vhost: vhost-kernel: enable vq reset feature
[qemu.git] / target / arm / ptw.c
blob58a7bbda50553b61ef4bcdf4163a29e2585a9e35
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
19 typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
21 ARMMMUIdx in_ptw_idx;
22 bool in_secure;
23 bool in_debug;
24 bool out_secure;
25 bool out_rw;
26 bool out_be;
27 hwaddr out_virt;
28 hwaddr out_phys;
29 void *out_host;
30 } S1Translate;
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36 __attribute__((nonnull));
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77 /* v7 with LPAE */
78 return 40;
80 /* Anything else */
81 return 32;
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
89 switch (mmu_idx) {
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
103 return stage_1_mmu_idx(arm_mmu_idx(env));
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
114 if (mmu_idx == ARMMMUIdx_Stage2) {
115 return env->cp15.vttbr_el2;
117 if (mmu_idx == ARMMMUIdx_Stage2_S) {
118 return env->cp15.vsttbr_el2;
120 if (ttbrn == 0) {
121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122 } else {
123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129 bool is_secure)
131 uint64_t hcr_el2;
133 if (arm_feature(env, ARM_FEATURE_M)) {
134 switch (env->v7m.mpu_ctrl[is_secure] &
135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136 case R_V7M_MPU_CTRL_ENABLE_MASK:
137 /* Enabled, but not for HardFault and NMI */
138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140 /* Enabled for all cases */
141 return false;
142 case 0:
143 default:
145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146 * we warned about that in armv7m_nvic.c when the guest set it.
148 return true;
152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
154 switch (mmu_idx) {
155 case ARMMMUIdx_Stage2:
156 case ARMMMUIdx_Stage2_S:
157 /* HCR.DC means HCR.VM behaves as 1 */
158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
160 case ARMMMUIdx_E10_0:
161 case ARMMMUIdx_E10_1:
162 case ARMMMUIdx_E10_1_PAN:
163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164 if (hcr_el2 & HCR_TGE) {
165 return true;
167 break;
169 case ARMMMUIdx_Stage1_E0:
170 case ARMMMUIdx_Stage1_E1:
171 case ARMMMUIdx_Stage1_E1_PAN:
172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173 if (hcr_el2 & HCR_DC) {
174 return true;
176 break;
178 case ARMMMUIdx_E20_0:
179 case ARMMMUIdx_E20_2:
180 case ARMMMUIdx_E20_2_PAN:
181 case ARMMMUIdx_E2:
182 case ARMMMUIdx_E3:
183 break;
185 case ARMMMUIdx_Phys_NS:
186 case ARMMMUIdx_Phys_S:
187 /* No translation for physical address spaces. */
188 return true;
190 default:
191 g_assert_not_reached();
194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
200 * For an S1 page table walk, the stage 1 attributes are always
201 * some form of "this is Normal memory". The combined S1+S2
202 * attributes are therefore only Device if stage 2 specifies Device.
203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204 * ie when cacheattrs.attrs bits [3:2] are 0b00.
205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206 * when cacheattrs.attrs bit [2] is 0.
208 if (hcr & HCR_FWB) {
209 return (attrs & 0x4) == 0;
210 } else {
211 return (attrs & 0xc) == 0;
215 /* Translate a S1 pagetable walk through S2 if needed. */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217 hwaddr addr, ARMMMUFaultInfo *fi)
219 bool is_secure = ptw->in_secure;
220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222 uint8_t pte_attrs;
223 bool pte_secure;
225 ptw->out_virt = addr;
227 if (unlikely(ptw->in_debug)) {
229 * From gdbstub, do not use softmmu so that we don't modify the
230 * state of the cpu at all, including softmmu tlb contents.
232 if (regime_is_stage2(s2_mmu_idx)) {
233 S1Translate s2ptw = {
234 .in_mmu_idx = s2_mmu_idx,
235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236 .in_secure = is_secure,
237 .in_debug = true,
239 GetPhysAddrResult s2 = { };
241 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242 false, &s2, fi)) {
243 goto fail;
245 ptw->out_phys = s2.f.phys_addr;
246 pte_attrs = s2.cacheattrs.attrs;
247 pte_secure = s2.f.attrs.secure;
248 } else {
249 /* Regime is physical. */
250 ptw->out_phys = addr;
251 pte_attrs = 0;
252 pte_secure = is_secure;
254 ptw->out_host = NULL;
255 ptw->out_rw = false;
256 } else {
257 CPUTLBEntryFull *full;
258 int flags;
260 env->tlb_fi = fi;
261 flags = probe_access_full(env, addr, MMU_DATA_LOAD,
262 arm_to_core_mmu_idx(s2_mmu_idx),
263 true, &ptw->out_host, &full, 0);
264 env->tlb_fi = NULL;
266 if (unlikely(flags & TLB_INVALID_MASK)) {
267 goto fail;
269 ptw->out_phys = full->phys_addr;
270 ptw->out_rw = full->prot & PAGE_WRITE;
271 pte_attrs = full->pte_attrs;
272 pte_secure = full->attrs.secure;
275 if (regime_is_stage2(s2_mmu_idx)) {
276 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
278 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
280 * PTW set and S1 walk touched S2 Device memory:
281 * generate Permission fault.
283 fi->type = ARMFault_Permission;
284 fi->s2addr = addr;
285 fi->stage2 = true;
286 fi->s1ptw = true;
287 fi->s1ns = !is_secure;
288 return false;
292 /* Check if page table walk is to secure or non-secure PA space. */
293 ptw->out_secure = (is_secure
294 && !(pte_secure
295 ? env->cp15.vstcr_el2 & VSTCR_SW
296 : env->cp15.vtcr_el2 & VTCR_NSW));
297 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
298 return true;
300 fail:
301 assert(fi->type != ARMFault_None);
302 fi->s2addr = addr;
303 fi->stage2 = true;
304 fi->s1ptw = true;
305 fi->s1ns = !is_secure;
306 return false;
309 /* All loads done in the course of a page table walk go through here. */
310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
311 ARMMMUFaultInfo *fi)
313 CPUState *cs = env_cpu(env);
314 void *host = ptw->out_host;
315 uint32_t data;
317 if (likely(host)) {
318 /* Page tables are in RAM, and we have the host address. */
319 data = qatomic_read((uint32_t *)host);
320 if (ptw->out_be) {
321 data = be32_to_cpu(data);
322 } else {
323 data = le32_to_cpu(data);
325 } else {
326 /* Page tables are in MMIO. */
327 MemTxAttrs attrs = { .secure = ptw->out_secure };
328 AddressSpace *as = arm_addressspace(cs, attrs);
329 MemTxResult result = MEMTX_OK;
331 if (ptw->out_be) {
332 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
333 } else {
334 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
336 if (unlikely(result != MEMTX_OK)) {
337 fi->type = ARMFault_SyncExternalOnWalk;
338 fi->ea = arm_extabort_type(result);
339 return 0;
342 return data;
345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
346 ARMMMUFaultInfo *fi)
348 CPUState *cs = env_cpu(env);
349 void *host = ptw->out_host;
350 uint64_t data;
352 if (likely(host)) {
353 /* Page tables are in RAM, and we have the host address. */
354 #ifdef CONFIG_ATOMIC64
355 data = qatomic_read__nocheck((uint64_t *)host);
356 if (ptw->out_be) {
357 data = be64_to_cpu(data);
358 } else {
359 data = le64_to_cpu(data);
361 #else
362 if (ptw->out_be) {
363 data = ldq_be_p(host);
364 } else {
365 data = ldq_le_p(host);
367 #endif
368 } else {
369 /* Page tables are in MMIO. */
370 MemTxAttrs attrs = { .secure = ptw->out_secure };
371 AddressSpace *as = arm_addressspace(cs, attrs);
372 MemTxResult result = MEMTX_OK;
374 if (ptw->out_be) {
375 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
376 } else {
377 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
379 if (unlikely(result != MEMTX_OK)) {
380 fi->type = ARMFault_SyncExternalOnWalk;
381 fi->ea = arm_extabort_type(result);
382 return 0;
385 return data;
388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
389 uint64_t new_val, S1Translate *ptw,
390 ARMMMUFaultInfo *fi)
392 uint64_t cur_val;
393 void *host = ptw->out_host;
395 if (unlikely(!host)) {
396 fi->type = ARMFault_UnsuppAtomicUpdate;
397 fi->s1ptw = true;
398 return 0;
402 * Raising a stage2 Protection fault for an atomic update to a read-only
403 * page is delayed until it is certain that there is a change to make.
405 if (unlikely(!ptw->out_rw)) {
406 int flags;
407 void *discard;
409 env->tlb_fi = fi;
410 flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
411 arm_to_core_mmu_idx(ptw->in_ptw_idx),
412 true, &discard, 0);
413 env->tlb_fi = NULL;
415 if (unlikely(flags & TLB_INVALID_MASK)) {
416 assert(fi->type != ARMFault_None);
417 fi->s2addr = ptw->out_virt;
418 fi->stage2 = true;
419 fi->s1ptw = true;
420 fi->s1ns = !ptw->in_secure;
421 return 0;
424 /* In case CAS mismatches and we loop, remember writability. */
425 ptw->out_rw = true;
428 #ifdef CONFIG_ATOMIC64
429 if (ptw->out_be) {
430 old_val = cpu_to_be64(old_val);
431 new_val = cpu_to_be64(new_val);
432 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
433 cur_val = be64_to_cpu(cur_val);
434 } else {
435 old_val = cpu_to_le64(old_val);
436 new_val = cpu_to_le64(new_val);
437 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
438 cur_val = le64_to_cpu(cur_val);
440 #else
442 * We can't support the full 64-bit atomic cmpxchg on the host.
