s390x/css: provide a dev_path for css devices
[qemu.git] / hw / i386 / kvmvapic.c
blob3bf1ddd97612c55b9b56978f7cd7108ed6157f58
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "exec/exec-all.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/kvm.h"
18 #include "hw/i386/apic_internal.h"
19 #include "hw/sysbus.h"
21 #define VAPIC_IO_PORT 0x7e
23 #define VAPIC_CPU_SHIFT 7
25 #define ROM_BLOCK_SIZE 512
26 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
28 typedef enum VAPICMode {
29 VAPIC_INACTIVE = 0,
30 VAPIC_ACTIVE = 1,
31 VAPIC_STANDBY = 2,
32 } VAPICMode;
34 typedef struct VAPICHandlers {
35 uint32_t set_tpr;
36 uint32_t set_tpr_eax;
37 uint32_t get_tpr[8];
38 uint32_t get_tpr_stack;
39 } QEMU_PACKED VAPICHandlers;
41 typedef struct GuestROMState {
42 char signature[8];
43 uint32_t vaddr;
44 uint32_t fixup_start;
45 uint32_t fixup_end;
46 uint32_t vapic_vaddr;
47 uint32_t vapic_size;
48 uint32_t vcpu_shift;
49 uint32_t real_tpr_addr;
50 VAPICHandlers up;
51 VAPICHandlers mp;
52 } QEMU_PACKED GuestROMState;
54 typedef struct VAPICROMState {
55 SysBusDevice busdev;
56 MemoryRegion io;
57 MemoryRegion rom;
58 uint32_t state;
59 uint32_t rom_state_paddr;
60 uint32_t rom_state_vaddr;
61 uint32_t vapic_paddr;
62 uint32_t real_tpr_addr;
63 GuestROMState rom_state;
64 size_t rom_size;
65 bool rom_mapped_writable;
66 VMChangeStateEntry *vmsentry;
67 } VAPICROMState;
69 #define TYPE_VAPIC "kvmvapic"
70 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
72 #define TPR_INSTR_ABS_MODRM 0x1
73 #define TPR_INSTR_MATCH_MODRM_REG 0x2
75 typedef struct TPRInstruction {
76 uint8_t opcode;
77 uint8_t modrm_reg;
78 unsigned int flags;
79 TPRAccess access;
80 size_t length;
81 off_t addr_offset;
82 } TPRInstruction;
84 /* must be sorted by length, shortest first */
85 static const TPRInstruction tpr_instr[] = {
86 { /* mov abs to eax */
87 .opcode = 0xa1,
88 .access = TPR_ACCESS_READ,
89 .length = 5,
90 .addr_offset = 1,
92 { /* mov eax to abs */
93 .opcode = 0xa3,
94 .access = TPR_ACCESS_WRITE,
95 .length = 5,
96 .addr_offset = 1,
98 { /* mov r32 to r/m32 */
99 .opcode = 0x89,
100 .flags = TPR_INSTR_ABS_MODRM,
101 .access = TPR_ACCESS_WRITE,
102 .length = 6,
103 .addr_offset = 2,
105 { /* mov r/m32 to r32 */
106 .opcode = 0x8b,
107 .flags = TPR_INSTR_ABS_MODRM,
108 .access = TPR_ACCESS_READ,
109 .length = 6,
110 .addr_offset = 2,
112 { /* push r/m32 */
113 .opcode = 0xff,
114 .modrm_reg = 6,
115 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
116 .access = TPR_ACCESS_READ,
117 .length = 6,
118 .addr_offset = 2,
120 { /* mov imm32, r/m32 (c7/0) */
121 .opcode = 0xc7,
122 .modrm_reg = 0,
123 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
124 .access = TPR_ACCESS_WRITE,
125 .length = 10,
126 .addr_offset = 2,
130 static void read_guest_rom_state(VAPICROMState *s)
132 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
133 sizeof(GuestROMState));
136 static void write_guest_rom_state(VAPICROMState *s)
138 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
139 sizeof(GuestROMState));
142 static void update_guest_rom_state(VAPICROMState *s)
144 read_guest_rom_state(s);
146 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
147 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
149 write_guest_rom_state(s);
152 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
154 CPUState *cs = CPU(x86_env_get_cpu(env));
155 hwaddr paddr;
156 target_ulong addr;
158 if (s->state == VAPIC_ACTIVE) {
159 return 0;
162 * If there is no prior TPR access instruction we could analyze (which is
163 * the case after resume from hibernation), we need to scan the possible
164 * virtual address space for the APIC mapping.
