083 >> icount_time_shift;
4084 qemu_icount += count;
4085 decr = (count > 0xffff) ? 0xffff : count;
4086 count -= decr;
4087 env->icount_decr.u16.low = decr;
4088 env->icount_extra = count;
4090 ret = cpu_exec(env);
4091 #ifdef CONFIG_PROFILER
4092 qemu_time += profile_getclock() - ti;
4093 #endif
4094 if (use_icount) {
4095 /* Fold pending instructions back into the
4096 instruction counter, and clear the interrupt flag. */
4097 qemu_icount -= (env->icount_decr.u16.low
4098 + env->icount_extra);
4099 env->icount_decr.u32 = 0;
4100 env->icount_extra = 0;
4102 return ret;
4105 static void tcg_cpu_exec(void)
4107 int ret = 0;
4109 if (next_cpu == NULL)
4110 next_cpu = first_cpu;
4111 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4112 CPUState *env = cur_cpu = next_cpu;
4114 if (!vm_running)
4115 break;
4116 if (timer_alarm_pending) {
4117 timer_alarm_pending = 0;
4118 break;
4120 if (cpu_can_run(env))
4121 ret = qemu_cpu_exec(env);
4122 if (ret == EXCP_DEBUG) {
4123 gdb_set_stop_cpu(env);
4124 debug_requested = 1;
4125 break;
4130 static int cpu_has_work(CPUState *env)
4132 if (env->stop)
4133 return 1;
4134 if (env->stopped)
4135 return 0;
4136 if (!env->halted)
4137 return 1;
4138 if (qemu_cpu_has_work(env))
4139 return 1;
4140 return 0;
4143 static int tcg_has_work(void)
4145 CPUState *env;
4147 for (env = first_cpu; env != NULL; env = env->next_cpu)
4148 if (cpu_has_work(env))
4149 return 1;
4150 return 0;
4153 static int qemu_calculate_timeout(void)
4155 #ifndef CONFIG_IOTHREAD
4156 int timeout;
4158 if (!vm_running)
4159 timeout = 5000;
4160 else if (tcg_has_work())
4161 timeout = 0;
4162 else if (!use_icount)
4163 timeout = 5000;
4164 else {
4165 /* XXX: use timeout computed from timers */
4166 int64_t add;
4167 int64_t delta;
4168 /* Advance virtual time to the next event. */
4169 if (use_icount == 1) {
4170 /* When not using an adaptive execution frequency
4171 we tend to get badly out of sync with real time,
4172 so just delay for a reasonable amount of time. */
4173 delta = 0;
4174 } else {
4175 delta = cpu_get_icount() - cpu_get_clock();
4177 if (delta > 0) {
4178 /* If virtual time is ahead of real time then just
4179 wait for IO. */
4180 timeout = (delta / 1000000) + 1;
4181 } else {
4182 /* Wait for either IO to occur or the next
4183 timer event. */
4184 add = qemu_next_deadline();
4185 /* We advance the timer before checking for IO.
4186 Limit the amount we advance so that early IO
4187 activity won't get the guest too far ahead. */
4188 if (add > 10000000)
4189 add = 10000000;
4190 delta += add;
4191 add = (add + (1 << icount_time_shift) - 1)
4192 >> icount_time_shift;
4193 qemu_icount += add;
4194 timeout = delta / 1000000;
4195 if (timeout < 0)
4196 timeout = 0;
4200 return timeout;
4201 #else /* CONFIG_IOTHREAD */
4202 return 1000;
4203 #endif
4206 static int vm_can_run(void)
4208 if (powerdown_requested)
4209 return 0;
4210 if (reset_requested)
4211 return 0;
4212 if (shutdown_requested)
4213 return 0;
4214 if (debug_requested)
4215 return 0;
4216 return 1;
4219 qemu_irq qemu_system_powerdown;
4221 static void main_loop(void)
4223 int r;
4225 #ifdef CONFIG_IOTHREAD
4226 qemu_system_ready = 1;
4227 qemu_cond_broadcast(&qemu_system_cond);
4228 #endif
4230 for (;;) {
4231 do {
4232 #ifdef CONFIG_PROFILER
4233 int64_t ti;
4234 #endif
4235 #ifndef CONFIG_IOTHREAD
4236 tcg_cpu_exec();
4237 #endif
4238 #ifdef CONFIG_PROFILER
4239 ti = profile_getclock();
4240 #endif
4241 main_loop_wait(qemu_calculate_timeout());
4242 #ifdef CONFIG_PROFILER
4243 dev_time += profile_getclock() - ti;
4244 #endif
4245 } while (vm_can_run());
4247 if (qemu_debug_requested())
4248 vm_stop(EXCP_DEBUG);
4249 if (qemu_shutdown_requested()) {
4250 if (no_shutdown) {
4251 vm_stop(0);
4252 no_shutdown = 0;
4253 } else
4254 break;
4256 if (qemu_reset_requested()) {
4257 pause_all_vcpus();
4258 qemu_system_reset();
4259 resume_all_vcpus();
4261 if (qemu_powerdown_requested()) {
4262 qemu_irq_raise(qemu_system_powerdown);
4264 if ((r = qemu_vmstop_requested()))
4265 vm_stop(r);
4267 pause_all_vcpus();
4270 static void version(void)
4272 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4275 static void help(int exitcode)
4277 version();
4278 printf("usage: %s [options] [disk_image]\n"
4279 "\n"
4280 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4281 "\n"
4282 #define DEF(option, opt_arg, opt_enum, opt_help) \
4283 opt_help
4284 #define DEFHEADING(text) stringify(text) "\n"
4285 #include "qemu-options.h"
4286 #undef DEF
4287 #undef DEFHEADING
4288 #undef GEN_DOCS
4289 "\n"
4290 "During emulation, the following keys are useful:\n"
4291 "ctrl-alt-f toggle full screen\n"
4292 "ctrl-alt-n switch to virtual console 'n'\n"
4293 "ctrl-alt toggle mouse and keyboard grab\n"
4294 "\n"
4295 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4297 "qemu",
4298 DEFAULT_RAM_SIZE,
4299 #ifndef _WIN32
4300 DEFAULT_NETWORK_SCRIPT,
4301 DEFAULT_NETWORK_DOWN_SCRIPT,
4302 #endif
4303 DEFAULT_GDBSTUB_PORT,
4304 "/tmp/qemu.log");
4305 exit(exitcode);
4308 #define HAS_ARG 0x0001
4310 enum {
4311 #define DEF(option, opt_arg, opt_enum, opt_help) \
4312 opt_enum,
4313 #define DEFHEADING(text)
4314 #include "qemu-options.h"
4315 #undef DEF
4316 #undef DEFHEADING
4317 #undef GEN_DOCS
4320 typedef struct QEMUOption {
4321 const char *name;
4322 int flags;
4323 int index;
4324 } QEMUOption;
4326 static const QEMUOption qemu_options[] = {
4327 { "h", 0, QEMU_OPTION_h },
4328 #define DEF(option, opt_arg, opt_enum, opt_help) \
4329 { option, opt_arg, opt_enum },