443 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
444 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
445 * running in round-robin mode and could only race with dma i/o.
447 #ifndef TCG_OVERSIZED_GUEST
448 # error "Unexpected configuration"
449 #endif
450 bool locked = qemu_mutex_iothread_locked();
451 if (!locked) {
452 qemu_mutex_lock_iothread();
454 if (ptw->out_be) {
455 cur_val = ldq_be_p(host);
456 if (cur_val == old_val) {
457 stq_be_p(host, new_val);
459 } else {
460 cur_val = ldq_le_p(host);
461 if (cur_val == old_val) {
462 stq_le_p(host, new_val);
465 if (!locked) {
466 qemu_mutex_unlock_iothread();
468 #endif
470 return cur_val;
473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
474 uint32_t *table, uint32_t address)
476 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
477 uint64_t tcr = regime_tcr(env, mmu_idx);
478 int maskshift = extract32(tcr, 0, 3);
479 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
480 uint32_t base_mask;
482 if (address & mask) {
483 if (tcr & TTBCR_PD1) {
484 /* Translation table walk disabled for TTBR1 */
485 return false;
487 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
488 } else {
489 if (tcr & TTBCR_PD0) {
490 /* Translation table walk disabled for TTBR0 */
491 return false;
493 base_mask = ~((uint32_t)0x3fffu >> maskshift);
494 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
496 *table |= (address >> 18) & 0x3ffc;
497 return true;
501 * Translate section/page access permissions to page R/W protection flags
502 * @env: CPUARMState
503 * @mmu_idx: MMU index indicating required translation regime
504 * @ap: The 3-bit access permissions (AP[2:0])
505 * @domain_prot: The 2-bit domain access permissions
507 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
508 int ap, int domain_prot)
510 bool is_user = regime_is_user(env, mmu_idx);
512 if (domain_prot == 3) {
513 return PAGE_READ | PAGE_WRITE;
516 switch (ap) {
517 case 0:
518 if (arm_feature(env, ARM_FEATURE_V7)) {
519 return 0;
521 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
522 case SCTLR_S:
523 return is_user ? 0 : PAGE_READ;
524 case SCTLR_R:
525 return PAGE_READ;
526 default:
527 return 0;
529 case 1:
530 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
531 case 2:
532 if (is_user) {
533 return PAGE_READ;
534 } else {
535 return PAGE_READ | PAGE_WRITE;
537 case 3:
538 return PAGE_READ | PAGE_WRITE;
539 case 4: /* Reserved. */
540 return 0;
541 case 5:
542 return is_user ? 0 : PAGE_READ;
543 case 6:
544 return PAGE_READ;
545 case 7:
546 if (!arm_feature(env, ARM_FEATURE_V6K)) {
547 return 0;
549 return PAGE_READ;
550 default:
551 g_assert_not_reached();
556 * Translate section/page access permissions to page R/W protection flags.
557 * @ap: The 2-bit simple AP (AP[2:1])
558 * @is_user: TRUE if accessing from PL0
560 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
562 switch (ap) {
563 case 0:
564 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
565 case 1:
566 return PAGE_READ | PAGE_WRITE;
567 case 2:
568 return is_user ? 0 : PAGE_READ;
569 case 3:
570 return PAGE_READ;
571 default:
572 g_assert_not_reached();
576 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
578 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
581 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
582 uint32_t address, MMUAccessType access_type,
583 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
585 int level = 1;
586 uint32_t table;
587 uint32_t desc;
588 int type;
589 int ap;
590 int domain = 0;
591 int domain_prot;
592 hwaddr phys_addr;
593 uint32_t dacr;
595 /* Pagetable walk. */
596 /* Lookup l1 descriptor. */
597 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
598 /* Section translation fault if page walk is disabled by PD0 or PD1 */
599 fi->type = ARMFault_Translation;
600 goto do_fault;
602 if (!S1_ptw_translate(env, ptw, table, fi)) {
603 goto do_fault;
605 desc = arm_ldl_ptw(env, ptw, fi);
606 if (fi->type != ARMFault_None) {
607 goto do_fault;
609 type = (desc & 3);
610 domain = (desc >> 5) & 0x0f;
611 if (regime_el(env, ptw->in_mmu_idx) == 1) {
612 dacr = env->cp15.dacr_ns;
613 } else {
614 dacr = env->cp15.dacr_s;
616 domain_prot = (dacr >> (domain * 2)) & 3;
617 if (type == 0) {
618 /* Section translation fault. */
619 fi->type = ARMFault_Translation;
620 goto do_fault;
622 if (type != 2) {
623 level = 2;
625 if (domain_prot == 0 || domain_prot == 2) {
626 fi->type = ARMFault_Domain;
627 goto do_fault;
629 if (type == 2) {
630 /* 1Mb section. */
631 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
632 ap = (desc >> 10) & 3;
633 result->f.lg_page_size = 20; /* 1MB */
634 } else {
635 /* Lookup l2 entry. */
636 if (type == 1) {
637 /* Coarse pagetable. */
638 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
639 } else {
640 /* Fine pagetable. */
641 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
643 if (!S1_ptw_translate(env, ptw, table, fi)) {
644 goto do_fault;
646 desc = arm_ldl_ptw(env, ptw, fi);
647 if (fi->type != ARMFault_None) {
648 goto do_fault;
650 switch (desc & 3) {
651 case 0: /* Page translation fault. */
652 fi->type = ARMFault_Translation;
653 goto do_fault;
654 case 1: /* 64k page. */
655 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
656 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
657 result->f.lg_page_size = 16;
658 break;
659 case 2: /* 4k page. */
660 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
661 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
662 result->f.lg_page_size = 12;
663 break;
664 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
665 if (type == 1) {
666 /* ARMv6/XScale extended small page format */
667 if (arm_feature(env, ARM_FEATURE_XSCALE)
668 || arm_feature(env, ARM_FEATURE_V6)) {
669 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
670 result->f.lg_page_size = 12;
671 } else {
673 * UNPREDICTABLE in ARMv5; we choose to take a
674 * page translation fault.
676 fi->type = ARMFault_Translation;
677 goto do_fault;
679 } else {
680 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
681 result->f.lg_page_size = 10;
683 ap = (desc >> 4) & 3;
684 break;
685 default:
686 /* Never happens, but compiler isn't smart enough to tell. */
687 g_assert_not_reached();
690 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
691 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
692 if (!(result->f.prot & (1 << access_type))) {
693 /* Access permission fault. */
694 fi->type = ARMFault_Permission;
695 goto do_fault;
697 result->f.phys_addr = phys_addr;
698 return false;
699 do_fault:
700 fi->domain = domain;
701 fi->level = level;
702 return true;
705 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
706 uint32_t address, MMUAccessType access_type,
707 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
709 ARMCPU *cpu = env_archcpu(env);
710 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
711 int level = 1;
712 uint32_t table;
713 uint32_t desc;
714 uint32_t xn;
715 uint32_t pxn = 0;
716 int type;
717 int ap;
718 int domain = 0;
719 int domain_prot;
720 hwaddr phys_addr;
721 uint32_t dacr;
722 bool ns;
724 /* Pagetable walk. */
725 /* Lookup l1 descriptor. */
726 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
727 /* Section translation fault if page walk is disabled by PD0 or PD1 */
728 fi->type = ARMFault_Translation;
729 goto do_fault;
731 if (!S1_ptw_translate(env, ptw, table, fi)) {
732 goto do_fault;
734 desc = arm_ldl_ptw(env, ptw, fi);
735 if (fi->type != ARMFault_None) {
736 goto do_fault;
738 type = (desc & 3);
739 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
740 /* Section translation fault, or attempt to use the encoding
741 * which is Reserved on implementations without PXN.
743 fi->type = ARMFault_Translation;
744 goto do_fault;
746 if ((type == 1) || !(desc & (1 << 18))) {
747 /* Page or Section. */
748 domain = (desc >> 5) & 0x0f;
750 if (regime_el(env, mmu_idx) == 1) {
751 dacr = env->cp15.dacr_ns;
752 } else {
753 dacr = env->cp15.dacr_s;
755 if (type == 1) {
756 level = 2;
758 domain_prot = (dacr >> (domain * 2)) & 3;
759 if (domain_prot == 0 || domain_prot == 2) {
760 /* Section or Page domain fault */
761 fi->type = ARMFault_Domain;
762 goto do_fault;
764 if (type != 1) {
765 if (desc & (1 << 18)) {
766 /* Supersection. */
767 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
768 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
769 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
770 result->f.lg_page_size = 24; /* 16MB */
771 } else {
772 /* Section. */
773 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
774 result->f.lg_page_size = 20; /* 1MB */
776 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
777 xn = desc & (1 << 4);
778 pxn = desc & 1;
779 ns = extract32(desc, 19, 1);
780 } else {
781 if (cpu_isar_feature(aa32_pxn, cpu)) {
782 pxn = (desc >> 2) & 1;
784 ns = extract32(desc, 3, 1);
785 /* Lookup l2 entry. */
786 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
787 if (!S1_ptw_translate(env, ptw, table, fi)) {
788 goto do_fault;
790 desc = arm_ldl_ptw(env, ptw, fi);
791 if (fi->type != ARMFault_None) {
792 goto do_fault;
794 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
795 switch (desc & 3) {
796 case 0: /* Page translation fault. */
797 fi->type = ARMFault_Translation;
798 goto do_fault;
799 case 1: /* 64k page. */
800 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
801 xn = desc & (1 << 15);
802 result->f.lg_page_size = 16;
803 break;
804 case 2: case 3: /* 4k page. */
805 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
806 xn = desc & 1;
807 result->f.lg_page_size = 12;
808 break;
809 default:
810 /* Never happens, but compiler isn't smart enough to tell. */
811 g_assert_not_reached();
814 if (domain_prot == 3) {
815 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
816 } else {
817 if (pxn && !regime_is_user(env, mmu_idx)) {
818 xn = 1;
820 if (xn && access_type == MMU_INST_FETCH) {
821 fi->type = ARMFault_Permission;
822 goto do_fault;
825 if (arm_feature(env, ARM_FEATURE_V6K) &&
826 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
827 /* The simplified model uses AP[0] as an access control bit. */
828 if ((ap & 1) == 0) {
829 /* Access flag fault. */
830 fi->type = ARMFault_AccessFlag;
831 goto do_fault;
833 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
834 } else {
835 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
837 if (result->f.prot && !xn) {
838 result->f.prot |= PAGE_EXEC;
840 if (!(result->f.prot & (1 << access_type))) {
841 /* Access permission fault. */
842 fi->type = ARMFault_Permission;
843 goto do_fault;
846 if (ns) {
847 /* The NS bit will (as required by the architecture) have no effect if
848 * the CPU doesn't support TZ or this is a non-secure translation
849 * regime, because the attribute will already be non-secure.
