monitor: convert do_eject() to QError
[qemu.git] / linux-user / elfload.c
blob682a813981b441a6c4ee7bb2e65be41e2d59d4b2
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
16 #include "qemu.h"
17 #include "disas.h"
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
53 * Personality types.
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
58 enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
86 * Return the base personality without flags.
88 #define personality(pers) (pers & PER_MASK)
90 /* this flag is uneffective under linux too, should be deleted */
91 #ifndef MAP_DENYWRITE
92 #define MAP_DENYWRITE 0
93 #endif
95 /* should probably go in elf.h */
96 #ifndef ELIBBAD
97 #define ELIBBAD 80
98 #endif
100 #ifdef TARGET_I386
102 #define ELF_PLATFORM get_elf_platform()
104 static const char *get_elf_platform(void)
106 static char elf_platform[] = "i386";
107 int family = (thread_env->cpuid_version >> 8) & 0xff;
108 if (family > 6)
109 family = 6;
110 if (family >= 3)
111 elf_platform[1] = '0' + family;
112 return elf_platform;
115 #define ELF_HWCAP get_elf_hwcap()
117 static uint32_t get_elf_hwcap(void)
119 return thread_env->cpuid_features;
122 #ifdef TARGET_X86_64
123 #define ELF_START_MMAP 0x2aaaaab000ULL
124 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
126 #define ELF_CLASS ELFCLASS64
127 #define ELF_DATA ELFDATA2LSB
128 #define ELF_ARCH EM_X86_64
130 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
132 regs->rax = 0;
133 regs->rsp = infop->start_stack;
134 regs->rip = infop->entry;
137 typedef target_ulong target_elf_greg_t;
138 typedef uint32_t target_uid_t;
139 typedef uint32_t target_gid_t;
140 typedef int32_t target_pid_t;
142 #define ELF_NREG 27
143 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
146 * Note that ELF_NREG should be 29 as there should be place for
147 * TRAPNO and ERR "registers" as well but linux doesn't dump
148 * those.
150 * See linux kernel: arch/x86/include/asm/elf.h
152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
154 (*regs)[0] = env->regs[15];
155 (*regs)[1] = env->regs[14];
156 (*regs)[2] = env->regs[13];
157 (*regs)[3] = env->regs[12];
158 (*regs)[4] = env->regs[R_EBP];
159 (*regs)[5] = env->regs[R_EBX];
160 (*regs)[6] = env->regs[11];
161 (*regs)[7] = env->regs[10];
162 (*regs)[8] = env->regs[9];
163 (*regs)[9] = env->regs[8];
164 (*regs)[10] = env->regs[R_EAX];
165 (*regs)[11] = env->regs[R_ECX];
166 (*regs)[12] = env->regs[R_EDX];
167 (*regs)[13] = env->regs[R_ESI];
168 (*regs)[14] = env->regs[R_EDI];
169 (*regs)[15] = env->regs[R_EAX]; /* XXX */
170 (*regs)[16] = env->eip;
171 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
172 (*regs)[18] = env->eflags;
173 (*regs)[19] = env->regs[R_ESP];
174 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
175 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
176 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
177 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
178 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
179 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
180 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
183 #else
185 #define ELF_START_MMAP 0x80000000
188 * This is used to ensure we don't load something for the wrong architecture.
190 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
193 * These are used to set parameters in the core dumps.
195 #define ELF_CLASS ELFCLASS32
196 #define ELF_DATA ELFDATA2LSB
197 #define ELF_ARCH EM_386
199 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
201 regs->esp = infop->start_stack;
202 regs->eip = infop->entry;
204 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
205 starts %edx contains a pointer to a function which might be
206 registered using `atexit'. This provides a mean for the
207 dynamic linker to call DT_FINI functions for shared libraries
208 that have been loaded before the code runs.
210 A value of 0 tells we have no such handler. */
211 regs->edx = 0;
214 typedef target_ulong target_elf_greg_t;
215 typedef uint16_t target_uid_t;
216 typedef uint16_t target_gid_t;
217 typedef int32_t target_pid_t;
219 #define ELF_NREG 17
220 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
227 * See linux kernel: arch/x86/include/asm/elf.h
229 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
249 #endif
251 #define USE_ELF_CORE_DUMP
252 #define ELF_EXEC_PAGESIZE 4096
254 #endif
256 #ifdef TARGET_ARM
258 #define ELF_START_MMAP 0x80000000
260 #define elf_check_arch(x) ( (x) == EM_ARM )
262 #define ELF_CLASS ELFCLASS32
263 #ifdef TARGET_WORDS_BIGENDIAN
264 #define ELF_DATA ELFDATA2MSB
265 #else
266 #define ELF_DATA ELFDATA2LSB
267 #endif
268 #define ELF_ARCH EM_ARM
270 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
272 abi_long stack = infop->start_stack;
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
278 regs->ARM_sp = infop->start_stack;
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
282 /* XXX: it seems that r0 is zeroed after ! */
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
286 regs->ARM_r10 = infop->start_data;
289 typedef uint32_t target_elf_greg_t;
290 typedef uint16_t target_uid_t;
291 typedef uint16_t target_gid_t;
292 typedef int32_t target_pid_t;
294 #define ELF_NREG 18
295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
299 (*regs)[0] = env->regs[0];
300 (*regs)[1] = env->regs[1];
301 (*regs)[2] = env->regs[2];
302 (*regs)[3] = env->regs[3];
303 (*regs)[4] = env->regs[4];
304 (*regs)[5] = env->regs[5];
305 (*regs)[6] = env->regs[6];
306 (*regs)[7] = env->regs[7];
307 (*regs)[8] = env->regs[8];
308 (*regs)[9] = env->regs[9];
309 (*regs)[10] = env->regs[10];
310 (*regs)[11] = env->regs[11];
311 (*regs)[12] = env->regs[12];
312 (*regs)[13] = env->regs[13];
313 (*regs)[14] = env->regs[14];
314 (*regs)[15] = env->regs[15];
316 (*regs)[16] = cpsr_read((CPUState *)env);
317 (*regs)[17] = env->regs[0]; /* XXX */
320 #define USE_ELF_CORE_DUMP
321 #define ELF_EXEC_PAGESIZE 4096
323 enum
325 ARM_HWCAP_ARM_SWP = 1 << 0,
326 ARM_HWCAP_ARM_HALF = 1 << 1,
327 ARM_HWCAP_ARM_THUMB = 1 << 2,
328 ARM_HWCAP_ARM_26BIT = 1 << 3,
329 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
330 ARM_HWCAP_ARM_FPA = 1 << 5,
331 ARM_HWCAP_ARM_VFP = 1 << 6,
332 ARM_HWCAP_ARM_EDSP = 1 << 7,
333 ARM_HWCAP_ARM_JAVA = 1 << 8,
334 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
335 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
336 ARM_HWCAP_ARM_NEON = 1 << 11,
337 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
338 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
341 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
342 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
343 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
344 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
346 #endif
348 #ifdef TARGET_SPARC
349 #ifdef TARGET_SPARC64
351 #define ELF_START_MMAP 0x80000000
353 #ifndef TARGET_ABI32
354 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
355 #else
356 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
357 #endif
359 #define ELF_CLASS ELFCLASS64
360 #define ELF_DATA ELFDATA2MSB
361 #define ELF_ARCH EM_SPARCV9
363 #define STACK_BIAS 2047
365 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
367 #ifndef TARGET_ABI32
368 regs->tstate = 0;
369 #endif
370 regs->pc = infop->entry;
371 regs->npc = regs->pc + 4;
372 regs->y = 0;
373 #ifdef TARGET_ABI32
374 regs->u_regs[14] = infop->start_stack - 16 * 4;
375 #else
376 if (personality(infop->personality) == PER_LINUX32)
377 regs->u_regs[14] = infop->start_stack - 16 * 4;
378 else
379 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
380 #endif
383 #else
384 #define ELF_START_MMAP 0x80000000
386 #define elf_check_arch(x) ( (x) == EM_SPARC )
388 #define ELF_CLASS ELFCLASS32
389 #define ELF_DATA ELFDATA2MSB
390 #define ELF_ARCH EM_SPARC
392 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
394 regs->psr = 0;
395 regs->pc = infop->entry;
396 regs->npc = regs->pc + 4;
397 regs->y = 0;
398 regs->u_regs[14] = infop->start_stack - 16 * 4;
401 #endif
402 #endif
404 #ifdef TARGET_PPC
406 #define ELF_START_MMAP 0x80000000
408 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
410 #define elf_check_arch(x) ( (x) == EM_PPC64 )
412 #define ELF_CLASS ELFCLASS64
414 #else
416 #define elf_check_arch(x) ( (x) == EM_PPC )
418 #define ELF_CLASS ELFCLASS32
420 #endif
422 #ifdef TARGET_WORDS_BIGENDIAN
423 #define ELF_DATA ELFDATA2MSB
424 #else
425 #define ELF_DATA ELFDATA2LSB
426 #endif
427 #define ELF_ARCH EM_PPC
429 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
430 See arch/powerpc/include/asm/cputable.h. */
431 enum {
432 QEMU_PPC_FEATURE_32 = 0x80000000,
433 QEMU_PPC_FEATURE_64 = 0x40000000,
434 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
435 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
436 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
437 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
438 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
439 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
440 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
441 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
442 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
443 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
444 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
445 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
446 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
447 QEMU_PPC_FEATURE_CELL = 0x00010000,
448 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
449 QEMU_PPC_FEATURE_SMT = 0x00004000,
450 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
451 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
452 QEMU_PPC_FEATURE_PA6T = 0x00000800,
453 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
454 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
455 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
456 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
457 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
459 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
460 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
463 #define ELF_HWCAP get_elf_hwcap()
465 static uint32_t get_elf_hwcap(void)
467 CPUState *e = thread_env;
468 uint32_t features = 0;
470 /* We don't have to be terribly complete here; the high points are
471 Altivec/FP/SPE support. Anything else is just a bonus. */
472 #define GET_FEATURE(flag, feature) \
473 do {if (e->insns_flags & flag) features |= feature; } while(0)
474 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
475 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
476 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
477 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
478 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
479 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
480 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
481 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
482 #undef GET_FEATURE
484 return features;
488 * We need to put in some extra aux table entries to tell glibc what
489 * the cache block size is, so it can use the dcbz instruction safely.