166 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
167 paddr = cpu_get_phys_page_debug(cs, addr);
168 if (paddr != APIC_DEFAULT_ADDRESS) {
169 continue;
171 s->real_tpr_addr = addr + 0x80;
172 update_guest_rom_state(s);
173 return 0;
175 return -1;
178 static uint8_t modrm_reg(uint8_t modrm)
180 return (modrm >> 3) & 7;
183 static bool is_abs_modrm(uint8_t modrm)
185 return (modrm & 0xc7) == 0x05;
188 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
190 return opcode[0] == instr->opcode &&
191 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
192 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
193 modrm_reg(opcode[1]) == instr->modrm_reg);
196 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
197 target_ulong *pip, TPRAccess access)
199 CPUState *cs = CPU(cpu);
200 const TPRInstruction *instr;
201 target_ulong ip = *pip;
202 uint8_t opcode[2];
203 uint32_t real_tpr_addr;
204 int i;
206 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
207 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
208 return -1;
212 * Early Windows 2003 SMP initialization contains a
214 * mov imm32, r/m32
216 * instruction that is patched by TPR optimization. The problem is that
217 * RSP, used by the patched instruction, is zero, so the guest gets a
218 * double fault and dies.
220 if (cpu->env.regs[R_ESP] == 0) {
221 return -1;
224 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
226 * KVM without kernel-based TPR access reporting will pass an IP that
227 * points after the accessing instruction. So we need to look backward
228 * to find the reason.
230 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
231 instr = &tpr_instr[i];
232 if (instr->access != access) {
233 continue;
235 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
236 sizeof(opcode), 0) < 0) {
237 return -1;
239 if (opcode_matches(opcode, instr)) {
240 ip -= instr->length;
241 goto instruction_ok;
244 return -1;
245 } else {
246 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
247 return -1;
249 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
250 instr = &tpr_instr[i];
251 if (opcode_matches(opcode, instr)) {
252 goto instruction_ok;
255 return -1;
258 instruction_ok:
260 * Grab the virtual TPR address from the instruction
261 * and update the cached values.
263 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
264 (void *)&real_tpr_addr,
265 sizeof(real_tpr_addr), 0) < 0) {
266 return -1;
268 real_tpr_addr = le32_to_cpu(real_tpr_addr);
269 if ((real_tpr_addr & 0xfff) != 0x80) {
270 return -1;
272 s->real_tpr_addr = real_tpr_addr;
273 update_guest_rom_state(s);
275 *pip = ip;
276 return 0;
279 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
281 CPUState *cs = CPU(x86_env_get_cpu(env));
282 hwaddr paddr;
283 uint32_t rom_state_vaddr;
284 uint32_t pos, patch, offset;
286 /* nothing to do if already activated */
287 if (s->state == VAPIC_ACTIVE) {
288 return 0;
291 /* bail out if ROM init code was not executed (missing ROM?) */
292 if (s->state == VAPIC_INACTIVE) {
293 return -1;
296 /* find out virtual address of the ROM */
297 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
298 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
299 if (paddr == -1) {
300 return -1;
302 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
303 if (paddr != s->rom_state_paddr) {
304 return -1;
306 read_guest_rom_state(s);
307 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
308 return -1;
310 s->rom_state_vaddr = rom_state_vaddr;
312 /* fixup addresses in ROM if needed */
313 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
314 return 0;
316 for (pos = le32_to_cpu(s->rom_state.fixup_start);
317 pos < le32_to_cpu(s->rom_state.fixup_end);
318 pos += 4) {
319 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
320 &offset, sizeof(offset));
321 offset = le32_to_cpu(offset);
322 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
323 patch = le32_to_cpu(patch);
324 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
325 patch = cpu_to_le32(patch);
326 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
328 read_guest_rom_state(s);
329 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
330 le32_to_cpu(s->rom_state.vaddr);
332 return 0;
336 * Tries to read the unique processor number from the Kernel Processor Control
337 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
338 * cannot be accessed or is considered invalid. This also ensures that we are
339 * not patching the wrong guest.