851 result->f.attrs.secure = false;
853 result->f.phys_addr = phys_addr;
854 return false;
855 do_fault:
856 fi->domain = domain;
857 fi->level = level;
858 return true;
862 * Translate S2 section/page access permissions to protection flags
863 * @env: CPUARMState
864 * @s2ap: The 2-bit stage2 access permissions (S2AP)
865 * @xn: XN (execute-never) bits
866 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
868 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
870 int prot = 0;
872 if (s2ap & 1) {
873 prot |= PAGE_READ;
875 if (s2ap & 2) {
876 prot |= PAGE_WRITE;
879 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
880 switch (xn) {
881 case 0:
882 prot |= PAGE_EXEC;
883 break;
884 case 1:
885 if (s1_is_el0) {
886 prot |= PAGE_EXEC;
888 break;
889 case 2:
890 break;
891 case 3:
892 if (!s1_is_el0) {
893 prot |= PAGE_EXEC;
895 break;
896 default:
897 g_assert_not_reached();
899 } else {
900 if (!extract32(xn, 1, 1)) {
901 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
902 prot |= PAGE_EXEC;
906 return prot;
910 * Translate section/page access permissions to protection flags
911 * @env: CPUARMState
912 * @mmu_idx: MMU index indicating required translation regime
913 * @is_aa64: TRUE if AArch64
914 * @ap: The 2-bit simple AP (AP[2:1])
915 * @ns: NS (non-secure) bit
916 * @xn: XN (execute-never) bit
917 * @pxn: PXN (privileged execute-never) bit
919 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
920 int ap, int ns, int xn, int pxn)
922 bool is_user = regime_is_user(env, mmu_idx);
923 int prot_rw, user_rw;
924 bool have_wxn;
925 int wxn = 0;
927 assert(!regime_is_stage2(mmu_idx));
929 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
930 if (is_user) {
931 prot_rw = user_rw;
932 } else {
933 if (user_rw && regime_is_pan(env, mmu_idx)) {
934 /* PAN forbids data accesses but doesn't affect insn fetch */
935 prot_rw = 0;
936 } else {
937 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
941 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
942 return prot_rw;
945 /* TODO have_wxn should be replaced with
946 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
947 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
948 * compatible processors have EL2, which is required for [U]WXN.
950 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
952 if (have_wxn) {
953 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
956 if (is_aa64) {
957 if (regime_has_2_ranges(mmu_idx) && !is_user) {
958 xn = pxn || (user_rw & PAGE_WRITE);
960 } else if (arm_feature(env, ARM_FEATURE_V7)) {
961 switch (regime_el(env, mmu_idx)) {
962 case 1:
963 case 3:
964 if (is_user) {
965 xn = xn || !(user_rw & PAGE_READ);
966 } else {
967 int uwxn = 0;
968 if (have_wxn) {
969 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
971 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
972 (uwxn && (user_rw & PAGE_WRITE));
974 break;
975 case 2:
976 break;
978 } else {
979 xn = wxn = 0;
982 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
983 return prot_rw;
985 return prot_rw | PAGE_EXEC;
988 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
989 ARMMMUIdx mmu_idx)
991 uint64_t tcr = regime_tcr(env, mmu_idx);
992 uint32_t el = regime_el(env, mmu_idx);
993 int select, tsz;
994 bool epd, hpd;
996 assert(mmu_idx != ARMMMUIdx_Stage2_S);
998 if (mmu_idx == ARMMMUIdx_Stage2) {
999 /* VTCR */
1000 bool sext = extract32(tcr, 4, 1);
1001 bool sign = extract32(tcr, 3, 1);
1004 * If the sign-extend bit is not the same as t0sz[3], the result
1005 * is unpredictable. Flag this as a guest error.
1007 if (sign != sext) {
1008 qemu_log_mask(LOG_GUEST_ERROR,
1009 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1011 tsz = sextract32(tcr, 0, 4) + 8;
1012 select = 0;
1013 hpd = false;
1014 epd = false;
1015 } else if (el == 2) {
1016 /* HTCR */
1017 tsz = extract32(tcr, 0, 3);
1018 select = 0;
1019 hpd = extract64(tcr, 24, 1);
1020 epd = false;
1021 } else {
1022 int t0sz = extract32(tcr, 0, 3);
1023 int t1sz = extract32(tcr, 16, 3);
1025 if (t1sz == 0) {
1026 select = va > (0xffffffffu >> t0sz);
1027 } else {
1028 /* Note that we will detect errors later. */
1029 select = va >= ~(0xffffffffu >> t1sz);
1031 if (!select) {
1032 tsz = t0sz;
1033 epd = extract32(tcr, 7, 1);
1034 hpd = extract64(tcr, 41, 1);
1035 } else {
1036 tsz = t1sz;
1037 epd = extract32(tcr, 23, 1);
1038 hpd = extract64(tcr, 42, 1);
1040 /* For aarch32, hpd0 is not enabled without t2e as well. */
1041 hpd &= extract32(tcr, 6, 1);
1044 return (ARMVAParameters) {
1045 .tsz = tsz,
1046 .select = select,
1047 .epd = epd,
1048 .hpd = hpd,
1053 * check_s2_mmu_setup
1054 * @cpu: ARMCPU
1055 * @is_aa64: True if the translation regime is in AArch64 state
1056 * @startlevel: Suggested starting level
1057 * @inputsize: Bitsize of IPAs
1058 * @stride: Page-table stride (See the ARM ARM)
1060 * Returns true if the suggested S2 translation parameters are OK and
1061 * false otherwise.
1063 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
1064 int inputsize, int stride, int outputsize)
1066 const int grainsize = stride + 3;
1067 int startsizecheck;
1070 * Negative levels are usually not allowed...
1071 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
1072 * begins with level -1. Note that previous feature tests will have
1073 * eliminated this combination if it is not enabled.
1075 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
1076 return false;
1079 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
1080 if (startsizecheck < 1 || startsizecheck > stride + 4) {
1081 return false;
1084 if (is_aa64) {
1085 switch (stride) {
1086 case 13: /* 64KB Pages. */
1087 if (level == 0 || (level == 1 && outputsize <= 42)) {
1088 return false;
1090 break;
1091 case 11: /* 16KB Pages. */
1092 if (level == 0 || (level == 1 && outputsize <= 40)) {
1093 return false;
1095 break;
1096 case 9: /* 4KB Pages. */
1097 if (level == 0 && outputsize <= 42) {
1098 return false;
1100 break;
1101 default:
1102 g_assert_not_reached();
1105 /* Inputsize checks. */
1106 if (inputsize > outputsize &&
1107 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1108 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
1109 return false;
1111 } else {
1112 /* AArch32 only supports 4KB pages. Assert on that. */
1113 assert(stride == 9);
1115 if (level == 0) {
1116 return false;
1119 return true;
1123 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1125 * Returns false if the translation was successful. Otherwise, phys_ptr,
1126 * attrs, prot and page_size may not be filled in, and the populated fsr
1127 * value provides information on why the translation aborted, in the format
1128 * of a long-format DFSR/IFSR fault register, with the following caveat:
1129 * the WnR bit is never set (the caller must do this).
1131 * @env: CPUARMState
1132 * @ptw: Current and next stage parameters for the walk.
1133 * @address: virtual address to get physical address for
1134 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1135 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1136 * (so this is a stage 2 page table walk),
1137 * must be true if this is stage 2 of a stage 1+2
1138 * walk for an EL0 access. If @mmu_idx is anything else,
1139 * @s1_is_el0 is ignored.
1140 * @result: set on translation success,
1141 * @fi: set to fault info if the translation fails
1143 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1144 uint64_t address,
1145 MMUAccessType access_type, bool s1_is_el0,
1146 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1148 ARMCPU *cpu = env_archcpu(env);
1149 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1150 bool is_secure = ptw->in_secure;
1151 uint32_t level;
1152 ARMVAParameters param;
1153 uint64_t ttbr;
1154 hwaddr descaddr, indexmask, indexmask_grainsize;
1155 uint32_t tableattrs;
1156 target_ulong page_size;
1157 uint64_t attrs;
1158 int32_t stride;
1159 int addrsize, inputsize, outputsize;
1160 uint64_t tcr = regime_tcr(env, mmu_idx);
1161 int ap, ns, xn, pxn;
1162 uint32_t el = regime_el(env, mmu_idx);
1163 uint64_t descaddrmask;
1164 bool aarch64 = arm_el_is_aa64(env, el);
1165 uint64_t descriptor, new_descriptor;
1166 bool nstable;
1168 /* TODO: This code does not support shareability levels. */
1169 if (aarch64) {
1170 int ps;
1172 param = aa64_va_parameters(env, address, mmu_idx,
1173 access_type != MMU_INST_FETCH);
1174 level = 0;
1177 * If TxSZ is programmed to a value larger than the maximum,
1178 * or smaller than the effective minimum, it is IMPLEMENTATION
1179 * DEFINED whether we behave as if the field were programmed
1180 * within bounds, or if a level 0 Translation fault is generated.