4330 #define DEFHEADING(text)
4331 #include "qemu-options.h"
4332 #undef DEF
4333 #undef DEFHEADING
4334 #undef GEN_DOCS
4335 { NULL },
4338 #ifdef HAS_AUDIO
4339 struct soundhw soundhw[] = {
4340 #ifdef HAS_AUDIO_CHOICE
4341 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4343 "pcspk",
4344 "PC speaker",
4347 { .init_isa = pcspk_audio_init }
4349 #endif
4351 #ifdef CONFIG_SB16
4353 "sb16",
4354 "Creative Sound Blaster 16",
4357 { .init_isa = SB16_init }
4359 #endif
4361 #ifdef CONFIG_CS4231A
4363 "cs4231a",
4364 "CS4231A",
4367 { .init_isa = cs4231a_init }
4369 #endif
4371 #ifdef CONFIG_ADLIB
4373 "adlib",
4374 #ifdef HAS_YMF262
4375 "Yamaha YMF262 (OPL3)",
4376 #else
4377 "Yamaha YM3812 (OPL2)",
4378 #endif
4381 { .init_isa = Adlib_init }
4383 #endif
4385 #ifdef CONFIG_GUS
4387 "gus",
4388 "Gravis Ultrasound GF1",
4391 { .init_isa = GUS_init }
4393 #endif
4395 #ifdef CONFIG_AC97
4397 "ac97",
4398 "Intel 82801AA AC97 Audio",
4401 { .init_pci = ac97_init }
4403 #endif
4405 #ifdef CONFIG_ES1370
4407 "es1370",
4408 "ENSONIQ AudioPCI ES1370",
4411 { .init_pci = es1370_init }
4413 #endif
4415 #endif /* HAS_AUDIO_CHOICE */
4417 { NULL, NULL, 0, 0, { NULL } }
4420 static void select_soundhw (const char *optarg)
4422 struct soundhw *c;
4424 if (*optarg == '?') {
4425 show_valid_cards:
4427 printf ("Valid sound card names (comma separated):\n");
4428 for (c = soundhw; c->name; ++c) {
4429 printf ("%-11s %s\n", c->name, c->descr);
4431 printf ("\n-soundhw all will enable all of the above\n");
4432 exit (*optarg != '?');
4434 else {
4435 size_t l;
4436 const char *p;
4437 char *e;
4438 int bad_card = 0;
4440 if (!strcmp (optarg, "all")) {
4441 for (c = soundhw; c->name; ++c) {
4442 c->enabled = 1;
4444 return;
4447 p = optarg;
4448 while (*p) {
4449 e = strchr (p, ',');
4450 l = !e ? strlen (p) : (size_t) (e - p);
4452 for (c = soundhw; c->name; ++c) {
4453 if (!strncmp (c->name, p, l) && !c->name[l]) {
4454 c->enabled = 1;
4455 break;
4459 if (!c->name) {
4460 if (l > 80) {
4461 fprintf (stderr,
4462 "Unknown sound card name (too big to show)\n");
4464 else {
4465 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4466 (int) l, p);
4468 bad_card = 1;
4470 p += l + (e != NULL);
4473 if (bad_card)
4474 goto show_valid_cards;
4477 #endif
4479 static void select_vgahw (const char *p)
4481 const char *opts;
4483 vga_interface_type = VGA_NONE;
4484 if (strstart(p, "std", &opts)) {
4485 vga_interface_type = VGA_STD;
4486 } else if (strstart(p, "cirrus", &opts)) {
4487 vga_interface_type = VGA_CIRRUS;
4488 } else if (strstart(p, "vmware", &opts)) {
4489 vga_interface_type = VGA_VMWARE;
4490 } else if (strstart(p, "xenfb", &opts)) {
4491 vga_interface_type = VGA_XENFB;
4492 } else if (!strstart(p, "none", &opts)) {
4493 invalid_vga:
4494 fprintf(stderr, "Unknown vga type: %s\n", p);
4495 exit(1);
4497 while (*opts) {
4498 const char *nextopt;
4500 if (strstart(opts, ",retrace=", &nextopt)) {
4501 opts = nextopt;
4502 if (strstart(opts, "dumb", &nextopt))
4503 vga_retrace_method = VGA_RETRACE_DUMB;
4504 else if (strstart(opts, "precise", &nextopt))
4505 vga_retrace_method = VGA_RETRACE_PRECISE;
4506 else goto invalid_vga;
4507 } else goto invalid_vga;
4508 opts = nextopt;
4512 #ifdef TARGET_I386
4513 static int balloon_parse(const char *arg)
4515 QemuOpts *opts;
4517 if (strcmp(arg, "none") == 0) {
4518 return 0;
4521 if (!strncmp(arg, "virtio", 6)) {
4522 if (arg[6] == ',') {
4523 /* have params -> parse them */
4524 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4525 if (!opts)
4526 return -1;
4527 } else {
4528 /* create empty opts */
4529 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4531 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4532 return 0;
4535 return -1;
4537 #endif
4539 #ifdef _WIN32
4540 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4542 exit(STATUS_CONTROL_C_EXIT);
4543 return TRUE;
4545 #endif
4547 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4549 int ret;
4551 if(strlen(str) != 36)
4552 return -1;
4554 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4555 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4556 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4558 if(ret != 16)
4559 return -1;
4561 #ifdef TARGET_I386
4562 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4563 #endif
4565 return 0;
4568 #define MAX_NET_CLIENTS 32
4570 #ifndef _WIN32
4572 static void termsig_handler(int signal)
4574 qemu_system_shutdown_request();
4577 static void sigchld_handler(int signal)
4579 waitpid(-1, NULL, WNOHANG);
4582 static void sighandler_setup(void)
4584 struct sigaction act;
4586 memset(&act, 0, sizeof(act));
4587 act.sa_handler = termsig_handler;
4588 sigaction(SIGINT, &act, NULL);
4589 sigaction(SIGHUP, &act, NULL);
4590 sigaction(SIGTERM, &act, NULL);
4592 act.sa_handler = sigchld_handler;
4593 act.sa_flags = SA_NOCLDSTOP;
4594 sigaction(SIGCHLD, &act, NULL);
4597 #endif
4599 #ifdef _WIN32
4600 /* Look for support files in the same directory as the executable. */
4601 static char *find_datadir(const char *argv0)
4603 char *p;
4604 char buf[MAX_PATH];
4605 DWORD len;
4607 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4608 if (len == 0) {
4609 return NULL;
4612 buf[len] = 0;
4613 p = buf + len - 1;
4614 while (p != buf && *p != '\\')
4615 p--;
4616 *p = 0;
4617 if (access(buf, R_OK) == 0) {
4618 return qemu_strdup(buf);
4620 return NULL;
4622 #else /* !_WIN32 */
4624 /* Find a likely location for support files using the location of the binary.
