s390-ccw.img: Allow bigger ramdisk sizes or offsets
[qemu.git] / target-arm / cpu.h
blob11845a6644bd2735076e9c00380e5ea3ecbab2d9
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define TARGET_IS_BIENDIAN 1
37 #define CPUArchState struct CPUARMState
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
97 int srcreg, int operand, uint32_t value);
98 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
99 int dstreg, int operand);
101 struct arm_boot_info;
103 #define NB_MMU_MODES 7
105 /* We currently assume float and double are IEEE single and double
106 precision respectively.
107 Doing runtime conversions is tricky because VFP registers may contain
108 integer values (eg. as the result of a FTOSI instruction).
109 s<2n> maps to the least significant half of d<n>
110 s<2n+1> maps to the most significant half of d<n>
113 /* CPU state for each instance of a generic timer (in cp15 c14) */
114 typedef struct ARMGenericTimer {
115 uint64_t cval; /* Timer CompareValue register */
116 uint64_t ctl; /* Timer Control register */
117 } ARMGenericTimer;
119 #define GTIMER_PHYS 0
120 #define GTIMER_VIRT 1
121 #define NUM_GTIMERS 2
123 typedef struct {
124 uint64_t raw_tcr;
125 uint32_t mask;
126 uint32_t base_mask;
127 } TCR;
129 typedef struct CPUARMState {
130 /* Regs for current mode. */
131 uint32_t regs[16];
133 /* 32/64 switch only happens when taking and returning from
134 * exceptions so the overlap semantics are taken care of then
135 * instead of having a complicated union.
137 /* Regs for A64 mode. */
138 uint64_t xregs[32];
139 uint64_t pc;
140 /* PSTATE isn't an architectural register for ARMv8. However, it is
141 * convenient for us to assemble the underlying state into a 32 bit format
142 * identical to the architectural format used for the SPSR. (This is also
143 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
144 * 'pstate' register are.) Of the PSTATE bits:
145 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
146 * semantics as for AArch32, as described in the comments on each field)
147 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
148 * DAIF (exception masks) are kept in env->daif
149 * all other bits are stored in their correct places in env->pstate
151 uint32_t pstate;
152 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
154 /* Frequently accessed CPSR bits are stored separately for efficiency.
155 This contains all the other bits. Use cpsr_{read,write} to access
156 the whole CPSR. */
157 uint32_t uncached_cpsr;
158 uint32_t spsr;
160 /* Banked registers. */
161 uint64_t banked_spsr[8];
162 uint32_t banked_r13[8];
163 uint32_t banked_r14[8];
165 /* These hold r8-r12. */
166 uint32_t usr_regs[5];
167 uint32_t fiq_regs[5];
169 /* cpsr flag cache for faster execution */
170 uint32_t CF; /* 0 or 1 */
171 uint32_t VF; /* V is the bit 31. All other bits are undefined */
172 uint32_t NF; /* N is bit 31. All other bits are undefined. */
173 uint32_t ZF; /* Z set if zero. */
174 uint32_t QF; /* 0 or 1 */
175 uint32_t GE; /* cpsr[19:16] */
176 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
177 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
178 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
180 uint64_t elr_el[4]; /* AArch64 exception link regs */
181 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
183 /* System control coprocessor (cp15) */
184 struct {
185 uint32_t c0_cpuid;
186 union { /* Cache size selection */
187 struct {
188 uint64_t _unused_csselr0;
189 uint64_t csselr_ns;
190 uint64_t _unused_csselr1;
191 uint64_t csselr_s;
193 uint64_t csselr_el[4];
195 union { /* System control register. */
196 struct {
197 uint64_t _unused_sctlr;
198 uint64_t sctlr_ns;
199 uint64_t hsctlr;
200 uint64_t sctlr_s;
202 uint64_t sctlr_el[4];
204 uint64_t c1_coproc; /* Coprocessor access register. */
205 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
206 uint64_t sder; /* Secure debug enable register. */
207 uint32_t nsacr; /* Non-secure access control register. */
208 union { /* MMU translation table base 0. */
209 struct {
210 uint64_t _unused_ttbr0_0;
211 uint64_t ttbr0_ns;
212 uint64_t _unused_ttbr0_1;
213 uint64_t ttbr0_s;
215 uint64_t ttbr0_el[4];
217 union { /* MMU translation table base 1. */
218 struct {
219 uint64_t _unused_ttbr1_0;
220 uint64_t ttbr1_ns;
221 uint64_t _unused_ttbr1_1;
222 uint64_t ttbr1_s;
224 uint64_t ttbr1_el[4];
226 /* MMU translation table base control. */
227 TCR tcr_el[4];
228 uint32_t c2_data; /* MPU data cachable bits. */
229 uint32_t c2_insn; /* MPU instruction cachable bits. */
230 union { /* MMU domain access control register
231 * MPU write buffer control.
233 struct {
234 uint64_t dacr_ns;
235 uint64_t dacr_s;
237 struct {
238 uint64_t dacr32_el2;
241 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
242 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
243 uint64_t hcr_el2; /* Hypervisor configuration register */
244 uint64_t scr_el3; /* Secure configuration register. */
245 union { /* Fault status registers. */
246 struct {
247 uint64_t ifsr_ns;
248 uint64_t ifsr_s;
250 struct {
251 uint64_t ifsr32_el2;
254 union {
255 struct {
256 uint64_t _unused_dfsr;
257 uint64_t dfsr_ns;
258 uint64_t hsr;
259 uint64_t dfsr_s;
261 uint64_t esr_el[4];
263 uint32_t c6_region[8]; /* MPU base/size registers. */
264 union { /* Fault address registers. */
265 struct {
266 uint64_t _unused_far0;
267 #ifdef HOST_WORDS_BIGENDIAN
268 uint32_t ifar_ns;
269 uint32_t dfar_ns;
270 uint32_t ifar_s;
271 uint32_t dfar_s;
272 #else
273 uint32_t dfar_ns;
274 uint32_t ifar_ns;
275 uint32_t dfar_s;
276 uint32_t ifar_s;
277 #endif
278 uint64_t _unused_far3;
280 uint64_t far_el[4];
282 union { /* Translation result. */
283 struct {
284 uint64_t _unused_par_0;
285 uint64_t par_ns;
286 uint64_t _unused_par_1;
287 uint64_t par_s;
289 uint64_t par_el[4];
291 uint32_t c9_insn; /* Cache lockdown registers. */
292 uint32_t c9_data;
293 uint64_t c9_pmcr; /* performance monitor control register */
294 uint64_t c9_pmcnten; /* perf monitor counter enables */
295 uint32_t c9_pmovsr; /* perf monitor overflow status */
296 uint32_t c9_pmxevtyper; /* perf monitor event type */
297 uint32_t c9_pmuserenr; /* perf monitor user enable */
298 uint32_t c9_pminten; /* perf monitor interrupt enables */
299 union { /* Memory attribute redirection */
300 struct {
301 #ifdef HOST_WORDS_BIGENDIAN
302 uint64_t _unused_mair_0;
303 uint32_t mair1_ns;
304 uint32_t mair0_ns;
305 uint64_t _unused_mair_1;
306 uint32_t mair1_s;
307 uint32_t mair0_s;
308 #else