1182 * With FEAT_LVA, fault on less than minimum becomes required,
1183 * so our choice is to always raise the fault.
1185 if (param.tsz_oob) {
1186 goto do_translation_fault;
1189 addrsize = 64 - 8 * param.tbi;
1190 inputsize = 64 - param.tsz;
1193 * Bound PS by PARANGE to find the effective output address size.
1194 * ID_AA64MMFR0 is a read-only register so values outside of the
1195 * supported mappings can be considered an implementation error.
1197 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1198 ps = MIN(ps, param.ps);
1199 assert(ps < ARRAY_SIZE(pamax_map));
1200 outputsize = pamax_map[ps];
1201 } else {
1202 param = aa32_va_parameters(env, address, mmu_idx);
1203 level = 1;
1204 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1205 inputsize = addrsize - param.tsz;
1206 outputsize = 40;
1210 * We determined the region when collecting the parameters, but we
1211 * have not yet validated that the address is valid for the region.
1212 * Extract the top bits and verify that they all match select.
1214 * For aa32, if inputsize == addrsize, then we have selected the
1215 * region by exclusion in aa32_va_parameters and there is no more
1216 * validation to do here.
1218 if (inputsize < addrsize) {
1219 target_ulong top_bits = sextract64(address, inputsize,
1220 addrsize - inputsize);
1221 if (-top_bits != param.select) {
1222 /* The gap between the two regions is a Translation fault */
1223 goto do_translation_fault;
1227 stride = arm_granule_bits(param.gran) - 3;
1230 * Note that QEMU ignores shareability and cacheability attributes,
1231 * so we don't need to do anything with the SH, ORGN, IRGN fields
1232 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1233 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1234 * implement any ASID-like capability so we can ignore it (instead
1235 * we will always flush the TLB any time the ASID is changed).
1237 ttbr = regime_ttbr(env, mmu_idx, param.select);
1240 * Here we should have set up all the parameters for the translation:
1241 * inputsize, ttbr, epd, stride, tbi
1244 if (param.epd) {
1246 * Translation table walk disabled => Translation fault on TLB miss
1247 * Note: This is always 0 on 64-bit EL2 and EL3.
1249 goto do_translation_fault;
1252 if (!regime_is_stage2(mmu_idx)) {
1254 * The starting level depends on the virtual address size (which can
1255 * be up to 48 bits) and the translation granule size. It indicates
1256 * the number of strides (stride bits at a time) needed to
1257 * consume the bits of the input address. In the pseudocode this is:
1258 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1259 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1260 * our 'stride + 3' and 'stride' is our 'stride'.
1261 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1262 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1263 * = 4 - (inputsize - 4) / stride;
1265 level = 4 - (inputsize - 4) / stride;
1266 } else {
1268 * For stage 2 translations the starting level is specified by the
1269 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1271 uint32_t sl0 = extract32(tcr, 6, 2);
1272 uint32_t sl2 = extract64(tcr, 33, 1);
1273 uint32_t startlevel;
1274 bool ok;
1276 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1277 if (param.ds && stride == 9 && sl2) {
1278 if (sl0 != 0) {
1279 level = 0;
1280 goto do_translation_fault;
1282 startlevel = -1;
1283 } else if (!aarch64 || stride == 9) {
1284 /* AArch32 or 4KB pages */
1285 startlevel = 2 - sl0;
1287 if (cpu_isar_feature(aa64_st, cpu)) {
1288 startlevel &= 3;
1290 } else {
1291 /* 16KB or 64KB pages */
1292 startlevel = 3 - sl0;
1295 /* Check that the starting level is valid. */
1296 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1297 inputsize, stride, outputsize);
1298 if (!ok) {
1299 goto do_translation_fault;
1301 level = startlevel;
1304 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1305 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1307 /* Now we can extract the actual base address from the TTBR */
1308 descaddr = extract64(ttbr, 0, 48);
1311 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1313 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1314 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1315 * but we've just cleared the bits above 47, so simplify the test.
1317 if (outputsize > 48) {
1318 descaddr |= extract64(ttbr, 2, 4) << 48;
1319 } else if (descaddr >> outputsize) {
1320 level = 0;
1321 fi->type = ARMFault_AddressSize;
1322 goto do_fault;
1326 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1327 * and also to mask out CnP (bit 0) which could validly be non-zero.
1329 descaddr &= ~indexmask;
1332 * For AArch32, the address field in the descriptor goes up to bit 39
1333 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1334 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1335 * bits as part of the address, which will be checked via outputsize.
1336 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1337 * the highest bits of a 52-bit output are placed elsewhere.
1339 if (param.ds) {
1340 descaddrmask = MAKE_64BIT_MASK(0, 50);
1341 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1342 descaddrmask = MAKE_64BIT_MASK(0, 48);
1343 } else {
1344 descaddrmask = MAKE_64BIT_MASK(0, 40);
1346 descaddrmask &= ~indexmask_grainsize;
1349 * Secure accesses start with the page table in secure memory and
1350 * can be downgraded to non-secure at any step. Non-secure accesses
1351 * remain non-secure. We implement this by just ORing in the NSTable/NS
1352 * bits at each step.
1354 tableattrs = is_secure ? 0 : (1 << 4);
1356 next_level:
1357 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1358 descaddr &= ~7ULL;
1359 nstable = extract32(tableattrs, 4, 1);
1360 if (!nstable) {
1362 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1363 * Assert that the non-secure idx are even, and relative order.
1365 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1366 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1367 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1368 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1369 ptw->in_ptw_idx &= ~1;
1370 ptw->in_secure = false;
1372 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1373 goto do_fault;
1375 descriptor = arm_ldq_ptw(env, ptw, fi);
1376 if (fi->type != ARMFault_None) {
1377 goto do_fault;
1379 new_descriptor = descriptor;
1381 restart_atomic_update:
1382 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1383 /* Invalid, or the Reserved level 3 encoding */
1384 goto do_translation_fault;
1387 descaddr = descriptor & descaddrmask;
1390 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1391 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1392 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1393 * raise AddressSizeFault.
1395 if (outputsize > 48) {
1396 if (param.ds) {
1397 descaddr |= extract64(descriptor, 8, 2) << 50;
1398 } else {
1399 descaddr |= extract64(descriptor, 12, 4) << 48;
1401 } else if (descaddr >> outputsize) {
1402 fi->type = ARMFault_AddressSize;
1403 goto do_fault;
1406 if ((descriptor & 2) && (level < 3)) {
1408 * Table entry. The top five bits are attributes which may
1409 * propagate down through lower levels of the table (and
1410 * which are all arranged so that 0 means "no effect", so
1411 * we can gather them up by ORing in the bits at each level).
1413 tableattrs |= extract64(descriptor, 59, 5);
1414 level++;
1415 indexmask = indexmask_grainsize;
1416 goto next_level;
1420 * Block entry at level 1 or 2, or page entry at level 3.
1421 * These are basically the same thing, although the number
1422 * of bits we pull in from the vaddr varies. Note that although
1423 * descaddrmask masks enough of the low bits of the descriptor
1424 * to give a correct page or table address, the address field
1425 * in a block descriptor is smaller; so we need to explicitly
1426 * clear the lower bits here before ORing in the low vaddr bits.
1428 * Afterward, descaddr is the final physical address.
1430 page_size = (1ULL << ((stride * (4 - level)) + 3));
1431 descaddr &= ~(hwaddr)(page_size - 1);
1432 descaddr |= (address & (page_size - 1));
1434 if (likely(!ptw->in_debug)) {
1436 * Access flag.
1437 * If HA is enabled, prepare to update the descriptor below.
1438 * Otherwise, pass the access fault on to software.
1440 if (!(descriptor & (1 << 10))) {
1441 if (param.ha) {
1442 new_descriptor |= 1 << 10; /* AF */
1443 } else {
1444 fi->type = ARMFault_AccessFlag;
1445 goto do_fault;
1450 * Dirty Bit.
1451 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1452 * bit for writeback. The actual write protection test may still be
1453 * overridden by tableattrs, to be merged below.
1455 if (param.hd
1456 && extract64(descriptor, 51, 1) /* DBM */
1457 && access_type == MMU_DATA_STORE) {
1458 if (regime_is_stage2(mmu_idx)) {
1459 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1460 } else {
1461 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1467 * Extract attributes from the (modified) descriptor, and apply
1468 * table descriptors. Stage 2 table descriptors do not include
1469 * any attribute fields. HPD disables all the table attributes
1470 * except NSTable.
1472 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1473 if (!regime_is_stage2(mmu_idx)) {
1474 attrs |= nstable << 5; /* NS */
1475 if (!param.hpd) {
1476 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1478 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1479 * means "force PL1 access only", which means forcing AP[1] to 0.
