2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN 0
55 #define RTAS_CHANGE_FN 1
56 #define RTAS_RESET_FN 2
57 #define RTAS_CHANGE_MSI_FN 3
58 #define RTAS_CHANGE_MSIX_FN 4
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI 1
62 #define RTAS_TYPE_MSIX 2
64 sPAPRPHBState
*spapr_pci_find_phb(sPAPRMachineState
*spapr
, uint64_t buid
)
68 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
69 if (sphb
->buid
!= buid
) {
78 PCIDevice
*spapr_pci_find_dev(sPAPRMachineState
*spapr
, uint64_t buid
,
81 sPAPRPHBState
*sphb
= spapr_pci_find_phb(spapr
, buid
);
82 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
83 int bus_num
= (config_addr
>> 16) & 0xFF;
84 int devfn
= (config_addr
>> 8) & 0xFF;
90 return pci_find_device(phb
->bus
, bus_num
, devfn
);
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
95 /* This handles the encoding of extended config space addresses */
96 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
99 static void finish_read_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
100 uint32_t addr
, uint32_t size
,
106 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
107 /* access must be 1, 2 or 4 bytes */
108 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
112 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
113 addr
= rtas_pci_cfgaddr(addr
);
115 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
116 /* Access must be to a valid device, within bounds and
117 * naturally aligned */
118 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
122 val
= pci_host_config_read_common(pci_dev
, addr
,
123 pci_config_size(pci_dev
), size
);
125 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
126 rtas_st(rets
, 1, val
);
129 static void rtas_ibm_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
130 uint32_t token
, uint32_t nargs
,
132 uint32_t nret
, target_ulong rets
)
137 if ((nargs
!= 4) || (nret
!= 2)) {
138 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
142 buid
= rtas_ldq(args
, 1);
143 size
= rtas_ld(args
, 3);
144 addr
= rtas_ld(args
, 0);
146 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
149 static void rtas_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
150 uint32_t token
, uint32_t nargs
,
152 uint32_t nret
, target_ulong rets
)
156 if ((nargs
!= 2) || (nret
!= 2)) {
157 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
161 size
= rtas_ld(args
, 1);
162 addr
= rtas_ld(args
, 0);
164 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
167 static void finish_write_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
168 uint32_t addr
, uint32_t size
,
169 uint32_t val
, target_ulong rets
)
173 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
174 /* access must be 1, 2 or 4 bytes */
175 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
179 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
180 addr
= rtas_pci_cfgaddr(addr
);
182 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
183 /* Access must be to a valid device, within bounds and
184 * naturally aligned */
185 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
189 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
192 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
195 static void rtas_ibm_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
196 uint32_t token
, uint32_t nargs
,
198 uint32_t nret
, target_ulong rets
)
201 uint32_t val
, size
, addr
;
203 if ((nargs
!= 5) || (nret
!= 1)) {
204 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
208 buid
= rtas_ldq(args
, 1);
209 val
= rtas_ld(args
, 4);
210 size
= rtas_ld(args
, 3);
211 addr
= rtas_ld(args
, 0);
213 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
216 static void rtas_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
217 uint32_t token
, uint32_t nargs
,
219 uint32_t nret
, target_ulong rets
)
221 uint32_t val
, size
, addr
;
223 if ((nargs
!= 3) || (nret
!= 1)) {
224 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
229 val
= rtas_ld(args
, 2);
230 size
= rtas_ld(args
, 1);
231 addr
= rtas_ld(args
, 0);
233 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
237 * Set MSI/MSIX message data.
238 * This is required for msi_notify()/msix_notify() which
239 * will write at the addresses via spapr_msi_write().
241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
242 * table will be reset.
244 static void spapr_msi_setmsg(PCIDevice
*pdev
, hwaddr addr
, bool msix
,
245 unsigned first_irq
, unsigned req_num
)
248 MSIMessage msg
= { .address
= addr
, .data
= first_irq
};
251 msi_set_message(pdev
, msg
);
252 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
256 for (i
= 0; i
< req_num
; ++i
) {
257 msix_set_message(pdev
, i
, msg
);
258 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
265 static void rtas_ibm_change_msi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
266 uint32_t token
, uint32_t nargs
,
267 target_ulong args
, uint32_t nret
,
270 uint32_t config_addr
= rtas_ld(args
, 0);
271 uint64_t buid
= rtas_ldq(args
, 1);
272 unsigned int func
= rtas_ld(args
, 3);
273 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
274 unsigned int seq_num
= rtas_ld(args
, 5);
275 unsigned int ret_intr_type
;
276 unsigned int irq
, max_irqs
= 0;
277 sPAPRPHBState
*phb
= NULL
;
278 PCIDevice
*pdev
= NULL
;
280 int *config_addr_key
;
284 case RTAS_CHANGE_MSI_FN
:
286 ret_intr_type
= RTAS_TYPE_MSI
;
288 case RTAS_CHANGE_MSIX_FN
:
289 ret_intr_type
= RTAS_TYPE_MSIX
;
292 error_report("rtas_ibm_change_msi(%u) is not implemented", func
);
293 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
297 /* Fins sPAPRPHBState */
298 phb
= spapr_pci_find_phb(spapr
, buid
);
300 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
303 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
307 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
312 trace_spapr_pci_msi("Releasing wrong config", config_addr
);
313 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
317 spapr_irq_free(spapr
, msi
->first_irq
, msi
->num
);
318 if (msi_present(pdev
)) {
319 spapr_msi_setmsg(pdev
, 0, false, 0, 0);
321 if (msix_present(pdev
)) {
322 spapr_msi_setmsg(pdev
, 0, true, 0, 0);
324 g_hash_table_remove(phb
->msi
, &config_addr
);
326 trace_spapr_pci_msi("Released MSIs", config_addr
);
327 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
334 /* Check if the device supports as many IRQs as requested */
335 if (ret_intr_type
== RTAS_TYPE_MSI
) {
336 max_irqs
= msi_nr_vectors_allocated(pdev
);
337 } else if (ret_intr_type
== RTAS_TYPE_MSIX
) {
338 max_irqs
= pdev
->msix_entries_nr
;
341 error_report("Requested interrupt type %d is not enabled for device %x",
342 ret_intr_type
, config_addr
);
343 rtas_st(rets
, 0, -1); /* Hardware error */
346 /* Correct the number if the guest asked for too many */
347 if (req_num
> max_irqs
) {
348 trace_spapr_pci_msi_retry(config_addr
, req_num
, max_irqs
);
350 irq
= 0; /* to avoid misleading trace */
355 irq
= spapr_irq_alloc_block(spapr
, req_num
, false,
356 ret_intr_type
== RTAS_TYPE_MSI
, &err
);
358 error_reportf_err(err
, "Can't allocate MSIs for device %x: ",
360 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
364 /* Release previous MSIs */
366 spapr_irq_free(spapr
, msi
->first_irq
, msi
->num
);
367 g_hash_table_remove(phb
->msi
, &config_addr
);
370 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
371 spapr_msi_setmsg(pdev
, SPAPR_PCI_MSI_WINDOW
, ret_intr_type
== RTAS_TYPE_MSIX
,
374 /* Add MSI device to cache */
375 msi
= g_new(spapr_pci_msi
, 1);
376 msi
->first_irq
= irq
;
378 config_addr_key
= g_new(int, 1);
379 *config_addr_key
= config_addr
;
380 g_hash_table_insert(phb
->msi
, config_addr_key
, msi
);
383 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
384 rtas_st(rets
, 1, req_num
);
385 rtas_st(rets
, 2, ++seq_num
);
387 rtas_st(rets
, 3, ret_intr_type
);
390 trace_spapr_pci_rtas_ibm_change_msi(config_addr
, func
, req_num
, irq
);
393 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU
*cpu
,
394 sPAPRMachineState
*spapr
,
401 uint32_t config_addr
= rtas_ld(args
, 0);
402 uint64_t buid
= rtas_ldq(args
, 1);
403 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
404 sPAPRPHBState
*phb
= NULL
;
405 PCIDevice
*pdev
= NULL
;
408 /* Find sPAPRPHBState */
409 phb
= spapr_pci_find_phb(spapr
, buid
);
411 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
414 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
418 /* Find device descriptor and start IRQ */
419 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
420 if (!msi
|| !msi
->first_irq
|| !msi
->num
|| (ioa_intr_num
>= msi
->num
)) {
421 trace_spapr_pci_msi("Failed to return vector", config_addr
);
422 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
425 intr_src_num
= msi
->first_irq
+ ioa_intr_num
;
426 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
429 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
430 rtas_st(rets
, 1, intr_src_num
);
431 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
434 static void rtas_ibm_set_eeh_option(PowerPCCPU
*cpu
,
435 sPAPRMachineState
*spapr
,
436 uint32_t token
, uint32_t nargs
,
437 target_ulong args
, uint32_t nret
,
441 uint32_t addr
, option
;
445 if ((nargs
!= 4) || (nret
!= 1)) {
446 goto param_error_exit
;
449 buid
= rtas_ldq(args
, 1);
450 addr
= rtas_ld(args
, 0);
451 option
= rtas_ld(args
, 3);
453 sphb
= spapr_pci_find_phb(spapr
, buid
);
455 goto param_error_exit
;
458 if (!spapr_phb_eeh_available(sphb
)) {
459 goto param_error_exit
;
462 ret
= spapr_phb_vfio_eeh_set_option(sphb
, addr
, option
);
463 rtas_st(rets
, 0, ret
);
467 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
470 static void rtas_ibm_get_config_addr_info2(PowerPCCPU
*cpu
,
471 sPAPRMachineState
*spapr
,
472 uint32_t token
, uint32_t nargs
,
473 target_ulong args
, uint32_t nret
,
478 uint32_t addr
, option
;
481 if ((nargs
!= 4) || (nret
!= 2)) {
482 goto param_error_exit
;
485 buid
= rtas_ldq(args
, 1);
486 sphb
= spapr_pci_find_phb(spapr
, buid
);
488 goto param_error_exit
;
491 if (!spapr_phb_eeh_available(sphb
)) {
492 goto param_error_exit
;
496 * We always have PE address of form "00BB0001". "BB"
497 * represents the bus number of PE's primary bus.