4625 For installed binaries this will be "$bindir/../share/qemu". When
4626 running from the build tree this will be "$bindir/../pc-bios". */
4627 #define SHARE_SUFFIX "/share/qemu"
4628 #define BUILD_SUFFIX "/pc-bios"
4629 static char *find_datadir(const char *argv0)
4631 char *dir;
4632 char *p = NULL;
4633 char *res;
4634 char buf[PATH_MAX];
4635 size_t max_len;
4637 #if defined(__linux__)
4639 int len;
4640 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4641 if (len > 0) {
4642 buf[len] = 0;
4643 p = buf;
4646 #elif defined(__FreeBSD__)
4648 int len;
4649 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4650 if (len > 0) {
4651 buf[len] = 0;
4652 p = buf;
4655 #endif
4656 /* If we don't have any way of figuring out the actual executable
4657 location then try argv[0]. */
4658 if (!p) {
4659 p = realpath(argv0, buf);
4660 if (!p) {
4661 return NULL;
4664 dir = dirname(p);
4665 dir = dirname(dir);
4667 max_len = strlen(dir) +
4668 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4669 res = qemu_mallocz(max_len);
4670 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4671 if (access(res, R_OK)) {
4672 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4673 if (access(res, R_OK)) {
4674 qemu_free(res);
4675 res = NULL;
4679 return res;
4681 #undef SHARE_SUFFIX
4682 #undef BUILD_SUFFIX
4683 #endif
4685 char *qemu_find_file(int type, const char *name)
4687 int len;
4688 const char *subdir;
4689 char *buf;
4691 /* If name contains path separators then try it as a straight path. */
4692 if ((strchr(name, '/') || strchr(name, '\\'))
4693 && access(name, R_OK) == 0) {
4694 return qemu_strdup(name);
4696 switch (type) {
4697 case QEMU_FILE_TYPE_BIOS:
4698 subdir = "";
4699 break;
4700 case QEMU_FILE_TYPE_KEYMAP:
4701 subdir = "keymaps/";
4702 break;
4703 default:
4704 abort();
4706 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4707 buf = qemu_mallocz(len);
4708 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4709 if (access(buf, R_OK)) {
4710 qemu_free(buf);
4711 return NULL;
4713 return buf;
4716 static int device_init_func(QemuOpts *opts, void *opaque)
4718 DeviceState *dev;
4720 dev = qdev_device_add(opts);
4721 if (!dev)
4722 return -1;
4723 return 0;
4726 struct device_config {
4727 enum {
4728 DEV_USB, /* -usbdevice */
4729 DEV_BT, /* -bt */
4730 } type;
4731 const char *cmdline;
4732 TAILQ_ENTRY(device_config) next;
4734 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4736 static void add_device_config(int type, const char *cmdline)
4738 struct device_config *conf;
4740 conf = qemu_mallocz(sizeof(*conf));
4741 conf->type = type;
4742 conf->cmdline = cmdline;
4743 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4746 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4748 struct device_config *conf;
4749 int rc;
4751 TAILQ_FOREACH(conf, &device_configs, next) {
4752 if (conf->type != type)
4753 continue;
4754 rc = func(conf->cmdline);
4755 if (0 != rc)
4756 return rc;
4758 return 0;
4761 int main(int argc, char **argv, char **envp)
4763 const char *gdbstub_dev = NULL;
4764 uint32_t boot_devices_bitmap = 0;
4765 int i;
4766 int snapshot, linux_boot, net_boot;
4767 const char *initrd_filename;
4768 const char *kernel_filename, *kernel_cmdline;
4769 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4770 DisplayState *ds;
4771 DisplayChangeListener *dcl;
4772 int cyls, heads, secs, translation;
4773 const char *net_clients[MAX_NET_CLIENTS];
4774 int nb_net_clients;
4775 QemuOpts *hda_opts = NULL, *opts;
4776 int optind;
4777 const char *r, *optarg;
4778 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4779 const char *monitor_devices[MAX_MONITOR_DEVICES];
4780 int monitor_device_index;
4781 const char *serial_devices[MAX_SERIAL_PORTS];
4782 int serial_device_index;
4783 const char *parallel_devices[MAX_PARALLEL_PORTS];
4784 int parallel_device_index;
4785 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4786 int virtio_console_index;
4787 const char *loadvm = NULL;
4788 QEMUMachine *machine;
4789 const char *cpu_model;
4790 #ifndef _WIN32
4791 int fds[2];
4792 #endif
4793 int tb_size;
4794 const char *pid_file = NULL;
4795 const char *incoming = NULL;
4796 #ifndef _WIN32
4797 int fd = 0;
4798 struct passwd *pwd = NULL;
4799 const char *chroot_dir = NULL;
4800 const char *run_as = NULL;
4801 #endif
4802 CPUState *env;
4803 int show_vnc_port = 0;
4805 qemu_errors_to_file(stderr);
4806 qemu_cache_utils_init(envp);
4808 LIST_INIT (&vm_change_state_head);
4809 #ifndef _WIN32
4811 struct sigaction act;
4812 sigfillset(&act.sa_mask);
4813 act.sa_flags = 0;
4814 act.sa_handler = SIG_IGN;
4815 sigaction(SIGPIPE, &act, NULL);
4817 #else
4818 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4819 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4820 QEMU to run on a single CPU */
4822 HANDLE h;
4823 DWORD mask, smask;
4824 int i;
4825 h = GetCurrentProcess();
4826 if (GetProcessAffinityMask(h, &mask, &smask)) {
4827 for(i = 0; i < 32; i++) {
4828 if (mask & (1 << i))
4829 break;
4831 if (i != 32) {
4832 mask = 1 << i;
4833 SetProcessAffinityMask(h, mask);
4837 #endif
4839 module_call_init(MODULE_INIT_MACHINE);
4840 machine = find_default_machine();
4841 cpu_model = NULL;
4842 initrd_filename = NULL;
4843 ram_size = 0;
4844 snapshot = 0;
4845 kernel_filename = NULL;
4846 kernel_cmdline = "";
4847 cyls = heads = secs = 0;
4848 translation = BIOS_ATA_TRANSLATION_AUTO;
4850 serial_devices[0] = "vc:80Cx24C";
4851 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4852 serial_devices[i] = NULL;
4853 serial_device_index = 0;
4855 parallel_devices[0] = "vc:80Cx24C";
4856 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4857 parallel_devices[i] = NULL;
4858 parallel_device_index = 0;
4860 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4861 virtio_consoles[i] = NULL;