309 uint64_t _unused_mair_0;
310 uint32_t mair0_ns;
311 uint32_t mair1_ns;
312 uint64_t _unused_mair_1;
313 uint32_t mair0_s;
314 uint32_t mair1_s;
315 #endif
317 uint64_t mair_el[4];
319 union { /* vector base address register */
320 struct {
321 uint64_t _unused_vbar;
322 uint64_t vbar_ns;
323 uint64_t hvbar;
324 uint64_t vbar_s;
326 uint64_t vbar_el[4];
328 uint32_t mvbar; /* (monitor) vector base address register */
329 struct { /* FCSE PID. */
330 uint32_t fcseidr_ns;
331 uint32_t fcseidr_s;
333 union { /* Context ID. */
334 struct {
335 uint64_t _unused_contextidr_0;
336 uint64_t contextidr_ns;
337 uint64_t _unused_contextidr_1;
338 uint64_t contextidr_s;
340 uint64_t contextidr_el[4];
342 union { /* User RW Thread register. */
343 struct {
344 uint64_t tpidrurw_ns;
345 uint64_t tpidrprw_ns;
346 uint64_t htpidr;
347 uint64_t _tpidr_el3;
349 uint64_t tpidr_el[4];
351 /* The secure banks of these registers don't map anywhere */
352 uint64_t tpidrurw_s;
353 uint64_t tpidrprw_s;
354 uint64_t tpidruro_s;
356 union { /* User RO Thread register. */
357 uint64_t tpidruro_ns;
358 uint64_t tpidrro_el[1];
360 uint64_t c14_cntfrq; /* Counter Frequency register */
361 uint64_t c14_cntkctl; /* Timer Control register */
362 ARMGenericTimer c14_timer[NUM_GTIMERS];
363 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
364 uint32_t c15_ticonfig; /* TI925T configuration byte. */
365 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
366 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
367 uint32_t c15_threadid; /* TI debugger thread-ID. */
368 uint32_t c15_config_base_address; /* SCU base address. */
369 uint32_t c15_diagnostic; /* diagnostic register */
370 uint32_t c15_power_diagnostic;
371 uint32_t c15_power_control; /* power control */
372 uint64_t dbgbvr[16]; /* breakpoint value registers */
373 uint64_t dbgbcr[16]; /* breakpoint control registers */
374 uint64_t dbgwvr[16]; /* watchpoint value registers */
375 uint64_t dbgwcr[16]; /* watchpoint control registers */
376 uint64_t mdscr_el1;
377 /* If the counter is enabled, this stores the last time the counter
378 * was reset. Otherwise it stores the counter value
380 uint64_t c15_ccnt;
381 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
382 } cp15;
384 struct {
385 uint32_t other_sp;
386 uint32_t vecbase;
387 uint32_t basepri;
388 uint32_t control;
389 int current_sp;
390 int exception;
391 int pending_exception;
392 } v7m;
394 /* Information associated with an exception about to be taken:
395 * code which raises an exception must set cs->exception_index and
396 * the relevant parts of this structure; the cpu_do_interrupt function
397 * will then set the guest-visible registers as part of the exception
398 * entry process.
400 struct {
401 uint32_t syndrome; /* AArch64 format syndrome register */
402 uint32_t fsr; /* AArch32 format fault status register info */
403 uint64_t vaddress; /* virtual addr associated with exception, if any */
404 /* If we implement EL2 we will also need to store information
405 * about the intermediate physical address for stage 2 faults.
407 } exception;
409 /* Thumb-2 EE state. */
410 uint32_t teecr;
411 uint32_t teehbr;
413 /* VFP coprocessor state. */
414 struct {
415 /* VFP/Neon register state. Note that the mapping between S, D and Q
416 * views of the register bank differs between AArch64 and AArch32:
417 * In AArch32:
418 * Qn = regs[2n+1]:regs[2n]
419 * Dn = regs[n]
420 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
421 * (and regs[32] to regs[63] are inaccessible)
422 * In AArch64:
423 * Qn = regs[2n+1]:regs[2n]
424 * Dn = regs[2n]
425 * Sn = regs[2n] bits 31..0
426 * This corresponds to the architecturally defined mapping between
427 * the two execution states, and means we do not need to explicitly
428 * map these registers when changing states.
430 float64 regs[64];
432 uint32_t xregs[16];
433 /* We store these fpcsr fields separately for convenience. */
434 int vec_len;
435 int vec_stride;
437 /* scratch space when Tn are not sufficient. */
438 uint32_t scratch[8];
440 /* fp_status is the "normal" fp status. standard_fp_status retains
441 * values corresponding to the ARM "Standard FPSCR Value", ie
442 * default-NaN, flush-to-zero, round-to-nearest and is used by
443 * any operations (generally Neon) which the architecture defines
444 * as controlled by the standard FPSCR value rather than the FPSCR.
446 * To avoid having to transfer exception bits around, we simply
447 * say that the FPSCR cumulative exception flags are the logical
448 * OR of the flags in the two fp statuses. This relies on the
449 * only thing which needs to read the exception flags being
450 * an explicit FPSCR read.
452 float_status fp_status;
453 float_status standard_fp_status;
454 } vfp;
455 uint64_t exclusive_addr;
456 uint64_t exclusive_val;
457 uint64_t exclusive_high;
458 #if defined(CONFIG_USER_ONLY)
459 uint64_t exclusive_test;
460 uint32_t exclusive_info;
461 #endif
463 /* iwMMXt coprocessor state. */
464 struct {
465 uint64_t regs[16];
466 uint64_t val;
468 uint32_t cregs[16];
469 } iwmmxt;
471 /* For mixed endian mode. */
472 bool bswap_code;
474 #if defined(CONFIG_USER_ONLY)
475 /* For usermode syscall translation. */
476 int eabi;
477 #endif
479 struct CPUBreakpoint *cpu_breakpoint[16];
480 struct CPUWatchpoint *cpu_watchpoint[16];
482 CPU_COMMON
484 /* These fields after the common ones so they are preserved on reset. */
486 /* Internal CPU feature flags. */
487 uint64_t features;
489 void *nvic;
490 const struct arm_boot_info *boot_info;
491 } CPUARMState;
493 #include "cpu-qom.h"
495 ARMCPU *cpu_arm_init(const char *cpu_model);
496 int cpu_arm_exec(CPUARMState *s);
497 uint32_t do_arm_semihosting(CPUARMState *env);
498 void aarch64_sync_32_to_64(CPUARMState *env);
499 void aarch64_sync_64_to_32(CPUARMState *env);
501 static inline bool is_a64(CPUARMState *env)
503 return env->aarch64;
506 /* you can call this signal handler from your SIGBUS and SIGSEGV
507 signal handlers to inform the virtual CPU of exceptions. non zero
508 is returned if the signal was handled by the virtual CPU. */
509 int cpu_arm_signal_handler(int host_signum, void *pinfo,
510 void *puc);
511 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
512 int mmu_idx);
515 * pmccntr_sync
516 * @env: CPUARMState
518 * Synchronises the counter in the PMCCNTR. This must always be called twice,
519 * once before any action that might affect the timer and again afterwards.
520 * The function is used to swap the state of the register if required.