499 option
= rtas_ld(args
, 3);
501 case RTAS_GET_PE_ADDR
:
502 addr
= rtas_ld(args
, 0);
503 pdev
= spapr_pci_find_dev(spapr
, buid
, addr
);
505 goto param_error_exit
;
508 rtas_st(rets
, 1, (pci_bus_num(pdev
->bus
) << 16) + 1);
510 case RTAS_GET_PE_MODE
:
511 rtas_st(rets
, 1, RTAS_PE_MODE_SHARED
);
514 goto param_error_exit
;
517 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
521 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
524 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU
*cpu
,
525 sPAPRMachineState
*spapr
,
526 uint32_t token
, uint32_t nargs
,
527 target_ulong args
, uint32_t nret
,
534 if ((nargs
!= 3) || (nret
!= 4 && nret
!= 5)) {
535 goto param_error_exit
;
538 buid
= rtas_ldq(args
, 1);
539 sphb
= spapr_pci_find_phb(spapr
, buid
);
541 goto param_error_exit
;
544 if (!spapr_phb_eeh_available(sphb
)) {
545 goto param_error_exit
;
548 ret
= spapr_phb_vfio_eeh_get_state(sphb
, &state
);
549 rtas_st(rets
, 0, ret
);
550 if (ret
!= RTAS_OUT_SUCCESS
) {
554 rtas_st(rets
, 1, state
);
555 rtas_st(rets
, 2, RTAS_EEH_SUPPORT
);
556 rtas_st(rets
, 3, RTAS_EEH_PE_UNAVAIL_INFO
);
558 rtas_st(rets
, 4, RTAS_EEH_PE_RECOVER_INFO
);
563 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
566 static void rtas_ibm_set_slot_reset(PowerPCCPU
*cpu
,
567 sPAPRMachineState
*spapr
,
568 uint32_t token
, uint32_t nargs
,
569 target_ulong args
, uint32_t nret
,
577 if ((nargs
!= 4) || (nret
!= 1)) {
578 goto param_error_exit
;
581 buid
= rtas_ldq(args
, 1);
582 option
= rtas_ld(args
, 3);
583 sphb
= spapr_pci_find_phb(spapr
, buid
);
585 goto param_error_exit
;
588 if (!spapr_phb_eeh_available(sphb
)) {
589 goto param_error_exit
;
592 ret
= spapr_phb_vfio_eeh_reset(sphb
, option
);
593 rtas_st(rets
, 0, ret
);
597 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
600 static void rtas_ibm_configure_pe(PowerPCCPU
*cpu
,
601 sPAPRMachineState
*spapr
,
602 uint32_t token
, uint32_t nargs
,
603 target_ulong args
, uint32_t nret
,
610 if ((nargs
!= 3) || (nret
!= 1)) {
611 goto param_error_exit
;
614 buid
= rtas_ldq(args
, 1);
615 sphb
= spapr_pci_find_phb(spapr
, buid
);
617 goto param_error_exit
;
620 if (!spapr_phb_eeh_available(sphb
)) {
621 goto param_error_exit
;
624 ret
= spapr_phb_vfio_eeh_configure(sphb
);
625 rtas_st(rets
, 0, ret
);
629 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
632 /* To support it later */
633 static void rtas_ibm_slot_error_detail(PowerPCCPU
*cpu
,
634 sPAPRMachineState
*spapr
,
635 uint32_t token
, uint32_t nargs
,
636 target_ulong args
, uint32_t nret
,
643 if ((nargs
!= 8) || (nret
!= 1)) {
644 goto param_error_exit
;
647 buid
= rtas_ldq(args
, 1);
648 sphb
= spapr_pci_find_phb(spapr
, buid
);
650 goto param_error_exit
;
653 if (!spapr_phb_eeh_available(sphb
)) {
654 goto param_error_exit
;
657 option
= rtas_ld(args
, 7);
659 case RTAS_SLOT_TEMP_ERR_LOG
:
660 case RTAS_SLOT_PERM_ERR_LOG
:
663 goto param_error_exit
;
666 /* We don't have error log yet */
667 rtas_st(rets
, 0, RTAS_OUT_NO_ERRORS_FOUND
);
671 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
674 static int pci_spapr_swizzle(int slot
, int pin
)
676 return (slot
+ pin
) % PCI_NUM_PINS
;
679 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
682 * Here we need to convert pci_dev + irq_num to some unique value
683 * which is less than number of IRQs on the specific bus (4). We
684 * use standard PCI swizzling, that is (slot number + pin number)
687 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
690 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
693 * Here we use the number returned by pci_spapr_map_irq to find a
694 * corresponding qemu_irq.
696 sPAPRPHBState
*phb
= opaque
;
698 trace_spapr_pci_lsi_set(phb
->dtbusname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
699 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
702 static PCIINTxRoute
spapr_route_intx_pin_to_irq(void *opaque
, int pin
)
704 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(opaque
);
707 route
.mode
= PCI_INTX_ENABLED
;
708 route
.irq
= sphb
->lsi_table
[pin
].irq
;
714 * MSI/MSIX memory region implementation.
715 * The handler handles both MSI and MSIX.
716 * The vector number is encoded in least bits in data.
718 static void spapr_msi_write(void *opaque
, hwaddr addr
,
719 uint64_t data
, unsigned size
)
721 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
724 trace_spapr_pci_msi_write(addr
, data
, irq
);
726 qemu_irq_pulse(spapr_qirq(spapr
, irq
));
729 static const MemoryRegionOps spapr_msi_ops
= {
730 /* There is no .read as the read result is undefined by PCI spec */
732 .write
= spapr_msi_write
,
733 .endianness
= DEVICE_LITTLE_ENDIAN
739 static AddressSpace
*spapr_pci_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
741 sPAPRPHBState
*phb
= opaque
;
743 return &phb
->iommu_as
;
746 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
748 char *path
= NULL
, *buf
= NULL
, *host
= NULL
;
750 /* Get the PCI VFIO host id */
751 host
= object_property_get_str(OBJECT(pdev
), "host", NULL
);
756 /* Construct the path of the file that will give us the DT location */
757 path
= g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host
);
759 if (!g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
764 /* Construct and read from host device tree the loc-code */
765 path
= g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf
);
767 if (!g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
777 static char *spapr_phb_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
780 const char *devtype
= "qemu";
781 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
783 if (object_dynamic_cast(OBJECT(pdev
), "vfio-pci")) {
784 buf
= spapr_phb_vfio_get_loc_code(sphb
, pdev
);
791 * For emulated devices and VFIO-failure case, make up
794 buf
= g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
795 devtype
, pdev
->name
, sphb
->index
, busnr
,
796 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
800 /* Macros to operate with address in OF binding to PCI */
801 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
802 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
803 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
804 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
805 #define b_ss(x) b_x((x), 24, 2) /* the space code */
806 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
807 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
808 #define b_fff(x) b_x((x), 8, 3) /* function number */
809 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
811 /* for 'reg'/'assigned-addresses' OF properties */
812 #define RESOURCE_CELLS_SIZE 2
813 #define RESOURCE_CELLS_ADDRESS 3
815 typedef struct ResourceFields
{
821 } QEMU_PACKED ResourceFields
;
823 typedef struct ResourceProps
{
824 ResourceFields reg
[8];
825 ResourceFields assigned
[7];
827 uint32_t assigned_len
;
830 /* fill in the 'reg'/'assigned-resources' OF properties for
831 * a PCI device. 'reg' describes resource requirements for a
832 * device's IO/MEM regions, 'assigned-addresses' describes the
833 * actual resource assignments.