4862 virtio_console_index = 0;
4864 monitor_devices[0] = "vc:80Cx24C";
4865 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4866 monitor_devices[i] = NULL;
4868 monitor_device_index = 0;
4870 for (i = 0; i < MAX_NODES; i++) {
4871 node_mem[i] = 0;
4872 node_cpumask[i] = 0;
4875 nb_net_clients = 0;
4876 nb_numa_nodes = 0;
4877 nb_nics = 0;
4879 tb_size = 0;
4880 autostart= 1;
4882 optind = 1;
4883 for(;;) {
4884 if (optind >= argc)
4885 break;
4886 r = argv[optind];
4887 if (r[0] != '-') {
4888 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4889 } else {
4890 const QEMUOption *popt;
4892 optind++;
4893 /* Treat --foo the same as -foo. */
4894 if (r[1] == '-')
4895 r++;
4896 popt = qemu_options;
4897 for(;;) {
4898 if (!popt->name) {
4899 fprintf(stderr, "%s: invalid option -- '%s'\n",
4900 argv[0], r);
4901 exit(1);
4903 if (!strcmp(popt->name, r + 1))
4904 break;
4905 popt++;
4907 if (popt->flags & HAS_ARG) {
4908 if (optind >= argc) {
4909 fprintf(stderr, "%s: option '%s' requires an argument\n",
4910 argv[0], r);
4911 exit(1);
4913 optarg = argv[optind++];
4914 } else {
4915 optarg = NULL;
4918 switch(popt->index) {
4919 case QEMU_OPTION_M:
4920 machine = find_machine(optarg);
4921 if (!machine) {
4922 QEMUMachine *m;
4923 printf("Supported machines are:\n");
4924 for(m = first_machine; m != NULL; m = m->next) {
4925 if (m->alias)
4926 printf("%-10s %s (alias of %s)\n",
4927 m->alias, m->desc, m->name);
4928 printf("%-10s %s%s\n",
4929 m->name, m->desc,
4930 m->is_default ? " (default)" : "");
4932 exit(*optarg != '?');
4934 break;
4935 case QEMU_OPTION_cpu:
4936 /* hw initialization will check this */
4937 if (*optarg == '?') {
4938 /* XXX: implement xxx_cpu_list for targets that still miss it */
4939 #if defined(cpu_list)
4940 cpu_list(stdout, &fprintf);
4941 #endif
4942 exit(0);
4943 } else {
4944 cpu_model = optarg;
4946 break;
4947 case QEMU_OPTION_initrd:
4948 initrd_filename = optarg;
4949 break;
4950 case QEMU_OPTION_hda:
4951 if (cyls == 0)
4952 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4953 else
4954 hda_opts = drive_add(optarg, HD_ALIAS
4955 ",cyls=%d,heads=%d,secs=%d%s",
4956 0, cyls, heads, secs,
4957 translation == BIOS_ATA_TRANSLATION_LBA ?
4958 ",trans=lba" :
4959 translation == BIOS_ATA_TRANSLATION_NONE ?
4960 ",trans=none" : "");
4961 break;
4962 case QEMU_OPTION_hdb:
4963 case QEMU_OPTION_hdc:
4964 case QEMU_OPTION_hdd:
4965 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4966 break;
4967 case QEMU_OPTION_drive:
4968 drive_add(NULL, "%s", optarg);
4969 break;
4970 case QEMU_OPTION_set:
4971 if (qemu_set_option(optarg) != 0)
4972 exit(1);
4973 break;
4974 case QEMU_OPTION_mtdblock:
4975 drive_add(optarg, MTD_ALIAS);
4976 break;
4977 case QEMU_OPTION_sd:
4978 drive_add(optarg, SD_ALIAS);
4979 break;
4980 case QEMU_OPTION_pflash:
4981 drive_add(optarg, PFLASH_ALIAS);
4982 break;
4983 case QEMU_OPTION_snapshot:
4984 snapshot = 1;
4985 break;
4986 case QEMU_OPTION_hdachs:
4988 const char *p;
4989 p = optarg;
4990 cyls = strtol(p, (char **)&p, 0);
4991 if (cyls < 1 || cyls > 16383)
4992 goto chs_fail;
4993 if (*p != ',')
4994 goto chs_fail;
4995 p++;
4996 heads = strtol(p, (char **)&p, 0);
4997 if (heads < 1 || heads > 16)
4998 goto chs_fail;
4999 if (*p != ',')
5000 goto chs_fail;
5001 p++;
5002 secs = strtol(p, (char **)&p, 0);
5003 if (secs < 1 || secs > 63)
5004 goto chs_fail;
5005 if (*p == ',') {
5006 p++;
5007 if (!strcmp(p, "none"))
5008 translation = BIOS_ATA_TRANSLATION_NONE;
5009 else if (!strcmp(p, "lba"))
5010 translation = BIOS_ATA_TRANSLATION_LBA;
5011 else if (!strcmp(p, "auto"))
5012 translation = BIOS_ATA_TRANSLATION_AUTO;
5013 else
5014 goto chs_fail;
5015 } else if (*p != '\0') {
5016 chs_fail:
5017 fprintf(stderr, "qemu: invalid physical CHS format\n");
5018 exit(1);
5020 if (hda_opts != NULL) {
5021 char num[16];
5022 snprintf(num, sizeof(num), "%d", cyls);
5023 qemu_opt_set(hda_opts, "cyls", num);
5024 snprintf(num, sizeof(num), "%d", heads);
5025 qemu_opt_set(hda_opts, "heads", num);
5026 snprintf(num, sizeof(num), "%d", secs);
5027 qemu_opt_set(hda_opts, "secs", num);
5028 if (translation == BIOS_ATA_TRANSLATION_LBA)
5029 qemu_opt_set(hda_opts, "trans", "lba");
5030 if (translation == BIOS_ATA_TRANSLATION_NONE)
5031 qemu_opt_set(hda_opts, "trans", "none");
5034 break;
5035 case QEMU_OPTION_numa:
5036 if (nb_numa_nodes >= MAX_NODES) {
5037 fprintf(stderr, "qemu: too many NUMA nodes\n");
5038 exit(1);
5040 numa_add(optarg);
5041 break;
5042 case QEMU_OPTION_nographic:
5043 display_type = DT_NOGRAPHIC;
5044 break;
5045 #ifdef CONFIG_CURSES
5046 case QEMU_OPTION_curses:
5047 display_type = DT_CURSES;
5048 break;
5049 #endif
5050 case QEMU_OPTION_portrait:
5051 graphic_rotate = 1;
5052 break;
5053 case QEMU_OPTION_kernel:
5054 kernel_filename = optarg;
5055 break;
5056 case QEMU_OPTION_append:
5057 kernel_cmdline = optarg;
5058 break;
5059 case QEMU_OPTION_cdrom:
5060 drive_add(optarg, CDROM_ALIAS);
5061 break;
5062 case QEMU_OPTION_boot:
5064 static const char * const params[] = {
5065 "order", "once", "menu", NULL
5067 char buf[sizeof(boot_devices)];
5068 char *standard_boot_devices;
5069 int legacy = 0;
5071 if (!strchr(optarg, '=')) {
5072 legacy = 1;
5073 pstrcpy(buf, sizeof(buf), optarg);
5074 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5075 fprintf(stderr,
5076 "qemu: unknown boot parameter '%s' in '%s'\n",
5077 buf, optarg);
5078 exit(1);
5081 if (legacy ||
5082 get_param_value(buf, sizeof(buf), "order", optarg)) {
5083 boot_devices_bitmap = parse_bootdevices(buf);
5084 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5086 if (!legacy) {
5087 if (get_param_value(buf, sizeof(buf),
5088 "once", optarg)) {
5089 boot_devices_bitmap |= parse_bootdevices(buf);
5090 standard_boot_devices = qemu_strdup(boot_devices);