521 * This only happens when not in user mode (!CONFIG_USER_ONLY)
523 void pmccntr_sync(CPUARMState *env);
525 /* SCTLR bit meanings. Several bits have been reused in newer
526 * versions of the architecture; in that case we define constants
527 * for both old and new bit meanings. Code which tests against those
528 * bits should probably check or otherwise arrange that the CPU
529 * is the architectural version it expects.
531 #define SCTLR_M (1U << 0)
532 #define SCTLR_A (1U << 1)
533 #define SCTLR_C (1U << 2)
534 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
535 #define SCTLR_SA (1U << 3)
536 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
537 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
538 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
539 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
540 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
541 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
542 #define SCTLR_ITD (1U << 7) /* v8 onward */
543 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
544 #define SCTLR_SED (1U << 8) /* v8 onward */
545 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
546 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
547 #define SCTLR_F (1U << 10) /* up to v6 */
548 #define SCTLR_SW (1U << 10) /* v7 onward */
549 #define SCTLR_Z (1U << 11)
550 #define SCTLR_I (1U << 12)
551 #define SCTLR_V (1U << 13)
552 #define SCTLR_RR (1U << 14) /* up to v7 */
553 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
554 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
555 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
556 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
557 #define SCTLR_nTWI (1U << 16) /* v8 onward */
558 #define SCTLR_HA (1U << 17)
559 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
560 #define SCTLR_nTWE (1U << 18) /* v8 onward */
561 #define SCTLR_WXN (1U << 19)
562 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
563 #define SCTLR_UWXN (1U << 20) /* v7 onward */
564 #define SCTLR_FI (1U << 21)
565 #define SCTLR_U (1U << 22)
566 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
567 #define SCTLR_VE (1U << 24) /* up to v7 */
568 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
569 #define SCTLR_EE (1U << 25)
570 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
571 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
572 #define SCTLR_NMFI (1U << 27)
573 #define SCTLR_TRE (1U << 28)
574 #define SCTLR_AFE (1U << 29)
575 #define SCTLR_TE (1U << 30)
577 #define CPSR_M (0x1fU)
578 #define CPSR_T (1U << 5)
579 #define CPSR_F (1U << 6)
580 #define CPSR_I (1U << 7)
581 #define CPSR_A (1U << 8)
582 #define CPSR_E (1U << 9)
583 #define CPSR_IT_2_7 (0xfc00U)
584 #define CPSR_GE (0xfU << 16)
585 #define CPSR_IL (1U << 20)
586 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
587 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
588 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
589 * where it is live state but not accessible to the AArch32 code.
591 #define CPSR_RESERVED (0x7U << 21)
592 #define CPSR_J (1U << 24)
593 #define CPSR_IT_0_1 (3U << 25)
594 #define CPSR_Q (1U << 27)
595 #define CPSR_V (1U << 28)
596 #define CPSR_C (1U << 29)
597 #define CPSR_Z (1U << 30)
598 #define CPSR_N (1U << 31)
599 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
600 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
602 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
603 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
604 | CPSR_NZCV)
605 /* Bits writable in user mode. */
606 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
607 /* Execution state bits. MRS read as zero, MSR writes ignored. */
608 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
609 /* Mask of bits which may be set by exception return copying them from SPSR */
610 #define CPSR_ERET_MASK (~CPSR_RESERVED)
612 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
613 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
614 #define TTBCR_PD0 (1U << 4)
615 #define TTBCR_PD1 (1U << 5)
616 #define TTBCR_EPD0 (1U << 7)
617 #define TTBCR_IRGN0 (3U << 8)
618 #define TTBCR_ORGN0 (3U << 10)
619 #define TTBCR_SH0 (3U << 12)
620 #define TTBCR_T1SZ (3U << 16)
621 #define TTBCR_A1 (1U << 22)
622 #define TTBCR_EPD1 (1U << 23)
623 #define TTBCR_IRGN1 (3U << 24)
624 #define TTBCR_ORGN1 (3U << 26)
625 #define TTBCR_SH1 (1U << 28)
626 #define TTBCR_EAE (1U << 31)
628 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
629 * Only these are valid when in AArch64 mode; in
630 * AArch32 mode SPSRs are basically CPSR-format.
632 #define PSTATE_SP (1U)
633 #define PSTATE_M (0xFU)
634 #define PSTATE_nRW (1U << 4)
635 #define PSTATE_F (1U << 6)
636 #define PSTATE_I (1U << 7)
637 #define PSTATE_A (1U << 8)
638 #define PSTATE_D (1U << 9)
639 #define PSTATE_IL (1U << 20)
640 #define PSTATE_SS (1U << 21)
641 #define PSTATE_V (1U << 28)
642 #define PSTATE_C (1U << 29)
643 #define PSTATE_Z (1U << 30)
644 #define PSTATE_N (1U << 31)
645 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
646 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
647 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
648 /* Mode values for AArch64 */
649 #define PSTATE_MODE_EL3h 13
650 #define PSTATE_MODE_EL3t 12
651 #define PSTATE_MODE_EL2h 9
652 #define PSTATE_MODE_EL2t 8
653 #define PSTATE_MODE_EL1h 5
654 #define PSTATE_MODE_EL1t 4
655 #define PSTATE_MODE_EL0t 0
657 /* Map EL and handler into a PSTATE_MODE. */
658 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
660 return (el << 2) | handler;
663 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
664 * interprocessing, so we don't attempt to sync with the cpsr state used by
665 * the 32 bit decoder.