1481 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1482 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1486 ap = extract32(attrs, 6, 2);
1487 if (regime_is_stage2(mmu_idx)) {
1488 ns = mmu_idx == ARMMMUIdx_Stage2;
1489 xn = extract64(attrs, 53, 2);
1490 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1491 } else {
1492 ns = extract32(attrs, 5, 1);
1493 xn = extract64(attrs, 54, 1);
1494 pxn = extract64(attrs, 53, 1);
1495 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1498 if (!(result->f.prot & (1 << access_type))) {
1499 fi->type = ARMFault_Permission;
1500 goto do_fault;
1503 /* If FEAT_HAFDBS has made changes, update the PTE. */
1504 if (new_descriptor != descriptor) {
1505 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1506 if (fi->type != ARMFault_None) {
1507 goto do_fault;
1510 * I_YZSVV says that if the in-memory descriptor has changed,
1511 * then we must use the information in that new value
1512 * (which might include a different output address, different
1513 * attributes, or generate a fault).
1514 * Restart the handling of the descriptor value from scratch.
1516 if (new_descriptor != descriptor) {
1517 descriptor = new_descriptor;
1518 goto restart_atomic_update;
1522 if (ns) {
1524 * The NS bit will (as required by the architecture) have no effect if
1525 * the CPU doesn't support TZ or this is a non-secure translation
1526 * regime, because the attribute will already be non-secure.
1528 result->f.attrs.secure = false;
1531 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1532 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1533 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1536 if (regime_is_stage2(mmu_idx)) {
1537 result->cacheattrs.is_s2_format = true;
1538 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1539 } else {
1540 /* Index into MAIR registers for cache attributes */
1541 uint8_t attrindx = extract32(attrs, 2, 3);
1542 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1543 assert(attrindx <= 7);
1544 result->cacheattrs.is_s2_format = false;
1545 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1549 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1550 * was re-purposed for output address bits. The SH attribute in
1551 * that case comes from TCR_ELx, which we extracted earlier.
1553 if (param.ds) {
1554 result->cacheattrs.shareability = param.sh;
1555 } else {
1556 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1559 result->f.phys_addr = descaddr;
1560 result->f.lg_page_size = ctz64(page_size);
1561 return false;
1563 do_translation_fault:
1564 fi->type = ARMFault_Translation;
1565 do_fault:
1566 fi->level = level;
1567 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1568 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1569 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1570 return true;
1573 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1574 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1575 bool is_secure, GetPhysAddrResult *result,
1576 ARMMMUFaultInfo *fi)
1578 int n;
1579 uint32_t mask;
1580 uint32_t base;
1581 bool is_user = regime_is_user(env, mmu_idx);
1583 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1584 /* MPU disabled. */
1585 result->f.phys_addr = address;
1586 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1587 return false;
1590 result->f.phys_addr = address;
1591 for (n = 7; n >= 0; n--) {
1592 base = env->cp15.c6_region[n];
1593 if ((base & 1) == 0) {
1594 continue;
1596 mask = 1 << ((base >> 1) & 0x1f);
1597 /* Keep this shift separate from the above to avoid an
1598 (undefined) << 32. */
1599 mask = (mask << 1) - 1;
1600 if (((base ^ address) & ~mask) == 0) {
1601 break;
1604 if (n < 0) {
1605 fi->type = ARMFault_Background;
1606 return true;
1609 if (access_type == MMU_INST_FETCH) {
1610 mask = env->cp15.pmsav5_insn_ap;
1611 } else {
1612 mask = env->cp15.pmsav5_data_ap;
1614 mask = (mask >> (n * 4)) & 0xf;
1615 switch (mask) {
1616 case 0:
1617 fi->type = ARMFault_Permission;
1618 fi->level = 1;
1619 return true;
1620 case 1:
1621 if (is_user) {
1622 fi->type = ARMFault_Permission;
1623 fi->level = 1;
1624 return true;
1626 result->f.prot = PAGE_READ | PAGE_WRITE;
1627 break;
1628 case 2:
1629 result->f.prot = PAGE_READ;
1630 if (!is_user) {
1631 result->f.prot |= PAGE_WRITE;
1633 break;
1634 case 3:
1635 result->f.prot = PAGE_READ | PAGE_WRITE;
1636 break;
1637 case 5:
1638 if (is_user) {
1639 fi->type = ARMFault_Permission;
1640 fi->level = 1;
1641 return true;
1643 result->f.prot = PAGE_READ;
1644 break;
1645 case 6:
1646 result->f.prot = PAGE_READ;
1647 break;
1648 default:
1649 /* Bad permission. */
1650 fi->type = ARMFault_Permission;
1651 fi->level = 1;
1652 return true;
1654 result->f.prot |= PAGE_EXEC;
1655 return false;
1658 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1659 int32_t address, uint8_t *prot)
1661 if (!arm_feature(env, ARM_FEATURE_M)) {
1662 *prot = PAGE_READ | PAGE_WRITE;
1663 switch (address) {
1664 case 0xF0000000 ... 0xFFFFFFFF:
1665 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1666 /* hivecs execing is ok */
1667 *prot |= PAGE_EXEC;
1669 break;
1670 case 0x00000000 ... 0x7FFFFFFF:
1671 *prot |= PAGE_EXEC;
1672 break;
1674 } else {
1675 /* Default system address map for M profile cores.
1676 * The architecture specifies which regions are execute-never;
1677 * at the MPU level no other checks are defined.
1679 switch (address) {
1680 case 0x00000000 ... 0x1fffffff: /* ROM */
1681 case 0x20000000 ... 0x3fffffff: /* SRAM */
1682 case 0x60000000 ... 0x7fffffff: /* RAM */
1683 case 0x80000000 ... 0x9fffffff: /* RAM */
1684 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1685 break;
1686 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1687 case 0xa0000000 ... 0xbfffffff: /* Device */
1688 case 0xc0000000 ... 0xdfffffff: /* Device */
1689 case 0xe0000000 ... 0xffffffff: /* System */
1690 *prot = PAGE_READ | PAGE_WRITE;
1691 break;
1692 default:
1693 g_assert_not_reached();
1698 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1700 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1701 return arm_feature(env, ARM_FEATURE_M) &&
1702 extract32(address, 20, 12) == 0xe00;
1705 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1708 * True if address is in the M profile system region
1709 * 0xe0000000 - 0xffffffff
1711 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1714 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1715 bool is_secure, bool is_user)
1718 * Return true if we should use the default memory map as a
1719 * "background" region if there are no hits against any MPU regions.
1721 CPUARMState *env = &cpu->env;
1723 if (is_user) {
1724 return false;
1727 if (arm_feature(env, ARM_FEATURE_M)) {
1728 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1729 } else {
1730 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1734 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1735 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1736 bool secure, GetPhysAddrResult *result,
1737 ARMMMUFaultInfo *fi)
1739 ARMCPU *cpu = env_archcpu(env);
1740 int n;
1741 bool is_user = regime_is_user(env, mmu_idx);
1743 result->f.phys_addr = address;
1744 result->f.lg_page_size = TARGET_PAGE_BITS;
1745 result->f.prot = 0;
1747 if (regime_translation_disabled(env, mmu_idx, secure) ||
1748 m_is_ppb_region(env, address)) {
1750 * MPU disabled or M profile PPB access: use default memory map.
1751 * The other case which uses the default memory map in the
1752 * v7M ARM ARM pseudocode is exception vector reads from the vector
1753 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1754 * which always does a direct read using address_space_ldl(), rather
1755 * than going via this function, so we don't need to check that here.
1757 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1758 } else { /* MPU enabled */
1759 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1760 /* region search */
1761 uint32_t base = env->pmsav7.drbar[n];
1762 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1763 uint32_t rmask;
1764 bool srdis = false;
1766 if (!(env->pmsav7.drsr[n] & 0x1)) {
1767 continue;
1770 if (!rsize) {
1771 qemu_log_mask(LOG_GUEST_ERROR,
1772 "DRSR[%d]: Rsize field cannot be 0\n", n);
1773 continue;
1775 rsize++;
1776 rmask = (1ull << rsize) - 1;
1778 if (base & rmask) {
1779 qemu_log_mask(LOG_GUEST_ERROR,
1780 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1781 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1782 n, base, rmask);
1783 continue;
1786 if (address < base || address > base + rmask) {
1788 * Address not in this region. We must check whether the
1789 * region covers addresses in the same page as our address.
1790 * In that case we must not report a size that covers the
1791 * whole page for a subsequent hit against a different MPU
1792 * region or the background region, because it would result in
1793 * incorrect TLB hits for subsequent accesses to addresses that
1794 * are in this MPU region.
1796 if (ranges_overlap(base, rmask,
1797 address & TARGET_PAGE_MASK,
1798 TARGET_PAGE_SIZE)) {
1799 result->f.lg_page_size = 0;
1801 continue;
1804 /* Region matched */
1806 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1807 int i, snd;
1808 uint32_t srdis_mask;
1810 rsize -= 3; /* sub region size (power of 2) */
1811 snd = ((address - base) >> rsize) & 0x7;
1812 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1814 srdis_mask = srdis ? 0x3 : 0x0;
1815 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1817 * This will check in groups of 2, 4 and then 8, whether
1818 * the subregion bits are consistent. rsize is incremented
1819 * back up to give the region size, considering consistent
1820 * adjacent subregions as one region. Stop testing if rsize
1821 * is already big enough for an entire QEMU page.