491 #define AT_DCACHEBSIZE 19
492 #define AT_ICACHEBSIZE 20
493 #define AT_UCACHEBSIZE 21
494 /* A special ignored type value for PPC, for glibc compatibility. */
495 #define AT_IGNOREPPC 22
497 * The requirements here are:
498 * - keep the final alignment of sp (sp & 0xf)
499 * - make sure the 32-bit value at the first 16 byte aligned position of
500 * AUXV is greater than 16 for glibc compatibility.
501 * AT_IGNOREPPC is used for that.
502 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
503 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
505 #define DLINFO_ARCH_ITEMS 5
506 #define ARCH_DLINFO \
507 do { \
508 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
509 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
510 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
511 /* \
512 * Now handle glibc compatibility. \
513 */ \
514 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
515 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
516 } while (0)
518 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
520 abi_ulong pos = infop->start_stack;
521 abi_ulong tmp;
522 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
523 abi_ulong entry, toc;
524 #endif
526 _regs->gpr[1] = infop->start_stack;
527 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
528 entry = ldq_raw(infop->entry) + infop->load_addr;
529 toc = ldq_raw(infop->entry + 8) + infop->load_addr;
530 _regs->gpr[2] = toc;
531 infop->entry = entry;
532 #endif
533 _regs->nip = infop->entry;
534 /* Note that isn't exactly what regular kernel does
535 * but this is what the ABI wants and is needed to allow
536 * execution of PPC BSD programs.
538 /* FIXME - what to for failure of get_user()? */
539 get_user_ual(_regs->gpr[3], pos);
540 pos += sizeof(abi_ulong);
541 _regs->gpr[4] = pos;
542 for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong))
543 tmp = ldl(pos);
544 _regs->gpr[5] = pos;
547 #define ELF_EXEC_PAGESIZE 4096
549 #endif
551 #ifdef TARGET_MIPS
553 #define ELF_START_MMAP 0x80000000
555 #define elf_check_arch(x) ( (x) == EM_MIPS )
557 #ifdef TARGET_MIPS64
558 #define ELF_CLASS ELFCLASS64
559 #else
560 #define ELF_CLASS ELFCLASS32
561 #endif
562 #ifdef TARGET_WORDS_BIGENDIAN
563 #define ELF_DATA ELFDATA2MSB
564 #else
565 #define ELF_DATA ELFDATA2LSB
566 #endif
567 #define ELF_ARCH EM_MIPS
569 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
571 regs->cp0_status = 2 << CP0St_KSU;
572 regs->cp0_epc = infop->entry;
573 regs->regs[29] = infop->start_stack;
576 #define ELF_EXEC_PAGESIZE 4096
578 #endif /* TARGET_MIPS */
580 #ifdef TARGET_MICROBLAZE
582 #define ELF_START_MMAP 0x80000000
584 #define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
586 #define ELF_CLASS ELFCLASS32
587 #define ELF_DATA ELFDATA2MSB
588 #define ELF_ARCH EM_MIPS
590 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
592 regs->pc = infop->entry;
593 regs->r1 = infop->start_stack;
597 #define ELF_EXEC_PAGESIZE 4096
599 #endif /* TARGET_MICROBLAZE */
601 #ifdef TARGET_SH4
603 #define ELF_START_MMAP 0x80000000
605 #define elf_check_arch(x) ( (x) == EM_SH )
607 #define ELF_CLASS ELFCLASS32
608 #define ELF_DATA ELFDATA2LSB
609 #define ELF_ARCH EM_SH
611 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
613 /* Check other registers XXXXX */
614 regs->pc = infop->entry;
615 regs->regs[15] = infop->start_stack;
618 #define ELF_EXEC_PAGESIZE 4096
620 #endif
622 #ifdef TARGET_CRIS
624 #define ELF_START_MMAP 0x80000000
626 #define elf_check_arch(x) ( (x) == EM_CRIS )
628 #define ELF_CLASS ELFCLASS32
629 #define ELF_DATA ELFDATA2LSB
630 #define ELF_ARCH EM_CRIS
632 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
634 regs->erp = infop->entry;
637 #define ELF_EXEC_PAGESIZE 8192
639 #endif
641 #ifdef TARGET_M68K
643 #define ELF_START_MMAP 0x80000000
645 #define elf_check_arch(x) ( (x) == EM_68K )
647 #define ELF_CLASS ELFCLASS32
648 #define ELF_DATA ELFDATA2MSB
649 #define ELF_ARCH EM_68K
651 /* ??? Does this need to do anything?
652 #define ELF_PLAT_INIT(_r) */
654 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
656 regs->usp = infop->start_stack;
657 regs->sr = 0;
658 regs->pc = infop->entry;
661 #define ELF_EXEC_PAGESIZE 8192
663 #endif
665 #ifdef TARGET_ALPHA
667 #define ELF_START_MMAP (0x30000000000ULL)
669 #define elf_check_arch(x) ( (x) == ELF_ARCH )
671 #define ELF_CLASS ELFCLASS64
672 #define ELF_DATA ELFDATA2MSB
673 #define ELF_ARCH EM_ALPHA
675 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
677 regs->pc = infop->entry;
678 regs->ps = 8;
679 regs->usp = infop->start_stack;
680 regs->unique = infop->start_data; /* ? */
681 printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n",
682 regs->unique, infop->start_data);
685 #define ELF_EXEC_PAGESIZE 8192
687 #endif /* TARGET_ALPHA */
689 #ifndef ELF_PLATFORM
690 #define ELF_PLATFORM (NULL)
691 #endif
693 #ifndef ELF_HWCAP
694 #define ELF_HWCAP 0
695 #endif
697 #ifdef TARGET_ABI32
698 #undef ELF_CLASS
699 #define ELF_CLASS ELFCLASS32
700 #undef bswaptls
701 #define bswaptls(ptr) bswap32s(ptr)
702 #endif
704 #include "elf.h"
706 struct exec
708 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
709 unsigned int a_text; /* length of text, in bytes */
710 unsigned int a_data; /* length of data, in bytes */
711 unsigned int a_bss; /* length of uninitialized data area, in bytes */
712 unsigned int a_syms; /* length of symbol table data in file, in bytes */
713 unsigned int a_entry; /* start address */
714 unsigned int a_trsize; /* length of relocation info for text, in bytes */
715 unsigned int a_drsize; /* length of relocation info for data, in bytes */
719 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
720 #define OMAGIC 0407
721 #define NMAGIC 0410
722 #define ZMAGIC 0413
723 #define QMAGIC 0314
725 /* max code+data+bss space allocated to elf interpreter */
726 #define INTERP_MAP_SIZE (32 * 1024 * 1024)
728 /* max code+data+bss+brk space allocated to ET_DYN executables */
729 #define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
731 /* Necessary parameters */
732 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
733 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
734 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
736 #define INTERPRETER_NONE 0
737 #define INTERPRETER_AOUT 1
738 #define INTERPRETER_ELF 2
740 #define DLINFO_ITEMS 12
742 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
744 memcpy(to, from, n);
747 static int load_aout_interp(void * exptr, int interp_fd);
749 #ifdef BSWAP_NEEDED
750 static void bswap_ehdr(struct elfhdr *ehdr)
752 bswap16s(&ehdr->e_type); /* Object file type */
753 bswap16s(&ehdr->e_machine); /* Architecture */
754 bswap32s(&ehdr->e_version); /* Object file version */
755 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
756 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
757 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
758 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
759 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
760 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
761 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
762 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
763 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
764 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
767 static void bswap_phdr(struct elf_phdr *phdr)
769 bswap32s(&phdr->p_type); /* Segment type */
770 bswaptls(&phdr->p_offset); /* Segment file offset */
771 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
772 bswaptls(&phdr->p_paddr); /* Segment physical address */
773 bswaptls(&phdr->p_filesz); /* Segment size in file */
774 bswaptls(&phdr->p_memsz); /* Segment size in memory */
775 bswap32s(&phdr->p_flags); /* Segment flags */
776 bswaptls(&phdr->p_align); /* Segment alignment */
779 static void bswap_shdr(struct elf_shdr *shdr)
781 bswap32s(&shdr->sh_name);
782 bswap32s(&shdr->sh_type);
783 bswaptls(&shdr->sh_flags);
784 bswaptls(&shdr->sh_addr);
785 bswaptls(&shdr->sh_offset);
786 bswaptls(&shdr->sh_size);
787 bswap32s(&shdr->sh_link);
788 bswap32s(&shdr->sh_info);
789 bswaptls(&shdr->sh_addralign);
790 bswaptls(&shdr->sh_entsize);
793 static void bswap_sym(struct elf_sym *sym)
795 bswap32s(&sym->st_name);
796 bswaptls(&sym->st_value);
797 bswaptls(&sym->st_size);
798 bswap16s(&sym->st_shndx);
800 #endif
802 #ifdef USE_ELF_CORE_DUMP
803 static int elf_core_dump(int, const CPUState *);
805 #ifdef BSWAP_NEEDED
806 static void bswap_note(struct elf_note *en)
808 bswap32s(&en->n_namesz);
809 bswap32s(&en->n_descsz);
810 bswap32s(&en->n_type);
812 #endif /* BSWAP_NEEDED */
814 #endif /* USE_ELF_CORE_DUMP */
817 * 'copy_elf_strings()' copies argument/envelope strings from user
818 * memory to free pages in kernel mem. These are in a format ready
819 * to be put directly into the top of new user memory.