835 * the properties are arrays of ('phys-addr', 'size') pairs describing
836 * the addressable regions of the PCI device, where 'phys-addr' is a
837 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
838 * (phys.hi, phys.mid, phys.lo), and 'size' is a
839 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
841 * phys.hi = 0xYYXXXXZZ, where:
846 * ||| + 00 if configuration space
847 * ||| + 01 if IO region,
848 * ||| + 10 if 32-bit MEM region
849 * ||| + 11 if 64-bit MEM region
851 * ||+------ for non-relocatable IO: 1 if aliased
852 * || for relocatable IO: 1 if below 64KB
853 * || for MEM: 1 if below 1MB
854 * |+------- 1 if region is prefetchable
855 * +-------- 1 if region is non-relocatable
856 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
858 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
861 * phys.mid and phys.lo correspond respectively to the hi/lo portions
862 * of the actual address of the region.
864 * how the phys-addr/size values are used differ slightly between
865 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
866 * an additional description for the config space region of the
867 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
868 * to describe the region as relocatable, with an address-mapping
869 * that corresponds directly to the PHB's address space for the
870 * resource. 'assigned-addresses' always has n=1 set with an absolute
871 * address assigned for the resource. in general, 'assigned-addresses'
872 * won't be populated, since addresses for PCI devices are generally
873 * unmapped initially and left to the guest to assign.
875 * note also that addresses defined in these properties are, at least
876 * for PAPR guests, relative to the PHBs IO/MEM windows, and
877 * correspond directly to the addresses in the BARs.
879 * in accordance with PCI Bus Binding to Open Firmware,
880 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
883 static void populate_resource_props(PCIDevice
*d
, ResourceProps
*rp
)
885 int bus_num
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d
))));
886 uint32_t dev_id
= (b_bbbbbbbb(bus_num
) |
887 b_ddddd(PCI_SLOT(d
->devfn
)) |
888 b_fff(PCI_FUNC(d
->devfn
)));
889 ResourceFields
*reg
, *assigned
;
890 int i
, reg_idx
= 0, assigned_idx
= 0;
892 /* config space region */
893 reg
= &rp
->reg
[reg_idx
++];
894 reg
->phys_hi
= cpu_to_be32(dev_id
);
900 for (i
= 0; i
< PCI_NUM_REGIONS
; i
++) {
901 if (!d
->io_regions
[i
].size
) {
905 reg
= &rp
->reg
[reg_idx
++];
907 reg
->phys_hi
= cpu_to_be32(dev_id
| b_rrrrrrrr(pci_bar(d
, i
)));
908 if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_SPACE_IO
) {
909 reg
->phys_hi
|= cpu_to_be32(b_ss(1));
910 } else if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_MEM_TYPE_64
) {
911 reg
->phys_hi
|= cpu_to_be32(b_ss(3));
913 reg
->phys_hi
|= cpu_to_be32(b_ss(2));
917 reg
->size_hi
= cpu_to_be32(d
->io_regions
[i
].size
>> 32);
918 reg
->size_lo
= cpu_to_be32(d
->io_regions
[i
].size
);
920 if (d
->io_regions
[i
].addr
== PCI_BAR_UNMAPPED
) {
924 assigned
= &rp
->assigned
[assigned_idx
++];
925 assigned
->phys_hi
= cpu_to_be32(reg
->phys_hi
| b_n(1));
926 assigned
->phys_mid
= cpu_to_be32(d
->io_regions
[i
].addr
>> 32);
927 assigned
->phys_lo
= cpu_to_be32(d
->io_regions
[i
].addr
);
928 assigned
->size_hi
= reg
->size_hi
;
929 assigned
->size_lo
= reg
->size_lo
;
932 rp
->reg_len
= reg_idx
* sizeof(ResourceFields
);
933 rp
->assigned_len
= assigned_idx
* sizeof(ResourceFields
);
936 typedef struct PCIClass PCIClass
;
937 typedef struct PCISubClass PCISubClass
;
938 typedef struct PCIIFace PCIIFace
;
948 const PCIIFace
*iface
;
953 const PCISubClass
*subc
;
956 static const PCISubClass undef_subclass
[] = {
957 { PCI_CLASS_NOT_DEFINED_VGA
, "display", NULL
},
958 { 0xFF, NULL
, NULL
},
961 static const PCISubClass mass_subclass
[] = {
962 { PCI_CLASS_STORAGE_SCSI
, "scsi", NULL
},
963 { PCI_CLASS_STORAGE_IDE
, "ide", NULL
},
964 { PCI_CLASS_STORAGE_FLOPPY
, "fdc", NULL
},
965 { PCI_CLASS_STORAGE_IPI
, "ipi", NULL
},
966 { PCI_CLASS_STORAGE_RAID
, "raid", NULL
},
967 { PCI_CLASS_STORAGE_ATA
, "ata", NULL
},
968 { PCI_CLASS_STORAGE_SATA
, "sata", NULL
},
969 { PCI_CLASS_STORAGE_SAS
, "sas", NULL
},
970 { 0xFF, NULL
, NULL
},
973 static const PCISubClass net_subclass
[] = {
974 { PCI_CLASS_NETWORK_ETHERNET
, "ethernet", NULL
},
975 { PCI_CLASS_NETWORK_TOKEN_RING
, "token-ring", NULL
},
976 { PCI_CLASS_NETWORK_FDDI
, "fddi", NULL
},
977 { PCI_CLASS_NETWORK_ATM
, "atm", NULL
},
978 { PCI_CLASS_NETWORK_ISDN
, "isdn", NULL
},
979 { PCI_CLASS_NETWORK_WORLDFIP
, "worldfip", NULL
},
980 { PCI_CLASS_NETWORK_PICMG214
, "picmg", NULL
},
981 { 0xFF, NULL
, NULL
},
984 static const PCISubClass displ_subclass
[] = {
985 { PCI_CLASS_DISPLAY_VGA
, "vga", NULL
},
986 { PCI_CLASS_DISPLAY_XGA
, "xga", NULL
},
987 { PCI_CLASS_DISPLAY_3D
, "3d-controller", NULL
},
988 { 0xFF, NULL
, NULL
},
991 static const PCISubClass media_subclass
[] = {
992 { PCI_CLASS_MULTIMEDIA_VIDEO
, "video", NULL
},
993 { PCI_CLASS_MULTIMEDIA_AUDIO
, "sound", NULL
},
994 { PCI_CLASS_MULTIMEDIA_PHONE
, "telephony", NULL
},
995 { 0xFF, NULL
, NULL
},
998 static const PCISubClass mem_subclass
[] = {
999 { PCI_CLASS_MEMORY_RAM
, "memory", NULL
},
1000 { PCI_CLASS_MEMORY_FLASH
, "flash", NULL
},
1001 { 0xFF, NULL
, NULL
},
1004 static const PCISubClass bridg_subclass
[] = {
1005 { PCI_CLASS_BRIDGE_HOST
, "host", NULL
},
1006 { PCI_CLASS_BRIDGE_ISA
, "isa", NULL
},
1007 { PCI_CLASS_BRIDGE_EISA
, "eisa", NULL
},
1008 { PCI_CLASS_BRIDGE_MC
, "mca", NULL
},
1009 { PCI_CLASS_BRIDGE_PCI
, "pci", NULL
},
1010 { PCI_CLASS_BRIDGE_PCMCIA
, "pcmcia", NULL
},
1011 { PCI_CLASS_BRIDGE_NUBUS
, "nubus", NULL
},
1012 { PCI_CLASS_BRIDGE_CARDBUS
, "cardbus", NULL
},
1013 { PCI_CLASS_BRIDGE_RACEWAY
, "raceway", NULL
},
1014 { PCI_CLASS_BRIDGE_PCI_SEMITP
, "semi-transparent-pci", NULL
},
1015 { PCI_CLASS_BRIDGE_IB_PCI
, "infiniband", NULL
},
1016 { 0xFF, NULL
, NULL
},
1019 static const PCISubClass comm_subclass
[] = {
1020 { PCI_CLASS_COMMUNICATION_SERIAL
, "serial", NULL
},
1021 { PCI_CLASS_COMMUNICATION_PARALLEL
, "parallel", NULL
},
1022 { PCI_CLASS_COMMUNICATION_MULTISERIAL
, "multiport-serial", NULL
},
1023 { PCI_CLASS_COMMUNICATION_MODEM
, "modem", NULL
},
1024 { PCI_CLASS_COMMUNICATION_GPIB
, "gpib", NULL
},
1025 { PCI_CLASS_COMMUNICATION_SC
, "smart-card", NULL
},
1026 { 0xFF, NULL
, NULL
, },
1029 static const PCIIFace pic_iface
[] = {
1030 { PCI_CLASS_SYSTEM_PIC_IOAPIC
, "io-apic" },
1031 { PCI_CLASS_SYSTEM_PIC_IOXAPIC
, "io-xapic" },
1035 static const PCISubClass sys_subclass
[] = {
1036 { PCI_CLASS_SYSTEM_PIC
, "interrupt-controller", pic_iface
},
1037 { PCI_CLASS_SYSTEM_DMA
, "dma-controller", NULL
},
1038 { PCI_CLASS_SYSTEM_TIMER
, "timer", NULL
},
1039 { PCI_CLASS_SYSTEM_RTC
, "rtc", NULL
},
1040 { PCI_CLASS_SYSTEM_PCI_HOTPLUG
, "hot-plug-controller", NULL
},
1041 { PCI_CLASS_SYSTEM_SDHCI
, "sd-host-controller", NULL
},
1042 { 0xFF, NULL
, NULL
},
1045 static const PCISubClass inp_subclass
[] = {
1046 { PCI_CLASS_INPUT_KEYBOARD
, "keyboard", NULL
},