1823 int snd_rounded = snd & ~(i - 1);
1824 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1825 snd_rounded + 8, i);
1826 if (srdis_mask ^ srdis_multi) {
1827 break;
1829 srdis_mask = (srdis_mask << i) | srdis_mask;
1830 rsize++;
1833 if (srdis) {
1834 continue;
1836 if (rsize < TARGET_PAGE_BITS) {
1837 result->f.lg_page_size = rsize;
1839 break;
1842 if (n == -1) { /* no hits */
1843 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1844 /* background fault */
1845 fi->type = ARMFault_Background;
1846 return true;
1848 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1849 &result->f.prot);
1850 } else { /* a MPU hit! */
1851 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1852 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1854 if (m_is_system_region(env, address)) {
1855 /* System space is always execute never */
1856 xn = 1;
1859 if (is_user) { /* User mode AP bit decoding */
1860 switch (ap) {
1861 case 0:
1862 case 1:
1863 case 5:
1864 break; /* no access */
1865 case 3:
1866 result->f.prot |= PAGE_WRITE;
1867 /* fall through */
1868 case 2:
1869 case 6:
1870 result->f.prot |= PAGE_READ | PAGE_EXEC;
1871 break;
1872 case 7:
1873 /* for v7M, same as 6; for R profile a reserved value */
1874 if (arm_feature(env, ARM_FEATURE_M)) {
1875 result->f.prot |= PAGE_READ | PAGE_EXEC;
1876 break;
1878 /* fall through */
1879 default:
1880 qemu_log_mask(LOG_GUEST_ERROR,
1881 "DRACR[%d]: Bad value for AP bits: 0x%"
1882 PRIx32 "\n", n, ap);
1884 } else { /* Priv. mode AP bits decoding */
1885 switch (ap) {
1886 case 0:
1887 break; /* no access */
1888 case 1:
1889 case 2:
1890 case 3:
1891 result->f.prot |= PAGE_WRITE;
1892 /* fall through */
1893 case 5:
1894 case 6:
1895 result->f.prot |= PAGE_READ | PAGE_EXEC;
1896 break;
1897 case 7:
1898 /* for v7M, same as 6; for R profile a reserved value */
1899 if (arm_feature(env, ARM_FEATURE_M)) {
1900 result->f.prot |= PAGE_READ | PAGE_EXEC;
1901 break;
1903 /* fall through */
1904 default:
1905 qemu_log_mask(LOG_GUEST_ERROR,
1906 "DRACR[%d]: Bad value for AP bits: 0x%"
1907 PRIx32 "\n", n, ap);
1911 /* execute never */
1912 if (xn) {
1913 result->f.prot &= ~PAGE_EXEC;
1918 fi->type = ARMFault_Permission;
1919 fi->level = 1;
1920 return !(result->f.prot & (1 << access_type));
1923 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1924 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1925 bool secure, GetPhysAddrResult *result,
1926 ARMMMUFaultInfo *fi, uint32_t *mregion)
1929 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1930 * that a full phys-to-virt translation does).
1931 * mregion is (if not NULL) set to the region number which matched,
1932 * or -1 if no region number is returned (MPU off, address did not
1933 * hit a region, address hit in multiple regions).
1934 * If the region hit doesn't cover the entire TARGET_PAGE the address
1935 * is within, then we set the result page_size to 1 to force the
1936 * memory system to use a subpage.
1938 ARMCPU *cpu = env_archcpu(env);
1939 bool is_user = regime_is_user(env, mmu_idx);
1940 int n;
1941 int matchregion = -1;
1942 bool hit = false;
1943 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1944 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1946 result->f.lg_page_size = TARGET_PAGE_BITS;
1947 result->f.phys_addr = address;
1948 result->f.prot = 0;
1949 if (mregion) {
1950 *mregion = -1;
1954 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1955 * was an exception vector read from the vector table (which is always
1956 * done using the default system address map), because those accesses
1957 * are done in arm_v7m_load_vector(), which always does a direct
1958 * read using address_space_ldl(), rather than going via this function.
1960 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
1961 hit = true;
1962 } else if (m_is_ppb_region(env, address)) {
1963 hit = true;
1964 } else {
1965 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1966 hit = true;
1969 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1970 /* region search */
1972 * Note that the base address is bits [31:5] from the register
1973 * with bits [4:0] all zeroes, but the limit address is bits
1974 * [31:5] from the register with bits [4:0] all ones.
1976 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1977 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1979 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1980 /* Region disabled */
1981 continue;
1984 if (address < base || address > limit) {
1986 * Address not in this region. We must check whether the
1987 * region covers addresses in the same page as our address.
1988 * In that case we must not report a size that covers the
1989 * whole page for a subsequent hit against a different MPU
1990 * region or the background region, because it would result in
1991 * incorrect TLB hits for subsequent accesses to addresses that
1992 * are in this MPU region.
1994 if (limit >= base &&
1995 ranges_overlap(base, limit - base + 1,
1996 addr_page_base,
1997 TARGET_PAGE_SIZE)) {
1998 result->f.lg_page_size = 0;
2000 continue;
2003 if (base > addr_page_base || limit < addr_page_limit) {
2004 result->f.lg_page_size = 0;
2007 if (matchregion != -1) {
2009 * Multiple regions match -- always a failure (unlike
2010 * PMSAv7 where highest-numbered-region wins)
2012 fi->type = ARMFault_Permission;
2013 fi->level = 1;
2014 return true;
2017 matchregion = n;
2018 hit = true;
2022 if (!hit) {
2023 /* background fault */
2024 fi->type = ARMFault_Background;
2025 return true;
2028 if (matchregion == -1) {
2029 /* hit using the background region */
2030 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2031 } else {
2032 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
2033 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
2034 bool pxn = false;
2036 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2037 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
2040 if (m_is_system_region(env, address)) {
2041 /* System space is always execute never */
2042 xn = 1;
2045 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2046 if (result->f.prot && !xn && !(pxn && !is_user)) {
2047 result->f.prot |= PAGE_EXEC;
2050 * We don't need to look the attribute up in the MAIR0/MAIR1
2051 * registers because that only tells us about cacheability.
2053 if (mregion) {
2054 *mregion = matchregion;
2058 fi->type = ARMFault_Permission;
2059 fi->level = 1;
2060 return !(result->f.prot & (1 << access_type));
2063 static bool v8m_is_sau_exempt(CPUARMState *env,
2064 uint32_t address, MMUAccessType access_type)
2067 * The architecture specifies that certain address ranges are
2068 * exempt from v8M SAU/IDAU checks.
2070 return
2071 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2072 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2073 (address >= 0xe000e000 && address <= 0xe000efff) ||
2074 (address >= 0xe002e000 && address <= 0xe002efff) ||
2075 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2076 (address >= 0xe00ff000 && address <= 0xe00fffff);
2079 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2080 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2081 bool is_secure, V8M_SAttributes *sattrs)
2084 * Look up the security attributes for this address. Compare the
2085 * pseudocode SecurityCheck() function.
2086 * We assume the caller has zero-initialized *sattrs.
2088 ARMCPU *cpu = env_archcpu(env);
2089 int r;
2090 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2091 int idau_region = IREGION_NOTVALID;
2092 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2093 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2095 if (cpu->idau) {
2096 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2097 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2099 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2100 &idau_nsc);
2103 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2104 /* 0xf0000000..0xffffffff is always S for insn fetches */
2105 return;
2108 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2109 sattrs->ns = !is_secure;
2110 return;
2113 if (idau_region != IREGION_NOTVALID) {
2114 sattrs->irvalid = true;
2115 sattrs->iregion = idau_region;
2118 switch (env->sau.ctrl & 3) {
2119 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2120 break;
2121 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2122 sattrs->ns = true;
2123 break;
2124 default: /* SAU.ENABLE == 1 */
2125 for (r = 0; r < cpu->sau_sregion; r++) {
2126 if (env->sau.rlar[r] & 1) {
2127 uint32_t base = env->sau.rbar[r] & ~0x1f;
2128 uint32_t limit = env->sau.rlar[r] | 0x1f;
2130 if (base <= address && limit >= address) {
2131 if (base > addr_page_base || limit < addr_page_limit) {
2132 sattrs->subpage = true;
2134 if (sattrs->srvalid) {
2136 * If we hit in more than one region then we must report
2137 * as Secure, not NS-Callable, with no valid region
2138 * number info.
2140 sattrs->ns = false;
2141 sattrs->nsc = false;
2142 sattrs->sregion = 0;
2143 sattrs->srvalid = false;
2144 break;
2145 } else {
2146 if (env->sau.rlar[r] & 2) {
2147 sattrs->nsc = true;
2148 } else {
2149 sattrs->ns = true;
2151 sattrs->srvalid = true;
2152 sattrs->sregion = r;
2154 } else {
2156 * Address not in this region. We must check whether the
2157 * region covers addresses in the same page as our address.
2158 * In that case we must not report a size that covers the
2159 * whole page for a subsequent hit against a different MPU
2160 * region or the background region, because it would result
2161 * in incorrect TLB hits for subsequent accesses to
2162 * addresses that are in this MPU region.
2164 if (limit >= base &&
2165 ranges_overlap(base, limit - base + 1,
2166 addr_page_base,
2167 TARGET_PAGE_SIZE)) {
2168 sattrs->subpage = true;
2173 break;
2177 * The IDAU will override the SAU lookup results if it specifies
2178 * higher security than the SAU does.
2180 if (!idau_ns) {
2181 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2182 sattrs->ns = false;
2183 sattrs->nsc = idau_nsc;
2188 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2189 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2190 bool secure, GetPhysAddrResult *result,
2191 ARMMMUFaultInfo *fi)
2193 V8M_SAttributes sattrs = {};
2194 bool ret;
2196 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2197 v8m_security_lookup(env, address, access_type, mmu_idx,
2198 secure, &sattrs);
2199 if (access_type == MMU_INST_FETCH) {
2201 * Instruction fetches always use the MMU bank and the
2202 * transaction attribute determined by the fetch address,
2203 * regardless of CPU state. This is painful for QEMU
2204 * to handle, because it would mean we need to encode
2205 * into the mmu_idx not just the (user, negpri) information
2206 * for the current security state but also that for the
2207 * other security state, which would balloon the number
2208 * of mmu_idx values needed alarmingly.