822 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
823 abi_ulong p)
825 char *tmp, *tmp1, *pag = NULL;
826 int len, offset = 0;
828 if (!p) {
829 return 0; /* bullet-proofing */
831 while (argc-- > 0) {
832 tmp = argv[argc];
833 if (!tmp) {
834 fprintf(stderr, "VFS: argc is wrong");
835 exit(-1);
837 tmp1 = tmp;
838 while (*tmp++);
839 len = tmp - tmp1;
840 if (p < len) { /* this shouldn't happen - 128kB */
841 return 0;
843 while (len) {
844 --p; --tmp; --len;
845 if (--offset < 0) {
846 offset = p % TARGET_PAGE_SIZE;
847 pag = (char *)page[p/TARGET_PAGE_SIZE];
848 if (!pag) {
849 pag = (char *)malloc(TARGET_PAGE_SIZE);
850 memset(pag, 0, TARGET_PAGE_SIZE);
851 page[p/TARGET_PAGE_SIZE] = pag;
852 if (!pag)
853 return 0;
856 if (len == 0 || offset == 0) {
857 *(pag + offset) = *tmp;
859 else {
860 int bytes_to_copy = (len > offset) ? offset : len;
861 tmp -= bytes_to_copy;
862 p -= bytes_to_copy;
863 offset -= bytes_to_copy;
864 len -= bytes_to_copy;
865 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
869 return p;
872 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
873 struct image_info *info)
875 abi_ulong stack_base, size, error;
876 int i;
878 /* Create enough stack to hold everything. If we don't use
879 * it for args, we'll use it for something else...
881 size = x86_stack_size;
882 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
883 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
884 error = target_mmap(0,
885 size + qemu_host_page_size,
886 PROT_READ | PROT_WRITE,
887 MAP_PRIVATE | MAP_ANONYMOUS,
888 -1, 0);
889 if (error == -1) {
890 perror("stk mmap");
891 exit(-1);
893 /* we reserve one extra page at the top of the stack as guard */
894 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
896 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
897 p += stack_base;
899 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
900 if (bprm->page[i]) {
901 info->rss++;
902 /* FIXME - check return value of memcpy_to_target() for failure */
903 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
904 free(bprm->page[i]);
906 stack_base += TARGET_PAGE_SIZE;
908 return p;
911 static void set_brk(abi_ulong start, abi_ulong end)
913 /* page-align the start and end addresses... */
914 start = HOST_PAGE_ALIGN(start);
915 end = HOST_PAGE_ALIGN(end);
916 if (end <= start)
917 return;
918 if(target_mmap(start, end - start,
919 PROT_READ | PROT_WRITE | PROT_EXEC,
920 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
921 perror("cannot mmap brk");
922 exit(-1);
927 /* We need to explicitly zero any fractional pages after the data
928 section (i.e. bss). This would contain the junk from the file that
929 should not be in memory. */
930 static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
932 abi_ulong nbyte;
934 if (elf_bss >= last_bss)
935 return;
937 /* XXX: this is really a hack : if the real host page size is
938 smaller than the target page size, some pages after the end
939 of the file may not be mapped. A better fix would be to
940 patch target_mmap(), but it is more complicated as the file
941 size must be known */
942 if (qemu_real_host_page_size < qemu_host_page_size) {
943 abi_ulong end_addr, end_addr1;
944 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
945 ~(qemu_real_host_page_size - 1);
946 end_addr = HOST_PAGE_ALIGN(elf_bss);
947 if (end_addr1 < end_addr) {
948 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
949 PROT_READ|PROT_WRITE|PROT_EXEC,
950 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
954 nbyte = elf_bss & (qemu_host_page_size-1);
955 if (nbyte) {
956 nbyte = qemu_host_page_size - nbyte;
957 do {
958 /* FIXME - what to do if put_user() fails? */
959 put_user_u8(0, elf_bss);
960 elf_bss++;
961 } while (--nbyte);
966 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
967 struct elfhdr * exec,
968 abi_ulong load_addr,
969 abi_ulong load_bias,
970 abi_ulong interp_load_addr, int ibcs,
971 struct image_info *info)
973 abi_ulong sp;
974 int size;
975 abi_ulong u_platform;
976 const char *k_platform;
977 const int n = sizeof(elf_addr_t);
979 sp = p;
980 u_platform = 0;
981 k_platform = ELF_PLATFORM;
982 if (k_platform) {
983 size_t len = strlen(k_platform) + 1;
984 sp -= (len + n - 1) & ~(n - 1);
985 u_platform = sp;
986 /* FIXME - check return value of memcpy_to_target() for failure */
987 memcpy_to_target(sp, k_platform, len);
990 * Force 16 byte _final_ alignment here for generality.
992 sp = sp &~ (abi_ulong)15;
993 size = (DLINFO_ITEMS + 1) * 2;
994 if (k_platform)
995 size += 2;
996 #ifdef DLINFO_ARCH_ITEMS
997 size += DLINFO_ARCH_ITEMS * 2;
998 #endif
999 size += envc + argc + 2;
1000 size += (!ibcs ? 3 : 1); /* argc itself */
1001 size *= n;
1002 if (size & 15)
1003 sp -= 16 - (size & 15);
1005 /* This is correct because Linux defines
1006 * elf_addr_t as Elf32_Off / Elf64_Off
1008 #define NEW_AUX_ENT(id, val) do { \
1009 sp -= n; put_user_ual(val, sp); \
1010 sp -= n; put_user_ual(id, sp); \
1011 } while(0)
1013 NEW_AUX_ENT (AT_NULL, 0);
1015 /* There must be exactly DLINFO_ITEMS entries here. */
1016 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1017 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1018 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1019 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1020 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1021 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1022 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
1023 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1024 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1025 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1026 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1027 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1028 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1029 if (k_platform)
1030 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1031 #ifdef ARCH_DLINFO
1033 * ARCH_DLINFO must come last so platform specific code can enforce
1034 * special alignment requirements on the AUXV if necessary (eg. PPC).