5091 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5092 qemu_register_reset(restore_boot_devices,
5093 standard_boot_devices);
5095 if (get_param_value(buf, sizeof(buf),
5096 "menu", optarg)) {
5097 if (!strcmp(buf, "on")) {
5098 boot_menu = 1;
5099 } else if (!strcmp(buf, "off")) {
5100 boot_menu = 0;
5101 } else {
5102 fprintf(stderr,
5103 "qemu: invalid option value '%s'\n",
5104 buf);
5105 exit(1);
5110 break;
5111 case QEMU_OPTION_fda:
5112 case QEMU_OPTION_fdb:
5113 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5114 break;
5115 #ifdef TARGET_I386
5116 case QEMU_OPTION_no_fd_bootchk:
5117 fd_bootchk = 0;
5118 break;
5119 #endif
5120 case QEMU_OPTION_net:
5121 if (nb_net_clients >= MAX_NET_CLIENTS) {
5122 fprintf(stderr, "qemu: too many network clients\n");
5123 exit(1);
5125 net_clients[nb_net_clients] = optarg;
5126 nb_net_clients++;
5127 break;
5128 #ifdef CONFIG_SLIRP
5129 case QEMU_OPTION_tftp:
5130 legacy_tftp_prefix = optarg;
5131 break;
5132 case QEMU_OPTION_bootp:
5133 legacy_bootp_filename = optarg;
5134 break;
5135 #ifndef _WIN32
5136 case QEMU_OPTION_smb:
5137 net_slirp_smb(optarg);
5138 break;
5139 #endif
5140 case QEMU_OPTION_redir:
5141 net_slirp_redir(optarg);
5142 break;
5143 #endif
5144 case QEMU_OPTION_bt:
5145 add_device_config(DEV_BT, optarg);
5146 break;
5147 #ifdef HAS_AUDIO
5148 case QEMU_OPTION_audio_help:
5149 AUD_help ();
5150 exit (0);
5151 break;
5152 case QEMU_OPTION_soundhw:
5153 select_soundhw (optarg);
5154 break;
5155 #endif
5156 case QEMU_OPTION_h:
5157 help(0);
5158 break;
5159 case QEMU_OPTION_version:
5160 version();
5161 exit(0);
5162 break;
5163 case QEMU_OPTION_m: {
5164 uint64_t value;
5165 char *ptr;
5167 value = strtoul(optarg, &ptr, 10);
5168 switch (*ptr) {
5169 case 0: case 'M': case 'm':
5170 value <<= 20;
5171 break;
5172 case 'G': case 'g':
5173 value <<= 30;
5174 break;
5175 default:
5176 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5177 exit(1);
5180 /* On 32-bit hosts, QEMU is limited by virtual address space */
5181 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5182 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5183 exit(1);
5185 if (value != (uint64_t)(ram_addr_t)value) {
5186 fprintf(stderr, "qemu: ram size too large\n");
5187 exit(1);
5189 ram_size = value;
5190 break;
5192 case QEMU_OPTION_d:
5194 int mask;
5195 const CPULogItem *item;
5197 mask = cpu_str_to_log_mask(optarg);
5198 if (!mask) {
5199 printf("Log items (comma separated):\n");
5200 for(item = cpu_log_items; item->mask != 0; item++) {
5201 printf("%-10s %s\n", item->name, item->help);
5203 exit(1);
5205 cpu_set_log(mask);
5207 break;
5208 case QEMU_OPTION_s:
5209 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5210 break;
5211 case QEMU_OPTION_gdb:
5212 gdbstub_dev = optarg;
5213 break;
5214 case QEMU_OPTION_L:
5215 data_dir = optarg;
5216 break;
5217 case QEMU_OPTION_bios:
5218 bios_name = optarg;
5219 break;
5220 case QEMU_OPTION_singlestep:
5221 singlestep = 1;
5222 break;
5223 case QEMU_OPTION_S:
5224 autostart = 0;
5225 break;
5226 #ifndef _WIN32
5227 case QEMU_OPTION_k:
5228 keyboard_layout = optarg;
5229 break;
5230 #endif
5231 case QEMU_OPTION_localtime:
5232 rtc_utc = 0;
5233 break;
5234 case QEMU_OPTION_vga:
5235 select_vgahw (optarg);
5236 break;
5237 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5238 case QEMU_OPTION_g:
5240 const char *p;
5241 int w, h, depth;
5242 p = optarg;
5243 w = strtol(p, (char **)&p, 10);
5244 if (w <= 0) {
5245 graphic_error:
5246 fprintf(stderr, "qemu: invalid resolution or depth\n");
5247 exit(1);
5249 if (*p != 'x')
5250 goto graphic_error;
5251 p++;
5252 h = strtol(p, (char **)&p, 10);
5253 if (h <= 0)
5254 goto graphic_error;
5255 if (*p == 'x') {
5256 p++;
5257 depth = strtol(p, (char **)&p, 10);
5258 if (depth != 8 && depth != 15 && depth != 16 &&
5259 depth != 24 && depth != 32)
5260 goto graphic_error;
5261 } else if (*p == '\0') {
5262 depth = graphic_depth;
5263 } else {
5264 goto graphic_error;
5267 graphic_width = w;
5268 graphic_height = h;
5269 graphic_depth = depth;
5271 break;
5272 #endif
5273 case QEMU_OPTION_echr:
5275 char *r;
5276 term_escape_char = strtol(optarg, &r, 0);
5277 if (r == optarg)
5278 printf("Bad argument to echr\n");
5279 break;
5281 case QEMU_OPTION_monitor:
5282 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5283 fprintf(stderr, "qemu: too many monitor devices\n");
5284 exit(1);
5286 monitor_devices[monitor_device_index] = optarg;
5287 monitor_device_index++;
5288 break;
5289 case QEMU_OPTION_serial:
5290 if (serial_device_index >= MAX_SERIAL_PORTS) {
5291 fprintf(stderr, "qemu: too many serial ports\n");
5292 exit(1);
5294 serial_devices[serial_device_index] = optarg;
5295 serial_device_index++;
5296 break;
5297 case QEMU_OPTION_watchdog:
5298 if (watchdog) {
5299 fprintf(stderr,
5300 "qemu: only one watchdog option may be given\n");
5301 return 1;
5303 watchdog = optarg;
5304 break;
5305 case QEMU_OPTION_watchdog_action:
5306 if (select_watchdog_action(optarg) == -1) {
5307 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5308 exit(1);
5310 break;
5311 case QEMU_OPTION_virtiocon:
5312 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5313 fprintf(stderr, "qemu: too many virtio consoles\n");
5314 exit(1);
5316 virtio_consoles[virtio_console_index] = optarg;
5317 virtio_console_index++;
5318 break;
5319 case QEMU_OPTION_parallel:
5320 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5321 fprintf(stderr, "qemu: too many parallel ports\n");
5322 exit(1);
5324 parallel_devices[parallel_device_index] = optarg;
5325 parallel_device_index++;
5326 break;
5327 case QEMU_OPTION_loadvm:
5328 loadvm = optarg;
5329 break;
5330 case QEMU_OPTION_full_screen:
5331 full_screen = 1;
5332 break;
5333 #ifdef CONFIG_SDL
5334 case QEMU_OPTION_no_frame:
5335 no_frame = 1;
5336 break;