2209 * Fortunately we can avoid this because it's not actually
2210 * possible to arbitrarily execute code from memory with
2211 * the wrong security attribute: it will always generate
2212 * an exception of some kind or another, apart from the
2213 * special case of an NS CPU executing an SG instruction
2214 * in S&NSC memory. So we always just fail the translation
2215 * here and sort things out in the exception handler
2216 * (including possibly emulating an SG instruction).
2218 if (sattrs.ns != !secure) {
2219 if (sattrs.nsc) {
2220 fi->type = ARMFault_QEMU_NSCExec;
2221 } else {
2222 fi->type = ARMFault_QEMU_SFault;
2224 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2225 result->f.phys_addr = address;
2226 result->f.prot = 0;
2227 return true;
2229 } else {
2231 * For data accesses we always use the MMU bank indicated
2232 * by the current CPU state, but the security attributes
2233 * might downgrade a secure access to nonsecure.
2235 if (sattrs.ns) {
2236 result->f.attrs.secure = false;
2237 } else if (!secure) {
2239 * NS access to S memory must fault.
2240 * Architecturally we should first check whether the
2241 * MPU information for this address indicates that we
2242 * are doing an unaligned access to Device memory, which
2243 * should generate a UsageFault instead. QEMU does not
2244 * currently check for that kind of unaligned access though.
2245 * If we added it we would need to do so as a special case
2246 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2248 fi->type = ARMFault_QEMU_SFault;
2249 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2250 result->f.phys_addr = address;
2251 result->f.prot = 0;
2252 return true;
2257 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2258 result, fi, NULL);
2259 if (sattrs.subpage) {
2260 result->f.lg_page_size = 0;
2262 return ret;
2266 * Translate from the 4-bit stage 2 representation of
2267 * memory attributes (without cache-allocation hints) to
2268 * the 8-bit representation of the stage 1 MAIR registers
2269 * (which includes allocation hints).
2271 * ref: shared/translation/attrs/S2AttrDecode()
2272 * .../S2ConvertAttrsHints()
2274 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2276 uint8_t hiattr = extract32(s2attrs, 2, 2);
2277 uint8_t loattr = extract32(s2attrs, 0, 2);
2278 uint8_t hihint = 0, lohint = 0;
2280 if (hiattr != 0) { /* normal memory */
2281 if (hcr & HCR_CD) { /* cache disabled */
2282 hiattr = loattr = 1; /* non-cacheable */
2283 } else {
2284 if (hiattr != 1) { /* Write-through or write-back */
2285 hihint = 3; /* RW allocate */
2287 if (loattr != 1) { /* Write-through or write-back */
2288 lohint = 3; /* RW allocate */
2293 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2297 * Combine either inner or outer cacheability attributes for normal
2298 * memory, according to table D4-42 and pseudocode procedure
2299 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2301 * NB: only stage 1 includes allocation hints (RW bits), leading to
2302 * some asymmetry.
2304 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2306 if (s1 == 4 || s2 == 4) {
2307 /* non-cacheable has precedence */
2308 return 4;
2309 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2310 /* stage 1 write-through takes precedence */
2311 return s1;
2312 } else if (extract32(s2, 2, 2) == 2) {
2313 /* stage 2 write-through takes precedence, but the allocation hint
2314 * is still taken from stage 1
2316 return (2 << 2) | extract32(s1, 0, 2);
2317 } else { /* write-back */
2318 return s1;
2323 * Combine the memory type and cacheability attributes of
2324 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2325 * combined attributes in MAIR_EL1 format.
2327 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2328 ARMCacheAttrs s1, ARMCacheAttrs s2)
2330 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2332 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2334 s1lo = extract32(s1.attrs, 0, 4);
2335 s2lo = extract32(s2_mair_attrs, 0, 4);
2336 s1hi = extract32(s1.attrs, 4, 4);
2337 s2hi = extract32(s2_mair_attrs, 4, 4);
2339 /* Combine memory type and cacheability attributes */
2340 if (s1hi == 0 || s2hi == 0) {
2341 /* Device has precedence over normal */
2342 if (s1lo == 0 || s2lo == 0) {
2343 /* nGnRnE has precedence over anything */
2344 ret_attrs = 0;
2345 } else if (s1lo == 4 || s2lo == 4) {
2346 /* non-Reordering has precedence over Reordering */
2347 ret_attrs = 4; /* nGnRE */
2348 } else if (s1lo == 8 || s2lo == 8) {
2349 /* non-Gathering has precedence over Gathering */
2350 ret_attrs = 8; /* nGRE */
2351 } else {
2352 ret_attrs = 0xc; /* GRE */
2354 } else { /* Normal memory */
2355 /* Outer/inner cacheability combine independently */
2356 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2357 | combine_cacheattr_nibble(s1lo, s2lo);
2359 return ret_attrs;
2362 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2365 * Given the 4 bits specifying the outer or inner cacheability
2366 * in MAIR format, return a value specifying Normal Write-Back,
2367 * with the allocation and transient hints taken from the input
2368 * if the input specified some kind of cacheable attribute.
2370 if (attr == 0 || attr == 4) {
2372 * 0 == an UNPREDICTABLE encoding
2373 * 4 == Non-cacheable
2374 * Either way, force Write-Back RW allocate non-transient
2376 return 0xf;
2378 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2379 return attr | 4;
2383 * Combine the memory type and cacheability attributes of
2384 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2385 * combined attributes in MAIR_EL1 format.
2387 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2389 switch (s2.attrs) {
2390 case 7:
2391 /* Use stage 1 attributes */
2392 return s1.attrs;
2393 case 6:
2395 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2396 * then we take the allocation hints from it; otherwise it is
2397 * RW allocate, non-transient.
2399 if ((s1.attrs & 0xf0) == 0) {
2400 /* S1 is Device */
2401 return 0xff;
2403 /* Need to check the Inner and Outer nibbles separately */
2404 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2405 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2406 case 5:
2407 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2408 if ((s1.attrs & 0xf0) == 0) {
2409 return s1.attrs;
2411 return 0x44;
2412 case 0 ... 3:
2413 /* Force Device, of subtype specified by S2 */
2414 return s2.attrs << 2;
2415 default:
2417 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2418 * arbitrarily force Device.
2420 return 0;
2425 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2426 * and CombineS1S2Desc()
2428 * @env: CPUARMState
2429 * @s1: Attributes from stage 1 walk
2430 * @s2: Attributes from stage 2 walk
2432 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2433 ARMCacheAttrs s1, ARMCacheAttrs s2)
2435 ARMCacheAttrs ret;
2436 bool tagged = false;
2438 assert(s2.is_s2_format && !s1.is_s2_format);
2439 ret.is_s2_format = false;
2441 if (s1.attrs == 0xf0) {
2442 tagged = true;
2443 s1.attrs = 0xff;
2446 /* Combine shareability attributes (table D4-43) */
2447 if (s1.shareability == 2 || s2.shareability == 2) {
2448 /* if either are outer-shareable, the result is outer-shareable */
2449 ret.shareability = 2;
2450 } else if (s1.shareability == 3 || s2.shareability == 3) {
2451 /* if either are inner-shareable, the result is inner-shareable */
2452 ret.shareability = 3;
2453 } else {
2454 /* both non-shareable */
2455 ret.shareability = 0;
2458 /* Combine memory type and cacheability attributes */
2459 if (hcr & HCR_FWB) {
2460 ret.attrs = combined_attrs_fwb(s1, s2);
2461 } else {
2462 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2466 * Any location for which the resultant memory type is any
2467 * type of Device memory is always treated as Outer Shareable.
2468 * Any location for which the resultant memory type is Normal
2469 * Inner Non-cacheable, Outer Non-cacheable is always treated
2470 * as Outer Shareable.
2471 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2473 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2474 ret.shareability = 2;
2477 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2478 if (tagged && ret.attrs == 0xff) {
2479 ret.attrs = 0xf0;
2482 return ret;
2486 * MMU disabled. S1 addresses within aa64 translation regimes are
2487 * still checked for bounds -- see AArch64.S1DisabledOutput().
2489 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2490 MMUAccessType access_type,
2491 ARMMMUIdx mmu_idx, bool is_secure,
2492 GetPhysAddrResult *result,
2493 ARMMMUFaultInfo *fi)
2495 uint8_t memattr = 0x00; /* Device nGnRnE */
2496 uint8_t shareability = 0; /* non-sharable */
2497 int r_el;
2499 switch (mmu_idx) {
2500 case ARMMMUIdx_Stage2:
2501 case ARMMMUIdx_Stage2_S:
2502 case ARMMMUIdx_Phys_NS:
2503 case ARMMMUIdx_Phys_S:
2504 break;
2506 default:
2507 r_el = regime_el(env, mmu_idx);
2508 if (arm_el_is_aa64(env, r_el)) {
2509 int pamax = arm_pamax(env_archcpu(env));
2510 uint64_t tcr = env->cp15.tcr_el[r_el];
2511 int addrtop, tbi;
2513 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2514 if (access_type == MMU_INST_FETCH) {
2515 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2517 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2518 addrtop = (tbi ? 55 : 63);
2520 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2521 fi->type = ARMFault_AddressSize;
2522 fi->level = 0;
2523 fi->stage2 = false;
2524 return 1;
2528 * When TBI is disabled, we've just validated that all of the
2529 * bits above PAMax are zero, so logically we only need to
2530 * clear the top byte for TBI. But it's clearer to follow
2531 * the pseudocode set of addrdesc.paddress.