1036 ARCH_DLINFO;
1037 #endif
1038 #undef NEW_AUX_ENT
1040 info->saved_auxv = sp;
1042 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
1043 return sp;
1047 static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1048 int interpreter_fd,
1049 abi_ulong *interp_load_addr)
1051 struct elf_phdr *elf_phdata = NULL;
1052 struct elf_phdr *eppnt;
1053 abi_ulong load_addr = 0;
1054 int load_addr_set = 0;
1055 int retval;
1056 abi_ulong last_bss, elf_bss;
1057 abi_ulong error;
1058 int i;
1060 elf_bss = 0;
1061 last_bss = 0;
1062 error = 0;
1064 #ifdef BSWAP_NEEDED
1065 bswap_ehdr(interp_elf_ex);
1066 #endif
1067 /* First of all, some simple consistency checks */
1068 if ((interp_elf_ex->e_type != ET_EXEC &&
1069 interp_elf_ex->e_type != ET_DYN) ||
1070 !elf_check_arch(interp_elf_ex->e_machine)) {
1071 return ~((abi_ulong)0UL);
1075 /* Now read in all of the header information */
1077 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
1078 return ~(abi_ulong)0UL;
1080 elf_phdata = (struct elf_phdr *)
1081 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1083 if (!elf_phdata)
1084 return ~((abi_ulong)0UL);
1087 * If the size of this structure has changed, then punt, since
1088 * we will be doing the wrong thing.
1090 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
1091 free(elf_phdata);
1092 return ~((abi_ulong)0UL);
1095 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1096 if(retval >= 0) {
1097 retval = read(interpreter_fd,
1098 (char *) elf_phdata,
1099 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1101 if (retval < 0) {
1102 perror("load_elf_interp");
1103 exit(-1);
1104 free (elf_phdata);
1105 return retval;
1107 #ifdef BSWAP_NEEDED
1108 eppnt = elf_phdata;
1109 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1110 bswap_phdr(eppnt);
1112 #endif
1114 if (interp_elf_ex->e_type == ET_DYN) {
1115 /* in order to avoid hardcoding the interpreter load
1116 address in qemu, we allocate a big enough memory zone */
1117 error = target_mmap(0, INTERP_MAP_SIZE,
1118 PROT_NONE, MAP_PRIVATE | MAP_ANON,
1119 -1, 0);
1120 if (error == -1) {
1121 perror("mmap");
1122 exit(-1);
1124 load_addr = error;
1125 load_addr_set = 1;
1128 eppnt = elf_phdata;
1129 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1130 if (eppnt->p_type == PT_LOAD) {
1131 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1132 int elf_prot = 0;
1133 abi_ulong vaddr = 0;
1134 abi_ulong k;
1136 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1137 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1138 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1139 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1140 elf_type |= MAP_FIXED;
1141 vaddr = eppnt->p_vaddr;
1143 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1144 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
1145 elf_prot,
1146 elf_type,
1147 interpreter_fd,
1148 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
1150 if (error == -1) {
1151 /* Real error */
1152 close(interpreter_fd);
1153 free(elf_phdata);
1154 return ~((abi_ulong)0UL);
1157 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1158 load_addr = error;
1159 load_addr_set = 1;
1163 * Find the end of the file mapping for this phdr, and keep
1164 * track of the largest address we see for this.
1166 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1167 if (k > elf_bss) elf_bss = k;
1170 * Do the same thing for the memory mapping - between
1171 * elf_bss and last_bss is the bss section.
1173 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1174 if (k > last_bss) last_bss = k;
1177 /* Now use mmap to map the library into memory. */
1179 close(interpreter_fd);
1182 * Now fill out the bss section. First pad the last page up
1183 * to the page boundary, and then perform a mmap to make sure
1184 * that there are zeromapped pages up to and including the last
1185 * bss page.
1187 padzero(elf_bss, last_bss);
1188 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
1190 /* Map the last of the bss segment */
1191 if (last_bss > elf_bss) {
1192 target_mmap(elf_bss, last_bss-elf_bss,
1193 PROT_READ|PROT_WRITE|PROT_EXEC,
1194 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1196 free(elf_phdata);
1198 *interp_load_addr = load_addr;
1199 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
1202 static int symfind(const void *s0, const void *s1)
1204 struct elf_sym *key = (struct elf_sym *)s0;
1205 struct elf_sym *sym = (struct elf_sym *)s1;
1206 int result = 0;
1207 if (key->st_value < sym->st_value) {
1208 result = -1;
1209 } else if (key->st_value >= sym->st_value + sym->st_size) {
1210 result = 1;
1212 return result;
1215 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1217 #if ELF_CLASS == ELFCLASS32
1218 struct elf_sym *syms = s->disas_symtab.elf32;
1219 #else
1220 struct elf_sym *syms = s->disas_symtab.elf64;
1221 #endif
1223 // binary search
1224 struct elf_sym key;
1225 struct elf_sym *sym;
1227 key.st_value = orig_addr;
1229 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1230 if (sym != NULL) {
1231 return s->disas_strtab + sym->st_name;
1234 return "";
1237 /* FIXME: This should use elf_ops.h */
1238 static int symcmp(const void *s0, const void *s1)
1240 struct elf_sym *sym0 = (struct elf_sym *)s0;
1241 struct elf_sym *sym1 = (struct elf_sym *)s1;
1242 return (sym0->st_value < sym1->st_value)
1243 ? -1
1244 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1247 /* Best attempt to load symbols from this ELF object. */
1248 static void load_symbols(struct elfhdr *hdr, int fd)
1250 unsigned int i, nsyms;
1251 struct elf_shdr sechdr, symtab, strtab;
1252 char *strings;
1253 struct syminfo *s;
1254 struct elf_sym *syms;
1256 lseek(fd, hdr->e_shoff, SEEK_SET);
1257 for (i = 0; i < hdr->e_shnum; i++) {
1258 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1259 return;
1260 #ifdef BSWAP_NEEDED
1261 bswap_shdr(&sechdr);
1262 #endif
1263 if (sechdr.sh_type == SHT_SYMTAB) {
1264 symtab = sechdr;
1265 lseek(fd, hdr->e_shoff
1266 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1267 if (read(fd, &strtab, sizeof(strtab))
1268 != sizeof(strtab))
1269 return;
1270 #ifdef BSWAP_NEEDED
1271 bswap_shdr(&strtab);
1272 #endif
1273 goto found;
1276 return; /* Shouldn't happen... */
1278 found:
1279 /* Now know where the strtab and symtab are. Snarf them. */
1280 s = malloc(sizeof(*s));
1281 syms = malloc(symtab.sh_size);
1282 if (!syms)
1283 return;
1284 s->disas_strtab = strings = malloc(strtab.sh_size);
1285 if (!s->disas_strtab)
1286 return;
1288 lseek(fd, symtab.sh_offset, SEEK_SET);
1289 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1290 return;
1292 nsyms = symtab.sh_size / sizeof(struct elf_sym);
1294 i = 0;
1295 while (i < nsyms) {
1296 #ifdef BSWAP_NEEDED
1297 bswap_sym(syms + i);
1298 #endif
1299 // Throw away entries which we do not need.