5337 case QEMU_OPTION_alt_grab:
5338 alt_grab = 1;
5339 break;
5340 case QEMU_OPTION_no_quit:
5341 no_quit = 1;
5342 break;
5343 case QEMU_OPTION_sdl:
5344 display_type = DT_SDL;
5345 break;
5346 #endif
5347 case QEMU_OPTION_pidfile:
5348 pid_file = optarg;
5349 break;
5350 #ifdef TARGET_I386
5351 case QEMU_OPTION_win2k_hack:
5352 win2k_install_hack = 1;
5353 break;
5354 case QEMU_OPTION_rtc_td_hack:
5355 rtc_td_hack = 1;
5356 break;
5357 case QEMU_OPTION_acpitable:
5358 if(acpi_table_add(optarg) < 0) {
5359 fprintf(stderr, "Wrong acpi table provided\n");
5360 exit(1);
5362 break;
5363 case QEMU_OPTION_smbios:
5364 if(smbios_entry_add(optarg) < 0) {
5365 fprintf(stderr, "Wrong smbios provided\n");
5366 exit(1);
5368 break;
5369 #endif
5370 #ifdef CONFIG_KVM
5371 case QEMU_OPTION_enable_kvm:
5372 kvm_allowed = 1;
5373 break;
5374 #endif
5375 case QEMU_OPTION_usb:
5376 usb_enabled = 1;
5377 break;
5378 case QEMU_OPTION_usbdevice:
5379 usb_enabled = 1;
5380 add_device_config(DEV_USB, optarg);
5381 break;
5382 case QEMU_OPTION_device:
5383 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5384 if (!opts) {
5385 fprintf(stderr, "parse error: %s\n", optarg);
5386 exit(1);
5388 break;
5389 case QEMU_OPTION_smp:
5390 smp_parse(optarg);
5391 if (smp_cpus < 1) {
5392 fprintf(stderr, "Invalid number of CPUs\n");
5393 exit(1);
5395 if (max_cpus < smp_cpus) {
5396 fprintf(stderr, "maxcpus must be equal to or greater than "
5397 "smp\n");
5398 exit(1);
5400 if (max_cpus > 255) {
5401 fprintf(stderr, "Unsupported number of maxcpus\n");
5402 exit(1);
5404 break;
5405 case QEMU_OPTION_vnc:
5406 display_type = DT_VNC;
5407 vnc_display = optarg;
5408 break;
5409 #ifdef TARGET_I386
5410 case QEMU_OPTION_no_acpi:
5411 acpi_enabled = 0;
5412 break;
5413 case QEMU_OPTION_no_hpet:
5414 no_hpet = 1;
5415 break;
5416 case QEMU_OPTION_balloon:
5417 if (balloon_parse(optarg) < 0) {
5418 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5419 exit(1);
5421 break;
5422 #endif
5423 case QEMU_OPTION_no_reboot:
5424 no_reboot = 1;
5425 break;
5426 case QEMU_OPTION_no_shutdown:
5427 no_shutdown = 1;
5428 break;
5429 case QEMU_OPTION_show_cursor:
5430 cursor_hide = 0;
5431 break;
5432 case QEMU_OPTION_uuid:
5433 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5434 fprintf(stderr, "Fail to parse UUID string."
5435 " Wrong format.\n");
5436 exit(1);
5438 break;
5439 #ifndef _WIN32
5440 case QEMU_OPTION_daemonize:
5441 daemonize = 1;
5442 break;
5443 #endif
5444 case QEMU_OPTION_option_rom:
5445 if (nb_option_roms >= MAX_OPTION_ROMS) {
5446 fprintf(stderr, "Too many option ROMs\n");
5447 exit(1);
5449 option_rom[nb_option_roms] = optarg;
5450 nb_option_roms++;
5451 break;
5452 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5453 case QEMU_OPTION_semihosting:
5454 semihosting_enabled = 1;
5455 break;
5456 #endif
5457 case QEMU_OPTION_name:
5458 qemu_name = qemu_strdup(optarg);
5460 char *p = strchr(qemu_name, ',');
5461 if (p != NULL) {
5462 *p++ = 0;
5463 if (strncmp(p, "process=", 8)) {
5464 fprintf(stderr, "Unknown subargument %s to -name", p);
5465 exit(1);
5467 p += 8;
5468 set_proc_name(p);
5471 break;
5472 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5473 case QEMU_OPTION_prom_env:
5474 if (nb_prom_envs >= MAX_PROM_ENVS) {
5475 fprintf(stderr, "Too many prom variables\n");
5476 exit(1);
5478 prom_envs[nb_prom_envs] = optarg;
5479 nb_prom_envs++;
5480 break;
5481 #endif
5482 #ifdef TARGET_ARM
5483 case QEMU_OPTION_old_param:
5484 old_param = 1;
5485 break;
5486 #endif
5487 case QEMU_OPTION_clock:
5488 configure_alarms(optarg);
5489 break;
5490 case QEMU_OPTION_startdate:
5492 struct tm tm;
5493 time_t rtc_start_date;
5494 if (!strcmp(optarg, "now")) {
5495 rtc_date_offset = -1;
5496 } else {
5497 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5498 &tm.tm_year,
5499 &tm.tm_mon,
5500 &tm.tm_mday,
5501 &tm.tm_hour,
5502 &tm.tm_min,
5503 &tm.tm_sec) == 6) {
5504 /* OK */
5505 } else if (sscanf(optarg, "%d-%d-%d",
5506 &tm.tm_year,
5507 &tm.tm_mon,
5508 &tm.tm_mday) == 3) {
5509 tm.tm_hour = 0;
5510 tm.tm_min = 0;
5511 tm.tm_sec = 0;
5512 } else {
5513 goto date_fail;
5515 tm.tm_year -= 1900;
5516 tm.tm_mon--;
5517 rtc_start_date = mktimegm(&tm);
5518 if (rtc_start_date == -1) {
5519 date_fail:
5520 fprintf(stderr, "Invalid date format. Valid format are:\n"
5521 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5522 exit(1);
5524 rtc_date_offset = time(NULL) - rtc_start_date;
5527 break;
5528 case QEMU_OPTION_tb_size:
5529 tb_size = strtol(optarg, NULL, 0);
5530 if (tb_size < 0)
5531 tb_size = 0;
5532 break;
5533 case QEMU_OPTION_icount:
5534 use_icount = 1;
5535 if (strcmp(optarg, "auto") == 0) {
5536 icount_time_shift = -1;
5537 } else {
5538 icount_time_shift = strtol(optarg, NULL, 0);
5540 break;
5541 case QEMU_OPTION_incoming:
5542 incoming = optarg;
5543 break;
5544 #ifndef _WIN32
5545 case QEMU_OPTION_chroot:
5546 chroot_dir = optarg;
5547 break;
5548 case QEMU_OPTION_runas:
5549 run_as = optarg;
5550 break;
5551 #endif
5552 #ifdef CONFIG_XEN
5553 case QEMU_OPTION_xen_domid:
5554 xen_domid = atoi(optarg);
5555 break;
5556 case QEMU_OPTION_xen_create:
5557 xen_mode = XEN_CREATE;
5558 break;
5559 case QEMU_OPTION_xen_attach:
5560 xen_mode = XEN_ATTACH;
5561 break;
5562 #endif
5567 if (kvm_enabled()) {
5568 int ret;
5570 ret = kvm_init(smp_cpus);
5571 if (ret < 0) {
5572 fprintf(stderr, "failed to initialize KVM\n");
5573 exit(1);
5577 /* If no data_dir is specified then try to find it relative to the
5578 executable path. */
5579 if (!data_dir) {
5580 data_dir = find_datadir(argv[0]);
5582 /* If all else fails use the install patch specified when building. */
5583 if (!data_dir) {
5584 data_dir = CONFIG_QEMU_SHAREDIR;
5588 * Default to max_cpus = smp_cpus, in case the user doesn't
5589 * specify a max_cpus value.