1047 { PCI_CLASS_INPUT_PEN
, "pen", NULL
},
1048 { PCI_CLASS_INPUT_MOUSE
, "mouse", NULL
},
1049 { PCI_CLASS_INPUT_SCANNER
, "scanner", NULL
},
1050 { PCI_CLASS_INPUT_GAMEPORT
, "gameport", NULL
},
1051 { 0xFF, NULL
, NULL
},
1054 static const PCISubClass dock_subclass
[] = {
1055 { PCI_CLASS_DOCKING_GENERIC
, "dock", NULL
},
1056 { 0xFF, NULL
, NULL
},
1059 static const PCISubClass cpu_subclass
[] = {
1060 { PCI_CLASS_PROCESSOR_PENTIUM
, "pentium", NULL
},
1061 { PCI_CLASS_PROCESSOR_POWERPC
, "powerpc", NULL
},
1062 { PCI_CLASS_PROCESSOR_MIPS
, "mips", NULL
},
1063 { PCI_CLASS_PROCESSOR_CO
, "co-processor", NULL
},
1064 { 0xFF, NULL
, NULL
},
1067 static const PCIIFace usb_iface
[] = {
1068 { PCI_CLASS_SERIAL_USB_UHCI
, "usb-uhci" },
1069 { PCI_CLASS_SERIAL_USB_OHCI
, "usb-ohci", },
1070 { PCI_CLASS_SERIAL_USB_EHCI
, "usb-ehci" },
1071 { PCI_CLASS_SERIAL_USB_XHCI
, "usb-xhci" },
1072 { PCI_CLASS_SERIAL_USB_UNKNOWN
, "usb-unknown" },
1073 { PCI_CLASS_SERIAL_USB_DEVICE
, "usb-device" },
1077 static const PCISubClass ser_subclass
[] = {
1078 { PCI_CLASS_SERIAL_FIREWIRE
, "firewire", NULL
},
1079 { PCI_CLASS_SERIAL_ACCESS
, "access-bus", NULL
},
1080 { PCI_CLASS_SERIAL_SSA
, "ssa", NULL
},
1081 { PCI_CLASS_SERIAL_USB
, "usb", usb_iface
},
1082 { PCI_CLASS_SERIAL_FIBER
, "fibre-channel", NULL
},
1083 { PCI_CLASS_SERIAL_SMBUS
, "smb", NULL
},
1084 { PCI_CLASS_SERIAL_IB
, "infiniband", NULL
},
1085 { PCI_CLASS_SERIAL_IPMI
, "ipmi", NULL
},
1086 { PCI_CLASS_SERIAL_SERCOS
, "sercos", NULL
},
1087 { PCI_CLASS_SERIAL_CANBUS
, "canbus", NULL
},
1088 { 0xFF, NULL
, NULL
},
1091 static const PCISubClass wrl_subclass
[] = {
1092 { PCI_CLASS_WIRELESS_IRDA
, "irda", NULL
},
1093 { PCI_CLASS_WIRELESS_CIR
, "consumer-ir", NULL
},
1094 { PCI_CLASS_WIRELESS_RF_CONTROLLER
, "rf-controller", NULL
},
1095 { PCI_CLASS_WIRELESS_BLUETOOTH
, "bluetooth", NULL
},
1096 { PCI_CLASS_WIRELESS_BROADBAND
, "broadband", NULL
},
1097 { 0xFF, NULL
, NULL
},
1100 static const PCISubClass sat_subclass
[] = {
1101 { PCI_CLASS_SATELLITE_TV
, "satellite-tv", NULL
},
1102 { PCI_CLASS_SATELLITE_AUDIO
, "satellite-audio", NULL
},
1103 { PCI_CLASS_SATELLITE_VOICE
, "satellite-voice", NULL
},
1104 { PCI_CLASS_SATELLITE_DATA
, "satellite-data", NULL
},
1105 { 0xFF, NULL
, NULL
},
1108 static const PCISubClass crypt_subclass
[] = {
1109 { PCI_CLASS_CRYPT_NETWORK
, "network-encryption", NULL
},
1110 { PCI_CLASS_CRYPT_ENTERTAINMENT
,
1111 "entertainment-encryption", NULL
},
1112 { 0xFF, NULL
, NULL
},
1115 static const PCISubClass spc_subclass
[] = {
1116 { PCI_CLASS_SP_DPIO
, "dpio", NULL
},
1117 { PCI_CLASS_SP_PERF
, "counter", NULL
},
1118 { PCI_CLASS_SP_SYNCH
, "measurement", NULL
},
1119 { PCI_CLASS_SP_MANAGEMENT
, "management-card", NULL
},
1120 { 0xFF, NULL
, NULL
},
1123 static const PCIClass pci_classes
[] = {
1124 { "legacy-device", undef_subclass
},
1125 { "mass-storage", mass_subclass
},
1126 { "network", net_subclass
},
1127 { "display", displ_subclass
, },
1128 { "multimedia-device", media_subclass
},
1129 { "memory-controller", mem_subclass
},
1130 { "unknown-bridge", bridg_subclass
},
1131 { "communication-controller", comm_subclass
},
1132 { "system-peripheral", sys_subclass
},
1133 { "input-controller", inp_subclass
},
1134 { "docking-station", dock_subclass
},
1135 { "cpu", cpu_subclass
},
1136 { "serial-bus", ser_subclass
},
1137 { "wireless-controller", wrl_subclass
},
1138 { "intelligent-io", NULL
},
1139 { "satellite-device", sat_subclass
},
1140 { "encryption", crypt_subclass
},
1141 { "data-processing-controller", spc_subclass
},
1144 static const char *pci_find_device_name(uint8_t class, uint8_t subclass
,
1147 const PCIClass
*pclass
;
1148 const PCISubClass
*psubclass
;
1149 const PCIIFace
*piface
;
1152 if (class >= ARRAY_SIZE(pci_classes
)) {
1156 pclass
= pci_classes
+ class;
1157 name
= pclass
->name
;
1159 if (pclass
->subc
== NULL
) {
1163 psubclass
= pclass
->subc
;
1164 while ((psubclass
->subclass
& 0xff) != 0xff) {
1165 if ((psubclass
->subclass
& 0xff) == subclass
) {
1166 name
= psubclass
->name
;
1172 piface
= psubclass
->iface
;
1173 if (piface
== NULL
) {
1176 while ((piface
->iface
& 0xff) != 0xff) {
1177 if ((piface
->iface
& 0xff) == iface
) {
1178 name
= piface
->name
;
1187 static gchar
*pci_get_node_name(PCIDevice
*dev
)
1189 int slot
= PCI_SLOT(dev
->devfn
);
1190 int func
= PCI_FUNC(dev
->devfn
);
1191 uint32_t ccode
= pci_default_read_config(dev
, PCI_CLASS_PROG
, 3);
1194 name
= pci_find_device_name((ccode
>> 16) & 0xff, (ccode
>> 8) & 0xff,
1198 return g_strdup_printf("%s@%x,%x", name
, slot
, func
);
1200 return g_strdup_printf("%s@%x", name
, slot
);
1204 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
1207 static void spapr_populate_pci_child_dt(PCIDevice
*dev
, void *fdt
, int offset
,
1208 sPAPRPHBState
*sphb
)
1211 bool is_bridge
= false;
1214 uint32_t drc_index
= spapr_phb_get_pci_drc_index(sphb
, dev
);
1215 uint32_t ccode
= pci_default_read_config(dev
, PCI_CLASS_PROG
, 3);
1216 uint32_t max_msi
, max_msix
;
1218 if (pci_default_read_config(dev
, PCI_HEADER_TYPE
, 1) ==
1219 PCI_HEADER_TYPE_BRIDGE
) {
1223 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1224 _FDT(fdt_setprop_cell(fdt
, offset
, "vendor-id",
1225 pci_default_read_config(dev
, PCI_VENDOR_ID
, 2)));
1226 _FDT(fdt_setprop_cell(fdt
, offset
, "device-id",
1227 pci_default_read_config(dev
, PCI_DEVICE_ID
, 2)));
1228 _FDT(fdt_setprop_cell(fdt
, offset
, "revision-id",
1229 pci_default_read_config(dev
, PCI_REVISION_ID
, 1)));
1230 _FDT(fdt_setprop_cell(fdt
, offset
, "class-code", ccode
));
1231 if (pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)) {
1232 _FDT(fdt_setprop_cell(fdt
, offset
, "interrupts",
1233 pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)));
1237 _FDT(fdt_setprop_cell(fdt
, offset
, "min-grant",
1238 pci_default_read_config(dev
, PCI_MIN_GNT
, 1)));
1239 _FDT(fdt_setprop_cell(fdt
, offset
, "max-latency",
1240 pci_default_read_config(dev
, PCI_MAX_LAT
, 1)));
1243 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)) {
1244 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-id",
1245 pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)));
1248 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)) {
1249 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-vendor-id",
1250 pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)));
1253 _FDT(fdt_setprop_cell(fdt
, offset
, "cache-line-size",
1254 pci_default_read_config(dev
, PCI_CACHE_LINE_SIZE
, 1)));
1256 /* the following fdt cells are masked off the pci status register */
1257 pci_status
= pci_default_read_config(dev
, PCI_STATUS
, 2);
1258 _FDT(fdt_setprop_cell(fdt
, offset
, "devsel-speed",
1259 PCI_STATUS_DEVSEL_MASK
& pci_status
));
1261 if (pci_status
& PCI_STATUS_FAST_BACK
) {
1262 _FDT(fdt_setprop(fdt
, offset
, "fast-back-to-back", NULL
, 0));
1264 if (pci_status
& PCI_STATUS_66MHZ
) {
1265 _FDT(fdt_setprop(fdt
, offset
, "66mhz-capable", NULL
, 0));
1267 if (pci_status
& PCI_STATUS_UDF
) {
1268 _FDT(fdt_setprop(fdt
, offset
, "udf-supported", NULL
, 0));