1300 if (syms[i].st_shndx == SHN_UNDEF ||
1301 syms[i].st_shndx >= SHN_LORESERVE ||
1302 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1303 nsyms--;
1304 if (i < nsyms) {
1305 syms[i] = syms[nsyms];
1307 continue;
1309 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1310 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1311 syms[i].st_value &= ~(target_ulong)1;
1312 #endif
1313 i++;
1315 syms = realloc(syms, nsyms * sizeof(*syms));
1317 qsort(syms, nsyms, sizeof(*syms), symcmp);
1319 lseek(fd, strtab.sh_offset, SEEK_SET);
1320 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
1321 return;
1322 s->disas_num_syms = nsyms;
1323 #if ELF_CLASS == ELFCLASS32
1324 s->disas_symtab.elf32 = syms;
1325 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
1326 #else
1327 s->disas_symtab.elf64 = syms;
1328 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
1329 #endif
1330 s->next = syminfos;
1331 syminfos = s;
1334 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1335 struct image_info * info)
1337 struct elfhdr elf_ex;
1338 struct elfhdr interp_elf_ex;
1339 struct exec interp_ex;
1340 int interpreter_fd = -1; /* avoid warning */
1341 abi_ulong load_addr, load_bias;
1342 int load_addr_set = 0;
1343 unsigned int interpreter_type = INTERPRETER_NONE;
1344 unsigned char ibcs2_interpreter;
1345 int i;
1346 abi_ulong mapped_addr;
1347 struct elf_phdr * elf_ppnt;
1348 struct elf_phdr *elf_phdata;
1349 abi_ulong elf_bss, k, elf_brk;
1350 int retval;
1351 char * elf_interpreter;
1352 abi_ulong elf_entry, interp_load_addr = 0;
1353 int status;
1354 abi_ulong start_code, end_code, start_data, end_data;
1355 abi_ulong reloc_func_desc = 0;
1356 abi_ulong elf_stack;
1357 char passed_fileno[6];
1359 ibcs2_interpreter = 0;
1360 status = 0;
1361 load_addr = 0;
1362 load_bias = 0;
1363 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1364 #ifdef BSWAP_NEEDED
1365 bswap_ehdr(&elf_ex);
1366 #endif
1368 /* First of all, some simple consistency checks */
1369 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1370 (! elf_check_arch(elf_ex.e_machine))) {
1371 return -ENOEXEC;
1374 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1375 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1376 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1377 if (!bprm->p) {
1378 retval = -E2BIG;
1381 /* Now read in all of the header information */
1382 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1383 if (elf_phdata == NULL) {
1384 return -ENOMEM;
1387 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1388 if(retval > 0) {
1389 retval = read(bprm->fd, (char *) elf_phdata,
1390 elf_ex.e_phentsize * elf_ex.e_phnum);
1393 if (retval < 0) {
1394 perror("load_elf_binary");
1395 exit(-1);
1396 free (elf_phdata);
1397 return -errno;
1400 #ifdef BSWAP_NEEDED
1401 elf_ppnt = elf_phdata;
1402 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1403 bswap_phdr(elf_ppnt);
1405 #endif
1406 elf_ppnt = elf_phdata;
1408 elf_bss = 0;
1409 elf_brk = 0;
1412 elf_stack = ~((abi_ulong)0UL);
1413 elf_interpreter = NULL;
1414 start_code = ~((abi_ulong)0UL);
1415 end_code = 0;
1416 start_data = 0;
1417 end_data = 0;
1418 interp_ex.a_info = 0;
1420 for(i=0;i < elf_ex.e_phnum; i++) {
1421 if (elf_ppnt->p_type == PT_INTERP) {
1422 if ( elf_interpreter != NULL )
1424 free (elf_phdata);
1425 free(elf_interpreter);
1426 close(bprm->fd);
1427 return -EINVAL;
1430 /* This is the program interpreter used for
1431 * shared libraries - for now assume that this
1432 * is an a.out format binary
1435 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
1437 if (elf_interpreter == NULL) {
1438 free (elf_phdata);
1439 close(bprm->fd);
1440 return -ENOMEM;
1443 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1444 if(retval >= 0) {
1445 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
1447 if(retval < 0) {
1448 perror("load_elf_binary2");
1449 exit(-1);
1452 /* If the program interpreter is one of these two,
1453 then assume an iBCS2 image. Otherwise assume
1454 a native linux image. */
1456 /* JRP - Need to add X86 lib dir stuff here... */
1458 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1459 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1460 ibcs2_interpreter = 1;
1463 #if 0
1464 printf("Using ELF interpreter %s\n", path(elf_interpreter));
1465 #endif
1466 if (retval >= 0) {
1467 retval = open(path(elf_interpreter), O_RDONLY);
1468 if(retval >= 0) {
1469 interpreter_fd = retval;
1471 else {
1472 perror(elf_interpreter);
1473 exit(-1);
1474 /* retval = -errno; */
1478 if (retval >= 0) {
1479 retval = lseek(interpreter_fd, 0, SEEK_SET);
1480 if(retval >= 0) {
1481 retval = read(interpreter_fd,bprm->buf,128);
1484 if (retval >= 0) {
1485 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
1486 interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
1488 if (retval < 0) {
1489 perror("load_elf_binary3");
1490 exit(-1);
1491 free (elf_phdata);
1492 free(elf_interpreter);
1493 close(bprm->fd);
1494 return retval;
1497 elf_ppnt++;
1500 /* Some simple consistency checks for the interpreter */
1501 if (elf_interpreter){
1502 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1504 /* Now figure out which format our binary is */
1505 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1506 (N_MAGIC(interp_ex) != QMAGIC)) {
1507 interpreter_type = INTERPRETER_ELF;
1510 if (interp_elf_ex.e_ident[0] != 0x7f ||
1511 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
1512 interpreter_type &= ~INTERPRETER_ELF;
1515 if (!interpreter_type) {
1516 free(elf_interpreter);
1517 free(elf_phdata);
1518 close(bprm->fd);
1519 return -ELIBBAD;
1523 /* OK, we are done with that, now set up the arg stuff,
1524 and then start this sucker up */
1527 char * passed_p;
1529 if (interpreter_type == INTERPRETER_AOUT) {
1530 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
1531 passed_p = passed_fileno;
1533 if (elf_interpreter) {
1534 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
1535 bprm->argc++;
1538 if (!bprm->p) {
1539 if (elf_interpreter) {
1540 free(elf_interpreter);
1542 free (elf_phdata);
1543 close(bprm->fd);
1544 return -E2BIG;
1548 /* OK, This is the point of no return */
1549 info->end_data = 0;
1550 info->end_code = 0;
1551 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1552 info->mmap = 0;
1553 elf_entry = (abi_ulong) elf_ex.e_entry;
1555 #if defined(CONFIG_USE_GUEST_BASE)
1557 * In case where user has not explicitly set the guest_base, we
1558 * probe here that should we set it automatically.
1560 if (!have_guest_base) {
1562 * Go through ELF program header table and find out whether
1563 * any of the segments drop below our current mmap_min_addr and
1564 * in that case set guest_base to corresponding address.
1566 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1567 i++, elf_ppnt++) {
1568 if (elf_ppnt->p_type != PT_LOAD)
1569 continue;
1570 if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) {
1571 guest_base = HOST_PAGE_ALIGN(mmap_min_addr);
1572 break;
1576 #endif /* CONFIG_USE_GUEST_BASE */
1578 /* Do this so that we can load the interpreter, if need be. We will
1579 change some of these later */
1580 info->rss = 0;
1581 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1582 info->start_stack = bprm->p;
1584 /* Now we do a little grungy work by mmaping the ELF image into
1585 * the correct location in memory. At this point, we assume that
1586 * the image should be loaded at fixed address, not at a variable
1587 * address.
1590 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
1591 int elf_prot = 0;
1592 int elf_flags = 0;
1593 abi_ulong error;
1595 if (elf_ppnt->p_type != PT_LOAD)
1596 continue;
1598 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1599 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1600 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1601 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1602 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1603 elf_flags |= MAP_FIXED;
1604 } else if (elf_ex.e_type == ET_DYN) {
1605 /* Try and get dynamic programs out of the way of the default mmap
1606 base, as well as whatever program they might try to exec. This
1607 is because the brk will follow the loader, and is not movable. */
1608 /* NOTE: for qemu, we do a big mmap to get enough space
1609 without hardcoding any address */
1610 error = target_mmap(0, ET_DYN_MAP_SIZE,
1611 PROT_NONE, MAP_PRIVATE | MAP_ANON,
1612 -1, 0);
1613 if (error == -1) {
1614 perror("mmap");
1615 exit(-1);
1617 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
1620 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1621 (elf_ppnt->p_filesz +
1622 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1623 elf_prot,
1624 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1625 bprm->fd,
1626 (elf_ppnt->p_offset -
1627 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
1628 if (error == -1) {
1629 perror("mmap");
1630 exit(-1);
1633 #ifdef LOW_ELF_STACK
1634 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1635 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
1636 #endif
1638 if (!load_addr_set) {
1639 load_addr_set = 1;
1640 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1641 if (elf_ex.e_type == ET_DYN) {
1642 load_bias += error -
1643 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
1644 load_addr += load_bias;
1645 reloc_func_desc = load_bias;
1648 k = elf_ppnt->p_vaddr;
1649 if (k < start_code)
1650 start_code = k;
1651 if (start_data < k)
1652 start_data = k;
1653 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1654 if (k > elf_bss)
1655 elf_bss = k;
1656 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1657 end_code = k;
1658 if (end_data < k)
1659 end_data = k;
1660 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1661 if (k > elf_brk) elf_brk = k;
1664 elf_entry += load_bias;
1665 elf_bss += load_bias;
1666 elf_brk += load_bias;
1667 start_code += load_bias;
1668 end_code += load_bias;
1669 start_data += load_bias;
1670 end_data += load_bias;
1672 if (elf_interpreter) {
1673 if (interpreter_type & 1) {
1674 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1676 else if (interpreter_type & 2) {
1677 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1678 &interp_load_addr);
1680 reloc_func_desc = interp_load_addr;
1682 close(interpreter_fd);
1683 free(elf_interpreter);
1685 if (elf_entry == ~((abi_ulong)0UL)) {
1686 printf("Unable to load interpreter\n");
1687 free(elf_phdata);
1688 exit(-1);
1689 return 0;
1693 free(elf_phdata);
1695 if (qemu_log_enabled())
1696 load_symbols(&elf_ex, bprm->fd);
1698 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1699 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1701 #ifdef LOW_ELF_STACK
1702 info->start_stack = bprm->p = elf_stack - 4;
1703 #endif
1704 bprm->p = create_elf_tables(bprm->p,
1705 bprm->argc,
1706 bprm->envc,
1707 &elf_ex,
1708 load_addr, load_bias,
1709 interp_load_addr,
1710 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1711 info);
1712 info->load_addr = reloc_func_desc;
1713 info->start_brk = info->brk = elf_brk;
1714 info->end_code = end_code;
1715 info->start_code = start_code;
1716 info->start_data = start_data;
1717 info->end_data = end_data;
1718 info->start_stack = bprm->p;
1720 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1721 sections */
1722 set_brk(elf_bss, elf_brk);
1724 padzero(elf_bss, elf_brk);
1726 #if 0
1727 printf("(start_brk) %x\n" , info->start_brk);
1728 printf("(end_code) %x\n" , info->end_code);
1729 printf("(start_code) %x\n" , info->start_code);
1730 printf("(end_data) %x\n" , info->end_data);
1731 printf("(start_stack) %x\n" , info->start_stack);
1732 printf("(brk) %x\n" , info->brk);
1733 #endif
1735 if ( info->personality == PER_SVR4 )
1737 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1738 and some applications "depend" upon this behavior.