5591 if (!max_cpus)
5592 max_cpus = smp_cpus;
5594 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5595 if (smp_cpus > machine->max_cpus) {
5596 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5597 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5598 machine->max_cpus);
5599 exit(1);
5602 if (display_type == DT_NOGRAPHIC) {
5603 if (serial_device_index == 0)
5604 serial_devices[0] = "stdio";
5605 if (parallel_device_index == 0)
5606 parallel_devices[0] = "null";
5607 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5608 monitor_devices[0] = "stdio";
5612 #ifndef _WIN32
5613 if (daemonize) {
5614 pid_t pid;
5616 if (pipe(fds) == -1)
5617 exit(1);
5619 pid = fork();
5620 if (pid > 0) {
5621 uint8_t status;
5622 ssize_t len;
5624 close(fds[1]);
5626 again:
5627 len = read(fds[0], &status, 1);
5628 if (len == -1 && (errno == EINTR))
5629 goto again;
5631 if (len != 1)
5632 exit(1);
5633 else if (status == 1) {
5634 fprintf(stderr, "Could not acquire pidfile\n");
5635 exit(1);
5636 } else
5637 exit(0);
5638 } else if (pid < 0)
5639 exit(1);
5641 setsid();
5643 pid = fork();
5644 if (pid > 0)
5645 exit(0);
5646 else if (pid < 0)
5647 exit(1);
5649 umask(027);
5651 signal(SIGTSTP, SIG_IGN);
5652 signal(SIGTTOU, SIG_IGN);
5653 signal(SIGTTIN, SIG_IGN);
5656 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5657 if (daemonize) {
5658 uint8_t status = 1;
5659 write(fds[1], &status, 1);
5660 } else
5661 fprintf(stderr, "Could not acquire pid file\n");
5662 exit(1);
5664 #endif
5666 if (qemu_init_main_loop()) {
5667 fprintf(stderr, "qemu_init_main_loop failed\n");
5668 exit(1);
5670 linux_boot = (kernel_filename != NULL);
5672 if (!linux_boot && *kernel_cmdline != '\0') {
5673 fprintf(stderr, "-append only allowed with -kernel option\n");
5674 exit(1);
5677 if (!linux_boot && initrd_filename != NULL) {
5678 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5679 exit(1);
5682 #ifndef _WIN32
5683 /* Win32 doesn't support line-buffering and requires size >= 2 */
5684 setvbuf(stdout, NULL, _IOLBF, 0);
5685 #endif
5687 init_timers();
5688 if (init_timer_alarm() < 0) {
5689 fprintf(stderr, "could not initialize alarm timer\n");
5690 exit(1);
5692 if (use_icount && icount_time_shift < 0) {
5693 use_icount = 2;
5694 /* 125MIPS seems a reasonable initial guess at the guest speed.
5695 It will be corrected fairly quickly anyway. */
5696 icount_time_shift = 3;
5697 init_icount_adjust();
5700 #ifdef _WIN32
5701 socket_init();
5702 #endif
5704 /* init network clients */
5705 if (nb_net_clients == 0) {
5706 /* if no clients, we use a default config */
5707 net_clients[nb_net_clients++] = "nic";
5708 #ifdef CONFIG_SLIRP
5709 net_clients[nb_net_clients++] = "user";
5710 #endif
5713 for(i = 0;i < nb_net_clients; i++) {
5714 if (net_client_parse(net_clients[i]) < 0)
5715 exit(1);
5718 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5719 net_set_boot_mask(net_boot);
5721 net_client_check();
5723 /* init the bluetooth world */
5724 if (foreach_device_config(DEV_BT, bt_parse))
5725 exit(1);
5727 /* init the memory */
5728 if (ram_size == 0)
5729 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5731 /* init the dynamic translator */
5732 cpu_exec_init_all(tb_size * 1024 * 1024);
5734 bdrv_init();
5736 /* we always create the cdrom drive, even if no disk is there */
5737 drive_add(NULL, CDROM_ALIAS);
5739 /* we always create at least one floppy */
5740 drive_add(NULL, FD_ALIAS, 0);
5742 /* we always create one sd slot, even if no card is in it */
5743 drive_add(NULL, SD_ALIAS);
5745 /* open the virtual block devices */
5746 if (snapshot)
5747 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5748 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5749 exit(1);
5751 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5752 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5754 /* Maintain compatibility with multiple stdio monitors */
5755 if (!strcmp(monitor_devices[0],"stdio")) {
5756 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5757 const char *devname = serial_devices[i];
5758 if (devname && !strcmp(devname,"mon:stdio")) {
5759 monitor_devices[0] = NULL;
5760 break;
5761 } else if (devname && !strcmp(devname,"stdio")) {
5762 monitor_devices[0] = NULL;
5763 serial_devices[i] = "mon:stdio";
5764 break;
5769 if (nb_numa_nodes > 0) {
5770 int i;
5772 if (nb_numa_nodes > smp_cpus) {
5773 nb_numa_nodes = smp_cpus;
5776 /* If no memory size if given for any node, assume the default case
5777 * and distribute the available memory equally across all nodes
5779 for (i = 0; i < nb_numa_nodes; i++) {
5780 if (node_mem[i] != 0)
5781 break;
5783 if (i == nb_numa_nodes) {
5784 uint64_t usedmem = 0;
5786 /* On Linux, the each node's border has to be 8MB aligned,
5787 * the final node gets the rest.