1271 _FDT(fdt_setprop_string(fdt
, offset
, "name",
1272 pci_find_device_name((ccode
>> 16) & 0xff,
1273 (ccode
>> 8) & 0xff,
1276 buf
= spapr_phb_get_loc_code(sphb
, dev
);
1277 _FDT(fdt_setprop_string(fdt
, offset
, "ibm,loc-code", buf
));
1281 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
));
1284 _FDT(fdt_setprop_cell(fdt
, offset
, "#address-cells",
1285 RESOURCE_CELLS_ADDRESS
));
1286 _FDT(fdt_setprop_cell(fdt
, offset
, "#size-cells",
1287 RESOURCE_CELLS_SIZE
));
1289 max_msi
= msi_nr_vectors_allocated(dev
);
1291 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi", max_msi
));
1293 max_msix
= dev
->msix_entries_nr
;
1295 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi-x", max_msix
));
1298 populate_resource_props(dev
, &rp
);
1299 _FDT(fdt_setprop(fdt
, offset
, "reg", (uint8_t *)rp
.reg
, rp
.reg_len
));
1300 _FDT(fdt_setprop(fdt
, offset
, "assigned-addresses",
1301 (uint8_t *)rp
.assigned
, rp
.assigned_len
));
1303 if (sphb
->pcie_ecs
&& pci_is_express(dev
)) {
1304 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,pci-config-space-type", 0x1));
1308 /* create OF node for pci device and required OF DT properties */
1309 static int spapr_create_pci_child_dt(sPAPRPHBState
*phb
, PCIDevice
*dev
,
1310 void *fdt
, int node_offset
)
1315 nodename
= pci_get_node_name(dev
);
1316 _FDT(offset
= fdt_add_subnode(fdt
, node_offset
, nodename
));
1319 spapr_populate_pci_child_dt(dev
, fdt
, offset
, phb
);
1324 /* Callback to be called during DRC release. */
1325 void spapr_phb_remove_pci_device_cb(DeviceState
*dev
)
1327 /* some version guests do not wait for completion of a device
1328 * cleanup (generally done asynchronously by the kernel) before
1329 * signaling to QEMU that the device is safe, but instead sleep
1330 * for some 'safe' period of time. unfortunately on a busy host
1331 * this sleep isn't guaranteed to be long enough, resulting in
1332 * bad things like IRQ lines being left asserted during final
1333 * device removal. to deal with this we call reset just prior
1334 * to finalizing the device, which will put the device back into
1335 * an 'idle' state, as the device cleanup code expects.
1337 pci_device_reset(PCI_DEVICE(dev
));
1338 object_unparent(OBJECT(dev
));
1341 static sPAPRDRConnector
*spapr_phb_get_pci_func_drc(sPAPRPHBState
*phb
,
1345 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI
,
1346 (phb
->index
<< 16) | (busnr
<< 8) | devfn
);
1349 static sPAPRDRConnector
*spapr_phb_get_pci_drc(sPAPRPHBState
*phb
,
1352 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
1353 return spapr_phb_get_pci_func_drc(phb
, busnr
, pdev
->devfn
);
1356 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
1359 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1365 return spapr_drc_index(drc
);
1368 static void spapr_pci_plug(HotplugHandler
*plug_handler
,
1369 DeviceState
*plugged_dev
, Error
**errp
)
1371 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1372 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1373 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1374 Error
*local_err
= NULL
;
1375 PCIBus
*bus
= PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
)));
1376 uint32_t slotnr
= PCI_SLOT(pdev
->devfn
);
1378 int fdt_start_offset
, fdt_size
;
1380 /* if DR is disabled we don't need to do anything in the case of
1381 * hotplug or coldplug callbacks
1383 if (!phb
->dr_enabled
) {
1384 /* if this is a hotplug operation initiated by the user
1385 * we need to let them know it's not enabled
1387 if (plugged_dev
->hotplugged
) {
1388 error_setg(&local_err
, QERR_BUS_NO_HOTPLUG
,
1389 object_get_typename(OBJECT(phb
)));
1396 /* Following the QEMU convention used for PCIe multifunction
1397 * hotplug, we do not allow functions to be hotplugged to a
1398 * slot that already has function 0 present
1400 if (plugged_dev
->hotplugged
&& bus
->devices
[PCI_DEVFN(slotnr
, 0)] &&
1401 PCI_FUNC(pdev
->devfn
) != 0) {
1402 error_setg(&local_err
, "PCI: slot %d function 0 already ocuppied by %s,"
1403 " additional functions can no longer be exposed to guest.",
1404 slotnr
, bus
->devices
[PCI_DEVFN(slotnr
, 0)]->name
);
1408 fdt
= create_device_tree(&fdt_size
);
1409 fdt_start_offset
= spapr_create_pci_child_dt(phb
, pdev
, fdt
, 0);
1411 spapr_drc_attach(drc
, DEVICE(pdev
), fdt
, fdt_start_offset
, &local_err
);
1416 /* If this is function 0, signal hotplug for all the device functions.
1417 * Otherwise defer sending the hotplug event.
1419 if (!spapr_drc_hotplugged(plugged_dev
)) {
1420 spapr_drc_reset(drc
);
1421 } else if (PCI_FUNC(pdev
->devfn
) == 0) {
1424 for (i
= 0; i
< 8; i
++) {
1425 sPAPRDRConnector
*func_drc
;
1426 sPAPRDRConnectorClass
*func_drck
;
1427 sPAPRDREntitySense state
;
1429 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1430 PCI_DEVFN(slotnr
, i
));
1431 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1432 state
= func_drck
->dr_entity_sense(func_drc
);
1434 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
) {
1435 spapr_hotplug_req_add_by_index(func_drc
);
1442 error_propagate(errp
, local_err
);
1447 static void spapr_pci_unplug_request(HotplugHandler
*plug_handler
,
1448 DeviceState
*plugged_dev
, Error
**errp
)
1450 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1451 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1452 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1454 if (!phb
->dr_enabled
) {
1455 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1456 object_get_typename(OBJECT(phb
)));
1461 g_assert(drc
->dev
== plugged_dev
);
1463 if (!spapr_drc_unplug_requested(drc
)) {
1464 PCIBus
*bus
= PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
)));
1465 uint32_t slotnr
= PCI_SLOT(pdev
->devfn
);
1466 sPAPRDRConnector
*func_drc
;
1467 sPAPRDRConnectorClass
*func_drck
;
1468 sPAPRDREntitySense state
;
1471 /* ensure any other present functions are pending unplug */
1472 if (PCI_FUNC(pdev
->devfn
) == 0) {
1473 for (i
= 1; i
< 8; i
++) {
1474 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1475 PCI_DEVFN(slotnr
, i
));
1476 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1477 state
= func_drck
->dr_entity_sense(func_drc
);
1478 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
1479 && !spapr_drc_unplug_requested(func_drc
)) {
1481 "PCI: slot %d, function %d still present. "
1482 "Must unplug all non-0 functions first.",
1489 spapr_drc_detach(drc
);
1491 /* if this isn't func 0, defer unplug event. otherwise signal removal
1492 * for all present functions
1494 if (PCI_FUNC(pdev
->devfn
) == 0) {
1495 for (i
= 7; i
>= 0; i
--) {
1496 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1497 PCI_DEVFN(slotnr
, i
));
1498 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1499 state
= func_drck
->dr_entity_sense(func_drc
);
1500 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
) {
1501 spapr_hotplug_req_remove_by_index(func_drc
);
1508 static void spapr_phb_realize(DeviceState
*dev
, Error
**errp
)
1510 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1511 * tries to add a sPAPR PHB to a non-pseries machine.