341 static int get_kpcr_number(X86CPU *cpu)
343 CPUX86State *env = &cpu->env;
344 struct kpcr {
345 uint8_t fill1[0x1c];
346 uint32_t self;
347 uint8_t fill2[0x31];
348 uint8_t number;
349 } QEMU_PACKED kpcr;
351 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
352 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
353 kpcr.self != env->segs[R_FS].base) {
354 return -1;
356 return kpcr.number;
359 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
361 int cpu_number = get_kpcr_number(cpu);
362 hwaddr vapic_paddr;
363 static const uint8_t enabled = 1;
365 if (cpu_number < 0) {
366 return -1;
368 vapic_paddr = s->vapic_paddr +
369 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
370 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
371 &enabled, sizeof(enabled));
372 apic_enable_vapic(cpu->apic_state, vapic_paddr);
374 s->state = VAPIC_ACTIVE;
376 return 0;
379 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
381 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
384 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
385 uint32_t target)
387 uint32_t offset;
389 offset = cpu_to_le32(target - ip - 5);
390 patch_byte(cpu, ip, 0xe8); /* call near */
391 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
394 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
396 CPUState *cs = CPU(cpu);
397 CPUX86State *env = &cpu->env;
398 VAPICHandlers *handlers;
399 uint8_t opcode[2];
400 uint32_t imm32 = 0;
401 target_ulong current_pc = 0;
402 target_ulong current_cs_base = 0;
403 uint32_t current_flags = 0;
405 if (smp_cpus == 1) {
406 handlers = &s->rom_state.up;
407 } else {
408 handlers = &s->rom_state.mp;
411 if (!kvm_enabled()) {
412 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
413 &current_flags);
416 pause_all_vcpus();
418 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
420 switch (opcode[0]) {
421 case 0x89: /* mov r32 to r/m32 */
422 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
423 patch_call(s, cpu, ip + 1, handlers->set_tpr);
424 break;
425 case 0x8b: /* mov r/m32 to r32 */
426 patch_byte(cpu, ip, 0x90);
427 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
428 break;
429 case 0xa1: /* mov abs to eax */
430 patch_call(s, cpu, ip, handlers->get_tpr[0]);
431 break;
432 case 0xa3: /* mov eax to abs */
433 patch_call(s, cpu, ip, handlers->set_tpr_eax);
434 break;
435 case 0xc7: /* mov imm32, r/m32 (c7/0) */
436 patch_byte(cpu, ip, 0x68); /* push imm32 */
437 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
438 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
439 patch_call(s, cpu, ip + 5, handlers->set_tpr);
440 break;
441 case 0xff: /* push r/m32 */
442 patch_byte(cpu, ip, 0x50); /* push eax */
443 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
444 break;
445 default:
446 abort();
449 resume_all_vcpus();
451 if (!kvm_enabled()) {
452 tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
453 cpu_loop_exit_noexc(cs);
457 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
458 TPRAccess access)
460 VAPICROMState *s = VAPIC(dev);
461 X86CPU *cpu = X86_CPU(cs);
462 CPUX86State *env = &cpu->env;
464 cpu_synchronize_state(cs);
466 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
467 if (s->state == VAPIC_ACTIVE) {
468 vapic_enable(s, cpu);
470 return;
472 if (update_rom_mapping(s, env, ip) < 0) {
473 return;
475 if (vapic_enable(s, cpu) < 0) {
476 return;
478 patch_instruction(s, cpu, ip);
481 typedef struct VAPICEnableTPRReporting {
482 DeviceState *apic;
483 bool enable;
484 } VAPICEnableTPRReporting;
486 static void vapic_do_enable_tpr_reporting(void *data)
488 VAPICEnableTPRReporting *info = data;
490 apic_enable_tpr_access_reporting(info->apic, info->enable);
493 static void vapic_enable_tpr_reporting(bool enable)
495 VAPICEnableTPRReporting info = {
496 .enable = enable,
498 CPUState *cs;
499 X86CPU *cpu;
501 CPU_FOREACH(cs) {
502 cpu = X86_CPU(cs);
503 info.apic = cpu->apic_state;
504 run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
508 static void vapic_reset(DeviceState *dev)
510 VAPICROMState *s = VAPIC(dev);
512 s->state = VAPIC_INACTIVE;
513 s->rom_state_paddr = 0;
514 vapic_enable_tpr_reporting(false);
518 * Set the IRQ polling hypercalls to the supported variant:
519 * - vmcall if using KVM in-kernel irqchip
520 * - 32-bit VAPIC port write otherwise
522 static int patch_hypercalls(VAPICROMState *s)
524 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
525 static const uint8_t vmcall_pattern[] = { /* vmcall */
526 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
528 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
529 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
531 uint8_t alternates[2];
532 const uint8_t *pattern;
533 const uint8_t *patch;
534 int patches = 0;
535 off_t pos;
536 uint8_t *rom;
538 rom = g_malloc(s->rom_size);
539 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
541 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
542 if (kvm_irqchip_in_kernel()) {
543 pattern = outl_pattern;
544 alternates[0] = outl_pattern[7];
545 alternates[1] = outl_pattern[7];
546 patch = &vmcall_pattern[5];
547 } else {
548 pattern = vmcall_pattern;
549 alternates[0] = vmcall_pattern[7];
550 alternates[1] = 0xd9; /* AMD's VMMCALL */
551 patch = &outl_pattern[5];
553 if (memcmp(rom + pos, pattern, 7) == 0 &&
554 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
555 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
557 * Don't flush the tb here. Under ordinary conditions, the patched
558 * calls are miles away from the current IP. Under malicious
559 * conditions, the guest could trick us to crash.