667 static inline uint32_t pstate_read(CPUARMState *env)
669 int ZF;
671 ZF = (env->ZF == 0);
672 return (env->NF & 0x80000000) | (ZF << 30)
673 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
674 | env->pstate | env->daif;
677 static inline void pstate_write(CPUARMState *env, uint32_t val)
679 env->ZF = (~val) & PSTATE_Z;
680 env->NF = val;
681 env->CF = (val >> 29) & 1;
682 env->VF = (val << 3) & 0x80000000;
683 env->daif = val & PSTATE_DAIF;
684 env->pstate = val & ~CACHED_PSTATE_BITS;
687 /* Return the current CPSR value. */
688 uint32_t cpsr_read(CPUARMState *env);
689 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
690 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
692 /* Return the current xPSR value. */
693 static inline uint32_t xpsr_read(CPUARMState *env)
695 int ZF;
696 ZF = (env->ZF == 0);
697 return (env->NF & 0x80000000) | (ZF << 30)
698 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
699 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
700 | ((env->condexec_bits & 0xfc) << 8)
701 | env->v7m.exception;
704 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
705 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
707 if (mask & CPSR_NZCV) {
708 env->ZF = (~val) & CPSR_Z;
709 env->NF = val;
710 env->CF = (val >> 29) & 1;
711 env->VF = (val << 3) & 0x80000000;
713 if (mask & CPSR_Q)
714 env->QF = ((val & CPSR_Q) != 0);
715 if (mask & (1 << 24))
716 env->thumb = ((val & (1 << 24)) != 0);
717 if (mask & CPSR_IT_0_1) {
718 env->condexec_bits &= ~3;
719 env->condexec_bits |= (val >> 25) & 3;
721 if (mask & CPSR_IT_2_7) {
722 env->condexec_bits &= 3;
723 env->condexec_bits |= (val >> 8) & 0xfc;
725 if (mask & 0x1ff) {
726 env->v7m.exception = val & 0x1ff;
730 #define HCR_VM (1ULL << 0)
731 #define HCR_SWIO (1ULL << 1)
732 #define HCR_PTW (1ULL << 2)
733 #define HCR_FMO (1ULL << 3)
734 #define HCR_IMO (1ULL << 4)
735 #define HCR_AMO (1ULL << 5)
736 #define HCR_VF (1ULL << 6)
737 #define HCR_VI (1ULL << 7)
738 #define HCR_VSE (1ULL << 8)
739 #define HCR_FB (1ULL << 9)
740 #define HCR_BSU_MASK (3ULL << 10)
741 #define HCR_DC (1ULL << 12)
742 #define HCR_TWI (1ULL << 13)
743 #define HCR_TWE (1ULL << 14)
744 #define HCR_TID0 (1ULL << 15)
745 #define HCR_TID1 (1ULL << 16)
746 #define HCR_TID2 (1ULL << 17)
747 #define HCR_TID3 (1ULL << 18)
748 #define HCR_TSC (1ULL << 19)
749 #define HCR_TIDCP (1ULL << 20)
750 #define HCR_TACR (1ULL << 21)
751 #define HCR_TSW (1ULL << 22)
752 #define HCR_TPC (1ULL << 23)
753 #define HCR_TPU (1ULL << 24)
754 #define HCR_TTLB (1ULL << 25)
755 #define HCR_TVM (1ULL << 26)
756 #define HCR_TGE (1ULL << 27)
757 #define HCR_TDZ (1ULL << 28)
758 #define HCR_HCD (1ULL << 29)
759 #define HCR_TRVM (1ULL << 30)
760 #define HCR_RW (1ULL << 31)
761 #define HCR_CD (1ULL << 32)
762 #define HCR_ID (1ULL << 33)
763 #define HCR_MASK ((1ULL << 34) - 1)
765 #define SCR_NS (1U << 0)
766 #define SCR_IRQ (1U << 1)
767 #define SCR_FIQ (1U << 2)
768 #define SCR_EA (1U << 3)
769 #define SCR_FW (1U << 4)
770 #define SCR_AW (1U << 5)
771 #define SCR_NET (1U << 6)
772 #define SCR_SMD (1U << 7)
773 #define SCR_HCE (1U << 8)
774 #define SCR_SIF (1U << 9)
775 #define SCR_RW (1U << 10)
776 #define SCR_ST (1U << 11)
777 #define SCR_TWI (1U << 12)
778 #define SCR_TWE (1U << 13)
779 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
780 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
782 /* Return the current FPSCR value. */
783 uint32_t vfp_get_fpscr(CPUARMState *env);
784 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
786 /* For A64 the FPSCR is split into two logically distinct registers,
787 * FPCR and FPSR. However since they still use non-overlapping bits
788 * we store the underlying state in fpscr and just mask on read/write.
790 #define FPSR_MASK 0xf800009f
791 #define FPCR_MASK 0x07f79f00
792 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
794 return vfp_get_fpscr(env) & FPSR_MASK;
797 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
799 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
800 vfp_set_fpscr(env, new_fpscr);
803 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
805 return vfp_get_fpscr(env) & FPCR_MASK;
808 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
810 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
811 vfp_set_fpscr(env, new_fpscr);
814 enum arm_cpu_mode {
815 ARM_CPU_MODE_USR = 0x10,
816 ARM_CPU_MODE_FIQ = 0x11,
817 ARM_CPU_MODE_IRQ = 0x12,
818 ARM_CPU_MODE_SVC = 0x13,
819 ARM_CPU_MODE_MON = 0x16,
820 ARM_CPU_MODE_ABT = 0x17,
821 ARM_CPU_MODE_HYP = 0x1a,
822 ARM_CPU_MODE_UND = 0x1b,
823 ARM_CPU_MODE_SYS = 0x1f
826 /* VFP system registers. */
827 #define ARM_VFP_FPSID 0
828 #define ARM_VFP_FPSCR 1
829 #define ARM_VFP_MVFR2 5
830 #define ARM_VFP_MVFR1 6
831 #define ARM_VFP_MVFR0 7
832 #define ARM_VFP_FPEXC 8
833 #define ARM_VFP_FPINST 9
834 #define ARM_VFP_FPINST2 10
836 /* iwMMXt coprocessor control registers. */
837 #define ARM_IWMMXT_wCID 0
838 #define ARM_IWMMXT_wCon 1
839 #define ARM_IWMMXT_wCSSF 2
840 #define ARM_IWMMXT_wCASF 3
841 #define ARM_IWMMXT_wCGR0 8
842 #define ARM_IWMMXT_wCGR1 9
843 #define ARM_IWMMXT_wCGR2 10
844 #define ARM_IWMMXT_wCGR3 11
846 /* If adding a feature bit which corresponds to a Linux ELF
847 * HWCAP bit, remember to update the feature-bit-to-hwcap
848 * mapping in linux-user/elfload.c:get_elf_hwcap().
850 enum arm_features {
851 ARM_FEATURE_VFP,
852 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
853 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
854 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
855 ARM_FEATURE_V6,
856 ARM_FEATURE_V6K,
857 ARM_FEATURE_V7,
858 ARM_FEATURE_THUMB2,
859 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
860 ARM_FEATURE_VFP3,
861 ARM_FEATURE_VFP_FP16,
862 ARM_FEATURE_NEON,
863 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
864 ARM_FEATURE_M, /* Microcontroller profile. */
865 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
866 ARM_FEATURE_THUMB2EE,
867 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
868 ARM_FEATURE_V4T,
869 ARM_FEATURE_V5,
870 ARM_FEATURE_STRONGARM,
871 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
872 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
873 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
874 ARM_FEATURE_GENERIC_TIMER,
875 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
876 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
877 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
878 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
879 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
880 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
881 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
882 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
883 ARM_FEATURE_V8,
884 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
885 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
886 ARM_FEATURE_CBAR, /* has cp15 CBAR */
887 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
888 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
889 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
890 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
891 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
892 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
893 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
896 static inline int arm_feature(CPUARMState *env, int feature)
898 return (env->features & (1ULL << feature)) != 0;
901 #if !defined(CONFIG_USER_ONLY)
902 /* Return true if exception levels below EL3 are in secure state,
903 * or would be following an exception return to that level.
904 * Unlike arm_is_secure() (which is always a question about the
905 * _current_ state of the CPU) this doesn't care about the current
906 * EL or mode.
908 static inline bool arm_is_secure_below_el3(CPUARMState *env)
910 if (arm_feature(env, ARM_FEATURE_EL3)) {
911 return !(env->cp15.scr_el3 & SCR_NS);
912 } else {
913 /* If EL2 is not supported then the secure state is implementation
914 * defined, in which case QEMU defaults to non-secure.