1513 sPAPRMachineState
*spapr
=
1514 (sPAPRMachineState
*) object_dynamic_cast(qdev_get_machine(),
1515 TYPE_SPAPR_MACHINE
);
1516 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
1517 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
1518 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
1522 uint64_t msi_window_size
= 4096;
1523 sPAPRTCETable
*tcet
;
1524 const unsigned windows_supported
=
1525 sphb
->ddw_enabled
? SPAPR_PCI_DMA_MAX_WINDOWS
: 1;
1528 error_setg(errp
, TYPE_SPAPR_PCI_HOST_BRIDGE
" needs a pseries machine");
1532 if (sphb
->index
!= (uint32_t)-1) {
1533 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1534 Error
*local_err
= NULL
;
1536 smc
->phb_placement(spapr
, sphb
->index
,
1537 &sphb
->buid
, &sphb
->io_win_addr
,
1538 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
1539 windows_supported
, sphb
->dma_liobn
, &local_err
);
1541 error_propagate(errp
, local_err
);
1545 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
1549 if (sphb
->mem64_win_size
!= 0) {
1550 if (sphb
->mem_win_size
> SPAPR_PCI_MEM32_WIN_SIZE
) {
1551 error_setg(errp
, "32-bit memory window of size 0x%"HWADDR_PRIx
1552 " (max 2 GiB)", sphb
->mem_win_size
);
1556 /* 64-bit window defaults to identity mapping */
1557 sphb
->mem64_win_pciaddr
= sphb
->mem64_win_addr
;
1558 } else if (sphb
->mem_win_size
> SPAPR_PCI_MEM32_WIN_SIZE
) {
1560 * For compatibility with old configuration, if no 64-bit MMIO
1561 * window is specified, but the ordinary (32-bit) memory
1562 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1563 * window, with a 64-bit MMIO window following on immediately
1566 sphb
->mem64_win_size
= sphb
->mem_win_size
- SPAPR_PCI_MEM32_WIN_SIZE
;
1567 sphb
->mem64_win_addr
= sphb
->mem_win_addr
+ SPAPR_PCI_MEM32_WIN_SIZE
;
1568 sphb
->mem64_win_pciaddr
=
1569 SPAPR_PCI_MEM_WIN_BUS_OFFSET
+ SPAPR_PCI_MEM32_WIN_SIZE
;
1570 sphb
->mem_win_size
= SPAPR_PCI_MEM32_WIN_SIZE
;
1573 if (spapr_pci_find_phb(spapr
, sphb
->buid
)) {
1574 error_setg(errp
, "PCI host bridges must have unique BUIDs");
1578 if (sphb
->numa_node
!= -1 &&
1579 (sphb
->numa_node
>= MAX_NODES
|| !numa_info
[sphb
->numa_node
].present
)) {
1580 error_setg(errp
, "Invalid NUMA node ID for PCI host bridge");
1584 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
1586 /* Initialize memory regions */
1587 namebuf
= g_strdup_printf("%s.mmio", sphb
->dtbusname
);
1588 memory_region_init(&sphb
->memspace
, OBJECT(sphb
), namebuf
, UINT64_MAX
);
1591 namebuf
= g_strdup_printf("%s.mmio32-alias", sphb
->dtbusname
);
1592 memory_region_init_alias(&sphb
->mem32window
, OBJECT(sphb
),
1593 namebuf
, &sphb
->memspace
,
1594 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
1596 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
1597 &sphb
->mem32window
);
1599 if (sphb
->mem64_win_size
!= 0) {
1600 namebuf
= g_strdup_printf("%s.mmio64-alias", sphb
->dtbusname
);
1601 memory_region_init_alias(&sphb
->mem64window
, OBJECT(sphb
),
1602 namebuf
, &sphb
->memspace
,
1603 sphb
->mem64_win_pciaddr
, sphb
->mem64_win_size
);
1606 memory_region_add_subregion(get_system_memory(),
1607 sphb
->mem64_win_addr
,
1608 &sphb
->mem64window
);
1611 /* Initialize IO regions */
1612 namebuf
= g_strdup_printf("%s.io", sphb
->dtbusname
);
1613 memory_region_init(&sphb
->iospace
, OBJECT(sphb
),
1614 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
1617 namebuf
= g_strdup_printf("%s.io-alias", sphb
->dtbusname
);
1618 memory_region_init_alias(&sphb
->iowindow
, OBJECT(sphb
), namebuf
,
1619 &sphb
->iospace
, 0, SPAPR_PCI_IO_WIN_SIZE
);
1621 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
1624 bus
= pci_register_bus(dev
, NULL
,
1625 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
1626 &sphb
->memspace
, &sphb
->iospace
,
1627 PCI_DEVFN(0, 0), PCI_NUM_PINS
, TYPE_PCI_BUS
);
1629 qbus_set_hotplug_handler(BUS(phb
->bus
), DEVICE(sphb
), NULL
);
1632 * Initialize PHB address space.
1633 * By default there will be at least one subregion for default
1635 * Later the guest might want to create another DMA window
1636 * which will become another memory subregion.
1638 namebuf
= g_strdup_printf("%s.iommu-root", sphb
->dtbusname
);
1639 memory_region_init(&sphb
->iommu_root
, OBJECT(sphb
),
1640 namebuf
, UINT64_MAX
);
1642 address_space_init(&sphb
->iommu_as
, &sphb
->iommu_root
,
1646 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1647 * we need to allocate some memory to catch those writes coming
1648 * from msi_notify()/msix_notify().
1649 * As MSIMessage:addr is going to be the same and MSIMessage:data
1650 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1653 * For KVM we want to ensure that this memory is a full page so that
1654 * our memory slot is of page size granularity.