564 g_free(rom);
566 if (patches != 0 && patches != 2) {
567 return -1;
570 return 0;
574 * For TCG mode or the time KVM honors read-only memory regions, we need to
575 * enable write access to the option ROM so that variables can be updated by
576 * the guest.
578 static int vapic_map_rom_writable(VAPICROMState *s)
580 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
581 MemoryRegionSection section;
582 MemoryRegion *as;
583 size_t rom_size;
584 uint8_t *ram;
586 as = sysbus_address_space(&s->busdev);
588 if (s->rom_mapped_writable) {
589 memory_region_del_subregion(as, &s->rom);
590 object_unparent(OBJECT(&s->rom));
593 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
594 section = memory_region_find(as, 0, 1);
596 /* read ROM size from RAM region */
597 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
598 return -1;
600 ram = memory_region_get_ram_ptr(section.mr);
601 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
602 if (rom_size == 0) {
603 return -1;
605 s->rom_size = rom_size;
607 /* We need to round to avoid creating subpages
608 * from which we cannot run code. */
609 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
610 rom_paddr &= TARGET_PAGE_MASK;
611 rom_size = TARGET_PAGE_ALIGN(rom_size);
613 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
614 rom_paddr, rom_size);
615 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
616 s->rom_mapped_writable = true;
617 memory_region_unref(section.mr);
619 return 0;
622 static int vapic_prepare(VAPICROMState *s)
624 if (vapic_map_rom_writable(s) < 0) {
625 return -1;
628 if (patch_hypercalls(s) < 0) {
629 return -1;
632 vapic_enable_tpr_reporting(true);
634 return 0;
637 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
638 unsigned int size)
640 VAPICROMState *s = opaque;
641 X86CPU *cpu;
642 CPUX86State *env;
643 hwaddr rom_paddr;
645 if (!current_cpu) {
646 return;
649 cpu_synchronize_state(current_cpu);
650 cpu = X86_CPU(current_cpu);
651 env = &cpu->env;
654 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
655 * o 16-bit write access:
656 * Reports the option ROM initialization to the hypervisor. Written
657 * value is the offset of the state structure in the ROM.
658 * o 8-bit write access:
659 * Reactivates the VAPIC after a guest hibernation, i.e. after the
660 * option ROM content has been re-initialized by a guest power cycle.
661 * o 32-bit write access:
662 * Poll for pending IRQs, considering the current VAPIC state.
664 switch (size) {
665 case 2:
666 if (s->state == VAPIC_INACTIVE) {
667 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
668 s->rom_state_paddr = rom_paddr + data;
670 s->state = VAPIC_STANDBY;
672 if (vapic_prepare(s) < 0) {
673 s->state = VAPIC_INACTIVE;
674 s->rom_state_paddr = 0;
675 break;
677 break;
678 case 1:
679 if (kvm_enabled()) {
681 * Disable triggering instruction in ROM by writing a NOP.
683 * We cannot do this in TCG mode as the reported IP is not
684 * accurate.