916 return false;
920 /* Return true if the processor is in secure state */
921 static inline bool arm_is_secure(CPUARMState *env)
923 if (arm_feature(env, ARM_FEATURE_EL3)) {
924 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
925 /* CPU currently in AArch64 state and EL3 */
926 return true;
927 } else if (!is_a64(env) &&
928 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
929 /* CPU currently in AArch32 state and monitor mode */
930 return true;
933 return arm_is_secure_below_el3(env);
936 #else
937 static inline bool arm_is_secure_below_el3(CPUARMState *env)
939 return false;
942 static inline bool arm_is_secure(CPUARMState *env)
944 return false;
946 #endif
948 /* Return true if the specified exception level is running in AArch64 state. */
949 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
951 /* We don't currently support EL2, and this isn't valid for EL0
952 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
953 * then the state of EL0 isn't well defined.)
955 assert(el == 1 || el == 3);
957 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
958 * is a QEMU-imposed simplification which we may wish to change later.
959 * If we in future support EL2 and/or EL3, then the state of lower
960 * exception levels is controlled by the HCR.RW and SCR.RW bits.
962 return arm_feature(env, ARM_FEATURE_AARCH64);
965 /* Function for determing whether guest cp register reads and writes should
966 * access the secure or non-secure bank of a cp register. When EL3 is
967 * operating in AArch32 state, the NS-bit determines whether the secure
968 * instance of a cp register should be used. When EL3 is AArch64 (or if
969 * it doesn't exist at all) then there is no register banking, and all
970 * accesses are to the non-secure version.
972 static inline bool access_secure_reg(CPUARMState *env)
974 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
975 !arm_el_is_aa64(env, 3) &&
976 !(env->cp15.scr_el3 & SCR_NS));
978 return ret;
981 /* Macros for accessing a specified CP register bank */
982 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
983 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
985 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
986 do { \
987 if (_secure) { \
988 (_env)->cp15._regname##_s = (_val); \
989 } else { \
990 (_env)->cp15._regname##_ns = (_val); \
992 } while (0)
994 /* Macros for automatically accessing a specific CP register bank depending on
995 * the current secure state of the system. These macros are not intended for
996 * supporting instruction translation reads/writes as these are dependent
997 * solely on the SCR.NS bit and not the mode.
999 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1000 A32_BANKED_REG_GET((_env), _regname, \
1001 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1003 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1004 A32_BANKED_REG_SET((_env), _regname, \
1005 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1006 (_val))
1008 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1009 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
1011 /* Interface between CPU and Interrupt controller. */
1012 void armv7m_nvic_set_pending(void *opaque, int irq);
1013 int armv7m_nvic_acknowledge_irq(void *opaque);
1014 void armv7m_nvic_complete_irq(void *opaque, int irq);
1016 /* Interface for defining coprocessor registers.
1017 * Registers are defined in tables of arm_cp_reginfo structs
1018 * which are passed to define_arm_cp_regs().
1021 /* When looking up a coprocessor register we look for it
1022 * via an integer which encodes all of:
1023 * coprocessor number
1024 * Crn, Crm, opc1, opc2 fields
1025 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1026 * or via MRRC/MCRR?)
1027 * non-secure/secure bank (AArch32 only)
1028 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1029 * (In this case crn and opc2 should be zero.)
1030 * For AArch64, there is no 32/64 bit size distinction;
1031 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1032 * and 4 bit CRn and CRm. The encoding patterns are chosen
1033 * to be easy to convert to and from the KVM encodings, and also
1034 * so that the hashtable can contain both AArch32 and AArch64
1035 * registers (to allow for interprocessing where we might run
1036 * 32 bit code on a 64 bit core).
1038 /* This bit is private to our hashtable cpreg; in KVM register
1039 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1040 * in the upper bits of the 64 bit ID.
1042 #define CP_REG_AA64_SHIFT 28
1043 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1045 /* To enable banking of coprocessor registers depending on ns-bit we
1046 * add a bit to distinguish between secure and non-secure cpregs in the
1047 * hashtable.
1049 #define CP_REG_NS_SHIFT 29
1050 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1052 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1053 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1054 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1056 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1057 (CP_REG_AA64_MASK | \
1058 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1059 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1060 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1061 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1062 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1063 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1065 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1066 * version used as a key for the coprocessor register hashtable
1068 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1070 uint32_t cpregid = kvmid;
1071 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1072 cpregid |= CP_REG_AA64_MASK;
1073 } else {
1074 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1075 cpregid |= (1 << 15);
1078 /* KVM is always non-secure so add the NS flag on AArch32 register
1079 * entries.
1081 cpregid |= 1 << CP_REG_NS_SHIFT;
1083 return cpregid;
1086 /* Convert a truncated 32 bit hashtable key into the full
1087 * 64 bit KVM register ID.
1089 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1091 uint64_t kvmid;
1093 if (cpregid & CP_REG_AA64_MASK) {
1094 kvmid = cpregid & ~CP_REG_AA64_MASK;
1095 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1096 } else {
1097 kvmid = cpregid & ~(1 << 15);
1098 if (cpregid & (1 << 15)) {
1099 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1100 } else {
1101 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1104 return kvmid;
1107 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1108 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1109 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1110 * TCG can assume the value to be constant (ie load at translate time)
1111 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1112 * indicates that the TB should not be ended after a write to this register
1113 * (the default is that the TB ends after cp writes). OVERRIDE permits
1114 * a register definition to override a previous definition for the
1115 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1116 * old must have the OVERRIDE bit set.
1117 * ALIAS indicates that this register is an alias view of some underlying
1118 * state which is also visible via another register, and that the other
1119 * register is handling migration; registers marked ALIAS will not be migrated
1120 * but may have their state set by syncing of register state from KVM.
1121 * NO_RAW indicates that this register has no underlying state and does not
1122 * support raw access for state saving/loading; it will not be used for either
1123 * migration or KVM state synchronization. (Typically this is for "registers"
1124 * which are actually used as instructions for cache maintenance and so on.)
1125 * IO indicates that this register does I/O and therefore its accesses
1126 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1127 * registers which implement clocks or timers require this.
1129 #define ARM_CP_SPECIAL 1
1130 #define ARM_CP_CONST 2
1131 #define ARM_CP_64BIT 4
1132 #define ARM_CP_SUPPRESS_TB_END 8
1133 #define ARM_CP_OVERRIDE 16
1134 #define ARM_CP_ALIAS 32
1135 #define ARM_CP_IO 64
1136 #define ARM_CP_NO_RAW 128
1137 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1138 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1139 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1140 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1141 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1142 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1143 /* Used only as a terminator for ARMCPRegInfo lists */
1144 #define ARM_CP_SENTINEL 0xffff
1145 /* Mask of only the flag bits in a type field */
1146 #define ARM_CP_FLAG_MASK 0xff
1148 /* Valid values for ARMCPRegInfo state field, indicating which of
1149 * the AArch32 and AArch64 execution states this register is visible in.
1150 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1151 * If the reginfo is declared to be visible in both states then a second
1152 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1153 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1154 * Note that we rely on the values of these enums as we iterate through
1155 * the various states in some places.
1157 enum {
1158 ARM_CP_STATE_AA32 = 0,
1159 ARM_CP_STATE_AA64 = 1,
1160 ARM_CP_STATE_BOTH = 2,
1163 /* ARM CP register secure state flags. These flags identify security state
1164 * attributes for a given CP register entry.
1165 * The existence of both or neither secure and non-secure flags indicates that
1166 * the register has both a secure and non-secure hash entry. A single one of
1167 * these flags causes the register to only be hashed for the specified
1168 * security state.