1657 if (kvm_enabled()) {
1658 msi_window_size
= getpagesize();
1662 memory_region_init_io(&sphb
->msiwindow
, OBJECT(sphb
), &spapr_msi_ops
, spapr
,
1663 "msi", msi_window_size
);
1664 memory_region_add_subregion(&sphb
->iommu_root
, SPAPR_PCI_MSI_WINDOW
,
1667 pci_setup_iommu(bus
, spapr_pci_dma_iommu
, sphb
);
1669 pci_bus_set_route_irq_fn(bus
, spapr_route_intx_pin_to_irq
);
1671 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
1673 /* Initialize the LSI table */
1674 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
1676 Error
*local_err
= NULL
;
1678 irq
= spapr_irq_alloc_block(spapr
, 1, true, false, &local_err
);
1680 error_propagate(errp
, local_err
);
1681 error_prepend(errp
, "can't allocate LSIs: ");
1685 sphb
->lsi_table
[i
].irq
= irq
;
1688 /* allocate connectors for child PCI devices */
1689 if (sphb
->dr_enabled
) {
1690 for (i
= 0; i
< PCI_SLOT_MAX
* 8; i
++) {
1691 spapr_dr_connector_new(OBJECT(phb
), TYPE_SPAPR_DRC_PCI
,
1692 (sphb
->index
<< 16) | i
);
1697 if (((sphb
->page_size_mask
& qemu_getrampagesize()) == 0)
1699 warn_report("System page size 0x%lx is not enabled in page_size_mask "
1700 "(0x%"PRIx64
"). Performance may be slow",
1701 qemu_getrampagesize(), sphb
->page_size_mask
);
1704 for (i
= 0; i
< windows_supported
; ++i
) {
1705 tcet
= spapr_tce_new_table(DEVICE(sphb
), sphb
->dma_liobn
[i
]);
1707 error_setg(errp
, "Creating window#%d failed for %s",
1708 i
, sphb
->dtbusname
);
1711 memory_region_add_subregion(&sphb
->iommu_root
, 0,
1712 spapr_tce_get_iommu(tcet
));
1715 sphb
->msi
= g_hash_table_new_full(g_int_hash
, g_int_equal
, g_free
, g_free
);
1718 static int spapr_phb_children_reset(Object
*child
, void *opaque
)
1720 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(child
, TYPE_DEVICE
);
1729 void spapr_phb_dma_reset(sPAPRPHBState
*sphb
)
1732 sPAPRTCETable
*tcet
;
1734 for (i
= 0; i
< SPAPR_PCI_DMA_MAX_WINDOWS
; ++i
) {
1735 tcet
= spapr_tce_find_by_liobn(sphb
->dma_liobn
[i
]);
1737 if (tcet
&& tcet
->nb_table
) {
1738 spapr_tce_table_disable(tcet
);
1742 /* Register default 32bit DMA window */
1743 tcet
= spapr_tce_find_by_liobn(sphb
->dma_liobn
[0]);
1744 spapr_tce_table_enable(tcet
, SPAPR_TCE_PAGE_SHIFT
, sphb
->dma_win_addr
,
1745 sphb
->dma_win_size
>> SPAPR_TCE_PAGE_SHIFT
);
1748 static void spapr_phb_reset(DeviceState
*qdev
)
1750 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(qdev
);
1752 spapr_phb_dma_reset(sphb
);
1754 /* Reset the IOMMU state */
1755 object_child_foreach(OBJECT(qdev
), spapr_phb_children_reset
, NULL
);
1757 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev
))) {
1758 spapr_phb_vfio_reset(qdev
);
1762 static Property spapr_phb_properties
[] = {
1763 DEFINE_PROP_UINT32("index", sPAPRPHBState
, index
, -1),
1764 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState
, mem_win_size
,
1765 SPAPR_PCI_MEM32_WIN_SIZE
),
1766 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState
, mem64_win_size
,
1767 SPAPR_PCI_MEM64_WIN_SIZE
),
1768 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState
, io_win_size
,
1769 SPAPR_PCI_IO_WIN_SIZE
),
1770 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState
, dr_enabled
,
1772 /* Default DMA window is 0..1GB */
1773 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState
, dma_win_addr
, 0),
1774 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState
, dma_win_size
, 0x40000000),
1775 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState
, dma64_win_addr
,
1776 0x800000000000000ULL
),
1777 DEFINE_PROP_BOOL("ddw", sPAPRPHBState
, ddw_enabled
, true),
1778 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState
, page_size_mask
,
1779 (1ULL << 12) | (1ULL << 16)),
1780 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState
, numa_node
, -1),
1781 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState
,
1782 pre_2_8_migration
, false),
1783 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState
,
1785 DEFINE_PROP_END_OF_LIST(),
1788 static const VMStateDescription vmstate_spapr_pci_lsi
= {
1789 .name
= "spapr_pci/lsi",
1791 .minimum_version_id
= 1,
1792 .fields
= (VMStateField
[]) {
1793 VMSTATE_UINT32_EQUAL(irq
, struct spapr_pci_lsi
, NULL
),
1795 VMSTATE_END_OF_LIST()
1799 static const VMStateDescription vmstate_spapr_pci_msi
= {
1800 .name
= "spapr_pci/msi",
1802 .minimum_version_id
= 1,
1803 .fields
= (VMStateField
[]) {
1804 VMSTATE_UINT32(key
, spapr_pci_msi_mig
),
1805 VMSTATE_UINT32(value
.first_irq
, spapr_pci_msi_mig
),
1806 VMSTATE_UINT32(value
.num
, spapr_pci_msi_mig
),
1807 VMSTATE_END_OF_LIST()
1811 static int spapr_pci_pre_save(void *opaque
)
1813 sPAPRPHBState
*sphb
= opaque
;
1814 GHashTableIter iter
;
1815 gpointer key
, value
;
1818 if (sphb
->pre_2_8_migration
) {
1819 sphb
->mig_liobn
= sphb
->dma_liobn
[0];
1820 sphb
->mig_mem_win_addr
= sphb
->mem_win_addr
;
1821 sphb
->mig_mem_win_size
= sphb
->mem_win_size
;
1822 sphb
->mig_io_win_addr
= sphb
->io_win_addr
;
1823 sphb
->mig_io_win_size
= sphb
->io_win_size
;
1825 if ((sphb
->mem64_win_size
!= 0)
1826 && (sphb
->mem64_win_addr
1827 == (sphb
->mem_win_addr
+ sphb
->mem_win_size
))) {
1828 sphb
->mig_mem_win_size
+= sphb
->mem64_win_size
;
1832 g_free(sphb
->msi_devs
);
1833 sphb
->msi_devs
= NULL
;
1834 sphb
->msi_devs_num
= g_hash_table_size(sphb
->msi
);
1835 if (!sphb
->msi_devs_num
) {
1838 sphb
->msi_devs
= g_malloc(sphb
->msi_devs_num
* sizeof(spapr_pci_msi_mig
));
1840 g_hash_table_iter_init(&iter
, sphb
->msi
);
1841 for (i
= 0; g_hash_table_iter_next(&iter
, &key
, &value
); ++i
) {
1842 sphb
->msi_devs
[i
].key
= *(uint32_t *) key
;
1843 sphb
->msi_devs
[i
].value
= *(spapr_pci_msi
*) value
;
1849 static int spapr_pci_post_load(void *opaque
, int version_id
)
1851 sPAPRPHBState
*sphb
= opaque
;
1852 gpointer key
, value
;
1855 for (i
= 0; i
< sphb
->msi_devs_num
; ++i
) {
1856 key
= g_memdup(&sphb
->msi_devs
[i
].key
,
1857 sizeof(sphb
->msi_devs
[i
].key
));
1858 value
= g_memdup(&sphb
->msi_devs
[i
].value
,
1859 sizeof(sphb
->msi_devs
[i
].value
));
1860 g_hash_table_insert(sphb
->msi
, key
, value
);
1862 g_free(sphb
->msi_devs
);
1863 sphb
->msi_devs
= NULL
;
1864 sphb
->msi_devs_num
= 0;
1869 static bool pre_2_8_migration(void *opaque
, int version_id
)
1871 sPAPRPHBState
*sphb
= opaque
;
1873 return sphb
->pre_2_8_migration
;
1876 static const VMStateDescription vmstate_spapr_pci
= {
1877 .name
= "spapr_pci",
1879 .minimum_version_id
= 2,
1880 .pre_save
= spapr_pci_pre_save
,
1881 .post_load
= spapr_pci_post_load
,
1882 .fields
= (VMStateField
[]) {
1883 VMSTATE_UINT64_EQUAL(buid
, sPAPRPHBState
, NULL
),
1884 VMSTATE_UINT32_TEST(mig_liobn
, sPAPRPHBState
, pre_2_8_migration
),
1885 VMSTATE_UINT64_TEST(mig_mem_win_addr
, sPAPRPHBState
, pre_2_8_migration
),
1886 VMSTATE_UINT64_TEST(mig_mem_win_size
, sPAPRPHBState
, pre_2_8_migration
),
1887 VMSTATE_UINT64_TEST(mig_io_win_addr
, sPAPRPHBState
, pre_2_8_migration
),
1888 VMSTATE_UINT64_TEST(mig_io_win_size
, sPAPRPHBState
, pre_2_8_migration
),
1889 VMSTATE_STRUCT_ARRAY(lsi_table
, sPAPRPHBState
, PCI_NUM_PINS
, 0,
1890 vmstate_spapr_pci_lsi
, struct spapr_pci_lsi
),
1891 VMSTATE_INT32(msi_devs_num
, sPAPRPHBState
),
1892 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs
, sPAPRPHBState
, msi_devs_num
, 0,
1893 vmstate_spapr_pci_msi
, spapr_pci_msi_mig
),
1894 VMSTATE_END_OF_LIST()
1898 static const char *spapr_phb_root_bus_path(PCIHostState
*host_bridge
,
1901 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(host_bridge
);
1903 return sphb
->dtbusname
;
1906 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
1908 PCIHostBridgeClass
*hc
= PCI_HOST_BRIDGE_CLASS(klass
);
1909 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1910 HotplugHandlerClass
*hp
= HOTPLUG_HANDLER_CLASS(klass
);
1912 hc
->root_bus_path
= spapr_phb_root_bus_path
;
1913 dc
->realize
= spapr_phb_realize
;
1914 dc
->props
= spapr_phb_properties
;
1915 dc
->reset
= spapr_phb_reset
;
1916 dc
->vmsd
= &vmstate_spapr_pci
;
1917 /* Supported by TYPE_SPAPR_MACHINE */
1918 dc
->user_creatable
= true;
1919 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1920 hp
->plug
= spapr_pci_plug
;
1921 hp
->unplug_request
= spapr_pci_unplug_request
;
1924 static const TypeInfo spapr_phb_info
= {
1925 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
1926 .parent
= TYPE_PCI_HOST_BRIDGE
,
1927 .instance_size
= sizeof(sPAPRPHBState
),
1928 .class_init
= spapr_phb_class_init
,
1929 .interfaces
= (InterfaceInfo
[]) {
1930 { TYPE_HOTPLUG_HANDLER
},
1935 PCIHostState