1739 Since we do not have the power to recompile these, we
1740 emulate the SVr4 behavior. Sigh. */
1741 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1742 MAP_FIXED | MAP_PRIVATE, -1, 0);
1745 info->entry = elf_entry;
1747 #ifdef USE_ELF_CORE_DUMP
1748 bprm->core_dump = &elf_core_dump;
1749 #endif
1751 return 0;
1754 #ifdef USE_ELF_CORE_DUMP
1757 * Definitions to generate Intel SVR4-like core files.
1758 * These mostly have the same names as the SVR4 types with "target_elf_"
1759 * tacked on the front to prevent clashes with linux definitions,
1760 * and the typedef forms have been avoided. This is mostly like
1761 * the SVR4 structure, but more Linuxy, with things that Linux does
1762 * not support and which gdb doesn't really use excluded.
1764 * Fields we don't dump (their contents is zero) in linux-user qemu
1765 * are marked with XXX.
1767 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1769 * Porting ELF coredump for target is (quite) simple process. First you
1770 * define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for
1771 * the target resides):
1773 * #define USE_ELF_CORE_DUMP
1775 * Next you define type of register set used for dumping. ELF specification
1776 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1778 * typedef <target_regtype> target_elf_greg_t;
1779 * #define ELF_NREG <number of registers>
1780 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1782 * Then define following types to match target types. Actual types can
1783 * be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h):
1785 * typedef <target_uid_type> target_uid_t;
1786 * typedef <target_gid_type> target_gid_t;
1787 * typedef <target_pid_type> target_pid_t;
1789 * Last step is to implement target specific function that copies registers
1790 * from given cpu into just specified register set. Prototype is:
1792 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1793 * const CPUState *env);
1795 * Parameters:
1796 * regs - copy register values into here (allocated and zeroed by caller)
1797 * env - copy registers from here
1799 * Example for ARM target is provided in this file.
1802 /* An ELF note in memory */
1803 struct memelfnote {
1804 const char *name;
1805 size_t namesz;
1806 size_t namesz_rounded;
1807 int type;
1808 size_t datasz;
1809 void *data;
1810 size_t notesz;
1813 struct target_elf_siginfo {
1814 int si_signo; /* signal number */
1815 int si_code; /* extra code */
1816 int si_errno; /* errno */
1819 struct target_elf_prstatus {
1820 struct target_elf_siginfo pr_info; /* Info associated with signal */
1821 short pr_cursig; /* Current signal */
1822 target_ulong pr_sigpend; /* XXX */
1823 target_ulong pr_sighold; /* XXX */
1824 target_pid_t pr_pid;
1825 target_pid_t pr_ppid;
1826 target_pid_t pr_pgrp;
1827 target_pid_t pr_sid;
1828 struct target_timeval pr_utime; /* XXX User time */
1829 struct target_timeval pr_stime; /* XXX System time */
1830 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1831 struct target_timeval pr_cstime; /* XXX Cumulative system time */
1832 target_elf_gregset_t pr_reg; /* GP registers */
1833 int pr_fpvalid; /* XXX */
1836 #define ELF_PRARGSZ (80) /* Number of chars for args */
1838 struct target_elf_prpsinfo {
1839 char pr_state; /* numeric process state */
1840 char pr_sname; /* char for pr_state */
1841 char pr_zomb; /* zombie */
1842 char pr_nice; /* nice val */
1843 target_ulong pr_flag; /* flags */
1844 target_uid_t pr_uid;
1845 target_gid_t pr_gid;
1846 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1847 /* Lots missing */
1848 char pr_fname[16]; /* filename of executable */
1849 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1852 /* Here is the structure in which status of each thread is captured. */
1853 struct elf_thread_status {
1854 QTAILQ_ENTRY(elf_thread_status) ets_link;
1855 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
1856 #if 0
1857 elf_fpregset_t fpu; /* NT_PRFPREG */
1858 struct task_struct *thread;
1859 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1860 #endif
1861 struct memelfnote notes[1];
1862 int num_notes;
1865 struct elf_note_info {
1866 struct memelfnote *notes;
1867 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1868 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1870 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
1871 #if 0
1873 * Current version of ELF coredump doesn't support
1874 * dumping fp regs etc.
1876 elf_fpregset_t *fpu;
1877 elf_fpxregset_t *xfpu;
1878 int thread_status_size;
1879 #endif
1880 int notes_size;
1881 int numnote;
1884 struct vm_area_struct {
1885 abi_ulong vma_start; /* start vaddr of memory region */
1886 abi_ulong vma_end; /* end vaddr of memory region */
1887 abi_ulong vma_flags; /* protection etc. flags for the region */
1888 QTAILQ_ENTRY(vm_area_struct) vma_link;
1891 struct mm_struct {
1892 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
1893 int mm_count; /* number of mappings */
1896 static struct mm_struct *vma_init(void);
1897 static void vma_delete(struct mm_struct *);
1898 static int vma_add_mapping(struct mm_struct *, abi_ulong,
1899 abi_ulong, abi_ulong);
1900 static int vma_get_mapping_count(const struct mm_struct *);
1901 static struct vm_area_struct *vma_first(const struct mm_struct *);
1902 static struct vm_area_struct *vma_next(struct vm_area_struct *);
1903 static abi_ulong vma_dump_size(const struct vm_area_struct *);
1904 static int vma_walker(void *priv, unsigned long start, unsigned long end,
1905 unsigned long flags);
1907 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1908 static void fill_note(struct memelfnote *, const char *, int,
1909 unsigned int, void *);
1910 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1911 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
1912 static void fill_auxv_note(struct memelfnote *, const TaskState *);
1913 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1914 static size_t note_size(const struct memelfnote *);
1915 static void free_note_info(struct elf_note_info *);
1916 static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1917 static void fill_thread_info(struct elf_note_info *, const CPUState *);
1918 static int core_dump_filename(const TaskState *, char *, size_t);
1920 static int dump_write(int, const void *, size_t);
1921 static int write_note(struct memelfnote *, int);
1922 static int write_note_info(struct elf_note_info *, int);
1924 #ifdef BSWAP_NEEDED
1925 static void bswap_prstatus(struct target_elf_prstatus *);
1926 static void bswap_psinfo(struct target_elf_prpsinfo *);
1928 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
1930 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1931 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1932 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1933 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1934 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1935 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1936 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1937 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1938 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1939 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1940 /* cpu times are not filled, so we skip them */
1941 /* regs should be in correct format already */
1942 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1945 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
1947 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1948 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1949 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1950 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1951 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1952 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1953 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1955 #endif /* BSWAP_NEEDED */
1958 * Minimal support for linux memory regions. These are needed
1959 * when we are finding out what memory exactly belongs to
1960 * emulated process. No locks needed here, as long as
1961 * thread that received the signal is stopped.
1964 static struct mm_struct *vma_init(void)
1966 struct mm_struct *mm;
1968 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1969 return (NULL);
1971 mm->mm_count = 0;
1972 QTAILQ_INIT(&mm->mm_mmap);
1974 return (mm);
1977 static void vma_delete(struct mm_struct *mm)
1979 struct vm_area_struct *vma;
1981 while ((vma = vma_first(mm)) != NULL) {
1982 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
1983 qemu_free(vma);
1985 qemu_free(mm);
1988 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
1989 abi_ulong end, abi_ulong flags)
1991 struct vm_area_struct *vma;
1993 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
1994 return (-1);
1996 vma->vma_start = start;
1997 vma->vma_end = end;
1998 vma->vma_flags = flags;
2000 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2001 mm->mm_count++;
2003 return (0);
2006 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2008 return (QTAILQ_FIRST(&mm->mm_mmap));
2011 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2013 return (QTAILQ_NEXT(vma, vma_link));
2016 static int vma_get_mapping_count(const struct mm_struct *mm)
2018 return (mm->mm_count);
2022 * Calculate file (dump) size of given memory region.