1169 * Although definitions may have any combination of the S/NS bits, each
1170 * registered entry will only have one to identify whether the entry is secure
1171 * or non-secure.
1173 enum {
1174 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1175 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1178 /* Return true if cptype is a valid type field. This is used to try to
1179 * catch errors where the sentinel has been accidentally left off the end
1180 * of a list of registers.
1182 static inline bool cptype_valid(int cptype)
1184 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1185 || ((cptype & ARM_CP_SPECIAL) &&
1186 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1189 /* Access rights:
1190 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1191 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1192 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1193 * (ie any of the privileged modes in Secure state, or Monitor mode).
1194 * If a register is accessible in one privilege level it's always accessible
1195 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1196 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1197 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1198 * terminology a little and call this PL3.
1199 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1200 * with the ELx exception levels.
1202 * If access permissions for a register are more complex than can be
1203 * described with these bits, then use a laxer set of restrictions, and
1204 * do the more restrictive/complex check inside a helper function.
1206 #define PL3_R 0x80
1207 #define PL3_W 0x40
1208 #define PL2_R (0x20 | PL3_R)
1209 #define PL2_W (0x10 | PL3_W)
1210 #define PL1_R (0x08 | PL2_R)
1211 #define PL1_W (0x04 | PL2_W)
1212 #define PL0_R (0x02 | PL1_R)
1213 #define PL0_W (0x01 | PL1_W)
1215 #define PL3_RW (PL3_R | PL3_W)
1216 #define PL2_RW (PL2_R | PL2_W)
1217 #define PL1_RW (PL1_R | PL1_W)
1218 #define PL0_RW (PL0_R | PL0_W)
1220 /* Return the current Exception Level (as per ARMv8; note that this differs
1221 * from the ARMv7 Privilege Level).
1223 static inline int arm_current_el(CPUARMState *env)
1225 if (arm_feature(env, ARM_FEATURE_M)) {
1226 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1229 if (is_a64(env)) {
1230 return extract32(env->pstate, 2, 2);
1233 switch (env->uncached_cpsr & 0x1f) {
1234 case ARM_CPU_MODE_USR:
1235 return 0;
1236 case ARM_CPU_MODE_HYP:
1237 return 2;
1238 case ARM_CPU_MODE_MON:
1239 return 3;
1240 default:
1241 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1242 /* If EL3 is 32-bit then all secure privileged modes run in
1243 * EL3
1245 return 3;
1248 return 1;
1252 typedef struct ARMCPRegInfo ARMCPRegInfo;
1254 typedef enum CPAccessResult {
1255 /* Access is permitted */
1256 CP_ACCESS_OK = 0,
1257 /* Access fails due to a configurable trap or enable which would
1258 * result in a categorized exception syndrome giving information about
1259 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1260 * 0xc or 0x18).
1262 CP_ACCESS_TRAP = 1,
1263 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1264 * Note that this is not a catch-all case -- the set of cases which may
1265 * result in this failure is specifically defined by the architecture.
1267 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1268 } CPAccessResult;
1270 /* Access functions for coprocessor registers. These cannot fail and
1271 * may not raise exceptions.
1273 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1274 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1275 uint64_t value);
1276 /* Access permission check functions for coprocessor registers. */
1277 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1278 /* Hook function for register reset */
1279 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1281 #define CP_ANY 0xff
1283 /* Definition of an ARM coprocessor register */
1284 struct ARMCPRegInfo {
1285 /* Name of register (useful mainly for debugging, need not be unique) */
1286 const char *name;
1287 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1288 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1289 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1290 * will be decoded to this register. The register read and write
1291 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1292 * used by the program, so it is possible to register a wildcard and
1293 * then behave differently on read/write if necessary.
1294 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1295 * must both be zero.
1296 * For AArch64-visible registers, opc0 is also used.
1297 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1298 * way to distinguish (for KVM's benefit) guest-visible system registers
1299 * from demuxed ones provided to preserve the "no side effects on
1300 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1301 * visible (to match KVM's encoding); cp==0 will be converted to
1302 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1304 uint8_t cp;
1305 uint8_t crn;
1306 uint8_t crm;
1307 uint8_t opc0;
1308 uint8_t opc1;
1309 uint8_t opc2;
1310 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1311 int state;
1312 /* Register type: ARM_CP_* bits/values */
1313 int type;
1314 /* Access rights: PL*_[RW] */
1315 int access;
1316 /* Security state: ARM_CP_SECSTATE_* bits/values */
1317 int secure;
1318 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1319 * this register was defined: can be used to hand data through to the
1320 * register read/write functions, since they are passed the ARMCPRegInfo*.
1322 void *opaque;
1323 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1324 * fieldoffset is non-zero, the reset value of the register.
1326 uint64_t resetvalue;
1327 /* Offset of the field in CPUARMState for this register.
1329 * This is not needed if either:
1330 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1331 * 2. both readfn and writefn are specified
1333 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1335 /* Offsets of the secure and non-secure fields in CPUARMState for the
1336 * register if it is banked. These fields are only used during the static
1337 * registration of a register. During hashing the bank associated
1338 * with a given security state is copied to fieldoffset which is used from
1339 * there on out.
1341 * It is expected that register definitions use either fieldoffset or
1342 * bank_fieldoffsets in the definition but not both. It is also expected
1343 * that both bank offsets are set when defining a banked register. This
1344 * use indicates that a register is banked.
1346 ptrdiff_t bank_fieldoffsets[2];
1348 /* Function for making any access checks for this register in addition to
1349 * those specified by the 'access' permissions bits. If NULL, no extra
1350 * checks required. The access check is performed at runtime, not at
1351 * translate time.
1353 CPAccessFn *accessfn;
1354 /* Function for handling reads of this register. If NULL, then reads
1355 * will be done by loading from the offset into CPUARMState specified
1356 * by fieldoffset.
1358 CPReadFn *readfn;
1359 /* Function for handling writes of this register. If NULL, then writes
1360 * will be done by writing to the offset into CPUARMState specified
1361 * by fieldoffset.
1363 CPWriteFn *writefn;
1364 /* Function for doing a "raw" read; used when we need to copy
1365 * coprocessor state to the kernel for KVM or out for
1366 * migration. This only needs to be provided if there is also a
1367 * readfn and it has side effects (for instance clear-on-read bits).
1369 CPReadFn *raw_readfn;
1370 /* Function for doing a "raw" write; used when we need to copy KVM
1371 * kernel coprocessor state into userspace, or for inbound
1372 * migration. This only needs to be provided if there is also a
1373 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1374 * or similar behaviour.
1376 CPWriteFn *raw_writefn;
1377 /* Function for resetting the register. If NULL, then reset will be done
1378 * by writing resetvalue to the field specified in fieldoffset. If
1379 * fieldoffset is 0 then no reset will be done.
1381 CPResetFn *resetfn;
1384 /* Macros which are lvalues for the field in CPUARMState for the
1385 * ARMCPRegInfo *ri.