*spapr_create_phb(sPAPRMachineState
*spapr
, int index
)
1939 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
1940 qdev_prop_set_uint32(dev
, "index", index
);
1941 qdev_init_nofail(dev
);
1943 return PCI_HOST_BRIDGE(dev
);
1946 typedef struct sPAPRFDT
{
1949 sPAPRPHBState
*sphb
;
1952 static void spapr_populate_pci_devices_dt(PCIBus
*bus
, PCIDevice
*pdev
,
1956 sPAPRFDT
*p
= opaque
;
1960 offset
= spapr_create_pci_child_dt(p
->sphb
, pdev
, p
->fdt
, p
->node_off
);
1962 error_report("Failed to create pci child device tree node");
1966 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1967 PCI_HEADER_TYPE_BRIDGE
)) {
1971 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
1977 s_fdt
.node_off
= offset
;
1978 s_fdt
.sphb
= p
->sphb
;
1979 pci_for_each_device_reverse(sec_bus
, pci_bus_num(sec_bus
),
1980 spapr_populate_pci_devices_dt
,
1984 static void spapr_phb_pci_enumerate_bridge(PCIBus
*bus
, PCIDevice
*pdev
,
1987 unsigned int *bus_no
= opaque
;
1988 unsigned int primary
= *bus_no
;
1989 unsigned int subordinate
= 0xff;
1990 PCIBus
*sec_bus
= NULL
;
1992 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1993 PCI_HEADER_TYPE_BRIDGE
)) {
1998 pci_default_write_config(pdev
, PCI_PRIMARY_BUS
, primary
, 1);
1999 pci_default_write_config(pdev
, PCI_SECONDARY_BUS
, *bus_no
, 1);
2000 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
2002 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
2007 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, subordinate
, 1);
2008 pci_for_each_device(sec_bus
, pci_bus_num(sec_bus
),
2009 spapr_phb_pci_enumerate_bridge
, bus_no
);
2010 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
2013 static void spapr_phb_pci_enumerate(sPAPRPHBState
*phb
)
2015 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
2016 unsigned int bus_no
= 0;
2018 pci_for_each_device(bus
, pci_bus_num(bus
),
2019 spapr_phb_pci_enumerate_bridge
,
2024 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
2025 uint32_t xics_phandle
,
2028 int bus_off
, i
, j
, ret
;
2030 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2036 } QEMU_PACKED ranges
[] = {
2038 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2039 cpu_to_be64(phb
->io_win_addr
),
2040 cpu_to_be64(memory_region_size(&phb
->iospace
)),
2043 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
2044 cpu_to_be64(phb
->mem_win_addr
),
2045 cpu_to_be64(phb
->mem_win_size
),
2048 cpu_to_be32(b_ss(3)), cpu_to_be64(phb
->mem64_win_pciaddr
),
2049 cpu_to_be64(phb
->mem64_win_addr
),
2050 cpu_to_be64(phb
->mem64_win_size
),
2053 const unsigned sizeof_ranges
=
2054 (phb
->mem64_win_size
? 3 : 2) * sizeof(ranges
[0]);
2055 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
2056 uint32_t interrupt_map_mask
[] = {
2057 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2058 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
2059 uint32_t ddw_applicable
[] = {
2060 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW
),
2061 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW
),
2062 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW
)
2064 uint32_t ddw_extensions
[] = {
2066 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW
)
2068 uint32_t associativity
[] = {cpu_to_be32(0x4),
2072 cpu_to_be32(phb
->numa_node
)};
2073 sPAPRTCETable
*tcet
;
2074 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
2077 /* Start populating the FDT */
2078 nodename
= g_strdup_printf("pci@%" PRIx64
, phb
->buid
);
2079 _FDT(bus_off
= fdt_add_subnode(fdt
, 0, nodename
));
2082 /* Write PHB properties */
2083 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
2084 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
2085 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
2086 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
2087 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
2088 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
2089 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
2090 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof_ranges
));
2091 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
2092 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
2093 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pe-total-#msi", XICS_IRQS_SPAPR
));
2095 /* Dynamic DMA window */
2096 if (phb
->ddw_enabled
) {
2097 _FDT(fdt_setprop(fdt
, bus_off
, "ibm,ddw-applicable", &ddw_applicable
,
2098 sizeof(ddw_applicable
)));
2099 _FDT(fdt_setprop(fdt
, bus_off
, "ibm,ddw-extensions",
2100 &ddw_extensions
, sizeof(ddw_extensions
)));
2103 /* Advertise NUMA via ibm,associativity */
2104 if (phb
->numa_node
!= -1) {
2105 _FDT(fdt_setprop(fdt
, bus_off
, "ibm,associativity", associativity
,
2106 sizeof(associativity
)));
2109 /* Build the interrupt-map, this must matches what is done
2110 * in pci_spapr_map_irq
2112 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
2113 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
2114 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
2115 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
2116 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
2117 int lsi_num
= pci_spapr_swizzle(i
, j
);
2119 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
2122 irqmap
[3] = cpu_to_be32(j
+1);
2123 irqmap
[4] = cpu_to_be32(xics_phandle
);
2124 spapr_dt_xics_irq(&irqmap
[5], phb
->lsi_table
[lsi_num
].irq
, true);
2127 /* Write interrupt map */
2128 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
2129 sizeof(interrupt_map
)));
2131 tcet
= spapr_tce_find_by_liobn(phb
->dma_liobn
[0]);
2135 spapr_dma_dt(fdt
, bus_off
, "ibm,dma-window",
2136 tcet
->liobn
, tcet
->bus_offset
,
2137 tcet
->nb_table
<< tcet
->page_shift
);
2139 /* Walk the bridges and program the bus numbers*/
2140 spapr_phb_pci_enumerate(phb
);
2141 _FDT(fdt_setprop_cell(fdt
, bus_off
, "qemu,phb-enumerated", 0x1));
2143 /* Populate tree nodes with PCI devices attached */
2145 s_fdt
.node_off
= bus_off
;
2147 pci_for_each_device_reverse(bus
, pci_bus_num(bus
),
2148 spapr_populate_pci_devices_dt
,
2151 ret
= spapr_drc_populate_dt(fdt
, bus_off
, OBJECT(phb
),
2152 SPAPR_DR_CONNECTOR_TYPE_PCI
);
2160 void spapr_pci_rtas_init(void)
2162 spapr_rtas_register(RTAS_READ_PCI_CONFIG
, "read-pci-config",
2163 rtas_read_pci_config
);
2164 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG
, "write-pci-config",
2165 rtas_write_pci_config
);
2166 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG
, "ibm,read-pci-config",
2167 rtas_ibm_read_pci_config
);
2168 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG
, "ibm,write-pci-config",
2169 rtas_ibm_write_pci_config
);
2170 if (msi_nonbroken
) {
2171 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER
,
2172 "ibm,query-interrupt-source-number",
2173 rtas_ibm_query_interrupt_source_number
);
2174 spapr_rtas_register(RTAS_IBM_CHANGE_MSI
, "ibm,change-msi",
2175 rtas_ibm_change_msi
);
2178 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION
,
2179 "ibm,set-eeh-option",
2180 rtas_ibm_set_eeh_option
);
2181 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2
,
2182 "ibm,get-config-addr-info2",
2183 rtas_ibm_get_config_addr_info2
);
2184 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2
,
2185 "ibm,read-slot-reset-state2",
2186 rtas_ibm_read_slot_reset_state2
);
2187 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET
,
2188 "ibm,set-slot-reset",
2189 rtas_ibm_set_slot_reset
);
2190 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE
,
2192 rtas_ibm_configure_pe
);
2193 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL
,
2194 "ibm,slot-error-detail",
2195 rtas_ibm_slot_error_detail
);
2198 static void spapr_pci_register_types(void)
2200 type_register_static(&spapr_phb_info
);
2203 type_init(spapr_pci_register_types
)
2205 static int spapr_switch_one_vga(DeviceState
*dev
, void *opaque
)
2207 bool be
= *(bool *)opaque
;
2209 if (object_dynamic_cast(OBJECT(dev
), "VGA")
2210 || object_dynamic_cast(OBJECT(dev
), "secondary-vga")) {
2211 object_property_set_bool(OBJECT(dev
), be
, "big-endian-framebuffer",
2217 void spapr_pci_switch_vga(bool big_endian
)
2219 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
2220 sPAPRPHBState
*sphb
;
2223 * For backward compatibility with existing guests, we switch
2224 * the endianness of the VGA controller when changing the guest
2227 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
2228 BusState
*bus
= &PCI_HOST_BRIDGE(sphb
)->bus
->qbus
;
2229 qbus_walk_children(bus
, spapr_switch_one_vga
, NULL
, NULL
, NULL
,