2024 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2026 /* if we cannot even read the first page, skip it */
2027 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2028 return (0);
2031 * Usually we don't dump executable pages as they contain
2032 * non-writable code that debugger can read directly from
2033 * target library etc. However, thread stacks are marked
2034 * also executable so we read in first page of given region
2035 * and check whether it contains elf header. If there is
2036 * no elf header, we dump it.
2038 if (vma->vma_flags & PROT_EXEC) {
2039 char page[TARGET_PAGE_SIZE];
2041 copy_from_user(page, vma->vma_start, sizeof (page));
2042 if ((page[EI_MAG0] == ELFMAG0) &&
2043 (page[EI_MAG1] == ELFMAG1) &&
2044 (page[EI_MAG2] == ELFMAG2) &&
2045 (page[EI_MAG3] == ELFMAG3)) {
2047 * Mappings are possibly from ELF binary. Don't dump
2048 * them.
2050 return (0);
2054 return (vma->vma_end - vma->vma_start);
2057 static int vma_walker(void *priv, unsigned long start, unsigned long end,
2058 unsigned long flags)
2060 struct mm_struct *mm = (struct mm_struct *)priv;
2063 * Don't dump anything that qemu has reserved for internal use.
2065 if (flags & PAGE_RESERVED)
2066 return (0);
2068 vma_add_mapping(mm, start, end, flags);
2069 return (0);
2072 static void fill_note(struct memelfnote *note, const char *name, int type,
2073 unsigned int sz, void *data)
2075 unsigned int namesz;
2077 namesz = strlen(name) + 1;
2078 note->name = name;
2079 note->namesz = namesz;
2080 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2081 note->type = type;
2082 note->datasz = roundup(sz, sizeof (int32_t));;
2083 note->data = data;
2086 * We calculate rounded up note size here as specified by
2087 * ELF document.
2089 note->notesz = sizeof (struct elf_note) +
2090 note->namesz_rounded + note->datasz;
2093 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2094 uint32_t flags)
2096 (void) memset(elf, 0, sizeof(*elf));
2098 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2099 elf->e_ident[EI_CLASS] = ELF_CLASS;
2100 elf->e_ident[EI_DATA] = ELF_DATA;
2101 elf->e_ident[EI_VERSION] = EV_CURRENT;
2102 elf->e_ident[EI_OSABI] = ELF_OSABI;
2104 elf->e_type = ET_CORE;
2105 elf->e_machine = machine;
2106 elf->e_version = EV_CURRENT;
2107 elf->e_phoff = sizeof(struct elfhdr);
2108 elf->e_flags = flags;
2109 elf->e_ehsize = sizeof(struct elfhdr);
2110 elf->e_phentsize = sizeof(struct elf_phdr);
2111 elf->e_phnum = segs;
2113 #ifdef BSWAP_NEEDED
2114 bswap_ehdr(elf);
2115 #endif
2118 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2120 phdr->p_type = PT_NOTE;
2121 phdr->p_offset = offset;
2122 phdr->p_vaddr = 0;
2123 phdr->p_paddr = 0;
2124 phdr->p_filesz = sz;
2125 phdr->p_memsz = 0;
2126 phdr->p_flags = 0;
2127 phdr->p_align = 0;
2129 #ifdef BSWAP_NEEDED
2130 bswap_phdr(phdr);
2131 #endif
2134 static size_t note_size(const struct memelfnote *note)
2136 return (note->notesz);
2139 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2140 const TaskState *ts, int signr)
2142 (void) memset(prstatus, 0, sizeof (*prstatus));
2143 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2144 prstatus->pr_pid = ts->ts_tid;
2145 prstatus->pr_ppid = getppid();
2146 prstatus->pr_pgrp = getpgrp();
2147 prstatus->pr_sid = getsid(0);
2149 #ifdef BSWAP_NEEDED
2150 bswap_prstatus(prstatus);
2151 #endif
2154 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2156 char *filename, *base_filename;
2157 unsigned int i, len;
2159 (void) memset(psinfo, 0, sizeof (*psinfo));
2161 len = ts->info->arg_end - ts->info->arg_start;
2162 if (len >= ELF_PRARGSZ)
2163 len = ELF_PRARGSZ - 1;
2164 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2165 return -EFAULT;
2166 for (i = 0; i < len; i++)
2167 if (psinfo->pr_psargs[i] == 0)
2168 psinfo->pr_psargs[i] = ' ';
2169 psinfo->pr_psargs[len] = 0;
2171 psinfo->pr_pid = getpid();
2172 psinfo->pr_ppid = getppid();
2173 psinfo->pr_pgrp = getpgrp();
2174 psinfo->pr_sid = getsid(0);
2175 psinfo->pr_uid = getuid();
2176 psinfo->pr_gid = getgid();
2178 filename = strdup(ts->bprm->filename);
2179 base_filename = strdup(basename(filename));
2180 (void) strncpy(psinfo->pr_fname, base_filename,
2181 sizeof(psinfo->pr_fname));
2182 free(base_filename);
2183 free(filename);
2185 #ifdef BSWAP_NEEDED
2186 bswap_psinfo(psinfo);
2187 #endif
2188 return (0);
2191 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2193 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2194 elf_addr_t orig_auxv = auxv;
2195 abi_ulong val;
2196 void *ptr;
2197 int i, len;
2200 * Auxiliary vector is stored in target process stack. It contains
2201 * {type, value} pairs that we need to dump into note. This is not
2202 * strictly necessary but we do it here for sake of completeness.
2205 /* find out lenght of the vector, AT_NULL is terminator */
2206 i = len = 0;
2207 do {
2208 get_user_ual(val, auxv);
2209 i += 2;
2210 auxv += 2 * sizeof (elf_addr_t);
2211 } while (val != AT_NULL);
2212 len = i * sizeof (elf_addr_t);
2214 /* read in whole auxv vector and copy it to memelfnote */
2215 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2216 if (ptr != NULL) {
2217 fill_note(note, "CORE", NT_AUXV, len, ptr);
2218 unlock_user(ptr, auxv, len);
2223 * Constructs name of coredump file. We have following convention
2224 * for the name:
2225 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2227 * Returns 0 in case of success, -1 otherwise (errno is set).
2229 static int core_dump_filename(const TaskState *ts, char *buf,
2230 size_t bufsize)
2232 char timestamp[64];
2233 char *filename = NULL;
2234 char *base_filename = NULL;
2235 struct timeval tv;
2236 struct tm tm;
2238 assert(bufsize >= PATH_MAX);
2240 if (gettimeofday(&tv, NULL) < 0) {
2241 (void) fprintf(stderr, "unable to get current timestamp: %s",
2242 strerror(errno));
2243 return (-1);
2246 filename = strdup(ts->bprm->filename);
2247 base_filename = strdup(basename(filename));
2248 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2249 localtime_r(&tv.tv_sec, &tm));
2250 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2251 base_filename, timestamp, (int)getpid());
2252 free(base_filename);
2253 free(filename);
2255 return (0);
2258 static int dump_write(int fd, const void *ptr, size_t size)
2260 const char *bufp = (const char *)ptr;
2261 ssize_t bytes_written, bytes_left;
2262 struct rlimit dumpsize;
2263 off_t pos;
2265 bytes_written = 0;
2266 getrlimit(RLIMIT_CORE, &dumpsize);
2267 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2268 if (errno == ESPIPE) { /* not a seekable stream */
2269 bytes_left = size;
2270 } else {
2271 return pos;
2273 } else {
2274 if (dumpsize.rlim_cur <= pos) {
2275 return -1;
2276 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2277 bytes_left = size;
2278 } else {
2279 size_t limit_left=dumpsize.rlim_cur - pos;
2280 bytes_left = limit_left >= size ? size : limit_left ;
2285 * In normal conditions, single write(2) should do but
2286 * in case of socket etc. this mechanism is more portable.