1387 #define CPREG_FIELD32(env, ri) \
1388 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1389 #define CPREG_FIELD64(env, ri) \
1390 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1392 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1394 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1395 const ARMCPRegInfo *regs, void *opaque);
1396 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1397 const ARMCPRegInfo *regs, void *opaque);
1398 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1400 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1402 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1404 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1406 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1408 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1409 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1410 uint64_t value);
1411 /* CPReadFn that can be used for read-as-zero behaviour */
1412 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1414 /* CPResetFn that does nothing, for use if no reset is required even
1415 * if fieldoffset is non zero.
1417 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1419 /* Return true if this reginfo struct's field in the cpu state struct
1420 * is 64 bits wide.
1422 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1424 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1427 static inline bool cp_access_ok(int current_el,
1428 const ARMCPRegInfo *ri, int isread)
1430 return (ri->access >> ((current_el * 2) + isread)) & 1;
1434 * write_list_to_cpustate
1435 * @cpu: ARMCPU
1437 * For each register listed in the ARMCPU cpreg_indexes list, write
1438 * its value from the cpreg_values list into the ARMCPUState structure.
1439 * This updates TCG's working data structures from KVM data or
1440 * from incoming migration state.
1442 * Returns: true if all register values were updated correctly,
1443 * false if some register was unknown or could not be written.
1444 * Note that we do not stop early on failure -- we will attempt
1445 * writing all registers in the list.
1447 bool write_list_to_cpustate(ARMCPU *cpu);
1450 * write_cpustate_to_list:
1451 * @cpu: ARMCPU
1453 * For each register listed in the ARMCPU cpreg_indexes list, write
1454 * its value from the ARMCPUState structure into the cpreg_values list.
1455 * This is used to copy info from TCG's working data structures into
1456 * KVM or for outbound migration.
1458 * Returns: true if all register values were read correctly,
1459 * false if some register was unknown or could not be read.
1460 * Note that we do not stop early on failure -- we will attempt
1461 * reading all registers in the list.
1463 bool write_cpustate_to_list(ARMCPU *cpu);
1465 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1466 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1467 conventional cores (ie. Application or Realtime profile). */
1469 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1471 #define ARM_CPUID_TI915T 0x54029152
1472 #define ARM_CPUID_TI925T 0x54029252
1474 #if defined(CONFIG_USER_ONLY)
1475 #define TARGET_PAGE_BITS 12
1476 #else
1477 /* The ARM MMU allows 1k pages. */
1478 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1479 architecture revisions. Maybe a configure option to disable them. */
1480 #define TARGET_PAGE_BITS 10
1481 #endif
1483 #if defined(TARGET_AARCH64)
1484 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1485 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1486 #else
1487 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1488 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1489 #endif
1491 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
1493 CPUARMState *env = cs->env_ptr;
1494 unsigned int cur_el = arm_current_el(env);
1495 unsigned int target_el = arm_excp_target_el(cs, excp_idx);
1496 bool secure = arm_is_secure(env);
1497 uint32_t scr;
1498 uint32_t hcr;
1499 bool pstate_unmasked;
1500 int8_t unmasked = 0;
1502 /* Don't take exceptions if they target a lower EL.
1503 * This check should catch any exceptions that would not be taken but left
1504 * pending.
1506 if (cur_el > target_el) {
1507 return false;
1510 switch (excp_idx) {
1511 case EXCP_FIQ:
1512 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1513 * override the CPSR.F in determining if the exception is masked or
1514 * not. If neither of these are set then we fall back to the CPSR.F
1515 * setting otherwise we further assess the state below.
1517 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1518 scr = (env->cp15.scr_el3 & SCR_FIQ);
1520 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1521 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1522 * set then FIQs can be masked by CPSR.F when non-secure but only
1523 * when FIQs are only routed to EL3.
1525 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1526 pstate_unmasked = !(env->daif & PSTATE_F);
1527 break;
1529 case EXCP_IRQ:
1530 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1531 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1532 * setting has already been taken into consideration when setting the
1533 * target EL, so it does not have a further affect here.
1535 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1536 scr = false;
1537 pstate_unmasked = !(env->daif & PSTATE_I);
1538 break;
1540 case EXCP_VFIQ:
1541 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1542 /* VFIQs are only taken when hypervized and non-secure. */
1543 return false;
1545 return !(env->daif & PSTATE_F);
1546 case EXCP_VIRQ:
1547 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1548 /* VIRQs are only taken when hypervized and non-secure. */
1549 return false;
1551 return !(env->daif & PSTATE_I);
1552 default:
1553 g_assert_not_reached();
1556 /* Use the target EL, current execution state and SCR/HCR settings to
1557 * determine whether the corresponding CPSR bit is used to mask the
1558 * interrupt.
1560 if ((target_el > cur_el) && (target_el != 1)) {
1561 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1562 unmasked = 1;
1566 /* The PSTATE bits only mask the interrupt if we have not overriden the
1567 * ability above.
1569 return unmasked || pstate_unmasked;
1572 static inline CPUARMState *cpu_init(const char *cpu_model)
1574 ARMCPU *cpu = cpu_arm_init(cpu_model);
1575 if (cpu) {
1576 return &cpu->env;
1578 return NULL;
1581 #define cpu_exec cpu_arm_exec
1582 #define cpu_gen_code cpu_arm_gen_code
1583 #define cpu_signal_handler cpu_arm_signal_handler
1584 #define cpu_list arm_cpu_list
1586 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1588 * If EL3 is 64-bit:
1589 * + NonSecure EL1 & 0 stage 1
1590 * + NonSecure EL1 & 0 stage 2
1591 * + NonSecure EL2
1592 * + Secure EL1 & EL0
1593 * + Secure EL3
1594 * If EL3 is 32-bit:
1595 * + NonSecure PL1 & 0 stage 1
1596 * + NonSecure PL1 & 0 stage 2
1597 * + NonSecure PL2
1598 * + Secure PL0 & PL1
1599 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1601 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1602 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1603 * may differ in access permissions even if the VA->PA map is the same
1604 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1605 * translation, which means that we have one mmu_idx that deals with two
1606 * concatenated translation regimes [this sort of combined s1+2 TLB is
1607 * architecturally permitted]
1608 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1609 * handling via the TLB. The only way to do a stage 1 translation without
1610 * the immediate stage 2 translation is via the ATS or AT system insns,
1611 * which can be slow-pathed and always do a page table walk.
1612 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1613 * translation regimes, because they map reasonably well to each other
1614 * and they can't both be active at the same time.
1615 * This gives us the following list of mmu_idx values:
1617 * NS EL0 (aka NS PL0) stage 1+2
1618 * NS EL1 (aka NS PL1) stage 1+2
1619 * NS EL2 (aka NS PL2)
1620 * S EL3 (aka S PL1)
1621 * S EL0 (aka S PL0)
1622 * S EL1 (not used if EL3 is 32 bit)
1623 * NS EL0+1 stage 2
1625 * (The last of these is an mmu_idx because we want to be able to use the TLB
1626 * for the accesses done as part of a stage 1 page table walk, rather than
1627 * having to walk the stage 2 page table over and over.)
1629 * Our enumeration includes at the end some entries which are not "true"
1630 * mmu_idx values in that they don't have corresponding TLBs and are only
1631 * valid for doing slow path page table walks.
1633 * The constant names here are patterned after the general style of the names
1634 * of the AT/ATS operations.