2533 address = extract64(address, 0, 52);
2536 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2537 if (r_el == 1) {
2538 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2539 if (hcr & HCR_DC) {
2540 if (hcr & HCR_DCT) {
2541 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2542 } else {
2543 memattr = 0xff; /* Normal, WB, RWA */
2547 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2548 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2549 memattr = 0xee; /* Normal, WT, RA, NT */
2550 } else {
2551 memattr = 0x44; /* Normal, NC, No */
2553 shareability = 2; /* outer sharable */
2555 result->cacheattrs.is_s2_format = false;
2556 break;
2559 result->f.phys_addr = address;
2560 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2561 result->f.lg_page_size = TARGET_PAGE_BITS;
2562 result->cacheattrs.shareability = shareability;
2563 result->cacheattrs.attrs = memattr;
2564 return false;
2567 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2568 target_ulong address,
2569 MMUAccessType access_type,
2570 GetPhysAddrResult *result,
2571 ARMMMUFaultInfo *fi)
2573 hwaddr ipa;
2574 int s1_prot, s1_lgpgsz;
2575 bool is_secure = ptw->in_secure;
2576 bool ret, ipa_secure, s2walk_secure;
2577 ARMCacheAttrs cacheattrs1;
2578 bool is_el0;
2579 uint64_t hcr;
2581 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2583 /* If S1 fails or S2 is disabled, return early. */
2584 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2585 return ret;
2588 ipa = result->f.phys_addr;
2589 ipa_secure = result->f.attrs.secure;
2590 if (is_secure) {
2591 /* Select TCR based on the NS bit from the S1 walk. */
2592 s2walk_secure = !(ipa_secure
2593 ? env->cp15.vstcr_el2 & VSTCR_SW
2594 : env->cp15.vtcr_el2 & VTCR_NSW);
2595 } else {
2596 assert(!ipa_secure);
2597 s2walk_secure = false;
2600 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2601 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2602 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2603 ptw->in_secure = s2walk_secure;
2606 * S1 is done, now do S2 translation.
2607 * Save the stage1 results so that we may merge prot and cacheattrs later.
2609 s1_prot = result->f.prot;
2610 s1_lgpgsz = result->f.lg_page_size;
2611 cacheattrs1 = result->cacheattrs;
2612 memset(result, 0, sizeof(*result));
2614 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi);
2615 fi->s2addr = ipa;
2617 /* Combine the S1 and S2 perms. */
2618 result->f.prot &= s1_prot;
2620 /* If S2 fails, return early. */
2621 if (ret) {
2622 return ret;
2626 * Use the maximum of the S1 & S2 page size, so that invalidation
2627 * of pages > TARGET_PAGE_SIZE works correctly.
2629 if (result->f.lg_page_size < s1_lgpgsz) {
2630 result->f.lg_page_size = s1_lgpgsz;
2633 /* Combine the S1 and S2 cache attributes. */
2634 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2635 if (hcr & HCR_DC) {
2637 * HCR.DC forces the first stage attributes to
2638 * Normal Non-Shareable,
2639 * Inner Write-Back Read-Allocate Write-Allocate,
2640 * Outer Write-Back Read-Allocate Write-Allocate.
2641 * Do not overwrite Tagged within attrs.
2643 if (cacheattrs1.attrs != 0xf0) {
2644 cacheattrs1.attrs = 0xff;
2646 cacheattrs1.shareability = 0;
2648 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2649 result->cacheattrs);
2652 * Check if IPA translates to secure or non-secure PA space.
2653 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2655 result->f.attrs.secure =
2656 (is_secure
2657 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2658 && (ipa_secure
2659 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2661 return false;
2664 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2665 target_ulong address,
2666 MMUAccessType access_type,
2667 GetPhysAddrResult *result,
2668 ARMMMUFaultInfo *fi)
2670 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2671 bool is_secure = ptw->in_secure;
2672 ARMMMUIdx s1_mmu_idx;
2674 switch (mmu_idx) {
2675 case ARMMMUIdx_Phys_S:
2676 case ARMMMUIdx_Phys_NS:
2677 /* Checking Phys early avoids special casing later vs regime_el. */
2678 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2679 is_secure, result, fi);
2681 case ARMMMUIdx_Stage1_E0:
2682 case ARMMMUIdx_Stage1_E1:
2683 case ARMMMUIdx_Stage1_E1_PAN:
2684 /* First stage lookup uses second stage for ptw. */
2685 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2686 break;
2688 case ARMMMUIdx_E10_0:
2689 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2690 goto do_twostage;
2691 case ARMMMUIdx_E10_1:
2692 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2693 goto do_twostage;
2694 case ARMMMUIdx_E10_1_PAN:
2695 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2696 do_twostage:
2698 * Call ourselves recursively to do the stage 1 and then stage 2
2699 * translations if mmu_idx is a two-stage regime, and EL2 present.
2700 * Otherwise, a stage1+stage2 translation is just stage 1.
2702 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2703 if (arm_feature(env, ARM_FEATURE_EL2)) {
2704 return get_phys_addr_twostage(env, ptw, address, access_type,
2705 result, fi);
2707 /* fall through */
2709 default:
2710 /* Single stage and second stage uses physical for ptw. */
2711 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2712 break;
2716 * The page table entries may downgrade secure to non-secure, but
2717 * cannot upgrade an non-secure translation regime's attributes
2718 * to secure.
2720 result->f.attrs.secure = is_secure;
2721 result->f.attrs.user = regime_is_user(env, mmu_idx);
2724 * Fast Context Switch Extension. This doesn't exist at all in v8.
2725 * In v7 and earlier it affects all stage 1 translations.
2727 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2728 && !arm_feature(env, ARM_FEATURE_V8)) {
2729 if (regime_el(env, mmu_idx) == 3) {
2730 address += env->cp15.fcseidr_s;
2731 } else {
2732 address += env->cp15.fcseidr_ns;
2736 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2737 bool ret;
2738 result->f.lg_page_size = TARGET_PAGE_BITS;
2740 if (arm_feature(env, ARM_FEATURE_V8)) {
2741 /* PMSAv8 */
2742 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2743 is_secure, result, fi);
2744 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2745 /* PMSAv7 */
2746 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2747 is_secure, result, fi);
2748 } else {
2749 /* Pre-v7 MPU */
2750 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2751 is_secure, result, fi);
2753 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2754 " mmu_idx %u -> %s (prot %c%c%c)\n",
2755 access_type == MMU_DATA_LOAD ? "reading" :
2756 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2757 (uint32_t)address, mmu_idx,
2758 ret ? "Miss" : "Hit",
2759 result->f.prot & PAGE_READ ? 'r' : '-',
2760 result->f.prot & PAGE_WRITE ? 'w' : '-',
2761 result->f.prot & PAGE_EXEC ? 'x' : '-');
2763 return ret;
2766 /* Definitely a real MMU, not an MPU */
2768 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2769 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2770 is_secure, result, fi);
2773 if (regime_using_lpae_format(env, mmu_idx)) {
2774 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2775 result, fi);
2776 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2777 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2778 } else {
2779 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2783 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2784 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2785 bool is_secure, GetPhysAddrResult *result,
2786 ARMMMUFaultInfo *fi)
2788 S1Translate ptw = {
2789 .in_mmu_idx = mmu_idx,
2790 .in_secure = is_secure,
2792 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2793 result, fi);
2796 bool get_phys_addr(CPUARMState *env, target_ulong address,
2797 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2798 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2800 bool is_secure;
2802 switch (mmu_idx) {
2803 case ARMMMUIdx_E10_0:
2804 case ARMMMUIdx_E10_1:
2805 case ARMMMUIdx_E10_1_PAN:
2806 case ARMMMUIdx_E20_0:
2807 case ARMMMUIdx_E20_2:
2808 case ARMMMUIdx_E20_2_PAN:
2809 case ARMMMUIdx_Stage1_E0:
2810 case ARMMMUIdx_Stage1_E1:
2811 case ARMMMUIdx_Stage1_E1_PAN:
2812 case ARMMMUIdx_E2:
2813 is_secure = arm_is_secure_below_el3(env);
2814 break;
2815 case ARMMMUIdx_Stage2:
2816 case ARMMMUIdx_Phys_NS:
2817 case ARMMMUIdx_MPrivNegPri:
2818 case ARMMMUIdx_MUserNegPri:
2819 case ARMMMUIdx_MPriv:
2820 case ARMMMUIdx_MUser:
2821 is_secure = false;
2822 break;
2823 case ARMMMUIdx_E3:
2824 case ARMMMUIdx_Stage2_S:
2825 case ARMMMUIdx_Phys_S:
2826 case ARMMMUIdx_MSPrivNegPri:
2827 case ARMMMUIdx_MSUserNegPri:
2828 case ARMMMUIdx_MSPriv:
2829 case ARMMMUIdx_MSUser:
2830 is_secure = true;
2831 break;
2832 default:
2833 g_assert_not_reached();
2835 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2836 is_secure, result, fi);
2839 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2840 MemTxAttrs *attrs)
2842 ARMCPU *cpu = ARM_CPU(cs);
2843 CPUARMState *env = &cpu->env;
2844 S1Translate ptw = {
2845 .in_mmu_idx = arm_mmu_idx(env),
2846 .in_secure = arm_is_secure(env),
2847 .in_debug = true,
2849 GetPhysAddrResult res = {};
2850 ARMMMUFaultInfo fi = {};
2851 bool ret;
2853 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
2854 *attrs = res.f.attrs;
2856 if (ret) {
2857 return -1;
2859 return res.f.phys_addr;