686 pause_all_vcpus();
687 patch_byte(cpu, env->eip - 2, 0x66);
688 patch_byte(cpu, env->eip - 1, 0x90);
689 resume_all_vcpus();
692 if (s->state == VAPIC_ACTIVE) {
693 break;
695 if (update_rom_mapping(s, env, env->eip) < 0) {
696 break;
698 if (find_real_tpr_addr(s, env) < 0) {
699 break;
701 vapic_enable(s, cpu);
702 break;
703 default:
704 case 4:
705 if (!kvm_irqchip_in_kernel()) {
706 apic_poll_irq(cpu->apic_state);
708 break;
712 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
714 return 0xffffffff;
717 static const MemoryRegionOps vapic_ops = {
718 .write = vapic_write,
719 .read = vapic_read,
720 .endianness = DEVICE_NATIVE_ENDIAN,
723 static void vapic_realize(DeviceState *dev, Error **errp)
725 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
726 VAPICROMState *s = VAPIC(dev);
728 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
729 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
730 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
732 option_rom[nb_option_roms].name = "kvmvapic.bin";
733 option_rom[nb_option_roms].bootindex = -1;
734 nb_option_roms++;
737 static void do_vapic_enable(void *data)
739 VAPICROMState *s = data;
740 X86CPU *cpu = X86_CPU(first_cpu);
742 static const uint8_t enabled = 1;
743 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
744 &enabled, sizeof(enabled));
745 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
746 s->state = VAPIC_ACTIVE;
749 static void kvmvapic_vm_state_change(void *opaque, int running,
750 RunState state)
752 VAPICROMState *s = opaque;
753 uint8_t *zero;
755 if (!running) {
756 return;
759 if (s->state == VAPIC_ACTIVE) {
760 if (smp_cpus == 1) {
761 run_on_cpu(first_cpu, do_vapic_enable, s);
762 } else {
763 zero = g_malloc0(s->rom_state.vapic_size);
764 cpu_physical_memory_write(s->vapic_paddr, zero,
765 s->rom_state.vapic_size);
766 g_free(zero);
770 qemu_del_vm_change_state_handler(s->vmsentry);
773 static int vapic_post_load(void *opaque, int version_id)
775 VAPICROMState *s = opaque;
778 * The old implementation of qemu-kvm did not provide the state
779 * VAPIC_STANDBY. Reconstruct it.
781 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
782 s->state = VAPIC_STANDBY;
785 if (s->state != VAPIC_INACTIVE) {
786 if (vapic_prepare(s) < 0) {
787 return -1;
791 if (!s->vmsentry) {
792 s->vmsentry =
793 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
795 return 0;
798 static const VMStateDescription vmstate_handlers = {
799 .name = "kvmvapic-handlers",
800 .version_id = 1,
801 .minimum_version_id = 1,
802 .fields = (VMStateField[]) {
803 VMSTATE_UINT32(set_tpr, VAPICHandlers),
804 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
805 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
806 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
807 VMSTATE_END_OF_LIST()
811 static const VMStateDescription vmstate_guest_rom = {
812 .name = "kvmvapic-guest-rom",
813 .version_id = 1,
814 .minimum_version_id = 1,
815 .fields = (VMStateField[]) {
816 VMSTATE_UNUSED(8), /* signature */
817 VMSTATE_UINT32(vaddr, GuestROMState),
818 VMSTATE_UINT32(fixup_start, GuestROMState),
819 VMSTATE_UINT32(fixup_end, GuestROMState),
820 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
821 VMSTATE_UINT32(vapic_size, GuestROMState),
822 VMSTATE_UINT32(vcpu_shift, GuestROMState),
823 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
824 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
825 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
826 VMSTATE_END_OF_LIST()
830 static const VMStateDescription vmstate_vapic = {
831 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .post_load = vapic_post_load,
835 .fields = (VMStateField[]) {
836 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
837 GuestROMState),
838 VMSTATE_UINT32(state, VAPICROMState),
839 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
840 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
841 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
842 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
843 VMSTATE_END_OF_LIST()
847 static void vapic_class_init(ObjectClass *klass, void *data)
849 DeviceClass *dc = DEVICE_CLASS(klass);
851 dc->reset = vapic_reset;
852 dc->vmsd = &vmstate_vapic;
853 dc->realize = vapic_realize;
856 static const TypeInfo vapic_type = {
857 .name = TYPE_VAPIC,
858 .parent = TYPE_SYS_BUS_DEVICE,
859 .instance_size = sizeof(VAPICROMState),
860 .class_init = vapic_class_init,
863 static void vapic_register(void)
865 type_register_static(&vapic_type);
868 type_init(vapic_register);