2288 do {
2289 bytes_written = write(fd, bufp, bytes_left);
2290 if (bytes_written < 0) {
2291 if (errno == EINTR)
2292 continue;
2293 return (-1);
2294 } else if (bytes_written == 0) { /* eof */
2295 return (-1);
2297 bufp += bytes_written;
2298 bytes_left -= bytes_written;
2299 } while (bytes_left > 0);
2301 return (0);
2304 static int write_note(struct memelfnote *men, int fd)
2306 struct elf_note en;
2308 en.n_namesz = men->namesz;
2309 en.n_type = men->type;
2310 en.n_descsz = men->datasz;
2312 #ifdef BSWAP_NEEDED
2313 bswap_note(&en);
2314 #endif
2316 if (dump_write(fd, &en, sizeof(en)) != 0)
2317 return (-1);
2318 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2319 return (-1);
2320 if (dump_write(fd, men->data, men->datasz) != 0)
2321 return (-1);
2323 return (0);
2326 static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2328 TaskState *ts = (TaskState *)env->opaque;
2329 struct elf_thread_status *ets;
2331 ets = qemu_mallocz(sizeof (*ets));
2332 ets->num_notes = 1; /* only prstatus is dumped */
2333 fill_prstatus(&ets->prstatus, ts, 0);
2334 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2335 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2336 &ets->prstatus);
2338 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2340 info->notes_size += note_size(&ets->notes[0]);
2343 static int fill_note_info(struct elf_note_info *info,
2344 long signr, const CPUState *env)
2346 #define NUMNOTES 3
2347 CPUState *cpu = NULL;
2348 TaskState *ts = (TaskState *)env->opaque;
2349 int i;
2351 (void) memset(info, 0, sizeof (*info));
2353 QTAILQ_INIT(&info->thread_list);
2355 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2356 if (info->notes == NULL)
2357 return (-ENOMEM);
2358 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2359 if (info->prstatus == NULL)
2360 return (-ENOMEM);
2361 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2362 if (info->prstatus == NULL)
2363 return (-ENOMEM);
2366 * First fill in status (and registers) of current thread
2367 * including process info & aux vector.
2369 fill_prstatus(info->prstatus, ts, signr);
2370 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2371 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2372 sizeof (*info->prstatus), info->prstatus);
2373 fill_psinfo(info->psinfo, ts);
2374 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2375 sizeof (*info->psinfo), info->psinfo);
2376 fill_auxv_note(&info->notes[2], ts);
2377 info->numnote = 3;
2379 info->notes_size = 0;
2380 for (i = 0; i < info->numnote; i++)
2381 info->notes_size += note_size(&info->notes[i]);
2383 /* read and fill status of all threads */
2384 cpu_list_lock();
2385 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2386 if (cpu == thread_env)
2387 continue;
2388 fill_thread_info(info, cpu);
2390 cpu_list_unlock();
2392 return (0);
2395 static void free_note_info(struct elf_note_info *info)
2397 struct elf_thread_status *ets;
2399 while (!QTAILQ_EMPTY(&info->thread_list)) {
2400 ets = QTAILQ_FIRST(&info->thread_list);
2401 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2402 qemu_free(ets);
2405 qemu_free(info->prstatus);
2406 qemu_free(info->psinfo);
2407 qemu_free(info->notes);
2410 static int write_note_info(struct elf_note_info *info, int fd)
2412 struct elf_thread_status *ets;
2413 int i, error = 0;
2415 /* write prstatus, psinfo and auxv for current thread */
2416 for (i = 0; i < info->numnote; i++)
2417 if ((error = write_note(&info->notes[i], fd)) != 0)
2418 return (error);
2420 /* write prstatus for each thread */
2421 for (ets = info->thread_list.tqh_first; ets != NULL;
2422 ets = ets->ets_link.tqe_next) {
2423 if ((error = write_note(&ets->notes[0], fd)) != 0)
2424 return (error);
2427 return (0);
2431 * Write out ELF coredump.
2433 * See documentation of ELF object file format in:
2434 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2436 * Coredump format in linux is following:
2438 * 0 +----------------------+ \
2439 * | ELF header | ET_CORE |
2440 * +----------------------+ |
2441 * | ELF program headers | |--- headers
2442 * | - NOTE section | |
2443 * | - PT_LOAD sections | |
2444 * +----------------------+ /
2445 * | NOTEs: |
2446 * | - NT_PRSTATUS |
2447 * | - NT_PRSINFO |
2448 * | - NT_AUXV |
2449 * +----------------------+ <-- aligned to target page
2450 * | Process memory dump |
2451 * : :
2452 * . .
2453 * : :
2454 * | |
2455 * +----------------------+
2457 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2458 * NT_PRSINFO -> struct elf_prpsinfo
2459 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2461 * Format follows System V format as close as possible. Current
2462 * version limitations are as follows:
2463 * - no floating point registers are dumped
2465 * Function returns 0 in case of success, negative errno otherwise.
2467 * TODO: make this work also during runtime: it should be
2468 * possible to force coredump from running process and then
2469 * continue processing. For example qemu could set up SIGUSR2
2470 * handler (provided that target process haven't registered
2471 * handler for that) that does the dump when signal is received.
2473 static int elf_core_dump(int signr, const CPUState *env)
2475 const TaskState *ts = (const TaskState *)env->opaque;
2476 struct vm_area_struct *vma = NULL;
2477 char corefile[PATH_MAX];
2478 struct elf_note_info info;
2479 struct elfhdr elf;
2480 struct elf_phdr phdr;
2481 struct rlimit dumpsize;
2482 struct mm_struct *mm = NULL;
2483 off_t offset = 0, data_offset = 0;
2484 int segs = 0;
2485 int fd = -1;
2487 errno = 0;
2488 getrlimit(RLIMIT_CORE, &dumpsize);
2489 if (dumpsize.rlim_cur == 0)
2490 return 0;
2492 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2493 return (-errno);
2495 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2496 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2497 return (-errno);
2500 * Walk through target process memory mappings and
2501 * set up structure containing this information. After
2502 * this point vma_xxx functions can be used.
2504 if ((mm = vma_init()) == NULL)
2505 goto out;
2507 walk_memory_regions(mm, vma_walker);
2508 segs = vma_get_mapping_count(mm);
2511 * Construct valid coredump ELF header. We also
2512 * add one more segment for notes.
2514 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2515 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2516 goto out;
2518 /* fill in in-memory version of notes */
2519 if (fill_note_info(&info, signr, env) < 0)
2520 goto out;
2522 offset += sizeof (elf); /* elf header */
2523 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2525 /* write out notes program header */
2526 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2528 offset += info.notes_size;
2529 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2530 goto out;
2533 * ELF specification wants data to start at page boundary so
2534 * we align it here.
2536 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2539 * Write program headers for memory regions mapped in
2540 * the target process.
2542 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2543 (void) memset(&phdr, 0, sizeof (phdr));
2545 phdr.p_type = PT_LOAD;
2546 phdr.p_offset = offset;
2547 phdr.p_vaddr = vma->vma_start;
2548 phdr.p_paddr = 0;
2549 phdr.p_filesz = vma_dump_size(vma);
2550 offset += phdr.p_filesz;
2551 phdr.p_memsz = vma->vma_end - vma->vma_start;
2552 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2553 if (vma->vma_flags & PROT_WRITE)
2554 phdr.p_flags |= PF_W;
2555 if (vma->vma_flags & PROT_EXEC)
2556 phdr.p_flags |= PF_X;
2557 phdr.p_align = ELF_EXEC_PAGESIZE;
2559 dump_write(fd, &phdr, sizeof (phdr));
2563 * Next we write notes just after program headers. No
2564 * alignment needed here.
2566 if (write_note_info(&info, fd) < 0)
2567 goto out;
2569 /* align data to page boundary */
2570 data_offset = lseek(fd, 0, SEEK_CUR);
2571 data_offset = TARGET_PAGE_ALIGN(data_offset);
2572 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2573 goto out;
2576 * Finally we can dump process memory into corefile as well.
2578 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2579 abi_ulong addr;
2580 abi_ulong end;
2582 end = vma->vma_start + vma_dump_size(vma);
2584 for (addr = vma->vma_start; addr < end;
2585 addr += TARGET_PAGE_SIZE) {
2586 char page[TARGET_PAGE_SIZE];
2587 int error;
2590 * Read in page from target process memory and
2591 * write it to coredump file.
2593 error = copy_from_user(page, addr, sizeof (page));
2594 if (error != 0) {
2595 (void) fprintf(stderr, "unable to dump " TARGET_FMT_lx "\n",
2596 addr);
2597 errno = -error;
2598 goto out;
2600 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2601 goto out;
2605 out:
2606 free_note_info(&info);
2607 if (mm != NULL)
2608 vma_delete(mm);
2609 (void) close(fd);
2611 if (errno != 0)
2612 return (-errno);
2613 return (0);
2616 #endif /* USE_ELF_CORE_DUMP */
2618 static int load_aout_interp(void * exptr, int interp_fd)
2620 printf("a.out interpreter not yet supported\n");
2621 return(0);
2624 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2626 init_thread(regs, infop);