1635 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1637 typedef enum ARMMMUIdx {
1638 ARMMMUIdx_S12NSE0 = 0,
1639 ARMMMUIdx_S12NSE1 = 1,
1640 ARMMMUIdx_S1E2 = 2,
1641 ARMMMUIdx_S1E3 = 3,
1642 ARMMMUIdx_S1SE0 = 4,
1643 ARMMMUIdx_S1SE1 = 5,
1644 ARMMMUIdx_S2NS = 6,
1645 /* Indexes below here don't have TLBs and are used only for AT system
1646 * instructions or for the first stage of an S12 page table walk.
1648 ARMMMUIdx_S1NSE0 = 7,
1649 ARMMMUIdx_S1NSE1 = 8,
1650 } ARMMMUIdx;
1652 #define MMU_USER_IDX 0
1654 /* Return the exception level we're running at if this is our mmu_idx */
1655 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1657 assert(mmu_idx < ARMMMUIdx_S2NS);
1658 return mmu_idx & 3;
1661 /* Determine the current mmu_idx to use for normal loads/stores */
1662 static inline int cpu_mmu_index(CPUARMState *env)
1664 int el = arm_current_el(env);
1666 if (el < 2 && arm_is_secure_below_el3(env)) {
1667 return ARMMMUIdx_S1SE0 + el;
1669 return el;
1672 /* Return the Exception Level targeted by debug exceptions;
1673 * currently always EL1 since we don't implement EL2 or EL3.
1675 static inline int arm_debug_target_el(CPUARMState *env)
1677 return 1;
1680 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1682 if (arm_current_el(env) == arm_debug_target_el(env)) {
1683 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1684 || (env->daif & PSTATE_D)) {
1685 return false;
1688 return true;
1691 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1693 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1694 return aa64_generate_debug_exceptions(env);
1696 return arm_current_el(env) != 2;
1699 /* Return true if debugging exceptions are currently enabled.
1700 * This corresponds to what in ARM ARM pseudocode would be
1701 * if UsingAArch32() then
1702 * return AArch32.GenerateDebugExceptions()
1703 * else
1704 * return AArch64.GenerateDebugExceptions()
1705 * We choose to push the if() down into this function for clarity,
1706 * since the pseudocode has it at all callsites except for the one in
1707 * CheckSoftwareStep(), where it is elided because both branches would
1708 * always return the same value.
1710 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1711 * don't yet implement those exception levels or their associated trap bits.
1713 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1715 if (env->aarch64) {
1716 return aa64_generate_debug_exceptions(env);
1717 } else {
1718 return aa32_generate_debug_exceptions(env);
1722 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1723 * implicitly means this always returns false in pre-v8 CPUs.)
1725 static inline bool arm_singlestep_active(CPUARMState *env)
1727 return extract32(env->cp15.mdscr_el1, 0, 1)
1728 && arm_el_is_aa64(env, arm_debug_target_el(env))
1729 && arm_generate_debug_exceptions(env);
1732 #include "exec/cpu-all.h"
1734 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1735 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1736 * We put flags which are shared between 32 and 64 bit mode at the top
1737 * of the word, and flags which apply to only one mode at the bottom.
1739 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1740 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1741 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1742 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1744 /* Bit usage when in AArch32 state: */
1745 #define ARM_TBFLAG_THUMB_SHIFT 0
1746 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1747 #define ARM_TBFLAG_VECLEN_SHIFT 1
1748 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1749 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1750 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1751 #define ARM_TBFLAG_VFPEN_SHIFT 7
1752 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1753 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1754 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1755 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1756 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1757 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1758 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1759 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1760 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1761 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1762 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1763 /* We store the bottom two bits of the CPAR as TB flags and handle
1764 * checks on the other bits at runtime
1766 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1767 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1768 /* Indicates whether cp register reads and writes by guest code should access
1769 * the secure or nonsecure bank of banked registers; note that this is not
1770 * the same thing as the current security state of the processor!
1772 #define ARM_TBFLAG_NS_SHIFT 22
1773 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1775 /* Bit usage when in AArch64 state */
1776 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1777 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1778 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1779 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1780 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1781 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1783 /* some convenience accessor macros */
1784 #define ARM_TBFLAG_AARCH64_STATE(F) \
1785 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1786 #define ARM_TBFLAG_MMUIDX(F) \
1787 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1788 #define ARM_TBFLAG_THUMB(F) \
1789 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1790 #define ARM_TBFLAG_VECLEN(F) \
1791 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1792 #define ARM_TBFLAG_VECSTRIDE(F) \
1793 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1794 #define ARM_TBFLAG_VFPEN(F) \
1795 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1796 #define ARM_TBFLAG_CONDEXEC(F) \
1797 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1798 #define ARM_TBFLAG_BSWAP_CODE(F) \
1799 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1800 #define ARM_TBFLAG_CPACR_FPEN(F) \
1801 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1802 #define ARM_TBFLAG_SS_ACTIVE(F) \
1803 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1804 #define ARM_TBFLAG_PSTATE_SS(F) \
1805 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1806 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1807 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1808 #define ARM_TBFLAG_AA64_FPEN(F) \
1809 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1810 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1811 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1812 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1813 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1814 #define ARM_TBFLAG_NS(F) \
1815 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1817 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1818 target_ulong *cs_base, int *flags)
1820 int fpen;
1822 if (arm_feature(env, ARM_FEATURE_V6)) {
1823 fpen = extract32(env->cp15.c1_coproc, 20, 2);
1824 } else {
1825 /* CPACR doesn't exist before v6, so VFP is always accessible */
1826 fpen = 3;
1829 if (is_a64(env)) {
1830 *pc = env->pc;
1831 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1832 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1833 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1835 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1836 * states defined in the ARM ARM for software singlestep:
1837 * SS_ACTIVE PSTATE.SS State
1838 * 0 x Inactive (the TB flag for SS is always 0)
1839 * 1 0 Active-pending
1840 * 1 1 Active-not-pending
1842 if (arm_singlestep_active(env)) {
1843 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1844 if (env->pstate & PSTATE_SS) {
1845 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1848 } else {
1849 *pc = env->regs[15];
1850 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1851 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1852 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1853 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1854 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1855 if (!(access_secure_reg(env))) {
1856 *flags |= ARM_TBFLAG_NS_MASK;
1858 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1859 || arm_el_is_aa64(env, 1)) {
1860 *flags |= ARM_TBFLAG_VFPEN_MASK;
1862 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1863 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1865 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1866 * states defined in the ARM ARM for software singlestep:
1867 * SS_ACTIVE PSTATE.SS State
1868 * 0 x Inactive (the TB flag for SS is always 0)
1869 * 1 0 Active-pending
1870 * 1 1 Active-not-pending
1872 if (arm_singlestep_active(env)) {
1873 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1874 if (env->uncached_cpsr & PSTATE_SS) {
1875 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1878 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1879 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1882 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1884 *cs_base = 0;
1887 #include "exec/exec-all.h"
1889 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1891 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1892 env->pc = tb->pc;
1893 } else {
1894 env->regs[15] = tb->pc;
1898 enum {
1899 QEMU_PSCI_CONDUIT_DISABLED = 0,
1900 QEMU_PSCI_CONDUIT_SMC = 1,
1901 QEMU_PSCI_CONDUIT_HVC = 2,
1904 #endif