5789 for (i = 0; i < nb_numa_nodes - 1; i++) {
5790 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5791 usedmem += node_mem[i];
5793 node_mem[i] = ram_size - usedmem;
5796 for (i = 0; i < nb_numa_nodes; i++) {
5797 if (node_cpumask[i] != 0)
5798 break;
5800 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5801 * must cope with this anyway, because there are BIOSes out there in
5802 * real machines which also use this scheme.
5804 if (i == nb_numa_nodes) {
5805 for (i = 0; i < smp_cpus; i++) {
5806 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5811 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5812 const char *devname = monitor_devices[i];
5813 if (devname && strcmp(devname, "none")) {
5814 char label[32];
5815 if (i == 0) {
5816 snprintf(label, sizeof(label), "monitor");
5817 } else {
5818 snprintf(label, sizeof(label), "monitor%d", i);
5820 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5821 if (!monitor_hds[i]) {
5822 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5823 devname);
5824 exit(1);
5829 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5830 const char *devname = serial_devices[i];
5831 if (devname && strcmp(devname, "none")) {
5832 char label[32];
5833 snprintf(label, sizeof(label), "serial%d", i);
5834 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5835 if (!serial_hds[i]) {
5836 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5837 devname);
5838 exit(1);
5843 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5844 const char *devname = parallel_devices[i];
5845 if (devname && strcmp(devname, "none")) {
5846 char label[32];
5847 snprintf(label, sizeof(label), "parallel%d", i);
5848 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5849 if (!parallel_hds[i]) {
5850 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5851 devname);
5852 exit(1);
5857 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5858 const char *devname = virtio_consoles[i];
5859 if (devname && strcmp(devname, "none")) {
5860 char label[32];
5861 snprintf(label, sizeof(label), "virtcon%d", i);
5862 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5863 if (!virtcon_hds[i]) {
5864 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5865 devname);
5866 exit(1);
5871 module_call_init(MODULE_INIT_DEVICE);
5873 if (watchdog) {
5874 i = select_watchdog(watchdog);
5875 if (i > 0)
5876 exit (i == 1 ? 1 : 0);
5879 if (machine->compat_props) {
5880 qdev_prop_register_compat(machine->compat_props);
5882 machine->init(ram_size, boot_devices,
5883 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5886 #ifndef _WIN32
5887 /* must be after terminal init, SDL library changes signal handlers */
5888 sighandler_setup();
5889 #endif
5891 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5892 for (i = 0; i < nb_numa_nodes; i++) {
5893 if (node_cpumask[i] & (1 << env->cpu_index)) {
5894 env->numa_node = i;
5899 current_machine = machine;
5901 /* init USB devices */
5902 if (usb_enabled) {
5903 foreach_device_config(DEV_USB, usb_parse);
5906 /* init generic devices */
5907 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5908 exit(1);
5910 if (!display_state)
5911 dumb_display_init();
5912 /* just use the first displaystate for the moment */
5913 ds = display_state;
5915 if (display_type == DT_DEFAULT) {
5916 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5917 display_type = DT_SDL;
5918 #else
5919 display_type = DT_VNC;
5920 vnc_display = "localhost:0,to=99";
5921 show_vnc_port = 1;
5922 #endif
5926 switch (display_type) {
5927 case DT_NOGRAPHIC:
5928 break;
5929 #if defined(CONFIG_CURSES)
5930 case DT_CURSES:
5931 curses_display_init(ds, full_screen);
5932 break;
5933 #endif
5934 #if defined(CONFIG_SDL)
5935 case DT_SDL:
5936 sdl_display_init(ds, full_screen, no_frame);
5937 break;
5938 #elif defined(CONFIG_COCOA)
5939 case DT_SDL:
5940 cocoa_display_init(ds, full_screen);
5941 break;
5942 #endif
5943 case DT_VNC:
5944 vnc_display_init(ds);
5945 if (vnc_display_open(ds, vnc_display) < 0)
5946 exit(1);
5948 if (show_vnc_port) {
5949 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5951 break;
5952 default:
5953 break;
5955 dpy_resize(ds);
5957 dcl = ds->listeners;
5958 while (dcl != NULL) {
5959 if (dcl->dpy_refresh != NULL) {
5960 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5961 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5963 dcl = dcl->next;
5966 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5967 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5968 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5971 text_consoles_set_display(display_state);
5972 qemu_chr_initial_reset();
5974 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5975 if (monitor_devices[i] && monitor_hds[i]) {
5976 monitor_init(monitor_hds[i],
5977 MONITOR_USE_READLINE |
5978 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5982 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5983 const char *devname = serial_devices[i];
5984 if (devname && strcmp(devname, "none")) {
5985 if (strstart(devname, "vc", 0))
5986 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5990 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5991 const char *devname = parallel_devices[i];
5992 if (devname && strcmp(devname, "none")) {
5993 if (strstart(devname, "vc", 0))
5994 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5998 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5999 const char *devname = virtio_consoles[i];
6000 if (virtcon_hds[i] && devname) {
6001 if (strstart(devname, "vc", 0))
6002 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6006 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6007 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6008 gdbstub_dev);
6009 exit(1);
6012 if (loadvm) {
6013 if (load_vmstate(cur_mon, loadvm) < 0) {
6014 autostart = 0;
6018 if (incoming) {
6019 qemu_start_incoming_migration(incoming);
6020 } else if (autostart) {
6021 vm_start();
6024 #ifndef _WIN32
6025 if (daemonize) {
6026 uint8_t status = 0;
6027 ssize_t len;
6029 again1:
6030 len = write(fds[1], &status, 1);
6031 if (len == -1 && (errno == EINTR))
6032 goto again1;
6034 if (len != 1)
6035 exit(1);
6037 chdir("/");
6038 TFR(fd = open("/dev/null", O_RDWR));
6039 if (fd == -1)
6040 exit(1);
6043 if (run_as) {
6044 pwd = getpwnam(run_as);
6045 if (!pwd) {
6046 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6047 exit(1);
6051 if (chroot_dir) {
6052 if (chroot(chroot_dir) < 0) {
6053 fprintf(stderr, "chroot failed\n");
6054 exit(1);
6056 chdir("/");
6059 if (run_as) {
6060 if (setgid(pwd->pw_gid) < 0) {
6061 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6062 exit(1);
6064 if (setuid(pwd->pw_uid) < 0) {
6065 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6066 exit(1);
6068 if (setuid(0) != -1) {
6069 fprintf(stderr, "Dropping privileges failed\n");
6070 exit(1);
6074 if (daemonize) {
6075 dup2(fd, 0);
6076 dup2(fd, 1);
6077 dup2(fd, 2);
6079 close(fd);
6081 #endif
6083 main_loop();
6084 quit_timers();
6085 net_cleanup();
6087 return 0;